]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
gdb, gdbserver: detach fork child when detaching from fork parent
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, ULONGEST thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus &status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void print_one_stopped_thread (thread_info *thread);
770 void process_initial_stop_replies (int from_tty);
771
772 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
773
774 void btrace_sync_conf (const btrace_config *conf);
775
776 void remote_btrace_maybe_reopen ();
777
778 void remove_new_fork_children (threads_listing_context *context);
779 void kill_new_fork_children (inferior *inf);
780 void discard_pending_stop_replies (struct inferior *inf);
781 int stop_reply_queue_length ();
782
783 void check_pending_events_prevent_wildcard_vcont
784 (bool *may_global_wildcard_vcont);
785
786 void discard_pending_stop_replies_in_queue ();
787 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
788 struct stop_reply *queued_stop_reply (ptid_t ptid);
789 int peek_stop_reply (ptid_t ptid);
790 void remote_parse_stop_reply (const char *buf, stop_reply *event);
791
792 void remote_stop_ns (ptid_t ptid);
793 void remote_interrupt_as ();
794 void remote_interrupt_ns ();
795
796 char *remote_get_noisy_reply ();
797 int remote_query_attached (int pid);
798 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
799 int try_open_exec);
800
801 ptid_t remote_current_thread (ptid_t oldpid);
802 ptid_t get_current_thread (const char *wait_status);
803
804 void set_thread (ptid_t ptid, int gen);
805 void set_general_thread (ptid_t ptid);
806 void set_continue_thread (ptid_t ptid);
807 void set_general_process ();
808
809 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
810
811 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
812 gdb_ext_thread_info *info);
813 int remote_get_threadinfo (threadref *threadid, int fieldset,
814 gdb_ext_thread_info *info);
815
816 int parse_threadlist_response (const char *pkt, int result_limit,
817 threadref *original_echo,
818 threadref *resultlist,
819 int *doneflag);
820 int remote_get_threadlist (int startflag, threadref *nextthread,
821 int result_limit, int *done, int *result_count,
822 threadref *threadlist);
823
824 int remote_threadlist_iterator (rmt_thread_action stepfunction,
825 void *context, int looplimit);
826
827 int remote_get_threads_with_ql (threads_listing_context *context);
828 int remote_get_threads_with_qxfer (threads_listing_context *context);
829 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
830
831 void extended_remote_restart ();
832
833 void get_offsets ();
834
835 void remote_check_symbols ();
836
837 void remote_supported_packet (const struct protocol_feature *feature,
838 enum packet_support support,
839 const char *argument);
840
841 void remote_query_supported ();
842
843 void remote_packet_size (const protocol_feature *feature,
844 packet_support support, const char *value);
845
846 void remote_serial_quit_handler ();
847
848 void remote_detach_pid (int pid);
849
850 void remote_vcont_probe ();
851
852 void remote_resume_with_hc (ptid_t ptid, int step,
853 gdb_signal siggnal);
854
855 void send_interrupt_sequence ();
856 void interrupt_query ();
857
858 void remote_notif_get_pending_events (notif_client *nc);
859
860 int fetch_register_using_p (struct regcache *regcache,
861 packet_reg *reg);
862 int send_g_packet ();
863 void process_g_packet (struct regcache *regcache);
864 void fetch_registers_using_g (struct regcache *regcache);
865 int store_register_using_P (const struct regcache *regcache,
866 packet_reg *reg);
867 void store_registers_using_G (const struct regcache *regcache);
868
869 void set_remote_traceframe ();
870
871 void check_binary_download (CORE_ADDR addr);
872
873 target_xfer_status remote_write_bytes_aux (const char *header,
874 CORE_ADDR memaddr,
875 const gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size,
878 ULONGEST *xfered_len_units,
879 char packet_format,
880 int use_length);
881
882 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
883 const gdb_byte *myaddr, ULONGEST len,
884 int unit_size, ULONGEST *xfered_len);
885
886 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
887 ULONGEST len_units,
888 int unit_size, ULONGEST *xfered_len_units);
889
890 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
891 ULONGEST memaddr,
892 ULONGEST len,
893 int unit_size,
894 ULONGEST *xfered_len);
895
896 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
897 gdb_byte *myaddr, ULONGEST len,
898 int unit_size,
899 ULONGEST *xfered_len);
900
901 packet_result remote_send_printf (const char *format, ...)
902 ATTRIBUTE_PRINTF (2, 3);
903
904 target_xfer_status remote_flash_write (ULONGEST address,
905 ULONGEST length, ULONGEST *xfered_len,
906 const gdb_byte *data);
907
908 int readchar (int timeout);
909
910 void remote_serial_write (const char *str, int len);
911
912 int putpkt (const char *buf);
913 int putpkt_binary (const char *buf, int cnt);
914
915 int putpkt (const gdb::char_vector &buf)
916 {
917 return putpkt (buf.data ());
918 }
919
920 void skip_frame ();
921 long read_frame (gdb::char_vector *buf_p);
922 void getpkt (gdb::char_vector *buf, int forever);
923 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
924 int expecting_notif, int *is_notif);
925 int getpkt_sane (gdb::char_vector *buf, int forever);
926 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
927 int *is_notif);
928 int remote_vkill (int pid);
929 void remote_kill_k ();
930
931 void extended_remote_disable_randomization (int val);
932 int extended_remote_run (const std::string &args);
933
934 void send_environment_packet (const char *action,
935 const char *packet,
936 const char *value);
937
938 void extended_remote_environment_support ();
939 void extended_remote_set_inferior_cwd ();
940
941 target_xfer_status remote_write_qxfer (const char *object_name,
942 const char *annex,
943 const gdb_byte *writebuf,
944 ULONGEST offset, LONGEST len,
945 ULONGEST *xfered_len,
946 struct packet_config *packet);
947
948 target_xfer_status remote_read_qxfer (const char *object_name,
949 const char *annex,
950 gdb_byte *readbuf, ULONGEST offset,
951 LONGEST len,
952 ULONGEST *xfered_len,
953 struct packet_config *packet);
954
955 void push_stop_reply (struct stop_reply *new_event);
956
957 bool vcont_r_supported ();
958
959 private:
960
961 bool start_remote_1 (int from_tty, int extended_p);
962
963 /* The remote state. Don't reference this directly. Use the
964 get_remote_state method instead. */
965 remote_state m_remote_state;
966 };
967
968 static const target_info extended_remote_target_info = {
969 "extended-remote",
970 N_("Extended remote serial target in gdb-specific protocol"),
971 remote_doc
972 };
973
974 /* Set up the extended remote target by extending the standard remote
975 target and adding to it. */
976
977 class extended_remote_target final : public remote_target
978 {
979 public:
980 const target_info &info () const override
981 { return extended_remote_target_info; }
982
983 /* Open an extended-remote connection. */
984 static void open (const char *, int);
985
986 bool can_create_inferior () override { return true; }
987 void create_inferior (const char *, const std::string &,
988 char **, int) override;
989
990 void detach (inferior *, int) override;
991
992 bool can_attach () override { return true; }
993 void attach (const char *, int) override;
994
995 void post_attach (int) override;
996 bool supports_disable_randomization () override;
997 };
998
999 struct stop_reply : public notif_event
1000 {
1001 ~stop_reply ();
1002
1003 /* The identifier of the thread about this event */
1004 ptid_t ptid;
1005
1006 /* The remote state this event is associated with. When the remote
1007 connection, represented by a remote_state object, is closed,
1008 all the associated stop_reply events should be released. */
1009 struct remote_state *rs;
1010
1011 struct target_waitstatus ws;
1012
1013 /* The architecture associated with the expedited registers. */
1014 gdbarch *arch;
1015
1016 /* Expedited registers. This makes remote debugging a bit more
1017 efficient for those targets that provide critical registers as
1018 part of their normal status mechanism (as another roundtrip to
1019 fetch them is avoided). */
1020 std::vector<cached_reg_t> regcache;
1021
1022 enum target_stop_reason stop_reason;
1023
1024 CORE_ADDR watch_data_address;
1025
1026 int core;
1027 };
1028
1029 /* See remote.h. */
1030
1031 bool
1032 is_remote_target (process_stratum_target *target)
1033 {
1034 remote_target *rt = dynamic_cast<remote_target *> (target);
1035 return rt != nullptr;
1036 }
1037
1038 /* Per-program-space data key. */
1039 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1040 remote_pspace_data;
1041
1042 /* The variable registered as the control variable used by the
1043 remote exec-file commands. While the remote exec-file setting is
1044 per-program-space, the set/show machinery uses this as the
1045 location of the remote exec-file value. */
1046 static std::string remote_exec_file_var;
1047
1048 /* The size to align memory write packets, when practical. The protocol
1049 does not guarantee any alignment, and gdb will generate short
1050 writes and unaligned writes, but even as a best-effort attempt this
1051 can improve bulk transfers. For instance, if a write is misaligned
1052 relative to the target's data bus, the stub may need to make an extra
1053 round trip fetching data from the target. This doesn't make a
1054 huge difference, but it's easy to do, so we try to be helpful.
1055
1056 The alignment chosen is arbitrary; usually data bus width is
1057 important here, not the possibly larger cache line size. */
1058 enum { REMOTE_ALIGN_WRITES = 16 };
1059
1060 /* Prototypes for local functions. */
1061
1062 static int hexnumlen (ULONGEST num);
1063
1064 static int stubhex (int ch);
1065
1066 static int hexnumstr (char *, ULONGEST);
1067
1068 static int hexnumnstr (char *, ULONGEST, int);
1069
1070 static CORE_ADDR remote_address_masked (CORE_ADDR);
1071
1072 static int stub_unpack_int (const char *buff, int fieldlength);
1073
1074 struct packet_config;
1075
1076 static void show_packet_config_cmd (struct packet_config *config);
1077
1078 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1079 int from_tty,
1080 struct cmd_list_element *c,
1081 const char *value);
1082
1083 static ptid_t read_ptid (const char *buf, const char **obuf);
1084
1085 static void remote_async_inferior_event_handler (gdb_client_data);
1086
1087 static bool remote_read_description_p (struct target_ops *target);
1088
1089 static void remote_console_output (const char *msg);
1090
1091 static void remote_btrace_reset (remote_state *rs);
1092
1093 static void remote_unpush_and_throw (remote_target *target);
1094
1095 /* For "remote". */
1096
1097 static struct cmd_list_element *remote_cmdlist;
1098
1099 /* For "set remote" and "show remote". */
1100
1101 static struct cmd_list_element *remote_set_cmdlist;
1102 static struct cmd_list_element *remote_show_cmdlist;
1103
1104 /* Controls whether GDB is willing to use range stepping. */
1105
1106 static bool use_range_stepping = true;
1107
1108 /* From the remote target's point of view, each thread is in one of these three
1109 states. */
1110 enum class resume_state
1111 {
1112 /* Not resumed - we haven't been asked to resume this thread. */
1113 NOT_RESUMED,
1114
1115 /* We have been asked to resume this thread, but haven't sent a vCont action
1116 for it yet. We'll need to consider it next time commit_resume is
1117 called. */
1118 RESUMED_PENDING_VCONT,
1119
1120 /* We have been asked to resume this thread, and we have sent a vCont action
1121 for it. */
1122 RESUMED,
1123 };
1124
1125 /* Information about a thread's pending vCont-resume. Used when a thread is in
1126 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1127 stores this information which is then picked up by
1128 remote_target::commit_resume to know which is the proper action for this
1129 thread to include in the vCont packet. */
1130 struct resumed_pending_vcont_info
1131 {
1132 /* True if the last resume call for this thread was a step request, false
1133 if a continue request. */
1134 bool step;
1135
1136 /* The signal specified in the last resume call for this thread. */
1137 gdb_signal sig;
1138 };
1139
1140 /* Private data that we'll store in (struct thread_info)->priv. */
1141 struct remote_thread_info : public private_thread_info
1142 {
1143 std::string extra;
1144 std::string name;
1145 int core = -1;
1146
1147 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1148 sequence of bytes. */
1149 gdb::byte_vector thread_handle;
1150
1151 /* Whether the target stopped for a breakpoint/watchpoint. */
1152 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1153
1154 /* This is set to the data address of the access causing the target
1155 to stop for a watchpoint. */
1156 CORE_ADDR watch_data_address = 0;
1157
1158 /* Get the thread's resume state. */
1159 enum resume_state get_resume_state () const
1160 {
1161 return m_resume_state;
1162 }
1163
1164 /* Put the thread in the NOT_RESUMED state. */
1165 void set_not_resumed ()
1166 {
1167 m_resume_state = resume_state::NOT_RESUMED;
1168 }
1169
1170 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1171 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1172 {
1173 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1174 m_resumed_pending_vcont_info.step = step;
1175 m_resumed_pending_vcont_info.sig = sig;
1176 }
1177
1178 /* Get the information this thread's pending vCont-resumption.
1179
1180 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1181 state. */
1182 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1183 {
1184 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1185
1186 return m_resumed_pending_vcont_info;
1187 }
1188
1189 /* Put the thread in the VCONT_RESUMED state. */
1190 void set_resumed ()
1191 {
1192 m_resume_state = resume_state::RESUMED;
1193 }
1194
1195 private:
1196 /* Resume state for this thread. This is used to implement vCont action
1197 coalescing (only when the target operates in non-stop mode).
1198
1199 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1200 which notes that this thread must be considered in the next commit_resume
1201 call.
1202
1203 remote_target::commit_resume sends a vCont packet with actions for the
1204 threads in the RESUMED_PENDING_VCONT state and moves them to the
1205 VCONT_RESUMED state.
1206
1207 When reporting a stop to the core for a thread, that thread is moved back
1208 to the NOT_RESUMED state. */
1209 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1210
1211 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1212 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1213 };
1214
1215 remote_state::remote_state ()
1216 : buf (400)
1217 {
1218 }
1219
1220 remote_state::~remote_state ()
1221 {
1222 xfree (this->last_pass_packet);
1223 xfree (this->last_program_signals_packet);
1224 xfree (this->finished_object);
1225 xfree (this->finished_annex);
1226 }
1227
1228 /* Utility: generate error from an incoming stub packet. */
1229 static void
1230 trace_error (char *buf)
1231 {
1232 if (*buf++ != 'E')
1233 return; /* not an error msg */
1234 switch (*buf)
1235 {
1236 case '1': /* malformed packet error */
1237 if (*++buf == '0') /* general case: */
1238 error (_("remote.c: error in outgoing packet."));
1239 else
1240 error (_("remote.c: error in outgoing packet at field #%ld."),
1241 strtol (buf, NULL, 16));
1242 default:
1243 error (_("Target returns error code '%s'."), buf);
1244 }
1245 }
1246
1247 /* Utility: wait for reply from stub, while accepting "O" packets. */
1248
1249 char *
1250 remote_target::remote_get_noisy_reply ()
1251 {
1252 struct remote_state *rs = get_remote_state ();
1253
1254 do /* Loop on reply from remote stub. */
1255 {
1256 char *buf;
1257
1258 QUIT; /* Allow user to bail out with ^C. */
1259 getpkt (&rs->buf, 0);
1260 buf = rs->buf.data ();
1261 if (buf[0] == 'E')
1262 trace_error (buf);
1263 else if (startswith (buf, "qRelocInsn:"))
1264 {
1265 ULONGEST ul;
1266 CORE_ADDR from, to, org_to;
1267 const char *p, *pp;
1268 int adjusted_size = 0;
1269 int relocated = 0;
1270
1271 p = buf + strlen ("qRelocInsn:");
1272 pp = unpack_varlen_hex (p, &ul);
1273 if (*pp != ';')
1274 error (_("invalid qRelocInsn packet: %s"), buf);
1275 from = ul;
1276
1277 p = pp + 1;
1278 unpack_varlen_hex (p, &ul);
1279 to = ul;
1280
1281 org_to = to;
1282
1283 try
1284 {
1285 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1286 relocated = 1;
1287 }
1288 catch (const gdb_exception &ex)
1289 {
1290 if (ex.error == MEMORY_ERROR)
1291 {
1292 /* Propagate memory errors silently back to the
1293 target. The stub may have limited the range of
1294 addresses we can write to, for example. */
1295 }
1296 else
1297 {
1298 /* Something unexpectedly bad happened. Be verbose
1299 so we can tell what, and propagate the error back
1300 to the stub, so it doesn't get stuck waiting for
1301 a response. */
1302 exception_fprintf (gdb_stderr, ex,
1303 _("warning: relocating instruction: "));
1304 }
1305 putpkt ("E01");
1306 }
1307
1308 if (relocated)
1309 {
1310 adjusted_size = to - org_to;
1311
1312 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1313 putpkt (buf);
1314 }
1315 }
1316 else if (buf[0] == 'O' && buf[1] != 'K')
1317 remote_console_output (buf + 1); /* 'O' message from stub */
1318 else
1319 return buf; /* Here's the actual reply. */
1320 }
1321 while (1);
1322 }
1323
1324 struct remote_arch_state *
1325 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1326 {
1327 remote_arch_state *rsa;
1328
1329 auto it = this->m_arch_states.find (gdbarch);
1330 if (it == this->m_arch_states.end ())
1331 {
1332 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1333 std::forward_as_tuple (gdbarch),
1334 std::forward_as_tuple (gdbarch));
1335 rsa = &p.first->second;
1336
1337 /* Make sure that the packet buffer is plenty big enough for
1338 this architecture. */
1339 if (this->buf.size () < rsa->remote_packet_size)
1340 this->buf.resize (2 * rsa->remote_packet_size);
1341 }
1342 else
1343 rsa = &it->second;
1344
1345 return rsa;
1346 }
1347
1348 /* Fetch the global remote target state. */
1349
1350 remote_state *
1351 remote_target::get_remote_state ()
1352 {
1353 /* Make sure that the remote architecture state has been
1354 initialized, because doing so might reallocate rs->buf. Any
1355 function which calls getpkt also needs to be mindful of changes
1356 to rs->buf, but this call limits the number of places which run
1357 into trouble. */
1358 m_remote_state.get_remote_arch_state (target_gdbarch ());
1359
1360 return &m_remote_state;
1361 }
1362
1363 /* Fetch the remote exec-file from the current program space. */
1364
1365 static const char *
1366 get_remote_exec_file (void)
1367 {
1368 char *remote_exec_file;
1369
1370 remote_exec_file = remote_pspace_data.get (current_program_space);
1371 if (remote_exec_file == NULL)
1372 return "";
1373
1374 return remote_exec_file;
1375 }
1376
1377 /* Set the remote exec file for PSPACE. */
1378
1379 static void
1380 set_pspace_remote_exec_file (struct program_space *pspace,
1381 const char *remote_exec_file)
1382 {
1383 char *old_file = remote_pspace_data.get (pspace);
1384
1385 xfree (old_file);
1386 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1387 }
1388
1389 /* The "set/show remote exec-file" set command hook. */
1390
1391 static void
1392 set_remote_exec_file (const char *ignored, int from_tty,
1393 struct cmd_list_element *c)
1394 {
1395 set_pspace_remote_exec_file (current_program_space,
1396 remote_exec_file_var.c_str ());
1397 }
1398
1399 /* The "set/show remote exec-file" show command hook. */
1400
1401 static void
1402 show_remote_exec_file (struct ui_file *file, int from_tty,
1403 struct cmd_list_element *cmd, const char *value)
1404 {
1405 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1406 }
1407
1408 static int
1409 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1410 {
1411 int regnum, num_remote_regs, offset;
1412 struct packet_reg **remote_regs;
1413
1414 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1415 {
1416 struct packet_reg *r = &regs[regnum];
1417
1418 if (register_size (gdbarch, regnum) == 0)
1419 /* Do not try to fetch zero-sized (placeholder) registers. */
1420 r->pnum = -1;
1421 else
1422 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1423
1424 r->regnum = regnum;
1425 }
1426
1427 /* Define the g/G packet format as the contents of each register
1428 with a remote protocol number, in order of ascending protocol
1429 number. */
1430
1431 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1432 for (num_remote_regs = 0, regnum = 0;
1433 regnum < gdbarch_num_regs (gdbarch);
1434 regnum++)
1435 if (regs[regnum].pnum != -1)
1436 remote_regs[num_remote_regs++] = &regs[regnum];
1437
1438 std::sort (remote_regs, remote_regs + num_remote_regs,
1439 [] (const packet_reg *a, const packet_reg *b)
1440 { return a->pnum < b->pnum; });
1441
1442 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1443 {
1444 remote_regs[regnum]->in_g_packet = 1;
1445 remote_regs[regnum]->offset = offset;
1446 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1447 }
1448
1449 return offset;
1450 }
1451
1452 /* Given the architecture described by GDBARCH, return the remote
1453 protocol register's number and the register's offset in the g/G
1454 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1455 If the target does not have a mapping for REGNUM, return false,
1456 otherwise, return true. */
1457
1458 int
1459 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1460 int *pnum, int *poffset)
1461 {
1462 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1463
1464 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1465
1466 map_regcache_remote_table (gdbarch, regs.data ());
1467
1468 *pnum = regs[regnum].pnum;
1469 *poffset = regs[regnum].offset;
1470
1471 return *pnum != -1;
1472 }
1473
1474 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1475 {
1476 /* Use the architecture to build a regnum<->pnum table, which will be
1477 1:1 unless a feature set specifies otherwise. */
1478 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1479
1480 /* Record the maximum possible size of the g packet - it may turn out
1481 to be smaller. */
1482 this->sizeof_g_packet
1483 = map_regcache_remote_table (gdbarch, this->regs.get ());
1484
1485 /* Default maximum number of characters in a packet body. Many
1486 remote stubs have a hardwired buffer size of 400 bytes
1487 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1488 as the maximum packet-size to ensure that the packet and an extra
1489 NUL character can always fit in the buffer. This stops GDB
1490 trashing stubs that try to squeeze an extra NUL into what is
1491 already a full buffer (As of 1999-12-04 that was most stubs). */
1492 this->remote_packet_size = 400 - 1;
1493
1494 /* This one is filled in when a ``g'' packet is received. */
1495 this->actual_register_packet_size = 0;
1496
1497 /* Should rsa->sizeof_g_packet needs more space than the
1498 default, adjust the size accordingly. Remember that each byte is
1499 encoded as two characters. 32 is the overhead for the packet
1500 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1501 (``$NN:G...#NN'') is a better guess, the below has been padded a
1502 little. */
1503 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1504 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1505 }
1506
1507 /* Get a pointer to the current remote target. If not connected to a
1508 remote target, return NULL. */
1509
1510 static remote_target *
1511 get_current_remote_target ()
1512 {
1513 target_ops *proc_target = current_inferior ()->process_target ();
1514 return dynamic_cast<remote_target *> (proc_target);
1515 }
1516
1517 /* Return the current allowed size of a remote packet. This is
1518 inferred from the current architecture, and should be used to
1519 limit the length of outgoing packets. */
1520 long
1521 remote_target::get_remote_packet_size ()
1522 {
1523 struct remote_state *rs = get_remote_state ();
1524 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1525
1526 if (rs->explicit_packet_size)
1527 return rs->explicit_packet_size;
1528
1529 return rsa->remote_packet_size;
1530 }
1531
1532 static struct packet_reg *
1533 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1534 long regnum)
1535 {
1536 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1537 return NULL;
1538 else
1539 {
1540 struct packet_reg *r = &rsa->regs[regnum];
1541
1542 gdb_assert (r->regnum == regnum);
1543 return r;
1544 }
1545 }
1546
1547 static struct packet_reg *
1548 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1549 LONGEST pnum)
1550 {
1551 int i;
1552
1553 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1554 {
1555 struct packet_reg *r = &rsa->regs[i];
1556
1557 if (r->pnum == pnum)
1558 return r;
1559 }
1560 return NULL;
1561 }
1562
1563 /* Allow the user to specify what sequence to send to the remote
1564 when he requests a program interruption: Although ^C is usually
1565 what remote systems expect (this is the default, here), it is
1566 sometimes preferable to send a break. On other systems such
1567 as the Linux kernel, a break followed by g, which is Magic SysRq g
1568 is required in order to interrupt the execution. */
1569 const char interrupt_sequence_control_c[] = "Ctrl-C";
1570 const char interrupt_sequence_break[] = "BREAK";
1571 const char interrupt_sequence_break_g[] = "BREAK-g";
1572 static const char *const interrupt_sequence_modes[] =
1573 {
1574 interrupt_sequence_control_c,
1575 interrupt_sequence_break,
1576 interrupt_sequence_break_g,
1577 NULL
1578 };
1579 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1580
1581 static void
1582 show_interrupt_sequence (struct ui_file *file, int from_tty,
1583 struct cmd_list_element *c,
1584 const char *value)
1585 {
1586 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1587 fprintf_filtered (file,
1588 _("Send the ASCII ETX character (Ctrl-c) "
1589 "to the remote target to interrupt the "
1590 "execution of the program.\n"));
1591 else if (interrupt_sequence_mode == interrupt_sequence_break)
1592 fprintf_filtered (file,
1593 _("send a break signal to the remote target "
1594 "to interrupt the execution of the program.\n"));
1595 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1596 fprintf_filtered (file,
1597 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1598 "the remote target to interrupt the execution "
1599 "of Linux kernel.\n"));
1600 else
1601 internal_error (__FILE__, __LINE__,
1602 _("Invalid value for interrupt_sequence_mode: %s."),
1603 interrupt_sequence_mode);
1604 }
1605
1606 /* This boolean variable specifies whether interrupt_sequence is sent
1607 to the remote target when gdb connects to it.
1608 This is mostly needed when you debug the Linux kernel: The Linux kernel
1609 expects BREAK g which is Magic SysRq g for connecting gdb. */
1610 static bool interrupt_on_connect = false;
1611
1612 /* This variable is used to implement the "set/show remotebreak" commands.
1613 Since these commands are now deprecated in favor of "set/show remote
1614 interrupt-sequence", it no longer has any effect on the code. */
1615 static bool remote_break;
1616
1617 static void
1618 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1619 {
1620 if (remote_break)
1621 interrupt_sequence_mode = interrupt_sequence_break;
1622 else
1623 interrupt_sequence_mode = interrupt_sequence_control_c;
1624 }
1625
1626 static void
1627 show_remotebreak (struct ui_file *file, int from_tty,
1628 struct cmd_list_element *c,
1629 const char *value)
1630 {
1631 }
1632
1633 /* This variable sets the number of bits in an address that are to be
1634 sent in a memory ("M" or "m") packet. Normally, after stripping
1635 leading zeros, the entire address would be sent. This variable
1636 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1637 initial implementation of remote.c restricted the address sent in
1638 memory packets to ``host::sizeof long'' bytes - (typically 32
1639 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1640 address was never sent. Since fixing this bug may cause a break in
1641 some remote targets this variable is principally provided to
1642 facilitate backward compatibility. */
1643
1644 static unsigned int remote_address_size;
1645
1646 \f
1647 /* User configurable variables for the number of characters in a
1648 memory read/write packet. MIN (rsa->remote_packet_size,
1649 rsa->sizeof_g_packet) is the default. Some targets need smaller
1650 values (fifo overruns, et.al.) and some users need larger values
1651 (speed up transfers). The variables ``preferred_*'' (the user
1652 request), ``current_*'' (what was actually set) and ``forced_*''
1653 (Positive - a soft limit, negative - a hard limit). */
1654
1655 struct memory_packet_config
1656 {
1657 const char *name;
1658 long size;
1659 int fixed_p;
1660 };
1661
1662 /* The default max memory-write-packet-size, when the setting is
1663 "fixed". The 16k is historical. (It came from older GDB's using
1664 alloca for buffers and the knowledge (folklore?) that some hosts
1665 don't cope very well with large alloca calls.) */
1666 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1667
1668 /* The minimum remote packet size for memory transfers. Ensures we
1669 can write at least one byte. */
1670 #define MIN_MEMORY_PACKET_SIZE 20
1671
1672 /* Get the memory packet size, assuming it is fixed. */
1673
1674 static long
1675 get_fixed_memory_packet_size (struct memory_packet_config *config)
1676 {
1677 gdb_assert (config->fixed_p);
1678
1679 if (config->size <= 0)
1680 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1681 else
1682 return config->size;
1683 }
1684
1685 /* Compute the current size of a read/write packet. Since this makes
1686 use of ``actual_register_packet_size'' the computation is dynamic. */
1687
1688 long
1689 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1690 {
1691 struct remote_state *rs = get_remote_state ();
1692 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1693
1694 long what_they_get;
1695 if (config->fixed_p)
1696 what_they_get = get_fixed_memory_packet_size (config);
1697 else
1698 {
1699 what_they_get = get_remote_packet_size ();
1700 /* Limit the packet to the size specified by the user. */
1701 if (config->size > 0
1702 && what_they_get > config->size)
1703 what_they_get = config->size;
1704
1705 /* Limit it to the size of the targets ``g'' response unless we have
1706 permission from the stub to use a larger packet size. */
1707 if (rs->explicit_packet_size == 0
1708 && rsa->actual_register_packet_size > 0
1709 && what_they_get > rsa->actual_register_packet_size)
1710 what_they_get = rsa->actual_register_packet_size;
1711 }
1712 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1713 what_they_get = MIN_MEMORY_PACKET_SIZE;
1714
1715 /* Make sure there is room in the global buffer for this packet
1716 (including its trailing NUL byte). */
1717 if (rs->buf.size () < what_they_get + 1)
1718 rs->buf.resize (2 * what_they_get);
1719
1720 return what_they_get;
1721 }
1722
1723 /* Update the size of a read/write packet. If they user wants
1724 something really big then do a sanity check. */
1725
1726 static void
1727 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1728 {
1729 int fixed_p = config->fixed_p;
1730 long size = config->size;
1731
1732 if (args == NULL)
1733 error (_("Argument required (integer, `fixed' or `limited')."));
1734 else if (strcmp (args, "hard") == 0
1735 || strcmp (args, "fixed") == 0)
1736 fixed_p = 1;
1737 else if (strcmp (args, "soft") == 0
1738 || strcmp (args, "limit") == 0)
1739 fixed_p = 0;
1740 else
1741 {
1742 char *end;
1743
1744 size = strtoul (args, &end, 0);
1745 if (args == end)
1746 error (_("Invalid %s (bad syntax)."), config->name);
1747
1748 /* Instead of explicitly capping the size of a packet to or
1749 disallowing it, the user is allowed to set the size to
1750 something arbitrarily large. */
1751 }
1752
1753 /* Extra checks? */
1754 if (fixed_p && !config->fixed_p)
1755 {
1756 /* So that the query shows the correct value. */
1757 long query_size = (size <= 0
1758 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1759 : size);
1760
1761 if (! query (_("The target may not be able to correctly handle a %s\n"
1762 "of %ld bytes. Change the packet size? "),
1763 config->name, query_size))
1764 error (_("Packet size not changed."));
1765 }
1766 /* Update the config. */
1767 config->fixed_p = fixed_p;
1768 config->size = size;
1769 }
1770
1771 static void
1772 show_memory_packet_size (struct memory_packet_config *config)
1773 {
1774 if (config->size == 0)
1775 printf_filtered (_("The %s is 0 (default). "), config->name);
1776 else
1777 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1778 if (config->fixed_p)
1779 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1780 get_fixed_memory_packet_size (config));
1781 else
1782 {
1783 remote_target *remote = get_current_remote_target ();
1784
1785 if (remote != NULL)
1786 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1787 remote->get_memory_packet_size (config));
1788 else
1789 puts_filtered ("The actual limit will be further reduced "
1790 "dependent on the target.\n");
1791 }
1792 }
1793
1794 /* FIXME: needs to be per-remote-target. */
1795 static struct memory_packet_config memory_write_packet_config =
1796 {
1797 "memory-write-packet-size",
1798 };
1799
1800 static void
1801 set_memory_write_packet_size (const char *args, int from_tty)
1802 {
1803 set_memory_packet_size (args, &memory_write_packet_config);
1804 }
1805
1806 static void
1807 show_memory_write_packet_size (const char *args, int from_tty)
1808 {
1809 show_memory_packet_size (&memory_write_packet_config);
1810 }
1811
1812 /* Show the number of hardware watchpoints that can be used. */
1813
1814 static void
1815 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1816 struct cmd_list_element *c,
1817 const char *value)
1818 {
1819 fprintf_filtered (file, _("The maximum number of target hardware "
1820 "watchpoints is %s.\n"), value);
1821 }
1822
1823 /* Show the length limit (in bytes) for hardware watchpoints. */
1824
1825 static void
1826 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1827 struct cmd_list_element *c,
1828 const char *value)
1829 {
1830 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1831 "hardware watchpoint is %s.\n"), value);
1832 }
1833
1834 /* Show the number of hardware breakpoints that can be used. */
1835
1836 static void
1837 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1838 struct cmd_list_element *c,
1839 const char *value)
1840 {
1841 fprintf_filtered (file, _("The maximum number of target hardware "
1842 "breakpoints is %s.\n"), value);
1843 }
1844
1845 /* Controls the maximum number of characters to display in the debug output
1846 for each remote packet. The remaining characters are omitted. */
1847
1848 static int remote_packet_max_chars = 512;
1849
1850 /* Show the maximum number of characters to display for each remote packet
1851 when remote debugging is enabled. */
1852
1853 static void
1854 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1855 struct cmd_list_element *c,
1856 const char *value)
1857 {
1858 fprintf_filtered (file, _("Number of remote packet characters to "
1859 "display is %s.\n"), value);
1860 }
1861
1862 long
1863 remote_target::get_memory_write_packet_size ()
1864 {
1865 return get_memory_packet_size (&memory_write_packet_config);
1866 }
1867
1868 /* FIXME: needs to be per-remote-target. */
1869 static struct memory_packet_config memory_read_packet_config =
1870 {
1871 "memory-read-packet-size",
1872 };
1873
1874 static void
1875 set_memory_read_packet_size (const char *args, int from_tty)
1876 {
1877 set_memory_packet_size (args, &memory_read_packet_config);
1878 }
1879
1880 static void
1881 show_memory_read_packet_size (const char *args, int from_tty)
1882 {
1883 show_memory_packet_size (&memory_read_packet_config);
1884 }
1885
1886 long
1887 remote_target::get_memory_read_packet_size ()
1888 {
1889 long size = get_memory_packet_size (&memory_read_packet_config);
1890
1891 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1892 extra buffer size argument before the memory read size can be
1893 increased beyond this. */
1894 if (size > get_remote_packet_size ())
1895 size = get_remote_packet_size ();
1896 return size;
1897 }
1898
1899 \f
1900
1901 struct packet_config
1902 {
1903 const char *name;
1904 const char *title;
1905
1906 /* If auto, GDB auto-detects support for this packet or feature,
1907 either through qSupported, or by trying the packet and looking
1908 at the response. If true, GDB assumes the target supports this
1909 packet. If false, the packet is disabled. Configs that don't
1910 have an associated command always have this set to auto. */
1911 enum auto_boolean detect;
1912
1913 /* The "show remote foo-packet" command created for this packet. */
1914 cmd_list_element *show_cmd;
1915
1916 /* Does the target support this packet? */
1917 enum packet_support support;
1918 };
1919
1920 static enum packet_support packet_config_support (struct packet_config *config);
1921 static enum packet_support packet_support (int packet);
1922
1923 static void
1924 show_packet_config_cmd (struct packet_config *config)
1925 {
1926 const char *support = "internal-error";
1927
1928 switch (packet_config_support (config))
1929 {
1930 case PACKET_ENABLE:
1931 support = "enabled";
1932 break;
1933 case PACKET_DISABLE:
1934 support = "disabled";
1935 break;
1936 case PACKET_SUPPORT_UNKNOWN:
1937 support = "unknown";
1938 break;
1939 }
1940 switch (config->detect)
1941 {
1942 case AUTO_BOOLEAN_AUTO:
1943 printf_filtered (_("Support for the `%s' packet "
1944 "is auto-detected, currently %s.\n"),
1945 config->name, support);
1946 break;
1947 case AUTO_BOOLEAN_TRUE:
1948 case AUTO_BOOLEAN_FALSE:
1949 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1950 config->name, support);
1951 break;
1952 }
1953 }
1954
1955 static void
1956 add_packet_config_cmd (struct packet_config *config, const char *name,
1957 const char *title, int legacy)
1958 {
1959 config->name = name;
1960 config->title = title;
1961 gdb::unique_xmalloc_ptr<char> set_doc
1962 = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1963 name, title);
1964 gdb::unique_xmalloc_ptr<char> show_doc
1965 = xstrprintf ("Show current use of remote protocol `%s' (%s) packet.",
1966 name, title);
1967 /* set/show TITLE-packet {auto,on,off} */
1968 gdb::unique_xmalloc_ptr<char> cmd_name = xstrprintf ("%s-packet", title);
1969 set_show_commands cmds
1970 = add_setshow_auto_boolean_cmd (cmd_name.release (), class_obscure,
1971 &config->detect, set_doc.get (),
1972 show_doc.get (), NULL, /* help_doc */
1973 NULL,
1974 show_remote_protocol_packet_cmd,
1975 &remote_set_cmdlist, &remote_show_cmdlist);
1976 config->show_cmd = cmds.show;
1977
1978 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1979 if (legacy)
1980 {
1981 /* It's not clear who should take ownership of this string, so, for
1982 now, make it static, and give copies to each of the add_alias_cmd
1983 calls below. */
1984 static gdb::unique_xmalloc_ptr<char> legacy_name
1985 = xstrprintf ("%s-packet", name);
1986 add_alias_cmd (legacy_name.get (), cmds.set, class_obscure, 0,
1987 &remote_set_cmdlist);
1988 add_alias_cmd (legacy_name.get (), cmds.show, class_obscure, 0,
1989 &remote_show_cmdlist);
1990 }
1991 }
1992
1993 static enum packet_result
1994 packet_check_result (const char *buf)
1995 {
1996 if (buf[0] != '\0')
1997 {
1998 /* The stub recognized the packet request. Check that the
1999 operation succeeded. */
2000 if (buf[0] == 'E'
2001 && isxdigit (buf[1]) && isxdigit (buf[2])
2002 && buf[3] == '\0')
2003 /* "Enn" - definitely an error. */
2004 return PACKET_ERROR;
2005
2006 /* Always treat "E." as an error. This will be used for
2007 more verbose error messages, such as E.memtypes. */
2008 if (buf[0] == 'E' && buf[1] == '.')
2009 return PACKET_ERROR;
2010
2011 /* The packet may or may not be OK. Just assume it is. */
2012 return PACKET_OK;
2013 }
2014 else
2015 /* The stub does not support the packet. */
2016 return PACKET_UNKNOWN;
2017 }
2018
2019 static enum packet_result
2020 packet_check_result (const gdb::char_vector &buf)
2021 {
2022 return packet_check_result (buf.data ());
2023 }
2024
2025 static enum packet_result
2026 packet_ok (const char *buf, struct packet_config *config)
2027 {
2028 enum packet_result result;
2029
2030 if (config->detect != AUTO_BOOLEAN_TRUE
2031 && config->support == PACKET_DISABLE)
2032 internal_error (__FILE__, __LINE__,
2033 _("packet_ok: attempt to use a disabled packet"));
2034
2035 result = packet_check_result (buf);
2036 switch (result)
2037 {
2038 case PACKET_OK:
2039 case PACKET_ERROR:
2040 /* The stub recognized the packet request. */
2041 if (config->support == PACKET_SUPPORT_UNKNOWN)
2042 {
2043 remote_debug_printf ("Packet %s (%s) is supported",
2044 config->name, config->title);
2045 config->support = PACKET_ENABLE;
2046 }
2047 break;
2048 case PACKET_UNKNOWN:
2049 /* The stub does not support the packet. */
2050 if (config->detect == AUTO_BOOLEAN_AUTO
2051 && config->support == PACKET_ENABLE)
2052 {
2053 /* If the stub previously indicated that the packet was
2054 supported then there is a protocol error. */
2055 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2056 config->name, config->title);
2057 }
2058 else if (config->detect == AUTO_BOOLEAN_TRUE)
2059 {
2060 /* The user set it wrong. */
2061 error (_("Enabled packet %s (%s) not recognized by stub"),
2062 config->name, config->title);
2063 }
2064
2065 remote_debug_printf ("Packet %s (%s) is NOT supported",
2066 config->name, config->title);
2067 config->support = PACKET_DISABLE;
2068 break;
2069 }
2070
2071 return result;
2072 }
2073
2074 static enum packet_result
2075 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2076 {
2077 return packet_ok (buf.data (), config);
2078 }
2079
2080 enum {
2081 PACKET_vCont = 0,
2082 PACKET_X,
2083 PACKET_qSymbol,
2084 PACKET_P,
2085 PACKET_p,
2086 PACKET_Z0,
2087 PACKET_Z1,
2088 PACKET_Z2,
2089 PACKET_Z3,
2090 PACKET_Z4,
2091 PACKET_vFile_setfs,
2092 PACKET_vFile_open,
2093 PACKET_vFile_pread,
2094 PACKET_vFile_pwrite,
2095 PACKET_vFile_close,
2096 PACKET_vFile_unlink,
2097 PACKET_vFile_readlink,
2098 PACKET_vFile_fstat,
2099 PACKET_qXfer_auxv,
2100 PACKET_qXfer_features,
2101 PACKET_qXfer_exec_file,
2102 PACKET_qXfer_libraries,
2103 PACKET_qXfer_libraries_svr4,
2104 PACKET_qXfer_memory_map,
2105 PACKET_qXfer_osdata,
2106 PACKET_qXfer_threads,
2107 PACKET_qXfer_statictrace_read,
2108 PACKET_qXfer_traceframe_info,
2109 PACKET_qXfer_uib,
2110 PACKET_qGetTIBAddr,
2111 PACKET_qGetTLSAddr,
2112 PACKET_qSupported,
2113 PACKET_qTStatus,
2114 PACKET_QPassSignals,
2115 PACKET_QCatchSyscalls,
2116 PACKET_QProgramSignals,
2117 PACKET_QSetWorkingDir,
2118 PACKET_QStartupWithShell,
2119 PACKET_QEnvironmentHexEncoded,
2120 PACKET_QEnvironmentReset,
2121 PACKET_QEnvironmentUnset,
2122 PACKET_qCRC,
2123 PACKET_qSearch_memory,
2124 PACKET_vAttach,
2125 PACKET_vRun,
2126 PACKET_QStartNoAckMode,
2127 PACKET_vKill,
2128 PACKET_qXfer_siginfo_read,
2129 PACKET_qXfer_siginfo_write,
2130 PACKET_qAttached,
2131
2132 /* Support for conditional tracepoints. */
2133 PACKET_ConditionalTracepoints,
2134
2135 /* Support for target-side breakpoint conditions. */
2136 PACKET_ConditionalBreakpoints,
2137
2138 /* Support for target-side breakpoint commands. */
2139 PACKET_BreakpointCommands,
2140
2141 /* Support for fast tracepoints. */
2142 PACKET_FastTracepoints,
2143
2144 /* Support for static tracepoints. */
2145 PACKET_StaticTracepoints,
2146
2147 /* Support for installing tracepoints while a trace experiment is
2148 running. */
2149 PACKET_InstallInTrace,
2150
2151 PACKET_bc,
2152 PACKET_bs,
2153 PACKET_TracepointSource,
2154 PACKET_QAllow,
2155 PACKET_qXfer_fdpic,
2156 PACKET_QDisableRandomization,
2157 PACKET_QAgent,
2158 PACKET_QTBuffer_size,
2159 PACKET_Qbtrace_off,
2160 PACKET_Qbtrace_bts,
2161 PACKET_Qbtrace_pt,
2162 PACKET_qXfer_btrace,
2163
2164 /* Support for the QNonStop packet. */
2165 PACKET_QNonStop,
2166
2167 /* Support for the QThreadEvents packet. */
2168 PACKET_QThreadEvents,
2169
2170 /* Support for multi-process extensions. */
2171 PACKET_multiprocess_feature,
2172
2173 /* Support for enabling and disabling tracepoints while a trace
2174 experiment is running. */
2175 PACKET_EnableDisableTracepoints_feature,
2176
2177 /* Support for collecting strings using the tracenz bytecode. */
2178 PACKET_tracenz_feature,
2179
2180 /* Support for continuing to run a trace experiment while GDB is
2181 disconnected. */
2182 PACKET_DisconnectedTracing_feature,
2183
2184 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2185 PACKET_augmented_libraries_svr4_read_feature,
2186
2187 /* Support for the qXfer:btrace-conf:read packet. */
2188 PACKET_qXfer_btrace_conf,
2189
2190 /* Support for the Qbtrace-conf:bts:size packet. */
2191 PACKET_Qbtrace_conf_bts_size,
2192
2193 /* Support for swbreak+ feature. */
2194 PACKET_swbreak_feature,
2195
2196 /* Support for hwbreak+ feature. */
2197 PACKET_hwbreak_feature,
2198
2199 /* Support for fork events. */
2200 PACKET_fork_event_feature,
2201
2202 /* Support for vfork events. */
2203 PACKET_vfork_event_feature,
2204
2205 /* Support for the Qbtrace-conf:pt:size packet. */
2206 PACKET_Qbtrace_conf_pt_size,
2207
2208 /* Support for exec events. */
2209 PACKET_exec_event_feature,
2210
2211 /* Support for query supported vCont actions. */
2212 PACKET_vContSupported,
2213
2214 /* Support remote CTRL-C. */
2215 PACKET_vCtrlC,
2216
2217 /* Support TARGET_WAITKIND_NO_RESUMED. */
2218 PACKET_no_resumed,
2219
2220 /* Support for memory tagging, allocation tag fetch/store
2221 packets and the tag violation stop replies. */
2222 PACKET_memory_tagging_feature,
2223
2224 PACKET_MAX
2225 };
2226
2227 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2228 assuming all remote targets are the same server (thus all support
2229 the same packets). */
2230 static struct packet_config remote_protocol_packets[PACKET_MAX];
2231
2232 /* Returns the packet's corresponding "set remote foo-packet" command
2233 state. See struct packet_config for more details. */
2234
2235 static enum auto_boolean
2236 packet_set_cmd_state (int packet)
2237 {
2238 return remote_protocol_packets[packet].detect;
2239 }
2240
2241 /* Returns whether a given packet or feature is supported. This takes
2242 into account the state of the corresponding "set remote foo-packet"
2243 command, which may be used to bypass auto-detection. */
2244
2245 static enum packet_support
2246 packet_config_support (struct packet_config *config)
2247 {
2248 switch (config->detect)
2249 {
2250 case AUTO_BOOLEAN_TRUE:
2251 return PACKET_ENABLE;
2252 case AUTO_BOOLEAN_FALSE:
2253 return PACKET_DISABLE;
2254 case AUTO_BOOLEAN_AUTO:
2255 return config->support;
2256 default:
2257 gdb_assert_not_reached ("bad switch");
2258 }
2259 }
2260
2261 /* Same as packet_config_support, but takes the packet's enum value as
2262 argument. */
2263
2264 static enum packet_support
2265 packet_support (int packet)
2266 {
2267 struct packet_config *config = &remote_protocol_packets[packet];
2268
2269 return packet_config_support (config);
2270 }
2271
2272 static void
2273 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2274 struct cmd_list_element *c,
2275 const char *value)
2276 {
2277 struct packet_config *packet;
2278 gdb_assert (c->var.has_value ());
2279
2280 for (packet = remote_protocol_packets;
2281 packet < &remote_protocol_packets[PACKET_MAX];
2282 packet++)
2283 {
2284 if (c == packet->show_cmd)
2285 {
2286 show_packet_config_cmd (packet);
2287 return;
2288 }
2289 }
2290 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2291 c->name);
2292 }
2293
2294 /* Should we try one of the 'Z' requests? */
2295
2296 enum Z_packet_type
2297 {
2298 Z_PACKET_SOFTWARE_BP,
2299 Z_PACKET_HARDWARE_BP,
2300 Z_PACKET_WRITE_WP,
2301 Z_PACKET_READ_WP,
2302 Z_PACKET_ACCESS_WP,
2303 NR_Z_PACKET_TYPES
2304 };
2305
2306 /* For compatibility with older distributions. Provide a ``set remote
2307 Z-packet ...'' command that updates all the Z packet types. */
2308
2309 static enum auto_boolean remote_Z_packet_detect;
2310
2311 static void
2312 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2313 struct cmd_list_element *c)
2314 {
2315 int i;
2316
2317 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2318 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2319 }
2320
2321 static void
2322 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2323 struct cmd_list_element *c,
2324 const char *value)
2325 {
2326 int i;
2327
2328 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2329 {
2330 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2331 }
2332 }
2333
2334 /* Returns true if the multi-process extensions are in effect. */
2335
2336 static int
2337 remote_multi_process_p (struct remote_state *rs)
2338 {
2339 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2340 }
2341
2342 /* Returns true if fork events are supported. */
2343
2344 static int
2345 remote_fork_event_p (struct remote_state *rs)
2346 {
2347 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2348 }
2349
2350 /* Returns true if vfork events are supported. */
2351
2352 static int
2353 remote_vfork_event_p (struct remote_state *rs)
2354 {
2355 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2356 }
2357
2358 /* Returns true if exec events are supported. */
2359
2360 static int
2361 remote_exec_event_p (struct remote_state *rs)
2362 {
2363 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2364 }
2365
2366 /* Returns true if memory tagging is supported, false otherwise. */
2367
2368 static bool
2369 remote_memory_tagging_p ()
2370 {
2371 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2372 }
2373
2374 /* Insert fork catchpoint target routine. If fork events are enabled
2375 then return success, nothing more to do. */
2376
2377 int
2378 remote_target::insert_fork_catchpoint (int pid)
2379 {
2380 struct remote_state *rs = get_remote_state ();
2381
2382 return !remote_fork_event_p (rs);
2383 }
2384
2385 /* Remove fork catchpoint target routine. Nothing to do, just
2386 return success. */
2387
2388 int
2389 remote_target::remove_fork_catchpoint (int pid)
2390 {
2391 return 0;
2392 }
2393
2394 /* Insert vfork catchpoint target routine. If vfork events are enabled
2395 then return success, nothing more to do. */
2396
2397 int
2398 remote_target::insert_vfork_catchpoint (int pid)
2399 {
2400 struct remote_state *rs = get_remote_state ();
2401
2402 return !remote_vfork_event_p (rs);
2403 }
2404
2405 /* Remove vfork catchpoint target routine. Nothing to do, just
2406 return success. */
2407
2408 int
2409 remote_target::remove_vfork_catchpoint (int pid)
2410 {
2411 return 0;
2412 }
2413
2414 /* Insert exec catchpoint target routine. If exec events are
2415 enabled, just return success. */
2416
2417 int
2418 remote_target::insert_exec_catchpoint (int pid)
2419 {
2420 struct remote_state *rs = get_remote_state ();
2421
2422 return !remote_exec_event_p (rs);
2423 }
2424
2425 /* Remove exec catchpoint target routine. Nothing to do, just
2426 return success. */
2427
2428 int
2429 remote_target::remove_exec_catchpoint (int pid)
2430 {
2431 return 0;
2432 }
2433
2434 \f
2435
2436 /* Take advantage of the fact that the TID field is not used, to tag
2437 special ptids with it set to != 0. */
2438 static const ptid_t magic_null_ptid (42000, -1, 1);
2439 static const ptid_t not_sent_ptid (42000, -2, 1);
2440 static const ptid_t any_thread_ptid (42000, 0, 1);
2441
2442 /* Find out if the stub attached to PID (and hence GDB should offer to
2443 detach instead of killing it when bailing out). */
2444
2445 int
2446 remote_target::remote_query_attached (int pid)
2447 {
2448 struct remote_state *rs = get_remote_state ();
2449 size_t size = get_remote_packet_size ();
2450
2451 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2452 return 0;
2453
2454 if (remote_multi_process_p (rs))
2455 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2456 else
2457 xsnprintf (rs->buf.data (), size, "qAttached");
2458
2459 putpkt (rs->buf);
2460 getpkt (&rs->buf, 0);
2461
2462 switch (packet_ok (rs->buf,
2463 &remote_protocol_packets[PACKET_qAttached]))
2464 {
2465 case PACKET_OK:
2466 if (strcmp (rs->buf.data (), "1") == 0)
2467 return 1;
2468 break;
2469 case PACKET_ERROR:
2470 warning (_("Remote failure reply: %s"), rs->buf.data ());
2471 break;
2472 case PACKET_UNKNOWN:
2473 break;
2474 }
2475
2476 return 0;
2477 }
2478
2479 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2480 has been invented by GDB, instead of reported by the target. Since
2481 we can be connected to a remote system before before knowing about
2482 any inferior, mark the target with execution when we find the first
2483 inferior. If ATTACHED is 1, then we had just attached to this
2484 inferior. If it is 0, then we just created this inferior. If it
2485 is -1, then try querying the remote stub to find out if it had
2486 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2487 attempt to open this inferior's executable as the main executable
2488 if no main executable is open already. */
2489
2490 inferior *
2491 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2492 int try_open_exec)
2493 {
2494 struct inferior *inf;
2495
2496 /* Check whether this process we're learning about is to be
2497 considered attached, or if is to be considered to have been
2498 spawned by the stub. */
2499 if (attached == -1)
2500 attached = remote_query_attached (pid);
2501
2502 if (gdbarch_has_global_solist (target_gdbarch ()))
2503 {
2504 /* If the target shares code across all inferiors, then every
2505 attach adds a new inferior. */
2506 inf = add_inferior (pid);
2507
2508 /* ... and every inferior is bound to the same program space.
2509 However, each inferior may still have its own address
2510 space. */
2511 inf->aspace = maybe_new_address_space ();
2512 inf->pspace = current_program_space;
2513 }
2514 else
2515 {
2516 /* In the traditional debugging scenario, there's a 1-1 match
2517 between program/address spaces. We simply bind the inferior
2518 to the program space's address space. */
2519 inf = current_inferior ();
2520
2521 /* However, if the current inferior is already bound to a
2522 process, find some other empty inferior. */
2523 if (inf->pid != 0)
2524 {
2525 inf = nullptr;
2526 for (inferior *it : all_inferiors ())
2527 if (it->pid == 0)
2528 {
2529 inf = it;
2530 break;
2531 }
2532 }
2533 if (inf == nullptr)
2534 {
2535 /* Since all inferiors were already bound to a process, add
2536 a new inferior. */
2537 inf = add_inferior_with_spaces ();
2538 }
2539 switch_to_inferior_no_thread (inf);
2540 inf->push_target (this);
2541 inferior_appeared (inf, pid);
2542 }
2543
2544 inf->attach_flag = attached;
2545 inf->fake_pid_p = fake_pid_p;
2546
2547 /* If no main executable is currently open then attempt to
2548 open the file that was executed to create this inferior. */
2549 if (try_open_exec && get_exec_file (0) == NULL)
2550 exec_file_locate_attach (pid, 0, 1);
2551
2552 /* Check for exec file mismatch, and let the user solve it. */
2553 validate_exec_file (1);
2554
2555 return inf;
2556 }
2557
2558 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2559 static remote_thread_info *get_remote_thread_info (remote_target *target,
2560 ptid_t ptid);
2561
2562 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2563 according to RUNNING. */
2564
2565 thread_info *
2566 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2567 {
2568 struct remote_state *rs = get_remote_state ();
2569 struct thread_info *thread;
2570
2571 /* GDB historically didn't pull threads in the initial connection
2572 setup. If the remote target doesn't even have a concept of
2573 threads (e.g., a bare-metal target), even if internally we
2574 consider that a single-threaded target, mentioning a new thread
2575 might be confusing to the user. Be silent then, preserving the
2576 age old behavior. */
2577 if (rs->starting_up)
2578 thread = add_thread_silent (this, ptid);
2579 else
2580 thread = add_thread (this, ptid);
2581
2582 /* We start by assuming threads are resumed. That state then gets updated
2583 when we process a matching stop reply. */
2584 get_remote_thread_info (thread)->set_resumed ();
2585
2586 set_executing (this, ptid, executing);
2587 set_running (this, ptid, running);
2588
2589 return thread;
2590 }
2591
2592 /* Come here when we learn about a thread id from the remote target.
2593 It may be the first time we hear about such thread, so take the
2594 opportunity to add it to GDB's thread list. In case this is the
2595 first time we're noticing its corresponding inferior, add it to
2596 GDB's inferior list as well. EXECUTING indicates whether the
2597 thread is (internally) executing or stopped. */
2598
2599 void
2600 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2601 {
2602 /* In non-stop mode, we assume new found threads are (externally)
2603 running until proven otherwise with a stop reply. In all-stop,
2604 we can only get here if all threads are stopped. */
2605 bool running = target_is_non_stop_p ();
2606
2607 /* If this is a new thread, add it to GDB's thread list.
2608 If we leave it up to WFI to do this, bad things will happen. */
2609
2610 thread_info *tp = find_thread_ptid (this, currthread);
2611 if (tp != NULL && tp->state == THREAD_EXITED)
2612 {
2613 /* We're seeing an event on a thread id we knew had exited.
2614 This has to be a new thread reusing the old id. Add it. */
2615 remote_add_thread (currthread, running, executing);
2616 return;
2617 }
2618
2619 if (!in_thread_list (this, currthread))
2620 {
2621 struct inferior *inf = NULL;
2622 int pid = currthread.pid ();
2623
2624 if (inferior_ptid.is_pid ()
2625 && pid == inferior_ptid.pid ())
2626 {
2627 /* inferior_ptid has no thread member yet. This can happen
2628 with the vAttach -> remote_wait,"TAAthread:" path if the
2629 stub doesn't support qC. This is the first stop reported
2630 after an attach, so this is the main thread. Update the
2631 ptid in the thread list. */
2632 if (in_thread_list (this, ptid_t (pid)))
2633 thread_change_ptid (this, inferior_ptid, currthread);
2634 else
2635 {
2636 thread_info *thr
2637 = remote_add_thread (currthread, running, executing);
2638 switch_to_thread (thr);
2639 }
2640 return;
2641 }
2642
2643 if (magic_null_ptid == inferior_ptid)
2644 {
2645 /* inferior_ptid is not set yet. This can happen with the
2646 vRun -> remote_wait,"TAAthread:" path if the stub
2647 doesn't support qC. This is the first stop reported
2648 after an attach, so this is the main thread. Update the
2649 ptid in the thread list. */
2650 thread_change_ptid (this, inferior_ptid, currthread);
2651 return;
2652 }
2653
2654 /* When connecting to a target remote, or to a target
2655 extended-remote which already was debugging an inferior, we
2656 may not know about it yet. Add it before adding its child
2657 thread, so notifications are emitted in a sensible order. */
2658 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2659 {
2660 struct remote_state *rs = get_remote_state ();
2661 bool fake_pid_p = !remote_multi_process_p (rs);
2662
2663 inf = remote_add_inferior (fake_pid_p,
2664 currthread.pid (), -1, 1);
2665 }
2666
2667 /* This is really a new thread. Add it. */
2668 thread_info *new_thr
2669 = remote_add_thread (currthread, running, executing);
2670
2671 /* If we found a new inferior, let the common code do whatever
2672 it needs to with it (e.g., read shared libraries, insert
2673 breakpoints), unless we're just setting up an all-stop
2674 connection. */
2675 if (inf != NULL)
2676 {
2677 struct remote_state *rs = get_remote_state ();
2678
2679 if (!rs->starting_up)
2680 notice_new_inferior (new_thr, executing, 0);
2681 }
2682 }
2683 }
2684
2685 /* Return THREAD's private thread data, creating it if necessary. */
2686
2687 static remote_thread_info *
2688 get_remote_thread_info (thread_info *thread)
2689 {
2690 gdb_assert (thread != NULL);
2691
2692 if (thread->priv == NULL)
2693 thread->priv.reset (new remote_thread_info);
2694
2695 return static_cast<remote_thread_info *> (thread->priv.get ());
2696 }
2697
2698 /* Return PTID's private thread data, creating it if necessary. */
2699
2700 static remote_thread_info *
2701 get_remote_thread_info (remote_target *target, ptid_t ptid)
2702 {
2703 thread_info *thr = find_thread_ptid (target, ptid);
2704 return get_remote_thread_info (thr);
2705 }
2706
2707 /* Call this function as a result of
2708 1) A halt indication (T packet) containing a thread id
2709 2) A direct query of currthread
2710 3) Successful execution of set thread */
2711
2712 static void
2713 record_currthread (struct remote_state *rs, ptid_t currthread)
2714 {
2715 rs->general_thread = currthread;
2716 }
2717
2718 /* If 'QPassSignals' is supported, tell the remote stub what signals
2719 it can simply pass through to the inferior without reporting. */
2720
2721 void
2722 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2723 {
2724 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2725 {
2726 char *pass_packet, *p;
2727 int count = 0;
2728 struct remote_state *rs = get_remote_state ();
2729
2730 gdb_assert (pass_signals.size () < 256);
2731 for (size_t i = 0; i < pass_signals.size (); i++)
2732 {
2733 if (pass_signals[i])
2734 count++;
2735 }
2736 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2737 strcpy (pass_packet, "QPassSignals:");
2738 p = pass_packet + strlen (pass_packet);
2739 for (size_t i = 0; i < pass_signals.size (); i++)
2740 {
2741 if (pass_signals[i])
2742 {
2743 if (i >= 16)
2744 *p++ = tohex (i >> 4);
2745 *p++ = tohex (i & 15);
2746 if (count)
2747 *p++ = ';';
2748 else
2749 break;
2750 count--;
2751 }
2752 }
2753 *p = 0;
2754 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2755 {
2756 putpkt (pass_packet);
2757 getpkt (&rs->buf, 0);
2758 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2759 xfree (rs->last_pass_packet);
2760 rs->last_pass_packet = pass_packet;
2761 }
2762 else
2763 xfree (pass_packet);
2764 }
2765 }
2766
2767 /* If 'QCatchSyscalls' is supported, tell the remote stub
2768 to report syscalls to GDB. */
2769
2770 int
2771 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2772 gdb::array_view<const int> syscall_counts)
2773 {
2774 const char *catch_packet;
2775 enum packet_result result;
2776 int n_sysno = 0;
2777
2778 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2779 {
2780 /* Not supported. */
2781 return 1;
2782 }
2783
2784 if (needed && any_count == 0)
2785 {
2786 /* Count how many syscalls are to be caught. */
2787 for (size_t i = 0; i < syscall_counts.size (); i++)
2788 {
2789 if (syscall_counts[i] != 0)
2790 n_sysno++;
2791 }
2792 }
2793
2794 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2795 pid, needed, any_count, n_sysno);
2796
2797 std::string built_packet;
2798 if (needed)
2799 {
2800 /* Prepare a packet with the sysno list, assuming max 8+1
2801 characters for a sysno. If the resulting packet size is too
2802 big, fallback on the non-selective packet. */
2803 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2804 built_packet.reserve (maxpktsz);
2805 built_packet = "QCatchSyscalls:1";
2806 if (any_count == 0)
2807 {
2808 /* Add in each syscall to be caught. */
2809 for (size_t i = 0; i < syscall_counts.size (); i++)
2810 {
2811 if (syscall_counts[i] != 0)
2812 string_appendf (built_packet, ";%zx", i);
2813 }
2814 }
2815 if (built_packet.size () > get_remote_packet_size ())
2816 {
2817 /* catch_packet too big. Fallback to less efficient
2818 non selective mode, with GDB doing the filtering. */
2819 catch_packet = "QCatchSyscalls:1";
2820 }
2821 else
2822 catch_packet = built_packet.c_str ();
2823 }
2824 else
2825 catch_packet = "QCatchSyscalls:0";
2826
2827 struct remote_state *rs = get_remote_state ();
2828
2829 putpkt (catch_packet);
2830 getpkt (&rs->buf, 0);
2831 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2832 if (result == PACKET_OK)
2833 return 0;
2834 else
2835 return -1;
2836 }
2837
2838 /* If 'QProgramSignals' is supported, tell the remote stub what
2839 signals it should pass through to the inferior when detaching. */
2840
2841 void
2842 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2843 {
2844 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2845 {
2846 char *packet, *p;
2847 int count = 0;
2848 struct remote_state *rs = get_remote_state ();
2849
2850 gdb_assert (signals.size () < 256);
2851 for (size_t i = 0; i < signals.size (); i++)
2852 {
2853 if (signals[i])
2854 count++;
2855 }
2856 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2857 strcpy (packet, "QProgramSignals:");
2858 p = packet + strlen (packet);
2859 for (size_t i = 0; i < signals.size (); i++)
2860 {
2861 if (signal_pass_state (i))
2862 {
2863 if (i >= 16)
2864 *p++ = tohex (i >> 4);
2865 *p++ = tohex (i & 15);
2866 if (count)
2867 *p++ = ';';
2868 else
2869 break;
2870 count--;
2871 }
2872 }
2873 *p = 0;
2874 if (!rs->last_program_signals_packet
2875 || strcmp (rs->last_program_signals_packet, packet) != 0)
2876 {
2877 putpkt (packet);
2878 getpkt (&rs->buf, 0);
2879 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2880 xfree (rs->last_program_signals_packet);
2881 rs->last_program_signals_packet = packet;
2882 }
2883 else
2884 xfree (packet);
2885 }
2886 }
2887
2888 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2889 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2890 thread. If GEN is set, set the general thread, if not, then set
2891 the step/continue thread. */
2892 void
2893 remote_target::set_thread (ptid_t ptid, int gen)
2894 {
2895 struct remote_state *rs = get_remote_state ();
2896 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2897 char *buf = rs->buf.data ();
2898 char *endbuf = buf + get_remote_packet_size ();
2899
2900 if (state == ptid)
2901 return;
2902
2903 *buf++ = 'H';
2904 *buf++ = gen ? 'g' : 'c';
2905 if (ptid == magic_null_ptid)
2906 xsnprintf (buf, endbuf - buf, "0");
2907 else if (ptid == any_thread_ptid)
2908 xsnprintf (buf, endbuf - buf, "0");
2909 else if (ptid == minus_one_ptid)
2910 xsnprintf (buf, endbuf - buf, "-1");
2911 else
2912 write_ptid (buf, endbuf, ptid);
2913 putpkt (rs->buf);
2914 getpkt (&rs->buf, 0);
2915 if (gen)
2916 rs->general_thread = ptid;
2917 else
2918 rs->continue_thread = ptid;
2919 }
2920
2921 void
2922 remote_target::set_general_thread (ptid_t ptid)
2923 {
2924 set_thread (ptid, 1);
2925 }
2926
2927 void
2928 remote_target::set_continue_thread (ptid_t ptid)
2929 {
2930 set_thread (ptid, 0);
2931 }
2932
2933 /* Change the remote current process. Which thread within the process
2934 ends up selected isn't important, as long as it is the same process
2935 as what INFERIOR_PTID points to.
2936
2937 This comes from that fact that there is no explicit notion of
2938 "selected process" in the protocol. The selected process for
2939 general operations is the process the selected general thread
2940 belongs to. */
2941
2942 void
2943 remote_target::set_general_process ()
2944 {
2945 struct remote_state *rs = get_remote_state ();
2946
2947 /* If the remote can't handle multiple processes, don't bother. */
2948 if (!remote_multi_process_p (rs))
2949 return;
2950
2951 /* We only need to change the remote current thread if it's pointing
2952 at some other process. */
2953 if (rs->general_thread.pid () != inferior_ptid.pid ())
2954 set_general_thread (inferior_ptid);
2955 }
2956
2957 \f
2958 /* Return nonzero if this is the main thread that we made up ourselves
2959 to model non-threaded targets as single-threaded. */
2960
2961 static int
2962 remote_thread_always_alive (ptid_t ptid)
2963 {
2964 if (ptid == magic_null_ptid)
2965 /* The main thread is always alive. */
2966 return 1;
2967
2968 if (ptid.pid () != 0 && ptid.lwp () == 0)
2969 /* The main thread is always alive. This can happen after a
2970 vAttach, if the remote side doesn't support
2971 multi-threading. */
2972 return 1;
2973
2974 return 0;
2975 }
2976
2977 /* Return nonzero if the thread PTID is still alive on the remote
2978 system. */
2979
2980 bool
2981 remote_target::thread_alive (ptid_t ptid)
2982 {
2983 struct remote_state *rs = get_remote_state ();
2984 char *p, *endp;
2985
2986 /* Check if this is a thread that we made up ourselves to model
2987 non-threaded targets as single-threaded. */
2988 if (remote_thread_always_alive (ptid))
2989 return 1;
2990
2991 p = rs->buf.data ();
2992 endp = p + get_remote_packet_size ();
2993
2994 *p++ = 'T';
2995 write_ptid (p, endp, ptid);
2996
2997 putpkt (rs->buf);
2998 getpkt (&rs->buf, 0);
2999 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
3000 }
3001
3002 /* Return a pointer to a thread name if we know it and NULL otherwise.
3003 The thread_info object owns the memory for the name. */
3004
3005 const char *
3006 remote_target::thread_name (struct thread_info *info)
3007 {
3008 if (info->priv != NULL)
3009 {
3010 const std::string &name = get_remote_thread_info (info)->name;
3011 return !name.empty () ? name.c_str () : NULL;
3012 }
3013
3014 return NULL;
3015 }
3016
3017 /* About these extended threadlist and threadinfo packets. They are
3018 variable length packets but, the fields within them are often fixed
3019 length. They are redundant enough to send over UDP as is the
3020 remote protocol in general. There is a matching unit test module
3021 in libstub. */
3022
3023 /* WARNING: This threadref data structure comes from the remote O.S.,
3024 libstub protocol encoding, and remote.c. It is not particularly
3025 changable. */
3026
3027 /* Right now, the internal structure is int. We want it to be bigger.
3028 Plan to fix this. */
3029
3030 typedef int gdb_threadref; /* Internal GDB thread reference. */
3031
3032 /* gdb_ext_thread_info is an internal GDB data structure which is
3033 equivalent to the reply of the remote threadinfo packet. */
3034
3035 struct gdb_ext_thread_info
3036 {
3037 threadref threadid; /* External form of thread reference. */
3038 int active; /* Has state interesting to GDB?
3039 regs, stack. */
3040 char display[256]; /* Brief state display, name,
3041 blocked/suspended. */
3042 char shortname[32]; /* To be used to name threads. */
3043 char more_display[256]; /* Long info, statistics, queue depth,
3044 whatever. */
3045 };
3046
3047 /* The volume of remote transfers can be limited by submitting
3048 a mask containing bits specifying the desired information.
3049 Use a union of these values as the 'selection' parameter to
3050 get_thread_info. FIXME: Make these TAG names more thread specific. */
3051
3052 #define TAG_THREADID 1
3053 #define TAG_EXISTS 2
3054 #define TAG_DISPLAY 4
3055 #define TAG_THREADNAME 8
3056 #define TAG_MOREDISPLAY 16
3057
3058 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3059
3060 static const char *unpack_nibble (const char *buf, int *val);
3061
3062 static const char *unpack_byte (const char *buf, int *value);
3063
3064 static char *pack_int (char *buf, int value);
3065
3066 static const char *unpack_int (const char *buf, int *value);
3067
3068 static const char *unpack_string (const char *src, char *dest, int length);
3069
3070 static char *pack_threadid (char *pkt, threadref *id);
3071
3072 static const char *unpack_threadid (const char *inbuf, threadref *id);
3073
3074 void int_to_threadref (threadref *id, int value);
3075
3076 static int threadref_to_int (threadref *ref);
3077
3078 static void copy_threadref (threadref *dest, threadref *src);
3079
3080 static int threadmatch (threadref *dest, threadref *src);
3081
3082 static char *pack_threadinfo_request (char *pkt, int mode,
3083 threadref *id);
3084
3085 static char *pack_threadlist_request (char *pkt, int startflag,
3086 int threadcount,
3087 threadref *nextthread);
3088
3089 static int remote_newthread_step (threadref *ref, void *context);
3090
3091
3092 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3093 buffer we're allowed to write to. Returns
3094 BUF+CHARACTERS_WRITTEN. */
3095
3096 char *
3097 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3098 {
3099 int pid, tid;
3100 struct remote_state *rs = get_remote_state ();
3101
3102 if (remote_multi_process_p (rs))
3103 {
3104 pid = ptid.pid ();
3105 if (pid < 0)
3106 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3107 else
3108 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3109 }
3110 tid = ptid.lwp ();
3111 if (tid < 0)
3112 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3113 else
3114 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3115
3116 return buf;
3117 }
3118
3119 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3120 last parsed char. Returns null_ptid if no thread id is found, and
3121 throws an error if the thread id has an invalid format. */
3122
3123 static ptid_t
3124 read_ptid (const char *buf, const char **obuf)
3125 {
3126 const char *p = buf;
3127 const char *pp;
3128 ULONGEST pid = 0, tid = 0;
3129
3130 if (*p == 'p')
3131 {
3132 /* Multi-process ptid. */
3133 pp = unpack_varlen_hex (p + 1, &pid);
3134 if (*pp != '.')
3135 error (_("invalid remote ptid: %s"), p);
3136
3137 p = pp;
3138 pp = unpack_varlen_hex (p + 1, &tid);
3139 if (obuf)
3140 *obuf = pp;
3141 return ptid_t (pid, tid);
3142 }
3143
3144 /* No multi-process. Just a tid. */
3145 pp = unpack_varlen_hex (p, &tid);
3146
3147 /* Return null_ptid when no thread id is found. */
3148 if (p == pp)
3149 {
3150 if (obuf)
3151 *obuf = pp;
3152 return null_ptid;
3153 }
3154
3155 /* Since the stub is not sending a process id, then default to
3156 what's in inferior_ptid, unless it's null at this point. If so,
3157 then since there's no way to know the pid of the reported
3158 threads, use the magic number. */
3159 if (inferior_ptid == null_ptid)
3160 pid = magic_null_ptid.pid ();
3161 else
3162 pid = inferior_ptid.pid ();
3163
3164 if (obuf)
3165 *obuf = pp;
3166 return ptid_t (pid, tid);
3167 }
3168
3169 static int
3170 stubhex (int ch)
3171 {
3172 if (ch >= 'a' && ch <= 'f')
3173 return ch - 'a' + 10;
3174 if (ch >= '0' && ch <= '9')
3175 return ch - '0';
3176 if (ch >= 'A' && ch <= 'F')
3177 return ch - 'A' + 10;
3178 return -1;
3179 }
3180
3181 static int
3182 stub_unpack_int (const char *buff, int fieldlength)
3183 {
3184 int nibble;
3185 int retval = 0;
3186
3187 while (fieldlength)
3188 {
3189 nibble = stubhex (*buff++);
3190 retval |= nibble;
3191 fieldlength--;
3192 if (fieldlength)
3193 retval = retval << 4;
3194 }
3195 return retval;
3196 }
3197
3198 static const char *
3199 unpack_nibble (const char *buf, int *val)
3200 {
3201 *val = fromhex (*buf++);
3202 return buf;
3203 }
3204
3205 static const char *
3206 unpack_byte (const char *buf, int *value)
3207 {
3208 *value = stub_unpack_int (buf, 2);
3209 return buf + 2;
3210 }
3211
3212 static char *
3213 pack_int (char *buf, int value)
3214 {
3215 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3216 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3217 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3218 buf = pack_hex_byte (buf, (value & 0xff));
3219 return buf;
3220 }
3221
3222 static const char *
3223 unpack_int (const char *buf, int *value)
3224 {
3225 *value = stub_unpack_int (buf, 8);
3226 return buf + 8;
3227 }
3228
3229 #if 0 /* Currently unused, uncomment when needed. */
3230 static char *pack_string (char *pkt, char *string);
3231
3232 static char *
3233 pack_string (char *pkt, char *string)
3234 {
3235 char ch;
3236 int len;
3237
3238 len = strlen (string);
3239 if (len > 200)
3240 len = 200; /* Bigger than most GDB packets, junk??? */
3241 pkt = pack_hex_byte (pkt, len);
3242 while (len-- > 0)
3243 {
3244 ch = *string++;
3245 if ((ch == '\0') || (ch == '#'))
3246 ch = '*'; /* Protect encapsulation. */
3247 *pkt++ = ch;
3248 }
3249 return pkt;
3250 }
3251 #endif /* 0 (unused) */
3252
3253 static const char *
3254 unpack_string (const char *src, char *dest, int length)
3255 {
3256 while (length--)
3257 *dest++ = *src++;
3258 *dest = '\0';
3259 return src;
3260 }
3261
3262 static char *
3263 pack_threadid (char *pkt, threadref *id)
3264 {
3265 char *limit;
3266 unsigned char *altid;
3267
3268 altid = (unsigned char *) id;
3269 limit = pkt + BUF_THREAD_ID_SIZE;
3270 while (pkt < limit)
3271 pkt = pack_hex_byte (pkt, *altid++);
3272 return pkt;
3273 }
3274
3275
3276 static const char *
3277 unpack_threadid (const char *inbuf, threadref *id)
3278 {
3279 char *altref;
3280 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3281 int x, y;
3282
3283 altref = (char *) id;
3284
3285 while (inbuf < limit)
3286 {
3287 x = stubhex (*inbuf++);
3288 y = stubhex (*inbuf++);
3289 *altref++ = (x << 4) | y;
3290 }
3291 return inbuf;
3292 }
3293
3294 /* Externally, threadrefs are 64 bits but internally, they are still
3295 ints. This is due to a mismatch of specifications. We would like
3296 to use 64bit thread references internally. This is an adapter
3297 function. */
3298
3299 void
3300 int_to_threadref (threadref *id, int value)
3301 {
3302 unsigned char *scan;
3303
3304 scan = (unsigned char *) id;
3305 {
3306 int i = 4;
3307 while (i--)
3308 *scan++ = 0;
3309 }
3310 *scan++ = (value >> 24) & 0xff;
3311 *scan++ = (value >> 16) & 0xff;
3312 *scan++ = (value >> 8) & 0xff;
3313 *scan++ = (value & 0xff);
3314 }
3315
3316 static int
3317 threadref_to_int (threadref *ref)
3318 {
3319 int i, value = 0;
3320 unsigned char *scan;
3321
3322 scan = *ref;
3323 scan += 4;
3324 i = 4;
3325 while (i-- > 0)
3326 value = (value << 8) | ((*scan++) & 0xff);
3327 return value;
3328 }
3329
3330 static void
3331 copy_threadref (threadref *dest, threadref *src)
3332 {
3333 int i;
3334 unsigned char *csrc, *cdest;
3335
3336 csrc = (unsigned char *) src;
3337 cdest = (unsigned char *) dest;
3338 i = 8;
3339 while (i--)
3340 *cdest++ = *csrc++;
3341 }
3342
3343 static int
3344 threadmatch (threadref *dest, threadref *src)
3345 {
3346 /* Things are broken right now, so just assume we got a match. */
3347 #if 0
3348 unsigned char *srcp, *destp;
3349 int i, result;
3350 srcp = (char *) src;
3351 destp = (char *) dest;
3352
3353 result = 1;
3354 while (i-- > 0)
3355 result &= (*srcp++ == *destp++) ? 1 : 0;
3356 return result;
3357 #endif
3358 return 1;
3359 }
3360
3361 /*
3362 threadid:1, # always request threadid
3363 context_exists:2,
3364 display:4,
3365 unique_name:8,
3366 more_display:16
3367 */
3368
3369 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3370
3371 static char *
3372 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3373 {
3374 *pkt++ = 'q'; /* Info Query */
3375 *pkt++ = 'P'; /* process or thread info */
3376 pkt = pack_int (pkt, mode); /* mode */
3377 pkt = pack_threadid (pkt, id); /* threadid */
3378 *pkt = '\0'; /* terminate */
3379 return pkt;
3380 }
3381
3382 /* These values tag the fields in a thread info response packet. */
3383 /* Tagging the fields allows us to request specific fields and to
3384 add more fields as time goes by. */
3385
3386 #define TAG_THREADID 1 /* Echo the thread identifier. */
3387 #define TAG_EXISTS 2 /* Is this process defined enough to
3388 fetch registers and its stack? */
3389 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3390 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3391 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3392 the process. */
3393
3394 int
3395 remote_target::remote_unpack_thread_info_response (const char *pkt,
3396 threadref *expectedref,
3397 gdb_ext_thread_info *info)
3398 {
3399 struct remote_state *rs = get_remote_state ();
3400 int mask, length;
3401 int tag;
3402 threadref ref;
3403 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3404 int retval = 1;
3405
3406 /* info->threadid = 0; FIXME: implement zero_threadref. */
3407 info->active = 0;
3408 info->display[0] = '\0';
3409 info->shortname[0] = '\0';
3410 info->more_display[0] = '\0';
3411
3412 /* Assume the characters indicating the packet type have been
3413 stripped. */
3414 pkt = unpack_int (pkt, &mask); /* arg mask */
3415 pkt = unpack_threadid (pkt, &ref);
3416
3417 if (mask == 0)
3418 warning (_("Incomplete response to threadinfo request."));
3419 if (!threadmatch (&ref, expectedref))
3420 { /* This is an answer to a different request. */
3421 warning (_("ERROR RMT Thread info mismatch."));
3422 return 0;
3423 }
3424 copy_threadref (&info->threadid, &ref);
3425
3426 /* Loop on tagged fields , try to bail if something goes wrong. */
3427
3428 /* Packets are terminated with nulls. */
3429 while ((pkt < limit) && mask && *pkt)
3430 {
3431 pkt = unpack_int (pkt, &tag); /* tag */
3432 pkt = unpack_byte (pkt, &length); /* length */
3433 if (!(tag & mask)) /* Tags out of synch with mask. */
3434 {
3435 warning (_("ERROR RMT: threadinfo tag mismatch."));
3436 retval = 0;
3437 break;
3438 }
3439 if (tag == TAG_THREADID)
3440 {
3441 if (length != 16)
3442 {
3443 warning (_("ERROR RMT: length of threadid is not 16."));
3444 retval = 0;
3445 break;
3446 }
3447 pkt = unpack_threadid (pkt, &ref);
3448 mask = mask & ~TAG_THREADID;
3449 continue;
3450 }
3451 if (tag == TAG_EXISTS)
3452 {
3453 info->active = stub_unpack_int (pkt, length);
3454 pkt += length;
3455 mask = mask & ~(TAG_EXISTS);
3456 if (length > 8)
3457 {
3458 warning (_("ERROR RMT: 'exists' length too long."));
3459 retval = 0;
3460 break;
3461 }
3462 continue;
3463 }
3464 if (tag == TAG_THREADNAME)
3465 {
3466 pkt = unpack_string (pkt, &info->shortname[0], length);
3467 mask = mask & ~TAG_THREADNAME;
3468 continue;
3469 }
3470 if (tag == TAG_DISPLAY)
3471 {
3472 pkt = unpack_string (pkt, &info->display[0], length);
3473 mask = mask & ~TAG_DISPLAY;
3474 continue;
3475 }
3476 if (tag == TAG_MOREDISPLAY)
3477 {
3478 pkt = unpack_string (pkt, &info->more_display[0], length);
3479 mask = mask & ~TAG_MOREDISPLAY;
3480 continue;
3481 }
3482 warning (_("ERROR RMT: unknown thread info tag."));
3483 break; /* Not a tag we know about. */
3484 }
3485 return retval;
3486 }
3487
3488 int
3489 remote_target::remote_get_threadinfo (threadref *threadid,
3490 int fieldset,
3491 gdb_ext_thread_info *info)
3492 {
3493 struct remote_state *rs = get_remote_state ();
3494 int result;
3495
3496 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3497 putpkt (rs->buf);
3498 getpkt (&rs->buf, 0);
3499
3500 if (rs->buf[0] == '\0')
3501 return 0;
3502
3503 result = remote_unpack_thread_info_response (&rs->buf[2],
3504 threadid, info);
3505 return result;
3506 }
3507
3508 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3509
3510 static char *
3511 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3512 threadref *nextthread)
3513 {
3514 *pkt++ = 'q'; /* info query packet */
3515 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3516 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3517 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3518 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3519 *pkt = '\0';
3520 return pkt;
3521 }
3522
3523 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3524
3525 int
3526 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3527 threadref *original_echo,
3528 threadref *resultlist,
3529 int *doneflag)
3530 {
3531 struct remote_state *rs = get_remote_state ();
3532 int count, resultcount, done;
3533
3534 resultcount = 0;
3535 /* Assume the 'q' and 'M chars have been stripped. */
3536 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3537 /* done parse past here */
3538 pkt = unpack_byte (pkt, &count); /* count field */
3539 pkt = unpack_nibble (pkt, &done);
3540 /* The first threadid is the argument threadid. */
3541 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3542 while ((count-- > 0) && (pkt < limit))
3543 {
3544 pkt = unpack_threadid (pkt, resultlist++);
3545 if (resultcount++ >= result_limit)
3546 break;
3547 }
3548 if (doneflag)
3549 *doneflag = done;
3550 return resultcount;
3551 }
3552
3553 /* Fetch the next batch of threads from the remote. Returns -1 if the
3554 qL packet is not supported, 0 on error and 1 on success. */
3555
3556 int
3557 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3558 int result_limit, int *done, int *result_count,
3559 threadref *threadlist)
3560 {
3561 struct remote_state *rs = get_remote_state ();
3562 int result = 1;
3563
3564 /* Truncate result limit to be smaller than the packet size. */
3565 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3566 >= get_remote_packet_size ())
3567 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3568
3569 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3570 nextthread);
3571 putpkt (rs->buf);
3572 getpkt (&rs->buf, 0);
3573 if (rs->buf[0] == '\0')
3574 {
3575 /* Packet not supported. */
3576 return -1;
3577 }
3578
3579 *result_count =
3580 parse_threadlist_response (&rs->buf[2], result_limit,
3581 &rs->echo_nextthread, threadlist, done);
3582
3583 if (!threadmatch (&rs->echo_nextthread, nextthread))
3584 {
3585 /* FIXME: This is a good reason to drop the packet. */
3586 /* Possibly, there is a duplicate response. */
3587 /* Possibilities :
3588 retransmit immediatly - race conditions
3589 retransmit after timeout - yes
3590 exit
3591 wait for packet, then exit
3592 */
3593 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3594 return 0; /* I choose simply exiting. */
3595 }
3596 if (*result_count <= 0)
3597 {
3598 if (*done != 1)
3599 {
3600 warning (_("RMT ERROR : failed to get remote thread list."));
3601 result = 0;
3602 }
3603 return result; /* break; */
3604 }
3605 if (*result_count > result_limit)
3606 {
3607 *result_count = 0;
3608 warning (_("RMT ERROR: threadlist response longer than requested."));
3609 return 0;
3610 }
3611 return result;
3612 }
3613
3614 /* Fetch the list of remote threads, with the qL packet, and call
3615 STEPFUNCTION for each thread found. Stops iterating and returns 1
3616 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3617 STEPFUNCTION returns false. If the packet is not supported,
3618 returns -1. */
3619
3620 int
3621 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3622 void *context, int looplimit)
3623 {
3624 struct remote_state *rs = get_remote_state ();
3625 int done, i, result_count;
3626 int startflag = 1;
3627 int result = 1;
3628 int loopcount = 0;
3629
3630 done = 0;
3631 while (!done)
3632 {
3633 if (loopcount++ > looplimit)
3634 {
3635 result = 0;
3636 warning (_("Remote fetch threadlist -infinite loop-."));
3637 break;
3638 }
3639 result = remote_get_threadlist (startflag, &rs->nextthread,
3640 MAXTHREADLISTRESULTS,
3641 &done, &result_count,
3642 rs->resultthreadlist);
3643 if (result <= 0)
3644 break;
3645 /* Clear for later iterations. */
3646 startflag = 0;
3647 /* Setup to resume next batch of thread references, set nextthread. */
3648 if (result_count >= 1)
3649 copy_threadref (&rs->nextthread,
3650 &rs->resultthreadlist[result_count - 1]);
3651 i = 0;
3652 while (result_count--)
3653 {
3654 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3655 {
3656 result = 0;
3657 break;
3658 }
3659 }
3660 }
3661 return result;
3662 }
3663
3664 /* A thread found on the remote target. */
3665
3666 struct thread_item
3667 {
3668 explicit thread_item (ptid_t ptid_)
3669 : ptid (ptid_)
3670 {}
3671
3672 thread_item (thread_item &&other) = default;
3673 thread_item &operator= (thread_item &&other) = default;
3674
3675 DISABLE_COPY_AND_ASSIGN (thread_item);
3676
3677 /* The thread's PTID. */
3678 ptid_t ptid;
3679
3680 /* The thread's extra info. */
3681 std::string extra;
3682
3683 /* The thread's name. */
3684 std::string name;
3685
3686 /* The core the thread was running on. -1 if not known. */
3687 int core = -1;
3688
3689 /* The thread handle associated with the thread. */
3690 gdb::byte_vector thread_handle;
3691 };
3692
3693 /* Context passed around to the various methods listing remote
3694 threads. As new threads are found, they're added to the ITEMS
3695 vector. */
3696
3697 struct threads_listing_context
3698 {
3699 /* Return true if this object contains an entry for a thread with ptid
3700 PTID. */
3701
3702 bool contains_thread (ptid_t ptid) const
3703 {
3704 auto match_ptid = [&] (const thread_item &item)
3705 {
3706 return item.ptid == ptid;
3707 };
3708
3709 auto it = std::find_if (this->items.begin (),
3710 this->items.end (),
3711 match_ptid);
3712
3713 return it != this->items.end ();
3714 }
3715
3716 /* Remove the thread with ptid PTID. */
3717
3718 void remove_thread (ptid_t ptid)
3719 {
3720 auto match_ptid = [&] (const thread_item &item)
3721 {
3722 return item.ptid == ptid;
3723 };
3724
3725 auto it = std::remove_if (this->items.begin (),
3726 this->items.end (),
3727 match_ptid);
3728
3729 if (it != this->items.end ())
3730 this->items.erase (it);
3731 }
3732
3733 /* The threads found on the remote target. */
3734 std::vector<thread_item> items;
3735 };
3736
3737 static int
3738 remote_newthread_step (threadref *ref, void *data)
3739 {
3740 struct threads_listing_context *context
3741 = (struct threads_listing_context *) data;
3742 int pid = inferior_ptid.pid ();
3743 int lwp = threadref_to_int (ref);
3744 ptid_t ptid (pid, lwp);
3745
3746 context->items.emplace_back (ptid);
3747
3748 return 1; /* continue iterator */
3749 }
3750
3751 #define CRAZY_MAX_THREADS 1000
3752
3753 ptid_t
3754 remote_target::remote_current_thread (ptid_t oldpid)
3755 {
3756 struct remote_state *rs = get_remote_state ();
3757
3758 putpkt ("qC");
3759 getpkt (&rs->buf, 0);
3760 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3761 {
3762 const char *obuf;
3763 ptid_t result;
3764
3765 result = read_ptid (&rs->buf[2], &obuf);
3766 if (*obuf != '\0')
3767 remote_debug_printf ("warning: garbage in qC reply");
3768
3769 return result;
3770 }
3771 else
3772 return oldpid;
3773 }
3774
3775 /* List remote threads using the deprecated qL packet. */
3776
3777 int
3778 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3779 {
3780 if (remote_threadlist_iterator (remote_newthread_step, context,
3781 CRAZY_MAX_THREADS) >= 0)
3782 return 1;
3783
3784 return 0;
3785 }
3786
3787 #if defined(HAVE_LIBEXPAT)
3788
3789 static void
3790 start_thread (struct gdb_xml_parser *parser,
3791 const struct gdb_xml_element *element,
3792 void *user_data,
3793 std::vector<gdb_xml_value> &attributes)
3794 {
3795 struct threads_listing_context *data
3796 = (struct threads_listing_context *) user_data;
3797 struct gdb_xml_value *attr;
3798
3799 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3800 ptid_t ptid = read_ptid (id, NULL);
3801
3802 data->items.emplace_back (ptid);
3803 thread_item &item = data->items.back ();
3804
3805 attr = xml_find_attribute (attributes, "core");
3806 if (attr != NULL)
3807 item.core = *(ULONGEST *) attr->value.get ();
3808
3809 attr = xml_find_attribute (attributes, "name");
3810 if (attr != NULL)
3811 item.name = (const char *) attr->value.get ();
3812
3813 attr = xml_find_attribute (attributes, "handle");
3814 if (attr != NULL)
3815 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3816 }
3817
3818 static void
3819 end_thread (struct gdb_xml_parser *parser,
3820 const struct gdb_xml_element *element,
3821 void *user_data, const char *body_text)
3822 {
3823 struct threads_listing_context *data
3824 = (struct threads_listing_context *) user_data;
3825
3826 if (body_text != NULL && *body_text != '\0')
3827 data->items.back ().extra = body_text;
3828 }
3829
3830 const struct gdb_xml_attribute thread_attributes[] = {
3831 { "id", GDB_XML_AF_NONE, NULL, NULL },
3832 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3833 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3834 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3835 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3836 };
3837
3838 const struct gdb_xml_element thread_children[] = {
3839 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3840 };
3841
3842 const struct gdb_xml_element threads_children[] = {
3843 { "thread", thread_attributes, thread_children,
3844 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3845 start_thread, end_thread },
3846 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3847 };
3848
3849 const struct gdb_xml_element threads_elements[] = {
3850 { "threads", NULL, threads_children,
3851 GDB_XML_EF_NONE, NULL, NULL },
3852 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3853 };
3854
3855 #endif
3856
3857 /* List remote threads using qXfer:threads:read. */
3858
3859 int
3860 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3861 {
3862 #if defined(HAVE_LIBEXPAT)
3863 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3864 {
3865 gdb::optional<gdb::char_vector> xml
3866 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3867
3868 if (xml && (*xml)[0] != '\0')
3869 {
3870 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3871 threads_elements, xml->data (), context);
3872 }
3873
3874 return 1;
3875 }
3876 #endif
3877
3878 return 0;
3879 }
3880
3881 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3882
3883 int
3884 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3885 {
3886 struct remote_state *rs = get_remote_state ();
3887
3888 if (rs->use_threadinfo_query)
3889 {
3890 const char *bufp;
3891
3892 putpkt ("qfThreadInfo");
3893 getpkt (&rs->buf, 0);
3894 bufp = rs->buf.data ();
3895 if (bufp[0] != '\0') /* q packet recognized */
3896 {
3897 while (*bufp++ == 'm') /* reply contains one or more TID */
3898 {
3899 do
3900 {
3901 ptid_t ptid = read_ptid (bufp, &bufp);
3902 context->items.emplace_back (ptid);
3903 }
3904 while (*bufp++ == ','); /* comma-separated list */
3905 putpkt ("qsThreadInfo");
3906 getpkt (&rs->buf, 0);
3907 bufp = rs->buf.data ();
3908 }
3909 return 1;
3910 }
3911 else
3912 {
3913 /* Packet not recognized. */
3914 rs->use_threadinfo_query = 0;
3915 }
3916 }
3917
3918 return 0;
3919 }
3920
3921 /* Return true if INF only has one non-exited thread. */
3922
3923 static bool
3924 has_single_non_exited_thread (inferior *inf)
3925 {
3926 int count = 0;
3927 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3928 if (++count > 1)
3929 break;
3930 return count == 1;
3931 }
3932
3933 /* Implement the to_update_thread_list function for the remote
3934 targets. */
3935
3936 void
3937 remote_target::update_thread_list ()
3938 {
3939 struct threads_listing_context context;
3940 int got_list = 0;
3941
3942 /* We have a few different mechanisms to fetch the thread list. Try
3943 them all, starting with the most preferred one first, falling
3944 back to older methods. */
3945 if (remote_get_threads_with_qxfer (&context)
3946 || remote_get_threads_with_qthreadinfo (&context)
3947 || remote_get_threads_with_ql (&context))
3948 {
3949 got_list = 1;
3950
3951 if (context.items.empty ()
3952 && remote_thread_always_alive (inferior_ptid))
3953 {
3954 /* Some targets don't really support threads, but still
3955 reply an (empty) thread list in response to the thread
3956 listing packets, instead of replying "packet not
3957 supported". Exit early so we don't delete the main
3958 thread. */
3959 return;
3960 }
3961
3962 /* CONTEXT now holds the current thread list on the remote
3963 target end. Delete GDB-side threads no longer found on the
3964 target. */
3965 for (thread_info *tp : all_threads_safe ())
3966 {
3967 if (tp->inf->process_target () != this)
3968 continue;
3969
3970 if (!context.contains_thread (tp->ptid))
3971 {
3972 /* Do not remove the thread if it is the last thread in
3973 the inferior. This situation happens when we have a
3974 pending exit process status to process. Otherwise we
3975 may end up with a seemingly live inferior (i.e. pid
3976 != 0) that has no threads. */
3977 if (has_single_non_exited_thread (tp->inf))
3978 continue;
3979
3980 /* Not found. */
3981 delete_thread (tp);
3982 }
3983 }
3984
3985 /* Remove any unreported fork child threads from CONTEXT so
3986 that we don't interfere with follow fork, which is where
3987 creation of such threads is handled. */
3988 remove_new_fork_children (&context);
3989
3990 /* And now add threads we don't know about yet to our list. */
3991 for (thread_item &item : context.items)
3992 {
3993 if (item.ptid != null_ptid)
3994 {
3995 /* In non-stop mode, we assume new found threads are
3996 executing until proven otherwise with a stop reply.
3997 In all-stop, we can only get here if all threads are
3998 stopped. */
3999 bool executing = target_is_non_stop_p ();
4000
4001 remote_notice_new_inferior (item.ptid, executing);
4002
4003 thread_info *tp = find_thread_ptid (this, item.ptid);
4004 remote_thread_info *info = get_remote_thread_info (tp);
4005 info->core = item.core;
4006 info->extra = std::move (item.extra);
4007 info->name = std::move (item.name);
4008 info->thread_handle = std::move (item.thread_handle);
4009 }
4010 }
4011 }
4012
4013 if (!got_list)
4014 {
4015 /* If no thread listing method is supported, then query whether
4016 each known thread is alive, one by one, with the T packet.
4017 If the target doesn't support threads at all, then this is a
4018 no-op. See remote_thread_alive. */
4019 prune_threads ();
4020 }
4021 }
4022
4023 /*
4024 * Collect a descriptive string about the given thread.
4025 * The target may say anything it wants to about the thread
4026 * (typically info about its blocked / runnable state, name, etc.).
4027 * This string will appear in the info threads display.
4028 *
4029 * Optional: targets are not required to implement this function.
4030 */
4031
4032 const char *
4033 remote_target::extra_thread_info (thread_info *tp)
4034 {
4035 struct remote_state *rs = get_remote_state ();
4036 int set;
4037 threadref id;
4038 struct gdb_ext_thread_info threadinfo;
4039
4040 if (rs->remote_desc == 0) /* paranoia */
4041 internal_error (__FILE__, __LINE__,
4042 _("remote_threads_extra_info"));
4043
4044 if (tp->ptid == magic_null_ptid
4045 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4046 /* This is the main thread which was added by GDB. The remote
4047 server doesn't know about it. */
4048 return NULL;
4049
4050 std::string &extra = get_remote_thread_info (tp)->extra;
4051
4052 /* If already have cached info, use it. */
4053 if (!extra.empty ())
4054 return extra.c_str ();
4055
4056 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4057 {
4058 /* If we're using qXfer:threads:read, then the extra info is
4059 included in the XML. So if we didn't have anything cached,
4060 it's because there's really no extra info. */
4061 return NULL;
4062 }
4063
4064 if (rs->use_threadextra_query)
4065 {
4066 char *b = rs->buf.data ();
4067 char *endb = b + get_remote_packet_size ();
4068
4069 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4070 b += strlen (b);
4071 write_ptid (b, endb, tp->ptid);
4072
4073 putpkt (rs->buf);
4074 getpkt (&rs->buf, 0);
4075 if (rs->buf[0] != 0)
4076 {
4077 extra.resize (strlen (rs->buf.data ()) / 2);
4078 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4079 return extra.c_str ();
4080 }
4081 }
4082
4083 /* If the above query fails, fall back to the old method. */
4084 rs->use_threadextra_query = 0;
4085 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4086 | TAG_MOREDISPLAY | TAG_DISPLAY;
4087 int_to_threadref (&id, tp->ptid.lwp ());
4088 if (remote_get_threadinfo (&id, set, &threadinfo))
4089 if (threadinfo.active)
4090 {
4091 if (*threadinfo.shortname)
4092 string_appendf (extra, " Name: %s", threadinfo.shortname);
4093 if (*threadinfo.display)
4094 {
4095 if (!extra.empty ())
4096 extra += ',';
4097 string_appendf (extra, " State: %s", threadinfo.display);
4098 }
4099 if (*threadinfo.more_display)
4100 {
4101 if (!extra.empty ())
4102 extra += ',';
4103 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4104 }
4105 return extra.c_str ();
4106 }
4107 return NULL;
4108 }
4109 \f
4110
4111 bool
4112 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4113 struct static_tracepoint_marker *marker)
4114 {
4115 struct remote_state *rs = get_remote_state ();
4116 char *p = rs->buf.data ();
4117
4118 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4119 p += strlen (p);
4120 p += hexnumstr (p, addr);
4121 putpkt (rs->buf);
4122 getpkt (&rs->buf, 0);
4123 p = rs->buf.data ();
4124
4125 if (*p == 'E')
4126 error (_("Remote failure reply: %s"), p);
4127
4128 if (*p++ == 'm')
4129 {
4130 parse_static_tracepoint_marker_definition (p, NULL, marker);
4131 return true;
4132 }
4133
4134 return false;
4135 }
4136
4137 std::vector<static_tracepoint_marker>
4138 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4139 {
4140 struct remote_state *rs = get_remote_state ();
4141 std::vector<static_tracepoint_marker> markers;
4142 const char *p;
4143 static_tracepoint_marker marker;
4144
4145 /* Ask for a first packet of static tracepoint marker
4146 definition. */
4147 putpkt ("qTfSTM");
4148 getpkt (&rs->buf, 0);
4149 p = rs->buf.data ();
4150 if (*p == 'E')
4151 error (_("Remote failure reply: %s"), p);
4152
4153 while (*p++ == 'm')
4154 {
4155 do
4156 {
4157 parse_static_tracepoint_marker_definition (p, &p, &marker);
4158
4159 if (strid == NULL || marker.str_id == strid)
4160 markers.push_back (std::move (marker));
4161 }
4162 while (*p++ == ','); /* comma-separated list */
4163 /* Ask for another packet of static tracepoint definition. */
4164 putpkt ("qTsSTM");
4165 getpkt (&rs->buf, 0);
4166 p = rs->buf.data ();
4167 }
4168
4169 return markers;
4170 }
4171
4172 \f
4173 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4174
4175 ptid_t
4176 remote_target::get_ada_task_ptid (long lwp, ULONGEST thread)
4177 {
4178 return ptid_t (inferior_ptid.pid (), lwp);
4179 }
4180 \f
4181
4182 /* Restart the remote side; this is an extended protocol operation. */
4183
4184 void
4185 remote_target::extended_remote_restart ()
4186 {
4187 struct remote_state *rs = get_remote_state ();
4188
4189 /* Send the restart command; for reasons I don't understand the
4190 remote side really expects a number after the "R". */
4191 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4192 putpkt (rs->buf);
4193
4194 remote_fileio_reset ();
4195 }
4196 \f
4197 /* Clean up connection to a remote debugger. */
4198
4199 void
4200 remote_target::close ()
4201 {
4202 /* Make sure we leave stdin registered in the event loop. */
4203 terminal_ours ();
4204
4205 trace_reset_local_state ();
4206
4207 delete this;
4208 }
4209
4210 remote_target::~remote_target ()
4211 {
4212 struct remote_state *rs = get_remote_state ();
4213
4214 /* Check for NULL because we may get here with a partially
4215 constructed target/connection. */
4216 if (rs->remote_desc == nullptr)
4217 return;
4218
4219 serial_close (rs->remote_desc);
4220
4221 /* We are destroying the remote target, so we should discard
4222 everything of this target. */
4223 discard_pending_stop_replies_in_queue ();
4224
4225 if (rs->remote_async_inferior_event_token)
4226 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4227
4228 delete rs->notif_state;
4229 }
4230
4231 /* Query the remote side for the text, data and bss offsets. */
4232
4233 void
4234 remote_target::get_offsets ()
4235 {
4236 struct remote_state *rs = get_remote_state ();
4237 char *buf;
4238 char *ptr;
4239 int lose, num_segments = 0, do_sections, do_segments;
4240 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4241
4242 if (current_program_space->symfile_object_file == NULL)
4243 return;
4244
4245 putpkt ("qOffsets");
4246 getpkt (&rs->buf, 0);
4247 buf = rs->buf.data ();
4248
4249 if (buf[0] == '\000')
4250 return; /* Return silently. Stub doesn't support
4251 this command. */
4252 if (buf[0] == 'E')
4253 {
4254 warning (_("Remote failure reply: %s"), buf);
4255 return;
4256 }
4257
4258 /* Pick up each field in turn. This used to be done with scanf, but
4259 scanf will make trouble if CORE_ADDR size doesn't match
4260 conversion directives correctly. The following code will work
4261 with any size of CORE_ADDR. */
4262 text_addr = data_addr = bss_addr = 0;
4263 ptr = buf;
4264 lose = 0;
4265
4266 if (startswith (ptr, "Text="))
4267 {
4268 ptr += 5;
4269 /* Don't use strtol, could lose on big values. */
4270 while (*ptr && *ptr != ';')
4271 text_addr = (text_addr << 4) + fromhex (*ptr++);
4272
4273 if (startswith (ptr, ";Data="))
4274 {
4275 ptr += 6;
4276 while (*ptr && *ptr != ';')
4277 data_addr = (data_addr << 4) + fromhex (*ptr++);
4278 }
4279 else
4280 lose = 1;
4281
4282 if (!lose && startswith (ptr, ";Bss="))
4283 {
4284 ptr += 5;
4285 while (*ptr && *ptr != ';')
4286 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4287
4288 if (bss_addr != data_addr)
4289 warning (_("Target reported unsupported offsets: %s"), buf);
4290 }
4291 else
4292 lose = 1;
4293 }
4294 else if (startswith (ptr, "TextSeg="))
4295 {
4296 ptr += 8;
4297 /* Don't use strtol, could lose on big values. */
4298 while (*ptr && *ptr != ';')
4299 text_addr = (text_addr << 4) + fromhex (*ptr++);
4300 num_segments = 1;
4301
4302 if (startswith (ptr, ";DataSeg="))
4303 {
4304 ptr += 9;
4305 while (*ptr && *ptr != ';')
4306 data_addr = (data_addr << 4) + fromhex (*ptr++);
4307 num_segments++;
4308 }
4309 }
4310 else
4311 lose = 1;
4312
4313 if (lose)
4314 error (_("Malformed response to offset query, %s"), buf);
4315 else if (*ptr != '\0')
4316 warning (_("Target reported unsupported offsets: %s"), buf);
4317
4318 objfile *objf = current_program_space->symfile_object_file;
4319 section_offsets offs = objf->section_offsets;
4320
4321 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4322 do_segments = (data != NULL);
4323 do_sections = num_segments == 0;
4324
4325 if (num_segments > 0)
4326 {
4327 segments[0] = text_addr;
4328 segments[1] = data_addr;
4329 }
4330 /* If we have two segments, we can still try to relocate everything
4331 by assuming that the .text and .data offsets apply to the whole
4332 text and data segments. Convert the offsets given in the packet
4333 to base addresses for symfile_map_offsets_to_segments. */
4334 else if (data != nullptr && data->segments.size () == 2)
4335 {
4336 segments[0] = data->segments[0].base + text_addr;
4337 segments[1] = data->segments[1].base + data_addr;
4338 num_segments = 2;
4339 }
4340 /* If the object file has only one segment, assume that it is text
4341 rather than data; main programs with no writable data are rare,
4342 but programs with no code are useless. Of course the code might
4343 have ended up in the data segment... to detect that we would need
4344 the permissions here. */
4345 else if (data && data->segments.size () == 1)
4346 {
4347 segments[0] = data->segments[0].base + text_addr;
4348 num_segments = 1;
4349 }
4350 /* There's no way to relocate by segment. */
4351 else
4352 do_segments = 0;
4353
4354 if (do_segments)
4355 {
4356 int ret = symfile_map_offsets_to_segments (objf->obfd,
4357 data.get (), offs,
4358 num_segments, segments);
4359
4360 if (ret == 0 && !do_sections)
4361 error (_("Can not handle qOffsets TextSeg "
4362 "response with this symbol file"));
4363
4364 if (ret > 0)
4365 do_sections = 0;
4366 }
4367
4368 if (do_sections)
4369 {
4370 offs[SECT_OFF_TEXT (objf)] = text_addr;
4371
4372 /* This is a temporary kludge to force data and bss to use the
4373 same offsets because that's what nlmconv does now. The real
4374 solution requires changes to the stub and remote.c that I
4375 don't have time to do right now. */
4376
4377 offs[SECT_OFF_DATA (objf)] = data_addr;
4378 offs[SECT_OFF_BSS (objf)] = data_addr;
4379 }
4380
4381 objfile_relocate (objf, offs);
4382 }
4383
4384 /* Send interrupt_sequence to remote target. */
4385
4386 void
4387 remote_target::send_interrupt_sequence ()
4388 {
4389 struct remote_state *rs = get_remote_state ();
4390
4391 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4392 remote_serial_write ("\x03", 1);
4393 else if (interrupt_sequence_mode == interrupt_sequence_break)
4394 serial_send_break (rs->remote_desc);
4395 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4396 {
4397 serial_send_break (rs->remote_desc);
4398 remote_serial_write ("g", 1);
4399 }
4400 else
4401 internal_error (__FILE__, __LINE__,
4402 _("Invalid value for interrupt_sequence_mode: %s."),
4403 interrupt_sequence_mode);
4404 }
4405
4406
4407 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4408 and extract the PTID. Returns NULL_PTID if not found. */
4409
4410 static ptid_t
4411 stop_reply_extract_thread (const char *stop_reply)
4412 {
4413 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4414 {
4415 const char *p;
4416
4417 /* Txx r:val ; r:val (...) */
4418 p = &stop_reply[3];
4419
4420 /* Look for "register" named "thread". */
4421 while (*p != '\0')
4422 {
4423 const char *p1;
4424
4425 p1 = strchr (p, ':');
4426 if (p1 == NULL)
4427 return null_ptid;
4428
4429 if (strncmp (p, "thread", p1 - p) == 0)
4430 return read_ptid (++p1, &p);
4431
4432 p1 = strchr (p, ';');
4433 if (p1 == NULL)
4434 return null_ptid;
4435 p1++;
4436
4437 p = p1;
4438 }
4439 }
4440
4441 return null_ptid;
4442 }
4443
4444 /* Determine the remote side's current thread. If we have a stop
4445 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4446 "thread" register we can extract the current thread from. If not,
4447 ask the remote which is the current thread with qC. The former
4448 method avoids a roundtrip. */
4449
4450 ptid_t
4451 remote_target::get_current_thread (const char *wait_status)
4452 {
4453 ptid_t ptid = null_ptid;
4454
4455 /* Note we don't use remote_parse_stop_reply as that makes use of
4456 the target architecture, which we haven't yet fully determined at
4457 this point. */
4458 if (wait_status != NULL)
4459 ptid = stop_reply_extract_thread (wait_status);
4460 if (ptid == null_ptid)
4461 ptid = remote_current_thread (inferior_ptid);
4462
4463 return ptid;
4464 }
4465
4466 /* Query the remote target for which is the current thread/process,
4467 add it to our tables, and update INFERIOR_PTID. The caller is
4468 responsible for setting the state such that the remote end is ready
4469 to return the current thread.
4470
4471 This function is called after handling the '?' or 'vRun' packets,
4472 whose response is a stop reply from which we can also try
4473 extracting the thread. If the target doesn't support the explicit
4474 qC query, we infer the current thread from that stop reply, passed
4475 in in WAIT_STATUS, which may be NULL.
4476
4477 The function returns pointer to the main thread of the inferior. */
4478
4479 thread_info *
4480 remote_target::add_current_inferior_and_thread (const char *wait_status)
4481 {
4482 struct remote_state *rs = get_remote_state ();
4483 bool fake_pid_p = false;
4484
4485 switch_to_no_thread ();
4486
4487 /* Now, if we have thread information, update the current thread's
4488 ptid. */
4489 ptid_t curr_ptid = get_current_thread (wait_status);
4490
4491 if (curr_ptid != null_ptid)
4492 {
4493 if (!remote_multi_process_p (rs))
4494 fake_pid_p = true;
4495 }
4496 else
4497 {
4498 /* Without this, some commands which require an active target
4499 (such as kill) won't work. This variable serves (at least)
4500 double duty as both the pid of the target process (if it has
4501 such), and as a flag indicating that a target is active. */
4502 curr_ptid = magic_null_ptid;
4503 fake_pid_p = true;
4504 }
4505
4506 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4507
4508 /* Add the main thread and switch to it. Don't try reading
4509 registers yet, since we haven't fetched the target description
4510 yet. */
4511 thread_info *tp = add_thread_silent (this, curr_ptid);
4512 switch_to_thread_no_regs (tp);
4513
4514 return tp;
4515 }
4516
4517 /* Print info about a thread that was found already stopped on
4518 connection. */
4519
4520 void
4521 remote_target::print_one_stopped_thread (thread_info *thread)
4522 {
4523 target_waitstatus ws;
4524
4525 /* If there is a pending waitstatus, use it. If there isn't it's because
4526 the thread's stop was reported with TARGET_WAITKIND_STOPPED / GDB_SIGNAL_0
4527 and process_initial_stop_replies decided it wasn't interesting to save
4528 and report to the core. */
4529 if (thread->has_pending_waitstatus ())
4530 {
4531 ws = thread->pending_waitstatus ();
4532 thread->clear_pending_waitstatus ();
4533 }
4534 else
4535 {
4536 ws.set_stopped (GDB_SIGNAL_0);
4537 }
4538
4539 switch_to_thread (thread);
4540 thread->set_stop_pc (get_frame_pc (get_current_frame ()));
4541 set_current_sal_from_frame (get_current_frame ());
4542
4543 /* For "info program". */
4544 set_last_target_status (this, thread->ptid, ws);
4545
4546 if (ws.kind () == TARGET_WAITKIND_STOPPED)
4547 {
4548 enum gdb_signal sig = ws.sig ();
4549
4550 if (signal_print_state (sig))
4551 gdb::observers::signal_received.notify (sig);
4552 }
4553 gdb::observers::normal_stop.notify (NULL, 1);
4554 }
4555
4556 /* Process all initial stop replies the remote side sent in response
4557 to the ? packet. These indicate threads that were already stopped
4558 on initial connection. We mark these threads as stopped and print
4559 their current frame before giving the user the prompt. */
4560
4561 void
4562 remote_target::process_initial_stop_replies (int from_tty)
4563 {
4564 int pending_stop_replies = stop_reply_queue_length ();
4565 struct thread_info *selected = NULL;
4566 struct thread_info *lowest_stopped = NULL;
4567 struct thread_info *first = NULL;
4568
4569 /* This is only used when the target is non-stop. */
4570 gdb_assert (target_is_non_stop_p ());
4571
4572 /* Consume the initial pending events. */
4573 while (pending_stop_replies-- > 0)
4574 {
4575 ptid_t waiton_ptid = minus_one_ptid;
4576 ptid_t event_ptid;
4577 struct target_waitstatus ws;
4578 int ignore_event = 0;
4579
4580 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4581 if (remote_debug)
4582 print_target_wait_results (waiton_ptid, event_ptid, ws);
4583
4584 switch (ws.kind ())
4585 {
4586 case TARGET_WAITKIND_IGNORE:
4587 case TARGET_WAITKIND_NO_RESUMED:
4588 case TARGET_WAITKIND_SIGNALLED:
4589 case TARGET_WAITKIND_EXITED:
4590 /* We shouldn't see these, but if we do, just ignore. */
4591 remote_debug_printf ("event ignored");
4592 ignore_event = 1;
4593 break;
4594
4595 default:
4596 break;
4597 }
4598
4599 if (ignore_event)
4600 continue;
4601
4602 thread_info *evthread = find_thread_ptid (this, event_ptid);
4603
4604 if (ws.kind () == TARGET_WAITKIND_STOPPED)
4605 {
4606 enum gdb_signal sig = ws.sig ();
4607
4608 /* Stubs traditionally report SIGTRAP as initial signal,
4609 instead of signal 0. Suppress it. */
4610 if (sig == GDB_SIGNAL_TRAP)
4611 sig = GDB_SIGNAL_0;
4612 evthread->set_stop_signal (sig);
4613 ws.set_stopped (sig);
4614 }
4615
4616 if (ws.kind () != TARGET_WAITKIND_STOPPED
4617 || ws.sig () != GDB_SIGNAL_0)
4618 evthread->set_pending_waitstatus (ws);
4619
4620 set_executing (this, event_ptid, false);
4621 set_running (this, event_ptid, false);
4622 get_remote_thread_info (evthread)->set_not_resumed ();
4623 }
4624
4625 /* "Notice" the new inferiors before anything related to
4626 registers/memory. */
4627 for (inferior *inf : all_non_exited_inferiors (this))
4628 {
4629 inf->needs_setup = 1;
4630
4631 if (non_stop)
4632 {
4633 thread_info *thread = any_live_thread_of_inferior (inf);
4634 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4635 from_tty);
4636 }
4637 }
4638
4639 /* If all-stop on top of non-stop, pause all threads. Note this
4640 records the threads' stop pc, so must be done after "noticing"
4641 the inferiors. */
4642 if (!non_stop)
4643 {
4644 {
4645 /* At this point, the remote target is not async. It needs to be for
4646 the poll in stop_all_threads to consider events from it, so enable
4647 it temporarily. */
4648 gdb_assert (!this->is_async_p ());
4649 SCOPE_EXIT { target_async (0); };
4650 target_async (1);
4651 stop_all_threads ();
4652 }
4653
4654 /* If all threads of an inferior were already stopped, we
4655 haven't setup the inferior yet. */
4656 for (inferior *inf : all_non_exited_inferiors (this))
4657 {
4658 if (inf->needs_setup)
4659 {
4660 thread_info *thread = any_live_thread_of_inferior (inf);
4661 switch_to_thread_no_regs (thread);
4662 setup_inferior (0);
4663 }
4664 }
4665 }
4666
4667 /* Now go over all threads that are stopped, and print their current
4668 frame. If all-stop, then if there's a signalled thread, pick
4669 that as current. */
4670 for (thread_info *thread : all_non_exited_threads (this))
4671 {
4672 if (first == NULL)
4673 first = thread;
4674
4675 if (!non_stop)
4676 thread->set_running (false);
4677 else if (thread->state != THREAD_STOPPED)
4678 continue;
4679
4680 if (selected == nullptr && thread->has_pending_waitstatus ())
4681 selected = thread;
4682
4683 if (lowest_stopped == NULL
4684 || thread->inf->num < lowest_stopped->inf->num
4685 || thread->per_inf_num < lowest_stopped->per_inf_num)
4686 lowest_stopped = thread;
4687
4688 if (non_stop)
4689 print_one_stopped_thread (thread);
4690 }
4691
4692 /* In all-stop, we only print the status of one thread, and leave
4693 others with their status pending. */
4694 if (!non_stop)
4695 {
4696 thread_info *thread = selected;
4697 if (thread == NULL)
4698 thread = lowest_stopped;
4699 if (thread == NULL)
4700 thread = first;
4701
4702 print_one_stopped_thread (thread);
4703 }
4704 }
4705
4706 /* Mark a remote_target as marking (by setting the starting_up flag within
4707 its remote_state) for the lifetime of this object. The reference count
4708 on the remote target is temporarily incremented, to prevent the target
4709 being deleted under our feet. */
4710
4711 struct scoped_mark_target_starting
4712 {
4713 /* Constructor, TARGET is the target to be marked as starting, its
4714 reference count will be incremented. */
4715 scoped_mark_target_starting (remote_target *target)
4716 : m_remote_target (target)
4717 {
4718 m_remote_target->incref ();
4719 remote_state *rs = m_remote_target->get_remote_state ();
4720 rs->starting_up = true;
4721 }
4722
4723 /* Destructor, mark the target being worked on as no longer starting, and
4724 decrement the reference count. */
4725 ~scoped_mark_target_starting ()
4726 {
4727 remote_state *rs = m_remote_target->get_remote_state ();
4728 rs->starting_up = false;
4729 decref_target (m_remote_target);
4730 }
4731
4732 private:
4733
4734 /* The target on which we are operating. */
4735 remote_target *m_remote_target;
4736 };
4737
4738 /* Helper for remote_target::start_remote, start the remote connection and
4739 sync state. Return true if everything goes OK, otherwise, return false.
4740 This function exists so that the scoped_restore created within it will
4741 expire before we return to remote_target::start_remote. */
4742
4743 bool
4744 remote_target::start_remote_1 (int from_tty, int extended_p)
4745 {
4746 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4747
4748 struct remote_state *rs = get_remote_state ();
4749 struct packet_config *noack_config;
4750
4751 /* Signal other parts that we're going through the initial setup,
4752 and so things may not be stable yet. E.g., we don't try to
4753 install tracepoints until we've relocated symbols. Also, a
4754 Ctrl-C before we're connected and synced up can't interrupt the
4755 target. Instead, it offers to drop the (potentially wedged)
4756 connection. */
4757 scoped_mark_target_starting target_is_starting (this);
4758
4759 QUIT;
4760
4761 if (interrupt_on_connect)
4762 send_interrupt_sequence ();
4763
4764 /* Ack any packet which the remote side has already sent. */
4765 remote_serial_write ("+", 1);
4766
4767 /* The first packet we send to the target is the optional "supported
4768 packets" request. If the target can answer this, it will tell us
4769 which later probes to skip. */
4770 remote_query_supported ();
4771
4772 /* If the stub wants to get a QAllow, compose one and send it. */
4773 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4774 set_permissions ();
4775
4776 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4777 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4778 as a reply to known packet. For packet "vFile:setfs:" it is an
4779 invalid reply and GDB would return error in
4780 remote_hostio_set_filesystem, making remote files access impossible.
4781 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4782 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4783 {
4784 const char v_mustreplyempty[] = "vMustReplyEmpty";
4785
4786 putpkt (v_mustreplyempty);
4787 getpkt (&rs->buf, 0);
4788 if (strcmp (rs->buf.data (), "OK") == 0)
4789 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4790 else if (strcmp (rs->buf.data (), "") != 0)
4791 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4792 rs->buf.data ());
4793 }
4794
4795 /* Next, we possibly activate noack mode.
4796
4797 If the QStartNoAckMode packet configuration is set to AUTO,
4798 enable noack mode if the stub reported a wish for it with
4799 qSupported.
4800
4801 If set to TRUE, then enable noack mode even if the stub didn't
4802 report it in qSupported. If the stub doesn't reply OK, the
4803 session ends with an error.
4804
4805 If FALSE, then don't activate noack mode, regardless of what the
4806 stub claimed should be the default with qSupported. */
4807
4808 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4809 if (packet_config_support (noack_config) != PACKET_DISABLE)
4810 {
4811 putpkt ("QStartNoAckMode");
4812 getpkt (&rs->buf, 0);
4813 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4814 rs->noack_mode = 1;
4815 }
4816
4817 if (extended_p)
4818 {
4819 /* Tell the remote that we are using the extended protocol. */
4820 putpkt ("!");
4821 getpkt (&rs->buf, 0);
4822 }
4823
4824 /* Let the target know which signals it is allowed to pass down to
4825 the program. */
4826 update_signals_program_target ();
4827
4828 /* Next, if the target can specify a description, read it. We do
4829 this before anything involving memory or registers. */
4830 target_find_description ();
4831
4832 /* Next, now that we know something about the target, update the
4833 address spaces in the program spaces. */
4834 update_address_spaces ();
4835
4836 /* On OSs where the list of libraries is global to all
4837 processes, we fetch them early. */
4838 if (gdbarch_has_global_solist (target_gdbarch ()))
4839 solib_add (NULL, from_tty, auto_solib_add);
4840
4841 if (target_is_non_stop_p ())
4842 {
4843 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4844 error (_("Non-stop mode requested, but remote "
4845 "does not support non-stop"));
4846
4847 putpkt ("QNonStop:1");
4848 getpkt (&rs->buf, 0);
4849
4850 if (strcmp (rs->buf.data (), "OK") != 0)
4851 error (_("Remote refused setting non-stop mode with: %s"),
4852 rs->buf.data ());
4853
4854 /* Find about threads and processes the stub is already
4855 controlling. We default to adding them in the running state.
4856 The '?' query below will then tell us about which threads are
4857 stopped. */
4858 this->update_thread_list ();
4859 }
4860 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4861 {
4862 /* Don't assume that the stub can operate in all-stop mode.
4863 Request it explicitly. */
4864 putpkt ("QNonStop:0");
4865 getpkt (&rs->buf, 0);
4866
4867 if (strcmp (rs->buf.data (), "OK") != 0)
4868 error (_("Remote refused setting all-stop mode with: %s"),
4869 rs->buf.data ());
4870 }
4871
4872 /* Upload TSVs regardless of whether the target is running or not. The
4873 remote stub, such as GDBserver, may have some predefined or builtin
4874 TSVs, even if the target is not running. */
4875 if (get_trace_status (current_trace_status ()) != -1)
4876 {
4877 struct uploaded_tsv *uploaded_tsvs = NULL;
4878
4879 upload_trace_state_variables (&uploaded_tsvs);
4880 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4881 }
4882
4883 /* Check whether the target is running now. */
4884 putpkt ("?");
4885 getpkt (&rs->buf, 0);
4886
4887 if (!target_is_non_stop_p ())
4888 {
4889 char *wait_status = NULL;
4890
4891 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4892 {
4893 if (!extended_p)
4894 error (_("The target is not running (try extended-remote?)"));
4895 return false;
4896 }
4897 else
4898 {
4899 /* Save the reply for later. */
4900 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4901 strcpy (wait_status, rs->buf.data ());
4902 }
4903
4904 /* Fetch thread list. */
4905 target_update_thread_list ();
4906
4907 /* Let the stub know that we want it to return the thread. */
4908 set_continue_thread (minus_one_ptid);
4909
4910 if (thread_count (this) == 0)
4911 {
4912 /* Target has no concept of threads at all. GDB treats
4913 non-threaded target as single-threaded; add a main
4914 thread. */
4915 thread_info *tp = add_current_inferior_and_thread (wait_status);
4916 get_remote_thread_info (tp)->set_resumed ();
4917 }
4918 else
4919 {
4920 /* We have thread information; select the thread the target
4921 says should be current. If we're reconnecting to a
4922 multi-threaded program, this will ideally be the thread
4923 that last reported an event before GDB disconnected. */
4924 ptid_t curr_thread = get_current_thread (wait_status);
4925 if (curr_thread == null_ptid)
4926 {
4927 /* Odd... The target was able to list threads, but not
4928 tell us which thread was current (no "thread"
4929 register in T stop reply?). Just pick the first
4930 thread in the thread list then. */
4931
4932 remote_debug_printf ("warning: couldn't determine remote "
4933 "current thread; picking first in list.");
4934
4935 for (thread_info *tp : all_non_exited_threads (this,
4936 minus_one_ptid))
4937 {
4938 switch_to_thread (tp);
4939 break;
4940 }
4941 }
4942 else
4943 switch_to_thread (find_thread_ptid (this, curr_thread));
4944 }
4945
4946 /* init_wait_for_inferior should be called before get_offsets in order
4947 to manage `inserted' flag in bp loc in a correct state.
4948 breakpoint_init_inferior, called from init_wait_for_inferior, set
4949 `inserted' flag to 0, while before breakpoint_re_set, called from
4950 start_remote, set `inserted' flag to 1. In the initialization of
4951 inferior, breakpoint_init_inferior should be called first, and then
4952 breakpoint_re_set can be called. If this order is broken, state of
4953 `inserted' flag is wrong, and cause some problems on breakpoint
4954 manipulation. */
4955 init_wait_for_inferior ();
4956
4957 get_offsets (); /* Get text, data & bss offsets. */
4958
4959 /* If we could not find a description using qXfer, and we know
4960 how to do it some other way, try again. This is not
4961 supported for non-stop; it could be, but it is tricky if
4962 there are no stopped threads when we connect. */
4963 if (remote_read_description_p (this)
4964 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4965 {
4966 target_clear_description ();
4967 target_find_description ();
4968 }
4969
4970 /* Use the previously fetched status. */
4971 gdb_assert (wait_status != NULL);
4972 strcpy (rs->buf.data (), wait_status);
4973 rs->cached_wait_status = 1;
4974
4975 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4976 }
4977 else
4978 {
4979 /* Clear WFI global state. Do this before finding about new
4980 threads and inferiors, and setting the current inferior.
4981 Otherwise we would clear the proceed status of the current
4982 inferior when we want its stop_soon state to be preserved
4983 (see notice_new_inferior). */
4984 init_wait_for_inferior ();
4985
4986 /* In non-stop, we will either get an "OK", meaning that there
4987 are no stopped threads at this time; or, a regular stop
4988 reply. In the latter case, there may be more than one thread
4989 stopped --- we pull them all out using the vStopped
4990 mechanism. */
4991 if (strcmp (rs->buf.data (), "OK") != 0)
4992 {
4993 struct notif_client *notif = &notif_client_stop;
4994
4995 /* remote_notif_get_pending_replies acks this one, and gets
4996 the rest out. */
4997 rs->notif_state->pending_event[notif_client_stop.id]
4998 = remote_notif_parse (this, notif, rs->buf.data ());
4999 remote_notif_get_pending_events (notif);
5000 }
5001
5002 if (thread_count (this) == 0)
5003 {
5004 if (!extended_p)
5005 error (_("The target is not running (try extended-remote?)"));
5006 return false;
5007 }
5008
5009 /* Report all signals during attach/startup. */
5010 pass_signals ({});
5011
5012 /* If there are already stopped threads, mark them stopped and
5013 report their stops before giving the prompt to the user. */
5014 process_initial_stop_replies (from_tty);
5015
5016 if (target_can_async_p ())
5017 target_async (1);
5018 }
5019
5020 /* If we connected to a live target, do some additional setup. */
5021 if (target_has_execution ())
5022 {
5023 /* No use without a symbol-file. */
5024 if (current_program_space->symfile_object_file)
5025 remote_check_symbols ();
5026 }
5027
5028 /* Possibly the target has been engaged in a trace run started
5029 previously; find out where things are at. */
5030 if (get_trace_status (current_trace_status ()) != -1)
5031 {
5032 struct uploaded_tp *uploaded_tps = NULL;
5033
5034 if (current_trace_status ()->running)
5035 printf_filtered (_("Trace is already running on the target.\n"));
5036
5037 upload_tracepoints (&uploaded_tps);
5038
5039 merge_uploaded_tracepoints (&uploaded_tps);
5040 }
5041
5042 /* Possibly the target has been engaged in a btrace record started
5043 previously; find out where things are at. */
5044 remote_btrace_maybe_reopen ();
5045
5046 return true;
5047 }
5048
5049 /* Start the remote connection and sync state. */
5050
5051 void
5052 remote_target::start_remote (int from_tty, int extended_p)
5053 {
5054 if (start_remote_1 (from_tty, extended_p)
5055 && breakpoints_should_be_inserted_now ())
5056 insert_breakpoints ();
5057 }
5058
5059 const char *
5060 remote_target::connection_string ()
5061 {
5062 remote_state *rs = get_remote_state ();
5063
5064 if (rs->remote_desc->name != NULL)
5065 return rs->remote_desc->name;
5066 else
5067 return NULL;
5068 }
5069
5070 /* Open a connection to a remote debugger.
5071 NAME is the filename used for communication. */
5072
5073 void
5074 remote_target::open (const char *name, int from_tty)
5075 {
5076 open_1 (name, from_tty, 0);
5077 }
5078
5079 /* Open a connection to a remote debugger using the extended
5080 remote gdb protocol. NAME is the filename used for communication. */
5081
5082 void
5083 extended_remote_target::open (const char *name, int from_tty)
5084 {
5085 open_1 (name, from_tty, 1 /*extended_p */);
5086 }
5087
5088 /* Reset all packets back to "unknown support". Called when opening a
5089 new connection to a remote target. */
5090
5091 static void
5092 reset_all_packet_configs_support (void)
5093 {
5094 int i;
5095
5096 for (i = 0; i < PACKET_MAX; i++)
5097 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5098 }
5099
5100 /* Initialize all packet configs. */
5101
5102 static void
5103 init_all_packet_configs (void)
5104 {
5105 int i;
5106
5107 for (i = 0; i < PACKET_MAX; i++)
5108 {
5109 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5110 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5111 }
5112 }
5113
5114 /* Symbol look-up. */
5115
5116 void
5117 remote_target::remote_check_symbols ()
5118 {
5119 char *tmp;
5120 int end;
5121
5122 /* The remote side has no concept of inferiors that aren't running
5123 yet, it only knows about running processes. If we're connected
5124 but our current inferior is not running, we should not invite the
5125 remote target to request symbol lookups related to its
5126 (unrelated) current process. */
5127 if (!target_has_execution ())
5128 return;
5129
5130 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5131 return;
5132
5133 /* Make sure the remote is pointing at the right process. Note
5134 there's no way to select "no process". */
5135 set_general_process ();
5136
5137 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5138 because we need both at the same time. */
5139 gdb::char_vector msg (get_remote_packet_size ());
5140 gdb::char_vector reply (get_remote_packet_size ());
5141
5142 /* Invite target to request symbol lookups. */
5143
5144 putpkt ("qSymbol::");
5145 getpkt (&reply, 0);
5146 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5147
5148 while (startswith (reply.data (), "qSymbol:"))
5149 {
5150 struct bound_minimal_symbol sym;
5151
5152 tmp = &reply[8];
5153 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5154 strlen (tmp) / 2);
5155 msg[end] = '\0';
5156 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5157 if (sym.minsym == NULL)
5158 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5159 &reply[8]);
5160 else
5161 {
5162 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5163 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5164
5165 /* If this is a function address, return the start of code
5166 instead of any data function descriptor. */
5167 sym_addr = gdbarch_convert_from_func_ptr_addr
5168 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5169
5170 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5171 phex_nz (sym_addr, addr_size), &reply[8]);
5172 }
5173
5174 putpkt (msg.data ());
5175 getpkt (&reply, 0);
5176 }
5177 }
5178
5179 static struct serial *
5180 remote_serial_open (const char *name)
5181 {
5182 static int udp_warning = 0;
5183
5184 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5185 of in ser-tcp.c, because it is the remote protocol assuming that the
5186 serial connection is reliable and not the serial connection promising
5187 to be. */
5188 if (!udp_warning && startswith (name, "udp:"))
5189 {
5190 warning (_("The remote protocol may be unreliable over UDP.\n"
5191 "Some events may be lost, rendering further debugging "
5192 "impossible."));
5193 udp_warning = 1;
5194 }
5195
5196 return serial_open (name);
5197 }
5198
5199 /* Inform the target of our permission settings. The permission flags
5200 work without this, but if the target knows the settings, it can do
5201 a couple things. First, it can add its own check, to catch cases
5202 that somehow manage to get by the permissions checks in target
5203 methods. Second, if the target is wired to disallow particular
5204 settings (for instance, a system in the field that is not set up to
5205 be able to stop at a breakpoint), it can object to any unavailable
5206 permissions. */
5207
5208 void
5209 remote_target::set_permissions ()
5210 {
5211 struct remote_state *rs = get_remote_state ();
5212
5213 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5214 "WriteReg:%x;WriteMem:%x;"
5215 "InsertBreak:%x;InsertTrace:%x;"
5216 "InsertFastTrace:%x;Stop:%x",
5217 may_write_registers, may_write_memory,
5218 may_insert_breakpoints, may_insert_tracepoints,
5219 may_insert_fast_tracepoints, may_stop);
5220 putpkt (rs->buf);
5221 getpkt (&rs->buf, 0);
5222
5223 /* If the target didn't like the packet, warn the user. Do not try
5224 to undo the user's settings, that would just be maddening. */
5225 if (strcmp (rs->buf.data (), "OK") != 0)
5226 warning (_("Remote refused setting permissions with: %s"),
5227 rs->buf.data ());
5228 }
5229
5230 /* This type describes each known response to the qSupported
5231 packet. */
5232 struct protocol_feature
5233 {
5234 /* The name of this protocol feature. */
5235 const char *name;
5236
5237 /* The default for this protocol feature. */
5238 enum packet_support default_support;
5239
5240 /* The function to call when this feature is reported, or after
5241 qSupported processing if the feature is not supported.
5242 The first argument points to this structure. The second
5243 argument indicates whether the packet requested support be
5244 enabled, disabled, or probed (or the default, if this function
5245 is being called at the end of processing and this feature was
5246 not reported). The third argument may be NULL; if not NULL, it
5247 is a NUL-terminated string taken from the packet following
5248 this feature's name and an equals sign. */
5249 void (*func) (remote_target *remote, const struct protocol_feature *,
5250 enum packet_support, const char *);
5251
5252 /* The corresponding packet for this feature. Only used if
5253 FUNC is remote_supported_packet. */
5254 int packet;
5255 };
5256
5257 static void
5258 remote_supported_packet (remote_target *remote,
5259 const struct protocol_feature *feature,
5260 enum packet_support support,
5261 const char *argument)
5262 {
5263 if (argument)
5264 {
5265 warning (_("Remote qSupported response supplied an unexpected value for"
5266 " \"%s\"."), feature->name);
5267 return;
5268 }
5269
5270 remote_protocol_packets[feature->packet].support = support;
5271 }
5272
5273 void
5274 remote_target::remote_packet_size (const protocol_feature *feature,
5275 enum packet_support support, const char *value)
5276 {
5277 struct remote_state *rs = get_remote_state ();
5278
5279 int packet_size;
5280 char *value_end;
5281
5282 if (support != PACKET_ENABLE)
5283 return;
5284
5285 if (value == NULL || *value == '\0')
5286 {
5287 warning (_("Remote target reported \"%s\" without a size."),
5288 feature->name);
5289 return;
5290 }
5291
5292 errno = 0;
5293 packet_size = strtol (value, &value_end, 16);
5294 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5295 {
5296 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5297 feature->name, value);
5298 return;
5299 }
5300
5301 /* Record the new maximum packet size. */
5302 rs->explicit_packet_size = packet_size;
5303 }
5304
5305 static void
5306 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5307 enum packet_support support, const char *value)
5308 {
5309 remote->remote_packet_size (feature, support, value);
5310 }
5311
5312 static const struct protocol_feature remote_protocol_features[] = {
5313 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5314 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5315 PACKET_qXfer_auxv },
5316 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5317 PACKET_qXfer_exec_file },
5318 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5319 PACKET_qXfer_features },
5320 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5321 PACKET_qXfer_libraries },
5322 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5323 PACKET_qXfer_libraries_svr4 },
5324 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5325 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5326 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5327 PACKET_qXfer_memory_map },
5328 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5329 PACKET_qXfer_osdata },
5330 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5331 PACKET_qXfer_threads },
5332 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5333 PACKET_qXfer_traceframe_info },
5334 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5335 PACKET_QPassSignals },
5336 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5337 PACKET_QCatchSyscalls },
5338 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5339 PACKET_QProgramSignals },
5340 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5341 PACKET_QSetWorkingDir },
5342 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5343 PACKET_QStartupWithShell },
5344 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5345 PACKET_QEnvironmentHexEncoded },
5346 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5347 PACKET_QEnvironmentReset },
5348 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5349 PACKET_QEnvironmentUnset },
5350 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5351 PACKET_QStartNoAckMode },
5352 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5353 PACKET_multiprocess_feature },
5354 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5355 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5356 PACKET_qXfer_siginfo_read },
5357 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5358 PACKET_qXfer_siginfo_write },
5359 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5360 PACKET_ConditionalTracepoints },
5361 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5362 PACKET_ConditionalBreakpoints },
5363 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5364 PACKET_BreakpointCommands },
5365 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5366 PACKET_FastTracepoints },
5367 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5368 PACKET_StaticTracepoints },
5369 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5370 PACKET_InstallInTrace},
5371 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5372 PACKET_DisconnectedTracing_feature },
5373 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5374 PACKET_bc },
5375 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5376 PACKET_bs },
5377 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5378 PACKET_TracepointSource },
5379 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5380 PACKET_QAllow },
5381 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5382 PACKET_EnableDisableTracepoints_feature },
5383 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5384 PACKET_qXfer_fdpic },
5385 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5386 PACKET_qXfer_uib },
5387 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5388 PACKET_QDisableRandomization },
5389 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5390 { "QTBuffer:size", PACKET_DISABLE,
5391 remote_supported_packet, PACKET_QTBuffer_size},
5392 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5393 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5394 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5395 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5396 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5397 PACKET_qXfer_btrace },
5398 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5399 PACKET_qXfer_btrace_conf },
5400 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5401 PACKET_Qbtrace_conf_bts_size },
5402 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5403 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5404 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5405 PACKET_fork_event_feature },
5406 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5407 PACKET_vfork_event_feature },
5408 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5409 PACKET_exec_event_feature },
5410 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5411 PACKET_Qbtrace_conf_pt_size },
5412 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5413 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5414 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5415 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5416 PACKET_memory_tagging_feature },
5417 };
5418
5419 static char *remote_support_xml;
5420
5421 /* Register string appended to "xmlRegisters=" in qSupported query. */
5422
5423 void
5424 register_remote_support_xml (const char *xml)
5425 {
5426 #if defined(HAVE_LIBEXPAT)
5427 if (remote_support_xml == NULL)
5428 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5429 else
5430 {
5431 char *copy = xstrdup (remote_support_xml + 13);
5432 char *saveptr;
5433 char *p = strtok_r (copy, ",", &saveptr);
5434
5435 do
5436 {
5437 if (strcmp (p, xml) == 0)
5438 {
5439 /* already there */
5440 xfree (copy);
5441 return;
5442 }
5443 }
5444 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5445 xfree (copy);
5446
5447 remote_support_xml = reconcat (remote_support_xml,
5448 remote_support_xml, ",", xml,
5449 (char *) NULL);
5450 }
5451 #endif
5452 }
5453
5454 static void
5455 remote_query_supported_append (std::string *msg, const char *append)
5456 {
5457 if (!msg->empty ())
5458 msg->append (";");
5459 msg->append (append);
5460 }
5461
5462 void
5463 remote_target::remote_query_supported ()
5464 {
5465 struct remote_state *rs = get_remote_state ();
5466 char *next;
5467 int i;
5468 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5469
5470 /* The packet support flags are handled differently for this packet
5471 than for most others. We treat an error, a disabled packet, and
5472 an empty response identically: any features which must be reported
5473 to be used will be automatically disabled. An empty buffer
5474 accomplishes this, since that is also the representation for a list
5475 containing no features. */
5476
5477 rs->buf[0] = 0;
5478 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5479 {
5480 std::string q;
5481
5482 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5483 remote_query_supported_append (&q, "multiprocess+");
5484
5485 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5486 remote_query_supported_append (&q, "swbreak+");
5487 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5488 remote_query_supported_append (&q, "hwbreak+");
5489
5490 remote_query_supported_append (&q, "qRelocInsn+");
5491
5492 if (packet_set_cmd_state (PACKET_fork_event_feature)
5493 != AUTO_BOOLEAN_FALSE)
5494 remote_query_supported_append (&q, "fork-events+");
5495 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5496 != AUTO_BOOLEAN_FALSE)
5497 remote_query_supported_append (&q, "vfork-events+");
5498 if (packet_set_cmd_state (PACKET_exec_event_feature)
5499 != AUTO_BOOLEAN_FALSE)
5500 remote_query_supported_append (&q, "exec-events+");
5501
5502 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5503 remote_query_supported_append (&q, "vContSupported+");
5504
5505 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5506 remote_query_supported_append (&q, "QThreadEvents+");
5507
5508 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5509 remote_query_supported_append (&q, "no-resumed+");
5510
5511 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5512 != AUTO_BOOLEAN_FALSE)
5513 remote_query_supported_append (&q, "memory-tagging+");
5514
5515 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5516 the qSupported:xmlRegisters=i386 handling. */
5517 if (remote_support_xml != NULL
5518 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5519 remote_query_supported_append (&q, remote_support_xml);
5520
5521 q = "qSupported:" + q;
5522 putpkt (q.c_str ());
5523
5524 getpkt (&rs->buf, 0);
5525
5526 /* If an error occured, warn, but do not return - just reset the
5527 buffer to empty and go on to disable features. */
5528 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5529 == PACKET_ERROR)
5530 {
5531 warning (_("Remote failure reply: %s"), rs->buf.data ());
5532 rs->buf[0] = 0;
5533 }
5534 }
5535
5536 memset (seen, 0, sizeof (seen));
5537
5538 next = rs->buf.data ();
5539 while (*next)
5540 {
5541 enum packet_support is_supported;
5542 char *p, *end, *name_end, *value;
5543
5544 /* First separate out this item from the rest of the packet. If
5545 there's another item after this, we overwrite the separator
5546 (terminated strings are much easier to work with). */
5547 p = next;
5548 end = strchr (p, ';');
5549 if (end == NULL)
5550 {
5551 end = p + strlen (p);
5552 next = end;
5553 }
5554 else
5555 {
5556 *end = '\0';
5557 next = end + 1;
5558
5559 if (end == p)
5560 {
5561 warning (_("empty item in \"qSupported\" response"));
5562 continue;
5563 }
5564 }
5565
5566 name_end = strchr (p, '=');
5567 if (name_end)
5568 {
5569 /* This is a name=value entry. */
5570 is_supported = PACKET_ENABLE;
5571 value = name_end + 1;
5572 *name_end = '\0';
5573 }
5574 else
5575 {
5576 value = NULL;
5577 switch (end[-1])
5578 {
5579 case '+':
5580 is_supported = PACKET_ENABLE;
5581 break;
5582
5583 case '-':
5584 is_supported = PACKET_DISABLE;
5585 break;
5586
5587 case '?':
5588 is_supported = PACKET_SUPPORT_UNKNOWN;
5589 break;
5590
5591 default:
5592 warning (_("unrecognized item \"%s\" "
5593 "in \"qSupported\" response"), p);
5594 continue;
5595 }
5596 end[-1] = '\0';
5597 }
5598
5599 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5600 if (strcmp (remote_protocol_features[i].name, p) == 0)
5601 {
5602 const struct protocol_feature *feature;
5603
5604 seen[i] = 1;
5605 feature = &remote_protocol_features[i];
5606 feature->func (this, feature, is_supported, value);
5607 break;
5608 }
5609 }
5610
5611 /* If we increased the packet size, make sure to increase the global
5612 buffer size also. We delay this until after parsing the entire
5613 qSupported packet, because this is the same buffer we were
5614 parsing. */
5615 if (rs->buf.size () < rs->explicit_packet_size)
5616 rs->buf.resize (rs->explicit_packet_size);
5617
5618 /* Handle the defaults for unmentioned features. */
5619 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5620 if (!seen[i])
5621 {
5622 const struct protocol_feature *feature;
5623
5624 feature = &remote_protocol_features[i];
5625 feature->func (this, feature, feature->default_support, NULL);
5626 }
5627 }
5628
5629 /* Serial QUIT handler for the remote serial descriptor.
5630
5631 Defers handling a Ctrl-C until we're done with the current
5632 command/response packet sequence, unless:
5633
5634 - We're setting up the connection. Don't send a remote interrupt
5635 request, as we're not fully synced yet. Quit immediately
5636 instead.
5637
5638 - The target has been resumed in the foreground
5639 (target_terminal::is_ours is false) with a synchronous resume
5640 packet, and we're blocked waiting for the stop reply, thus a
5641 Ctrl-C should be immediately sent to the target.
5642
5643 - We get a second Ctrl-C while still within the same serial read or
5644 write. In that case the serial is seemingly wedged --- offer to
5645 quit/disconnect.
5646
5647 - We see a second Ctrl-C without target response, after having
5648 previously interrupted the target. In that case the target/stub
5649 is probably wedged --- offer to quit/disconnect.
5650 */
5651
5652 void
5653 remote_target::remote_serial_quit_handler ()
5654 {
5655 struct remote_state *rs = get_remote_state ();
5656
5657 if (check_quit_flag ())
5658 {
5659 /* If we're starting up, we're not fully synced yet. Quit
5660 immediately. */
5661 if (rs->starting_up)
5662 quit ();
5663 else if (rs->got_ctrlc_during_io)
5664 {
5665 if (query (_("The target is not responding to GDB commands.\n"
5666 "Stop debugging it? ")))
5667 remote_unpush_and_throw (this);
5668 }
5669 /* If ^C has already been sent once, offer to disconnect. */
5670 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5671 interrupt_query ();
5672 /* All-stop protocol, and blocked waiting for stop reply. Send
5673 an interrupt request. */
5674 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5675 target_interrupt ();
5676 else
5677 rs->got_ctrlc_during_io = 1;
5678 }
5679 }
5680
5681 /* The remote_target that is current while the quit handler is
5682 overridden with remote_serial_quit_handler. */
5683 static remote_target *curr_quit_handler_target;
5684
5685 static void
5686 remote_serial_quit_handler ()
5687 {
5688 curr_quit_handler_target->remote_serial_quit_handler ();
5689 }
5690
5691 /* Remove the remote target from the target stack of each inferior
5692 that is using it. Upper targets depend on it so remove them
5693 first. */
5694
5695 static void
5696 remote_unpush_target (remote_target *target)
5697 {
5698 /* We have to unpush the target from all inferiors, even those that
5699 aren't running. */
5700 scoped_restore_current_inferior restore_current_inferior;
5701
5702 for (inferior *inf : all_inferiors (target))
5703 {
5704 switch_to_inferior_no_thread (inf);
5705 pop_all_targets_at_and_above (process_stratum);
5706 generic_mourn_inferior ();
5707 }
5708
5709 /* Don't rely on target_close doing this when the target is popped
5710 from the last remote inferior above, because something may be
5711 holding a reference to the target higher up on the stack, meaning
5712 target_close won't be called yet. We lost the connection to the
5713 target, so clear these now, otherwise we may later throw
5714 TARGET_CLOSE_ERROR while trying to tell the remote target to
5715 close the file. */
5716 fileio_handles_invalidate_target (target);
5717 }
5718
5719 static void
5720 remote_unpush_and_throw (remote_target *target)
5721 {
5722 remote_unpush_target (target);
5723 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5724 }
5725
5726 void
5727 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5728 {
5729 remote_target *curr_remote = get_current_remote_target ();
5730
5731 if (name == 0)
5732 error (_("To open a remote debug connection, you need to specify what\n"
5733 "serial device is attached to the remote system\n"
5734 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5735
5736 /* If we're connected to a running target, target_preopen will kill it.
5737 Ask this question first, before target_preopen has a chance to kill
5738 anything. */
5739 if (curr_remote != NULL && !target_has_execution ())
5740 {
5741 if (from_tty
5742 && !query (_("Already connected to a remote target. Disconnect? ")))
5743 error (_("Still connected."));
5744 }
5745
5746 /* Here the possibly existing remote target gets unpushed. */
5747 target_preopen (from_tty);
5748
5749 remote_fileio_reset ();
5750 reopen_exec_file ();
5751 reread_symbols (from_tty);
5752
5753 remote_target *remote
5754 = (extended_p ? new extended_remote_target () : new remote_target ());
5755 target_ops_up target_holder (remote);
5756
5757 remote_state *rs = remote->get_remote_state ();
5758
5759 /* See FIXME above. */
5760 if (!target_async_permitted)
5761 rs->wait_forever_enabled_p = 1;
5762
5763 rs->remote_desc = remote_serial_open (name);
5764 if (!rs->remote_desc)
5765 perror_with_name (name);
5766
5767 if (baud_rate != -1)
5768 {
5769 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5770 {
5771 /* The requested speed could not be set. Error out to
5772 top level after closing remote_desc. Take care to
5773 set remote_desc to NULL to avoid closing remote_desc
5774 more than once. */
5775 serial_close (rs->remote_desc);
5776 rs->remote_desc = NULL;
5777 perror_with_name (name);
5778 }
5779 }
5780
5781 serial_setparity (rs->remote_desc, serial_parity);
5782 serial_raw (rs->remote_desc);
5783
5784 /* If there is something sitting in the buffer we might take it as a
5785 response to a command, which would be bad. */
5786 serial_flush_input (rs->remote_desc);
5787
5788 if (from_tty)
5789 {
5790 puts_filtered ("Remote debugging using ");
5791 puts_filtered (name);
5792 puts_filtered ("\n");
5793 }
5794
5795 /* Switch to using the remote target now. */
5796 current_inferior ()->push_target (std::move (target_holder));
5797
5798 /* Register extra event sources in the event loop. */
5799 rs->remote_async_inferior_event_token
5800 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5801 "remote");
5802 rs->notif_state = remote_notif_state_allocate (remote);
5803
5804 /* Reset the target state; these things will be queried either by
5805 remote_query_supported or as they are needed. */
5806 reset_all_packet_configs_support ();
5807 rs->cached_wait_status = 0;
5808 rs->explicit_packet_size = 0;
5809 rs->noack_mode = 0;
5810 rs->extended = extended_p;
5811 rs->waiting_for_stop_reply = 0;
5812 rs->ctrlc_pending_p = 0;
5813 rs->got_ctrlc_during_io = 0;
5814
5815 rs->general_thread = not_sent_ptid;
5816 rs->continue_thread = not_sent_ptid;
5817 rs->remote_traceframe_number = -1;
5818
5819 rs->last_resume_exec_dir = EXEC_FORWARD;
5820
5821 /* Probe for ability to use "ThreadInfo" query, as required. */
5822 rs->use_threadinfo_query = 1;
5823 rs->use_threadextra_query = 1;
5824
5825 rs->readahead_cache.invalidate ();
5826
5827 if (target_async_permitted)
5828 {
5829 /* FIXME: cagney/1999-09-23: During the initial connection it is
5830 assumed that the target is already ready and able to respond to
5831 requests. Unfortunately remote_start_remote() eventually calls
5832 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5833 around this. Eventually a mechanism that allows
5834 wait_for_inferior() to expect/get timeouts will be
5835 implemented. */
5836 rs->wait_forever_enabled_p = 0;
5837 }
5838
5839 /* First delete any symbols previously loaded from shared libraries. */
5840 no_shared_libraries (NULL, 0);
5841
5842 /* Start the remote connection. If error() or QUIT, discard this
5843 target (we'd otherwise be in an inconsistent state) and then
5844 propogate the error on up the exception chain. This ensures that
5845 the caller doesn't stumble along blindly assuming that the
5846 function succeeded. The CLI doesn't have this problem but other
5847 UI's, such as MI do.
5848
5849 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5850 this function should return an error indication letting the
5851 caller restore the previous state. Unfortunately the command
5852 ``target remote'' is directly wired to this function making that
5853 impossible. On a positive note, the CLI side of this problem has
5854 been fixed - the function set_cmd_context() makes it possible for
5855 all the ``target ....'' commands to share a common callback
5856 function. See cli-dump.c. */
5857 {
5858
5859 try
5860 {
5861 remote->start_remote (from_tty, extended_p);
5862 }
5863 catch (const gdb_exception &ex)
5864 {
5865 /* Pop the partially set up target - unless something else did
5866 already before throwing the exception. */
5867 if (ex.error != TARGET_CLOSE_ERROR)
5868 remote_unpush_target (remote);
5869 throw;
5870 }
5871 }
5872
5873 remote_btrace_reset (rs);
5874
5875 if (target_async_permitted)
5876 rs->wait_forever_enabled_p = 1;
5877 }
5878
5879 /* Determine if WS represents a fork status. */
5880
5881 static bool
5882 is_fork_status (target_waitkind kind)
5883 {
5884 return (kind == TARGET_WAITKIND_FORKED
5885 || kind == TARGET_WAITKIND_VFORKED);
5886 }
5887
5888 /* Return THREAD's pending status if it is a pending fork parent, else
5889 return nullptr. */
5890
5891 static const target_waitstatus *
5892 thread_pending_fork_status (struct thread_info *thread)
5893 {
5894 const target_waitstatus &ws
5895 = (thread->has_pending_waitstatus ()
5896 ? thread->pending_waitstatus ()
5897 : thread->pending_follow);
5898
5899 if (!is_fork_status (ws.kind ()))
5900 return nullptr;
5901
5902 return &ws;
5903 }
5904
5905 /* Detach the specified process. */
5906
5907 void
5908 remote_target::remote_detach_pid (int pid)
5909 {
5910 struct remote_state *rs = get_remote_state ();
5911
5912 /* This should not be necessary, but the handling for D;PID in
5913 GDBserver versions prior to 8.2 incorrectly assumes that the
5914 selected process points to the same process we're detaching,
5915 leading to misbehavior (and possibly GDBserver crashing) when it
5916 does not. Since it's easy and cheap, work around it by forcing
5917 GDBserver to select GDB's current process. */
5918 set_general_process ();
5919
5920 if (remote_multi_process_p (rs))
5921 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5922 else
5923 strcpy (rs->buf.data (), "D");
5924
5925 putpkt (rs->buf);
5926 getpkt (&rs->buf, 0);
5927
5928 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5929 ;
5930 else if (rs->buf[0] == '\0')
5931 error (_("Remote doesn't know how to detach"));
5932 else
5933 error (_("Can't detach process."));
5934 }
5935
5936 /* This detaches a program to which we previously attached, using
5937 inferior_ptid to identify the process. After this is done, GDB
5938 can be used to debug some other program. We better not have left
5939 any breakpoints in the target program or it'll die when it hits
5940 one. */
5941
5942 void
5943 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5944 {
5945 int pid = inferior_ptid.pid ();
5946 struct remote_state *rs = get_remote_state ();
5947 int is_fork_parent;
5948
5949 if (!target_has_execution ())
5950 error (_("No process to detach from."));
5951
5952 target_announce_detach (from_tty);
5953
5954 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5955 {
5956 /* If we're in breakpoints-always-inserted mode, or the inferior
5957 is running, we have to remove breakpoints before detaching.
5958 We don't do this in common code instead because not all
5959 targets support removing breakpoints while the target is
5960 running. The remote target / gdbserver does, though. */
5961 remove_breakpoints_inf (current_inferior ());
5962 }
5963
5964 /* Tell the remote target to detach. */
5965 remote_detach_pid (pid);
5966
5967 /* Exit only if this is the only active inferior. */
5968 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5969 puts_filtered (_("Ending remote debugging.\n"));
5970
5971 /* See if any thread of the inferior we are detaching has a pending fork
5972 status. In that case, we must detach from the child resulting from
5973 that fork. */
5974 for (thread_info *thread : inf->non_exited_threads ())
5975 {
5976 const target_waitstatus *ws = thread_pending_fork_status (thread);
5977
5978 if (ws == nullptr)
5979 continue;
5980
5981 remote_detach_pid (ws->child_ptid ().pid ());
5982 }
5983
5984 /* Check also for any pending fork events in the stop reply queue. */
5985 remote_notif_get_pending_events (&notif_client_stop);
5986 for (stop_reply_up &reply : rs->stop_reply_queue)
5987 {
5988 if (reply->ptid.pid () != pid)
5989 continue;
5990
5991 if (!is_fork_status (reply->ws.kind ()))
5992 continue;
5993
5994 remote_detach_pid (reply->ws.child_ptid ().pid ());
5995 }
5996
5997 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5998
5999 /* Check to see if we are detaching a fork parent. Note that if we
6000 are detaching a fork child, tp == NULL. */
6001 is_fork_parent = (tp != NULL
6002 && tp->pending_follow.kind () == TARGET_WAITKIND_FORKED);
6003
6004 /* If doing detach-on-fork, we don't mourn, because that will delete
6005 breakpoints that should be available for the followed inferior. */
6006 if (!is_fork_parent)
6007 {
6008 /* Save the pid as a string before mourning, since that will
6009 unpush the remote target, and we need the string after. */
6010 std::string infpid = target_pid_to_str (ptid_t (pid));
6011
6012 target_mourn_inferior (inferior_ptid);
6013 if (print_inferior_events)
6014 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
6015 inf->num, infpid.c_str ());
6016 }
6017 else
6018 {
6019 switch_to_no_thread ();
6020 detach_inferior (current_inferior ());
6021 }
6022 }
6023
6024 void
6025 remote_target::detach (inferior *inf, int from_tty)
6026 {
6027 remote_detach_1 (inf, from_tty);
6028 }
6029
6030 void
6031 extended_remote_target::detach (inferior *inf, int from_tty)
6032 {
6033 remote_detach_1 (inf, from_tty);
6034 }
6035
6036 /* Target follow-fork function for remote targets. On entry, and
6037 at return, the current inferior is the fork parent.
6038
6039 Note that although this is currently only used for extended-remote,
6040 it is named remote_follow_fork in anticipation of using it for the
6041 remote target as well. */
6042
6043 void
6044 remote_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
6045 target_waitkind fork_kind, bool follow_child,
6046 bool detach_fork)
6047 {
6048 process_stratum_target::follow_fork (child_inf, child_ptid,
6049 fork_kind, follow_child, detach_fork);
6050
6051 struct remote_state *rs = get_remote_state ();
6052
6053 if ((fork_kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
6054 || (fork_kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
6055 {
6056 /* When following the parent and detaching the child, we detach
6057 the child here. For the case of following the child and
6058 detaching the parent, the detach is done in the target-
6059 independent follow fork code in infrun.c. We can't use
6060 target_detach when detaching an unfollowed child because
6061 the client side doesn't know anything about the child. */
6062 if (detach_fork && !follow_child)
6063 {
6064 /* Detach the fork child. */
6065 remote_detach_pid (child_ptid.pid ());
6066 }
6067 }
6068 }
6069
6070 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
6071 in the program space of the new inferior. */
6072
6073 void
6074 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
6075 const char *execd_pathname)
6076 {
6077 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
6078
6079 /* We know that this is a target file name, so if it has the "target:"
6080 prefix we strip it off before saving it in the program space. */
6081 if (is_target_filename (execd_pathname))
6082 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
6083
6084 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
6085 }
6086
6087 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
6088
6089 void
6090 remote_target::disconnect (const char *args, int from_tty)
6091 {
6092 if (args)
6093 error (_("Argument given to \"disconnect\" when remotely debugging."));
6094
6095 /* Make sure we unpush even the extended remote targets. Calling
6096 target_mourn_inferior won't unpush, and
6097 remote_target::mourn_inferior won't unpush if there is more than
6098 one inferior left. */
6099 remote_unpush_target (this);
6100
6101 if (from_tty)
6102 puts_filtered ("Ending remote debugging.\n");
6103 }
6104
6105 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
6106 be chatty about it. */
6107
6108 void
6109 extended_remote_target::attach (const char *args, int from_tty)
6110 {
6111 struct remote_state *rs = get_remote_state ();
6112 int pid;
6113 char *wait_status = NULL;
6114
6115 pid = parse_pid_to_attach (args);
6116
6117 /* Remote PID can be freely equal to getpid, do not check it here the same
6118 way as in other targets. */
6119
6120 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
6121 error (_("This target does not support attaching to a process"));
6122
6123 if (from_tty)
6124 {
6125 const char *exec_file = get_exec_file (0);
6126
6127 if (exec_file)
6128 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
6129 target_pid_to_str (ptid_t (pid)).c_str ());
6130 else
6131 printf_unfiltered (_("Attaching to %s\n"),
6132 target_pid_to_str (ptid_t (pid)).c_str ());
6133 }
6134
6135 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
6136 putpkt (rs->buf);
6137 getpkt (&rs->buf, 0);
6138
6139 switch (packet_ok (rs->buf,
6140 &remote_protocol_packets[PACKET_vAttach]))
6141 {
6142 case PACKET_OK:
6143 if (!target_is_non_stop_p ())
6144 {
6145 /* Save the reply for later. */
6146 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6147 strcpy (wait_status, rs->buf.data ());
6148 }
6149 else if (strcmp (rs->buf.data (), "OK") != 0)
6150 error (_("Attaching to %s failed with: %s"),
6151 target_pid_to_str (ptid_t (pid)).c_str (),
6152 rs->buf.data ());
6153 break;
6154 case PACKET_UNKNOWN:
6155 error (_("This target does not support attaching to a process"));
6156 default:
6157 error (_("Attaching to %s failed"),
6158 target_pid_to_str (ptid_t (pid)).c_str ());
6159 }
6160
6161 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6162
6163 inferior_ptid = ptid_t (pid);
6164
6165 if (target_is_non_stop_p ())
6166 {
6167 /* Get list of threads. */
6168 update_thread_list ();
6169
6170 thread_info *thread = first_thread_of_inferior (current_inferior ());
6171 if (thread != nullptr)
6172 switch_to_thread (thread);
6173
6174 /* Invalidate our notion of the remote current thread. */
6175 record_currthread (rs, minus_one_ptid);
6176 }
6177 else
6178 {
6179 /* Now, if we have thread information, update the main thread's
6180 ptid. */
6181 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6182
6183 /* Add the main thread to the thread list. */
6184 thread_info *thr = add_thread_silent (this, curr_ptid);
6185
6186 switch_to_thread (thr);
6187
6188 /* Don't consider the thread stopped until we've processed the
6189 saved stop reply. */
6190 set_executing (this, thr->ptid, true);
6191 }
6192
6193 /* Next, if the target can specify a description, read it. We do
6194 this before anything involving memory or registers. */
6195 target_find_description ();
6196
6197 if (!target_is_non_stop_p ())
6198 {
6199 /* Use the previously fetched status. */
6200 gdb_assert (wait_status != NULL);
6201
6202 if (target_can_async_p ())
6203 {
6204 struct notif_event *reply
6205 = remote_notif_parse (this, &notif_client_stop, wait_status);
6206
6207 push_stop_reply ((struct stop_reply *) reply);
6208
6209 target_async (1);
6210 }
6211 else
6212 {
6213 gdb_assert (wait_status != NULL);
6214 strcpy (rs->buf.data (), wait_status);
6215 rs->cached_wait_status = 1;
6216 }
6217 }
6218 else
6219 {
6220 gdb_assert (wait_status == NULL);
6221
6222 gdb_assert (target_can_async_p ());
6223 target_async (1);
6224 }
6225 }
6226
6227 /* Implementation of the to_post_attach method. */
6228
6229 void
6230 extended_remote_target::post_attach (int pid)
6231 {
6232 /* Get text, data & bss offsets. */
6233 get_offsets ();
6234
6235 /* In certain cases GDB might not have had the chance to start
6236 symbol lookup up until now. This could happen if the debugged
6237 binary is not using shared libraries, the vsyscall page is not
6238 present (on Linux) and the binary itself hadn't changed since the
6239 debugging process was started. */
6240 if (current_program_space->symfile_object_file != NULL)
6241 remote_check_symbols();
6242 }
6243
6244 \f
6245 /* Check for the availability of vCont. This function should also check
6246 the response. */
6247
6248 void
6249 remote_target::remote_vcont_probe ()
6250 {
6251 remote_state *rs = get_remote_state ();
6252 char *buf;
6253
6254 strcpy (rs->buf.data (), "vCont?");
6255 putpkt (rs->buf);
6256 getpkt (&rs->buf, 0);
6257 buf = rs->buf.data ();
6258
6259 /* Make sure that the features we assume are supported. */
6260 if (startswith (buf, "vCont"))
6261 {
6262 char *p = &buf[5];
6263 int support_c, support_C;
6264
6265 rs->supports_vCont.s = 0;
6266 rs->supports_vCont.S = 0;
6267 support_c = 0;
6268 support_C = 0;
6269 rs->supports_vCont.t = 0;
6270 rs->supports_vCont.r = 0;
6271 while (p && *p == ';')
6272 {
6273 p++;
6274 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6275 rs->supports_vCont.s = 1;
6276 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6277 rs->supports_vCont.S = 1;
6278 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6279 support_c = 1;
6280 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6281 support_C = 1;
6282 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6283 rs->supports_vCont.t = 1;
6284 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6285 rs->supports_vCont.r = 1;
6286
6287 p = strchr (p, ';');
6288 }
6289
6290 /* If c, and C are not all supported, we can't use vCont. Clearing
6291 BUF will make packet_ok disable the packet. */
6292 if (!support_c || !support_C)
6293 buf[0] = 0;
6294 }
6295
6296 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6297 rs->supports_vCont_probed = true;
6298 }
6299
6300 /* Helper function for building "vCont" resumptions. Write a
6301 resumption to P. ENDP points to one-passed-the-end of the buffer
6302 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6303 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6304 resumed thread should be single-stepped and/or signalled. If PTID
6305 equals minus_one_ptid, then all threads are resumed; if PTID
6306 represents a process, then all threads of the process are resumed;
6307 the thread to be stepped and/or signalled is given in the global
6308 INFERIOR_PTID. */
6309
6310 char *
6311 remote_target::append_resumption (char *p, char *endp,
6312 ptid_t ptid, int step, gdb_signal siggnal)
6313 {
6314 struct remote_state *rs = get_remote_state ();
6315
6316 if (step && siggnal != GDB_SIGNAL_0)
6317 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6318 else if (step
6319 /* GDB is willing to range step. */
6320 && use_range_stepping
6321 /* Target supports range stepping. */
6322 && rs->supports_vCont.r
6323 /* We don't currently support range stepping multiple
6324 threads with a wildcard (though the protocol allows it,
6325 so stubs shouldn't make an active effort to forbid
6326 it). */
6327 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6328 {
6329 struct thread_info *tp;
6330
6331 if (ptid == minus_one_ptid)
6332 {
6333 /* If we don't know about the target thread's tid, then
6334 we're resuming magic_null_ptid (see caller). */
6335 tp = find_thread_ptid (this, magic_null_ptid);
6336 }
6337 else
6338 tp = find_thread_ptid (this, ptid);
6339 gdb_assert (tp != NULL);
6340
6341 if (tp->control.may_range_step)
6342 {
6343 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6344
6345 p += xsnprintf (p, endp - p, ";r%s,%s",
6346 phex_nz (tp->control.step_range_start,
6347 addr_size),
6348 phex_nz (tp->control.step_range_end,
6349 addr_size));
6350 }
6351 else
6352 p += xsnprintf (p, endp - p, ";s");
6353 }
6354 else if (step)
6355 p += xsnprintf (p, endp - p, ";s");
6356 else if (siggnal != GDB_SIGNAL_0)
6357 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6358 else
6359 p += xsnprintf (p, endp - p, ";c");
6360
6361 if (remote_multi_process_p (rs) && ptid.is_pid ())
6362 {
6363 ptid_t nptid;
6364
6365 /* All (-1) threads of process. */
6366 nptid = ptid_t (ptid.pid (), -1);
6367
6368 p += xsnprintf (p, endp - p, ":");
6369 p = write_ptid (p, endp, nptid);
6370 }
6371 else if (ptid != minus_one_ptid)
6372 {
6373 p += xsnprintf (p, endp - p, ":");
6374 p = write_ptid (p, endp, ptid);
6375 }
6376
6377 return p;
6378 }
6379
6380 /* Clear the thread's private info on resume. */
6381
6382 static void
6383 resume_clear_thread_private_info (struct thread_info *thread)
6384 {
6385 if (thread->priv != NULL)
6386 {
6387 remote_thread_info *priv = get_remote_thread_info (thread);
6388
6389 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6390 priv->watch_data_address = 0;
6391 }
6392 }
6393
6394 /* Append a vCont continue-with-signal action for threads that have a
6395 non-zero stop signal. */
6396
6397 char *
6398 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6399 ptid_t ptid)
6400 {
6401 for (thread_info *thread : all_non_exited_threads (this, ptid))
6402 if (inferior_ptid != thread->ptid
6403 && thread->stop_signal () != GDB_SIGNAL_0)
6404 {
6405 p = append_resumption (p, endp, thread->ptid,
6406 0, thread->stop_signal ());
6407 thread->set_stop_signal (GDB_SIGNAL_0);
6408 resume_clear_thread_private_info (thread);
6409 }
6410
6411 return p;
6412 }
6413
6414 /* Set the target running, using the packets that use Hc
6415 (c/s/C/S). */
6416
6417 void
6418 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6419 gdb_signal siggnal)
6420 {
6421 struct remote_state *rs = get_remote_state ();
6422 char *buf;
6423
6424 rs->last_sent_signal = siggnal;
6425 rs->last_sent_step = step;
6426
6427 /* The c/s/C/S resume packets use Hc, so set the continue
6428 thread. */
6429 if (ptid == minus_one_ptid)
6430 set_continue_thread (any_thread_ptid);
6431 else
6432 set_continue_thread (ptid);
6433
6434 for (thread_info *thread : all_non_exited_threads (this))
6435 resume_clear_thread_private_info (thread);
6436
6437 buf = rs->buf.data ();
6438 if (::execution_direction == EXEC_REVERSE)
6439 {
6440 /* We don't pass signals to the target in reverse exec mode. */
6441 if (info_verbose && siggnal != GDB_SIGNAL_0)
6442 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6443 siggnal);
6444
6445 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6446 error (_("Remote reverse-step not supported."));
6447 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6448 error (_("Remote reverse-continue not supported."));
6449
6450 strcpy (buf, step ? "bs" : "bc");
6451 }
6452 else if (siggnal != GDB_SIGNAL_0)
6453 {
6454 buf[0] = step ? 'S' : 'C';
6455 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6456 buf[2] = tohex (((int) siggnal) & 0xf);
6457 buf[3] = '\0';
6458 }
6459 else
6460 strcpy (buf, step ? "s" : "c");
6461
6462 putpkt (buf);
6463 }
6464
6465 /* Resume the remote inferior by using a "vCont" packet. The thread
6466 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6467 resumed thread should be single-stepped and/or signalled. If PTID
6468 equals minus_one_ptid, then all threads are resumed; the thread to
6469 be stepped and/or signalled is given in the global INFERIOR_PTID.
6470 This function returns non-zero iff it resumes the inferior.
6471
6472 This function issues a strict subset of all possible vCont commands
6473 at the moment. */
6474
6475 int
6476 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6477 enum gdb_signal siggnal)
6478 {
6479 struct remote_state *rs = get_remote_state ();
6480 char *p;
6481 char *endp;
6482
6483 /* No reverse execution actions defined for vCont. */
6484 if (::execution_direction == EXEC_REVERSE)
6485 return 0;
6486
6487 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6488 remote_vcont_probe ();
6489
6490 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6491 return 0;
6492
6493 p = rs->buf.data ();
6494 endp = p + get_remote_packet_size ();
6495
6496 /* If we could generate a wider range of packets, we'd have to worry
6497 about overflowing BUF. Should there be a generic
6498 "multi-part-packet" packet? */
6499
6500 p += xsnprintf (p, endp - p, "vCont");
6501
6502 if (ptid == magic_null_ptid)
6503 {
6504 /* MAGIC_NULL_PTID means that we don't have any active threads,
6505 so we don't have any TID numbers the inferior will
6506 understand. Make sure to only send forms that do not specify
6507 a TID. */
6508 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6509 }
6510 else if (ptid == minus_one_ptid || ptid.is_pid ())
6511 {
6512 /* Resume all threads (of all processes, or of a single
6513 process), with preference for INFERIOR_PTID. This assumes
6514 inferior_ptid belongs to the set of all threads we are about
6515 to resume. */
6516 if (step || siggnal != GDB_SIGNAL_0)
6517 {
6518 /* Step inferior_ptid, with or without signal. */
6519 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6520 }
6521
6522 /* Also pass down any pending signaled resumption for other
6523 threads not the current. */
6524 p = append_pending_thread_resumptions (p, endp, ptid);
6525
6526 /* And continue others without a signal. */
6527 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6528 }
6529 else
6530 {
6531 /* Scheduler locking; resume only PTID. */
6532 append_resumption (p, endp, ptid, step, siggnal);
6533 }
6534
6535 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6536 putpkt (rs->buf);
6537
6538 if (target_is_non_stop_p ())
6539 {
6540 /* In non-stop, the stub replies to vCont with "OK". The stop
6541 reply will be reported asynchronously by means of a `%Stop'
6542 notification. */
6543 getpkt (&rs->buf, 0);
6544 if (strcmp (rs->buf.data (), "OK") != 0)
6545 error (_("Unexpected vCont reply in non-stop mode: %s"),
6546 rs->buf.data ());
6547 }
6548
6549 return 1;
6550 }
6551
6552 /* Tell the remote machine to resume. */
6553
6554 void
6555 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6556 {
6557 struct remote_state *rs = get_remote_state ();
6558
6559 /* When connected in non-stop mode, the core resumes threads
6560 individually. Resuming remote threads directly in target_resume
6561 would thus result in sending one packet per thread. Instead, to
6562 minimize roundtrip latency, here we just store the resume
6563 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6564 resumption will be done in remote_target::commit_resume, where we'll be
6565 able to do vCont action coalescing. */
6566 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6567 {
6568 remote_thread_info *remote_thr;
6569
6570 if (minus_one_ptid == ptid || ptid.is_pid ())
6571 remote_thr = get_remote_thread_info (this, inferior_ptid);
6572 else
6573 remote_thr = get_remote_thread_info (this, ptid);
6574
6575 /* We don't expect the core to ask to resume an already resumed (from
6576 its point of view) thread. */
6577 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6578
6579 remote_thr->set_resumed_pending_vcont (step, siggnal);
6580 return;
6581 }
6582
6583 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6584 (explained in remote-notif.c:handle_notification) so
6585 remote_notif_process is not called. We need find a place where
6586 it is safe to start a 'vNotif' sequence. It is good to do it
6587 before resuming inferior, because inferior was stopped and no RSP
6588 traffic at that moment. */
6589 if (!target_is_non_stop_p ())
6590 remote_notif_process (rs->notif_state, &notif_client_stop);
6591
6592 rs->last_resume_exec_dir = ::execution_direction;
6593
6594 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6595 if (!remote_resume_with_vcont (ptid, step, siggnal))
6596 remote_resume_with_hc (ptid, step, siggnal);
6597
6598 /* Update resumed state tracked by the remote target. */
6599 for (thread_info *tp : all_non_exited_threads (this, ptid))
6600 get_remote_thread_info (tp)->set_resumed ();
6601
6602 /* We are about to start executing the inferior, let's register it
6603 with the event loop. NOTE: this is the one place where all the
6604 execution commands end up. We could alternatively do this in each
6605 of the execution commands in infcmd.c. */
6606 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6607 into infcmd.c in order to allow inferior function calls to work
6608 NOT asynchronously. */
6609 if (target_can_async_p ())
6610 target_async (1);
6611
6612 /* We've just told the target to resume. The remote server will
6613 wait for the inferior to stop, and then send a stop reply. In
6614 the mean time, we can't start another command/query ourselves
6615 because the stub wouldn't be ready to process it. This applies
6616 only to the base all-stop protocol, however. In non-stop (which
6617 only supports vCont), the stub replies with an "OK", and is
6618 immediate able to process further serial input. */
6619 if (!target_is_non_stop_p ())
6620 rs->waiting_for_stop_reply = 1;
6621 }
6622
6623 /* Private per-inferior info for target remote processes. */
6624
6625 struct remote_inferior : public private_inferior
6626 {
6627 /* Whether we can send a wildcard vCont for this process. */
6628 bool may_wildcard_vcont = true;
6629 };
6630
6631 /* Get the remote private inferior data associated to INF. */
6632
6633 static remote_inferior *
6634 get_remote_inferior (inferior *inf)
6635 {
6636 if (inf->priv == NULL)
6637 inf->priv.reset (new remote_inferior);
6638
6639 return static_cast<remote_inferior *> (inf->priv.get ());
6640 }
6641
6642 /* Class used to track the construction of a vCont packet in the
6643 outgoing packet buffer. This is used to send multiple vCont
6644 packets if we have more actions than would fit a single packet. */
6645
6646 class vcont_builder
6647 {
6648 public:
6649 explicit vcont_builder (remote_target *remote)
6650 : m_remote (remote)
6651 {
6652 restart ();
6653 }
6654
6655 void flush ();
6656 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6657
6658 private:
6659 void restart ();
6660
6661 /* The remote target. */
6662 remote_target *m_remote;
6663
6664 /* Pointer to the first action. P points here if no action has been
6665 appended yet. */
6666 char *m_first_action;
6667
6668 /* Where the next action will be appended. */
6669 char *m_p;
6670
6671 /* The end of the buffer. Must never write past this. */
6672 char *m_endp;
6673 };
6674
6675 /* Prepare the outgoing buffer for a new vCont packet. */
6676
6677 void
6678 vcont_builder::restart ()
6679 {
6680 struct remote_state *rs = m_remote->get_remote_state ();
6681
6682 m_p = rs->buf.data ();
6683 m_endp = m_p + m_remote->get_remote_packet_size ();
6684 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6685 m_first_action = m_p;
6686 }
6687
6688 /* If the vCont packet being built has any action, send it to the
6689 remote end. */
6690
6691 void
6692 vcont_builder::flush ()
6693 {
6694 struct remote_state *rs;
6695
6696 if (m_p == m_first_action)
6697 return;
6698
6699 rs = m_remote->get_remote_state ();
6700 m_remote->putpkt (rs->buf);
6701 m_remote->getpkt (&rs->buf, 0);
6702 if (strcmp (rs->buf.data (), "OK") != 0)
6703 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6704 }
6705
6706 /* The largest action is range-stepping, with its two addresses. This
6707 is more than sufficient. If a new, bigger action is created, it'll
6708 quickly trigger a failed assertion in append_resumption (and we'll
6709 just bump this). */
6710 #define MAX_ACTION_SIZE 200
6711
6712 /* Append a new vCont action in the outgoing packet being built. If
6713 the action doesn't fit the packet along with previous actions, push
6714 what we've got so far to the remote end and start over a new vCont
6715 packet (with the new action). */
6716
6717 void
6718 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6719 {
6720 char buf[MAX_ACTION_SIZE + 1];
6721
6722 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6723 ptid, step, siggnal);
6724
6725 /* Check whether this new action would fit in the vCont packet along
6726 with previous actions. If not, send what we've got so far and
6727 start a new vCont packet. */
6728 size_t rsize = endp - buf;
6729 if (rsize > m_endp - m_p)
6730 {
6731 flush ();
6732 restart ();
6733
6734 /* Should now fit. */
6735 gdb_assert (rsize <= m_endp - m_p);
6736 }
6737
6738 memcpy (m_p, buf, rsize);
6739 m_p += rsize;
6740 *m_p = '\0';
6741 }
6742
6743 /* to_commit_resume implementation. */
6744
6745 void
6746 remote_target::commit_resumed ()
6747 {
6748 /* If connected in all-stop mode, we'd send the remote resume
6749 request directly from remote_resume. Likewise if
6750 reverse-debugging, as there are no defined vCont actions for
6751 reverse execution. */
6752 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6753 return;
6754
6755 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6756 instead of resuming all threads of each process individually.
6757 However, if any thread of a process must remain halted, we can't
6758 send wildcard resumes and must send one action per thread.
6759
6760 Care must be taken to not resume threads/processes the server
6761 side already told us are stopped, but the core doesn't know about
6762 yet, because the events are still in the vStopped notification
6763 queue. For example:
6764
6765 #1 => vCont s:p1.1;c
6766 #2 <= OK
6767 #3 <= %Stopped T05 p1.1
6768 #4 => vStopped
6769 #5 <= T05 p1.2
6770 #6 => vStopped
6771 #7 <= OK
6772 #8 (infrun handles the stop for p1.1 and continues stepping)
6773 #9 => vCont s:p1.1;c
6774
6775 The last vCont above would resume thread p1.2 by mistake, because
6776 the server has no idea that the event for p1.2 had not been
6777 handled yet.
6778
6779 The server side must similarly ignore resume actions for the
6780 thread that has a pending %Stopped notification (and any other
6781 threads with events pending), until GDB acks the notification
6782 with vStopped. Otherwise, e.g., the following case is
6783 mishandled:
6784
6785 #1 => g (or any other packet)
6786 #2 <= [registers]
6787 #3 <= %Stopped T05 p1.2
6788 #4 => vCont s:p1.1;c
6789 #5 <= OK
6790
6791 Above, the server must not resume thread p1.2. GDB can't know
6792 that p1.2 stopped until it acks the %Stopped notification, and
6793 since from GDB's perspective all threads should be running, it
6794 sends a "c" action.
6795
6796 Finally, special care must also be given to handling fork/vfork
6797 events. A (v)fork event actually tells us that two processes
6798 stopped -- the parent and the child. Until we follow the fork,
6799 we must not resume the child. Therefore, if we have a pending
6800 fork follow, we must not send a global wildcard resume action
6801 (vCont;c). We can still send process-wide wildcards though. */
6802
6803 /* Start by assuming a global wildcard (vCont;c) is possible. */
6804 bool may_global_wildcard_vcont = true;
6805
6806 /* And assume every process is individually wildcard-able too. */
6807 for (inferior *inf : all_non_exited_inferiors (this))
6808 {
6809 remote_inferior *priv = get_remote_inferior (inf);
6810
6811 priv->may_wildcard_vcont = true;
6812 }
6813
6814 /* Check for any pending events (not reported or processed yet) and
6815 disable process and global wildcard resumes appropriately. */
6816 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6817
6818 bool any_pending_vcont_resume = false;
6819
6820 for (thread_info *tp : all_non_exited_threads (this))
6821 {
6822 remote_thread_info *priv = get_remote_thread_info (tp);
6823
6824 /* If a thread of a process is not meant to be resumed, then we
6825 can't wildcard that process. */
6826 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6827 {
6828 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6829
6830 /* And if we can't wildcard a process, we can't wildcard
6831 everything either. */
6832 may_global_wildcard_vcont = false;
6833 continue;
6834 }
6835
6836 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6837 any_pending_vcont_resume = true;
6838
6839 /* If a thread is the parent of an unfollowed fork, then we
6840 can't do a global wildcard, as that would resume the fork
6841 child. */
6842 if (thread_pending_fork_status (tp) != nullptr)
6843 may_global_wildcard_vcont = false;
6844 }
6845
6846 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6847 do. */
6848 if (!any_pending_vcont_resume)
6849 return;
6850
6851 /* Now let's build the vCont packet(s). Actions must be appended
6852 from narrower to wider scopes (thread -> process -> global). If
6853 we end up with too many actions for a single packet vcont_builder
6854 flushes the current vCont packet to the remote side and starts a
6855 new one. */
6856 struct vcont_builder vcont_builder (this);
6857
6858 /* Threads first. */
6859 for (thread_info *tp : all_non_exited_threads (this))
6860 {
6861 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6862
6863 /* If the thread was previously vCont-resumed, no need to send a specific
6864 action for it. If we didn't receive a resume request for it, don't
6865 send an action for it either. */
6866 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6867 continue;
6868
6869 gdb_assert (!thread_is_in_step_over_chain (tp));
6870
6871 /* We should never be commit-resuming a thread that has a stop reply.
6872 Otherwise, we would end up reporting a stop event for a thread while
6873 it is running on the remote target. */
6874 remote_state *rs = get_remote_state ();
6875 for (const auto &stop_reply : rs->stop_reply_queue)
6876 gdb_assert (stop_reply->ptid != tp->ptid);
6877
6878 const resumed_pending_vcont_info &info
6879 = remote_thr->resumed_pending_vcont_info ();
6880
6881 /* Check if we need to send a specific action for this thread. If not,
6882 it will be included in a wildcard resume instead. */
6883 if (info.step || info.sig != GDB_SIGNAL_0
6884 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6885 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6886
6887 remote_thr->set_resumed ();
6888 }
6889
6890 /* Now check whether we can send any process-wide wildcard. This is
6891 to avoid sending a global wildcard in the case nothing is
6892 supposed to be resumed. */
6893 bool any_process_wildcard = false;
6894
6895 for (inferior *inf : all_non_exited_inferiors (this))
6896 {
6897 if (get_remote_inferior (inf)->may_wildcard_vcont)
6898 {
6899 any_process_wildcard = true;
6900 break;
6901 }
6902 }
6903
6904 if (any_process_wildcard)
6905 {
6906 /* If all processes are wildcard-able, then send a single "c"
6907 action, otherwise, send an "all (-1) threads of process"
6908 continue action for each running process, if any. */
6909 if (may_global_wildcard_vcont)
6910 {
6911 vcont_builder.push_action (minus_one_ptid,
6912 false, GDB_SIGNAL_0);
6913 }
6914 else
6915 {
6916 for (inferior *inf : all_non_exited_inferiors (this))
6917 {
6918 if (get_remote_inferior (inf)->may_wildcard_vcont)
6919 {
6920 vcont_builder.push_action (ptid_t (inf->pid),
6921 false, GDB_SIGNAL_0);
6922 }
6923 }
6924 }
6925 }
6926
6927 vcont_builder.flush ();
6928 }
6929
6930 /* Implementation of target_has_pending_events. */
6931
6932 bool
6933 remote_target::has_pending_events ()
6934 {
6935 if (target_can_async_p ())
6936 {
6937 remote_state *rs = get_remote_state ();
6938
6939 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6940 return true;
6941
6942 /* Note that BUFCNT can be negative, indicating sticky
6943 error. */
6944 if (rs->remote_desc->bufcnt != 0)
6945 return true;
6946 }
6947 return false;
6948 }
6949
6950 \f
6951
6952 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6953 thread, all threads of a remote process, or all threads of all
6954 processes. */
6955
6956 void
6957 remote_target::remote_stop_ns (ptid_t ptid)
6958 {
6959 struct remote_state *rs = get_remote_state ();
6960 char *p = rs->buf.data ();
6961 char *endp = p + get_remote_packet_size ();
6962
6963 /* If any thread that needs to stop was resumed but pending a vCont
6964 resume, generate a phony stop_reply. However, first check
6965 whether the thread wasn't resumed with a signal. Generating a
6966 phony stop in that case would result in losing the signal. */
6967 bool needs_commit = false;
6968 for (thread_info *tp : all_non_exited_threads (this, ptid))
6969 {
6970 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6971
6972 if (remote_thr->get_resume_state ()
6973 == resume_state::RESUMED_PENDING_VCONT)
6974 {
6975 const resumed_pending_vcont_info &info
6976 = remote_thr->resumed_pending_vcont_info ();
6977 if (info.sig != GDB_SIGNAL_0)
6978 {
6979 /* This signal must be forwarded to the inferior. We
6980 could commit-resume just this thread, but its simpler
6981 to just commit-resume everything. */
6982 needs_commit = true;
6983 break;
6984 }
6985 }
6986 }
6987
6988 if (needs_commit)
6989 commit_resumed ();
6990 else
6991 for (thread_info *tp : all_non_exited_threads (this, ptid))
6992 {
6993 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6994
6995 if (remote_thr->get_resume_state ()
6996 == resume_state::RESUMED_PENDING_VCONT)
6997 {
6998 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6999 "vCont-resume (%d, %ld, %s)", tp->ptid.pid(),
7000 tp->ptid.lwp (),
7001 pulongest (tp->ptid.tid ()));
7002
7003 /* Check that the thread wasn't resumed with a signal.
7004 Generating a phony stop would result in losing the
7005 signal. */
7006 const resumed_pending_vcont_info &info
7007 = remote_thr->resumed_pending_vcont_info ();
7008 gdb_assert (info.sig == GDB_SIGNAL_0);
7009
7010 stop_reply *sr = new stop_reply ();
7011 sr->ptid = tp->ptid;
7012 sr->rs = rs;
7013 sr->ws.set_stopped (GDB_SIGNAL_0);
7014 sr->arch = tp->inf->gdbarch;
7015 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7016 sr->watch_data_address = 0;
7017 sr->core = 0;
7018 this->push_stop_reply (sr);
7019
7020 /* Pretend that this thread was actually resumed on the
7021 remote target, then stopped. If we leave it in the
7022 RESUMED_PENDING_VCONT state and the commit_resumed
7023 method is called while the stop reply is still in the
7024 queue, we'll end up reporting a stop event to the core
7025 for that thread while it is running on the remote
7026 target... that would be bad. */
7027 remote_thr->set_resumed ();
7028 }
7029 }
7030
7031 /* FIXME: This supports_vCont_probed check is a workaround until
7032 packet_support is per-connection. */
7033 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
7034 || !rs->supports_vCont_probed)
7035 remote_vcont_probe ();
7036
7037 if (!rs->supports_vCont.t)
7038 error (_("Remote server does not support stopping threads"));
7039
7040 if (ptid == minus_one_ptid
7041 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
7042 p += xsnprintf (p, endp - p, "vCont;t");
7043 else
7044 {
7045 ptid_t nptid;
7046
7047 p += xsnprintf (p, endp - p, "vCont;t:");
7048
7049 if (ptid.is_pid ())
7050 /* All (-1) threads of process. */
7051 nptid = ptid_t (ptid.pid (), -1);
7052 else
7053 {
7054 /* Small optimization: if we already have a stop reply for
7055 this thread, no use in telling the stub we want this
7056 stopped. */
7057 if (peek_stop_reply (ptid))
7058 return;
7059
7060 nptid = ptid;
7061 }
7062
7063 write_ptid (p, endp, nptid);
7064 }
7065
7066 /* In non-stop, we get an immediate OK reply. The stop reply will
7067 come in asynchronously by notification. */
7068 putpkt (rs->buf);
7069 getpkt (&rs->buf, 0);
7070 if (strcmp (rs->buf.data (), "OK") != 0)
7071 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
7072 rs->buf.data ());
7073 }
7074
7075 /* All-stop version of target_interrupt. Sends a break or a ^C to
7076 interrupt the remote target. It is undefined which thread of which
7077 process reports the interrupt. */
7078
7079 void
7080 remote_target::remote_interrupt_as ()
7081 {
7082 struct remote_state *rs = get_remote_state ();
7083
7084 rs->ctrlc_pending_p = 1;
7085
7086 /* If the inferior is stopped already, but the core didn't know
7087 about it yet, just ignore the request. The cached wait status
7088 will be collected in remote_wait. */
7089 if (rs->cached_wait_status)
7090 return;
7091
7092 /* Send interrupt_sequence to remote target. */
7093 send_interrupt_sequence ();
7094 }
7095
7096 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
7097 the remote target. It is undefined which thread of which process
7098 reports the interrupt. Throws an error if the packet is not
7099 supported by the server. */
7100
7101 void
7102 remote_target::remote_interrupt_ns ()
7103 {
7104 struct remote_state *rs = get_remote_state ();
7105 char *p = rs->buf.data ();
7106 char *endp = p + get_remote_packet_size ();
7107
7108 xsnprintf (p, endp - p, "vCtrlC");
7109
7110 /* In non-stop, we get an immediate OK reply. The stop reply will
7111 come in asynchronously by notification. */
7112 putpkt (rs->buf);
7113 getpkt (&rs->buf, 0);
7114
7115 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7116 {
7117 case PACKET_OK:
7118 break;
7119 case PACKET_UNKNOWN:
7120 error (_("No support for interrupting the remote target."));
7121 case PACKET_ERROR:
7122 error (_("Interrupting target failed: %s"), rs->buf.data ());
7123 }
7124 }
7125
7126 /* Implement the to_stop function for the remote targets. */
7127
7128 void
7129 remote_target::stop (ptid_t ptid)
7130 {
7131 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7132
7133 if (target_is_non_stop_p ())
7134 remote_stop_ns (ptid);
7135 else
7136 {
7137 /* We don't currently have a way to transparently pause the
7138 remote target in all-stop mode. Interrupt it instead. */
7139 remote_interrupt_as ();
7140 }
7141 }
7142
7143 /* Implement the to_interrupt function for the remote targets. */
7144
7145 void
7146 remote_target::interrupt ()
7147 {
7148 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7149
7150 if (target_is_non_stop_p ())
7151 remote_interrupt_ns ();
7152 else
7153 remote_interrupt_as ();
7154 }
7155
7156 /* Implement the to_pass_ctrlc function for the remote targets. */
7157
7158 void
7159 remote_target::pass_ctrlc ()
7160 {
7161 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7162
7163 struct remote_state *rs = get_remote_state ();
7164
7165 /* If we're starting up, we're not fully synced yet. Quit
7166 immediately. */
7167 if (rs->starting_up)
7168 quit ();
7169 /* If ^C has already been sent once, offer to disconnect. */
7170 else if (rs->ctrlc_pending_p)
7171 interrupt_query ();
7172 else
7173 target_interrupt ();
7174 }
7175
7176 /* Ask the user what to do when an interrupt is received. */
7177
7178 void
7179 remote_target::interrupt_query ()
7180 {
7181 struct remote_state *rs = get_remote_state ();
7182
7183 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7184 {
7185 if (query (_("The target is not responding to interrupt requests.\n"
7186 "Stop debugging it? ")))
7187 {
7188 remote_unpush_target (this);
7189 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7190 }
7191 }
7192 else
7193 {
7194 if (query (_("Interrupted while waiting for the program.\n"
7195 "Give up waiting? ")))
7196 quit ();
7197 }
7198 }
7199
7200 /* Enable/disable target terminal ownership. Most targets can use
7201 terminal groups to control terminal ownership. Remote targets are
7202 different in that explicit transfer of ownership to/from GDB/target
7203 is required. */
7204
7205 void
7206 remote_target::terminal_inferior ()
7207 {
7208 /* NOTE: At this point we could also register our selves as the
7209 recipient of all input. Any characters typed could then be
7210 passed on down to the target. */
7211 }
7212
7213 void
7214 remote_target::terminal_ours ()
7215 {
7216 }
7217
7218 static void
7219 remote_console_output (const char *msg)
7220 {
7221 const char *p;
7222
7223 for (p = msg; p[0] && p[1]; p += 2)
7224 {
7225 char tb[2];
7226 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7227
7228 tb[0] = c;
7229 tb[1] = 0;
7230 gdb_stdtarg->puts (tb);
7231 }
7232 gdb_stdtarg->flush ();
7233 }
7234
7235 /* Return the length of the stop reply queue. */
7236
7237 int
7238 remote_target::stop_reply_queue_length ()
7239 {
7240 remote_state *rs = get_remote_state ();
7241 return rs->stop_reply_queue.size ();
7242 }
7243
7244 static void
7245 remote_notif_stop_parse (remote_target *remote,
7246 struct notif_client *self, const char *buf,
7247 struct notif_event *event)
7248 {
7249 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7250 }
7251
7252 static void
7253 remote_notif_stop_ack (remote_target *remote,
7254 struct notif_client *self, const char *buf,
7255 struct notif_event *event)
7256 {
7257 struct stop_reply *stop_reply = (struct stop_reply *) event;
7258
7259 /* acknowledge */
7260 putpkt (remote, self->ack_command);
7261
7262 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7263 the notification. It was left in the queue because we need to
7264 acknowledge it and pull the rest of the notifications out. */
7265 if (stop_reply->ws.kind () != TARGET_WAITKIND_IGNORE)
7266 remote->push_stop_reply (stop_reply);
7267 }
7268
7269 static int
7270 remote_notif_stop_can_get_pending_events (remote_target *remote,
7271 struct notif_client *self)
7272 {
7273 /* We can't get pending events in remote_notif_process for
7274 notification stop, and we have to do this in remote_wait_ns
7275 instead. If we fetch all queued events from stub, remote stub
7276 may exit and we have no chance to process them back in
7277 remote_wait_ns. */
7278 remote_state *rs = remote->get_remote_state ();
7279 mark_async_event_handler (rs->remote_async_inferior_event_token);
7280 return 0;
7281 }
7282
7283 stop_reply::~stop_reply ()
7284 {
7285 for (cached_reg_t &reg : regcache)
7286 xfree (reg.data);
7287 }
7288
7289 static notif_event_up
7290 remote_notif_stop_alloc_reply ()
7291 {
7292 return notif_event_up (new struct stop_reply ());
7293 }
7294
7295 /* A client of notification Stop. */
7296
7297 struct notif_client notif_client_stop =
7298 {
7299 "Stop",
7300 "vStopped",
7301 remote_notif_stop_parse,
7302 remote_notif_stop_ack,
7303 remote_notif_stop_can_get_pending_events,
7304 remote_notif_stop_alloc_reply,
7305 REMOTE_NOTIF_STOP,
7306 };
7307
7308 /* If CONTEXT contains any fork child threads that have not been
7309 reported yet, remove them from the CONTEXT list. If such a
7310 thread exists it is because we are stopped at a fork catchpoint
7311 and have not yet called follow_fork, which will set up the
7312 host-side data structures for the new process. */
7313
7314 void
7315 remote_target::remove_new_fork_children (threads_listing_context *context)
7316 {
7317 struct notif_client *notif = &notif_client_stop;
7318
7319 /* For any threads stopped at a fork event, remove the corresponding
7320 fork child threads from the CONTEXT list. */
7321 for (thread_info *thread : all_non_exited_threads (this))
7322 {
7323 const target_waitstatus *ws = thread_pending_fork_status (thread);
7324
7325 if (ws == nullptr)
7326 continue;
7327
7328 context->remove_thread (ws->child_ptid ());
7329 }
7330
7331 /* Check for any pending fork events (not reported or processed yet)
7332 in process PID and remove those fork child threads from the
7333 CONTEXT list as well. */
7334 remote_notif_get_pending_events (notif);
7335 for (auto &event : get_remote_state ()->stop_reply_queue)
7336 if (event->ws.kind () == TARGET_WAITKIND_FORKED
7337 || event->ws.kind () == TARGET_WAITKIND_VFORKED
7338 || event->ws.kind () == TARGET_WAITKIND_THREAD_EXITED)
7339 context->remove_thread (event->ws.child_ptid ());
7340 }
7341
7342 /* Check whether any event pending in the vStopped queue would prevent a
7343 global or process wildcard vCont action. Set *may_global_wildcard to
7344 false if we can't do a global wildcard (vCont;c), and clear the event
7345 inferior's may_wildcard_vcont flag if we can't do a process-wide
7346 wildcard resume (vCont;c:pPID.-1). */
7347
7348 void
7349 remote_target::check_pending_events_prevent_wildcard_vcont
7350 (bool *may_global_wildcard)
7351 {
7352 struct notif_client *notif = &notif_client_stop;
7353
7354 remote_notif_get_pending_events (notif);
7355 for (auto &event : get_remote_state ()->stop_reply_queue)
7356 {
7357 if (event->ws.kind () == TARGET_WAITKIND_NO_RESUMED
7358 || event->ws.kind () == TARGET_WAITKIND_NO_HISTORY)
7359 continue;
7360
7361 if (event->ws.kind () == TARGET_WAITKIND_FORKED
7362 || event->ws.kind () == TARGET_WAITKIND_VFORKED)
7363 *may_global_wildcard = false;
7364
7365 /* This may be the first time we heard about this process.
7366 Regardless, we must not do a global wildcard resume, otherwise
7367 we'd resume this process too. */
7368 *may_global_wildcard = false;
7369 if (event->ptid != null_ptid)
7370 {
7371 inferior *inf = find_inferior_ptid (this, event->ptid);
7372 if (inf != NULL)
7373 get_remote_inferior (inf)->may_wildcard_vcont = false;
7374 }
7375 }
7376 }
7377
7378 /* Discard all pending stop replies of inferior INF. */
7379
7380 void
7381 remote_target::discard_pending_stop_replies (struct inferior *inf)
7382 {
7383 struct stop_reply *reply;
7384 struct remote_state *rs = get_remote_state ();
7385 struct remote_notif_state *rns = rs->notif_state;
7386
7387 /* This function can be notified when an inferior exists. When the
7388 target is not remote, the notification state is NULL. */
7389 if (rs->remote_desc == NULL)
7390 return;
7391
7392 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7393
7394 /* Discard the in-flight notification. */
7395 if (reply != NULL && reply->ptid.pid () == inf->pid)
7396 {
7397 /* Leave the notification pending, since the server expects that
7398 we acknowledge it with vStopped. But clear its contents, so
7399 that later on when we acknowledge it, we also discard it. */
7400 remote_debug_printf
7401 ("discarding in-flight notification: ptid: %s, ws: %s\n",
7402 reply->ptid.to_string().c_str(),
7403 reply->ws.to_string ().c_str ());
7404 reply->ws.set_ignore ();
7405 }
7406
7407 /* Discard the stop replies we have already pulled with
7408 vStopped. */
7409 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7410 rs->stop_reply_queue.end (),
7411 [=] (const stop_reply_up &event)
7412 {
7413 return event->ptid.pid () == inf->pid;
7414 });
7415 for (auto it = iter; it != rs->stop_reply_queue.end (); ++it)
7416 remote_debug_printf
7417 ("discarding queued stop reply: ptid: %s, ws: %s\n",
7418 reply->ptid.to_string().c_str(),
7419 reply->ws.to_string ().c_str ());
7420 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7421 }
7422
7423 /* Discard the stop replies for RS in stop_reply_queue. */
7424
7425 void
7426 remote_target::discard_pending_stop_replies_in_queue ()
7427 {
7428 remote_state *rs = get_remote_state ();
7429
7430 /* Discard the stop replies we have already pulled with
7431 vStopped. */
7432 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7433 rs->stop_reply_queue.end (),
7434 [=] (const stop_reply_up &event)
7435 {
7436 return event->rs == rs;
7437 });
7438 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7439 }
7440
7441 /* Remove the first reply in 'stop_reply_queue' which matches
7442 PTID. */
7443
7444 struct stop_reply *
7445 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7446 {
7447 remote_state *rs = get_remote_state ();
7448
7449 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7450 rs->stop_reply_queue.end (),
7451 [=] (const stop_reply_up &event)
7452 {
7453 return event->ptid.matches (ptid);
7454 });
7455 struct stop_reply *result;
7456 if (iter == rs->stop_reply_queue.end ())
7457 result = nullptr;
7458 else
7459 {
7460 result = iter->release ();
7461 rs->stop_reply_queue.erase (iter);
7462 }
7463
7464 if (notif_debug)
7465 fprintf_unfiltered (gdb_stdlog,
7466 "notif: discard queued event: 'Stop' in %s\n",
7467 target_pid_to_str (ptid).c_str ());
7468
7469 return result;
7470 }
7471
7472 /* Look for a queued stop reply belonging to PTID. If one is found,
7473 remove it from the queue, and return it. Returns NULL if none is
7474 found. If there are still queued events left to process, tell the
7475 event loop to get back to target_wait soon. */
7476
7477 struct stop_reply *
7478 remote_target::queued_stop_reply (ptid_t ptid)
7479 {
7480 remote_state *rs = get_remote_state ();
7481 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7482
7483 if (!rs->stop_reply_queue.empty ())
7484 {
7485 /* There's still at least an event left. */
7486 mark_async_event_handler (rs->remote_async_inferior_event_token);
7487 }
7488
7489 return r;
7490 }
7491
7492 /* Push a fully parsed stop reply in the stop reply queue. Since we
7493 know that we now have at least one queued event left to pass to the
7494 core side, tell the event loop to get back to target_wait soon. */
7495
7496 void
7497 remote_target::push_stop_reply (struct stop_reply *new_event)
7498 {
7499 remote_state *rs = get_remote_state ();
7500 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7501
7502 if (notif_debug)
7503 fprintf_unfiltered (gdb_stdlog,
7504 "notif: push 'Stop' %s to queue %d\n",
7505 target_pid_to_str (new_event->ptid).c_str (),
7506 int (rs->stop_reply_queue.size ()));
7507
7508 mark_async_event_handler (rs->remote_async_inferior_event_token);
7509 }
7510
7511 /* Returns true if we have a stop reply for PTID. */
7512
7513 int
7514 remote_target::peek_stop_reply (ptid_t ptid)
7515 {
7516 remote_state *rs = get_remote_state ();
7517 for (auto &event : rs->stop_reply_queue)
7518 if (ptid == event->ptid
7519 && event->ws.kind () == TARGET_WAITKIND_STOPPED)
7520 return 1;
7521 return 0;
7522 }
7523
7524 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7525 starting with P and ending with PEND matches PREFIX. */
7526
7527 static int
7528 strprefix (const char *p, const char *pend, const char *prefix)
7529 {
7530 for ( ; p < pend; p++, prefix++)
7531 if (*p != *prefix)
7532 return 0;
7533 return *prefix == '\0';
7534 }
7535
7536 /* Parse the stop reply in BUF. Either the function succeeds, and the
7537 result is stored in EVENT, or throws an error. */
7538
7539 void
7540 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7541 {
7542 remote_arch_state *rsa = NULL;
7543 ULONGEST addr;
7544 const char *p;
7545 int skipregs = 0;
7546
7547 event->ptid = null_ptid;
7548 event->rs = get_remote_state ();
7549 event->ws.set_ignore ();
7550 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7551 event->regcache.clear ();
7552 event->core = -1;
7553
7554 switch (buf[0])
7555 {
7556 case 'T': /* Status with PC, SP, FP, ... */
7557 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7558 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7559 ss = signal number
7560 n... = register number
7561 r... = register contents
7562 */
7563
7564 p = &buf[3]; /* after Txx */
7565 while (*p)
7566 {
7567 const char *p1;
7568 int fieldsize;
7569
7570 p1 = strchr (p, ':');
7571 if (p1 == NULL)
7572 error (_("Malformed packet(a) (missing colon): %s\n\
7573 Packet: '%s'\n"),
7574 p, buf);
7575 if (p == p1)
7576 error (_("Malformed packet(a) (missing register number): %s\n\
7577 Packet: '%s'\n"),
7578 p, buf);
7579
7580 /* Some "registers" are actually extended stop information.
7581 Note if you're adding a new entry here: GDB 7.9 and
7582 earlier assume that all register "numbers" that start
7583 with an hex digit are real register numbers. Make sure
7584 the server only sends such a packet if it knows the
7585 client understands it. */
7586
7587 if (strprefix (p, p1, "thread"))
7588 event->ptid = read_ptid (++p1, &p);
7589 else if (strprefix (p, p1, "syscall_entry"))
7590 {
7591 ULONGEST sysno;
7592
7593 p = unpack_varlen_hex (++p1, &sysno);
7594 event->ws.set_syscall_entry ((int) sysno);
7595 }
7596 else if (strprefix (p, p1, "syscall_return"))
7597 {
7598 ULONGEST sysno;
7599
7600 p = unpack_varlen_hex (++p1, &sysno);
7601 event->ws.set_syscall_return ((int) sysno);
7602 }
7603 else if (strprefix (p, p1, "watch")
7604 || strprefix (p, p1, "rwatch")
7605 || strprefix (p, p1, "awatch"))
7606 {
7607 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7608 p = unpack_varlen_hex (++p1, &addr);
7609 event->watch_data_address = (CORE_ADDR) addr;
7610 }
7611 else if (strprefix (p, p1, "swbreak"))
7612 {
7613 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7614
7615 /* Make sure the stub doesn't forget to indicate support
7616 with qSupported. */
7617 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7618 error (_("Unexpected swbreak stop reason"));
7619
7620 /* The value part is documented as "must be empty",
7621 though we ignore it, in case we ever decide to make
7622 use of it in a backward compatible way. */
7623 p = strchrnul (p1 + 1, ';');
7624 }
7625 else if (strprefix (p, p1, "hwbreak"))
7626 {
7627 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7628
7629 /* Make sure the stub doesn't forget to indicate support
7630 with qSupported. */
7631 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7632 error (_("Unexpected hwbreak stop reason"));
7633
7634 /* See above. */
7635 p = strchrnul (p1 + 1, ';');
7636 }
7637 else if (strprefix (p, p1, "library"))
7638 {
7639 event->ws.set_loaded ();
7640 p = strchrnul (p1 + 1, ';');
7641 }
7642 else if (strprefix (p, p1, "replaylog"))
7643 {
7644 event->ws.set_no_history ();
7645 /* p1 will indicate "begin" or "end", but it makes
7646 no difference for now, so ignore it. */
7647 p = strchrnul (p1 + 1, ';');
7648 }
7649 else if (strprefix (p, p1, "core"))
7650 {
7651 ULONGEST c;
7652
7653 p = unpack_varlen_hex (++p1, &c);
7654 event->core = c;
7655 }
7656 else if (strprefix (p, p1, "fork"))
7657 event->ws.set_forked (read_ptid (++p1, &p));
7658 else if (strprefix (p, p1, "vfork"))
7659 event->ws.set_vforked (read_ptid (++p1, &p));
7660 else if (strprefix (p, p1, "vforkdone"))
7661 {
7662 event->ws.set_vfork_done ();
7663 p = strchrnul (p1 + 1, ';');
7664 }
7665 else if (strprefix (p, p1, "exec"))
7666 {
7667 ULONGEST ignored;
7668 int pathlen;
7669
7670 /* Determine the length of the execd pathname. */
7671 p = unpack_varlen_hex (++p1, &ignored);
7672 pathlen = (p - p1) / 2;
7673
7674 /* Save the pathname for event reporting and for
7675 the next run command. */
7676 gdb::unique_xmalloc_ptr<char> pathname
7677 ((char *) xmalloc (pathlen + 1));
7678 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7679 pathname.get ()[pathlen] = '\0';
7680
7681 /* This is freed during event handling. */
7682 event->ws.set_execd (std::move (pathname));
7683
7684 /* Skip the registers included in this packet, since
7685 they may be for an architecture different from the
7686 one used by the original program. */
7687 skipregs = 1;
7688 }
7689 else if (strprefix (p, p1, "create"))
7690 {
7691 event->ws.set_thread_created ();
7692 p = strchrnul (p1 + 1, ';');
7693 }
7694 else
7695 {
7696 ULONGEST pnum;
7697 const char *p_temp;
7698
7699 if (skipregs)
7700 {
7701 p = strchrnul (p1 + 1, ';');
7702 p++;
7703 continue;
7704 }
7705
7706 /* Maybe a real ``P'' register number. */
7707 p_temp = unpack_varlen_hex (p, &pnum);
7708 /* If the first invalid character is the colon, we got a
7709 register number. Otherwise, it's an unknown stop
7710 reason. */
7711 if (p_temp == p1)
7712 {
7713 /* If we haven't parsed the event's thread yet, find
7714 it now, in order to find the architecture of the
7715 reported expedited registers. */
7716 if (event->ptid == null_ptid)
7717 {
7718 /* If there is no thread-id information then leave
7719 the event->ptid as null_ptid. Later in
7720 process_stop_reply we will pick a suitable
7721 thread. */
7722 const char *thr = strstr (p1 + 1, ";thread:");
7723 if (thr != NULL)
7724 event->ptid = read_ptid (thr + strlen (";thread:"),
7725 NULL);
7726 }
7727
7728 if (rsa == NULL)
7729 {
7730 inferior *inf
7731 = (event->ptid == null_ptid
7732 ? NULL
7733 : find_inferior_ptid (this, event->ptid));
7734 /* If this is the first time we learn anything
7735 about this process, skip the registers
7736 included in this packet, since we don't yet
7737 know which architecture to use to parse them.
7738 We'll determine the architecture later when
7739 we process the stop reply and retrieve the
7740 target description, via
7741 remote_notice_new_inferior ->
7742 post_create_inferior. */
7743 if (inf == NULL)
7744 {
7745 p = strchrnul (p1 + 1, ';');
7746 p++;
7747 continue;
7748 }
7749
7750 event->arch = inf->gdbarch;
7751 rsa = event->rs->get_remote_arch_state (event->arch);
7752 }
7753
7754 packet_reg *reg
7755 = packet_reg_from_pnum (event->arch, rsa, pnum);
7756 cached_reg_t cached_reg;
7757
7758 if (reg == NULL)
7759 error (_("Remote sent bad register number %s: %s\n\
7760 Packet: '%s'\n"),
7761 hex_string (pnum), p, buf);
7762
7763 cached_reg.num = reg->regnum;
7764 cached_reg.data = (gdb_byte *)
7765 xmalloc (register_size (event->arch, reg->regnum));
7766
7767 p = p1 + 1;
7768 fieldsize = hex2bin (p, cached_reg.data,
7769 register_size (event->arch, reg->regnum));
7770 p += 2 * fieldsize;
7771 if (fieldsize < register_size (event->arch, reg->regnum))
7772 warning (_("Remote reply is too short: %s"), buf);
7773
7774 event->regcache.push_back (cached_reg);
7775 }
7776 else
7777 {
7778 /* Not a number. Silently skip unknown optional
7779 info. */
7780 p = strchrnul (p1 + 1, ';');
7781 }
7782 }
7783
7784 if (*p != ';')
7785 error (_("Remote register badly formatted: %s\nhere: %s"),
7786 buf, p);
7787 ++p;
7788 }
7789
7790 if (event->ws.kind () != TARGET_WAITKIND_IGNORE)
7791 break;
7792
7793 /* fall through */
7794 case 'S': /* Old style status, just signal only. */
7795 {
7796 int sig;
7797
7798 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7799 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7800 event->ws.set_stopped ((enum gdb_signal) sig);
7801 else
7802 event->ws.set_stopped (GDB_SIGNAL_UNKNOWN);
7803 }
7804 break;
7805 case 'w': /* Thread exited. */
7806 {
7807 ULONGEST value;
7808
7809 p = unpack_varlen_hex (&buf[1], &value);
7810 event->ws.set_thread_exited (value);
7811 if (*p != ';')
7812 error (_("stop reply packet badly formatted: %s"), buf);
7813 event->ptid = read_ptid (++p, NULL);
7814 break;
7815 }
7816 case 'W': /* Target exited. */
7817 case 'X':
7818 {
7819 ULONGEST value;
7820
7821 /* GDB used to accept only 2 hex chars here. Stubs should
7822 only send more if they detect GDB supports multi-process
7823 support. */
7824 p = unpack_varlen_hex (&buf[1], &value);
7825
7826 if (buf[0] == 'W')
7827 {
7828 /* The remote process exited. */
7829 event->ws.set_exited (value);
7830 }
7831 else
7832 {
7833 /* The remote process exited with a signal. */
7834 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7835 event->ws.set_signalled ((enum gdb_signal) value);
7836 else
7837 event->ws.set_signalled (GDB_SIGNAL_UNKNOWN);
7838 }
7839
7840 /* If no process is specified, return null_ptid, and let the
7841 caller figure out the right process to use. */
7842 int pid = 0;
7843 if (*p == '\0')
7844 ;
7845 else if (*p == ';')
7846 {
7847 p++;
7848
7849 if (*p == '\0')
7850 ;
7851 else if (startswith (p, "process:"))
7852 {
7853 ULONGEST upid;
7854
7855 p += sizeof ("process:") - 1;
7856 unpack_varlen_hex (p, &upid);
7857 pid = upid;
7858 }
7859 else
7860 error (_("unknown stop reply packet: %s"), buf);
7861 }
7862 else
7863 error (_("unknown stop reply packet: %s"), buf);
7864 event->ptid = ptid_t (pid);
7865 }
7866 break;
7867 case 'N':
7868 event->ws.set_no_resumed ();
7869 event->ptid = minus_one_ptid;
7870 break;
7871 }
7872 }
7873
7874 /* When the stub wants to tell GDB about a new notification reply, it
7875 sends a notification (%Stop, for example). Those can come it at
7876 any time, hence, we have to make sure that any pending
7877 putpkt/getpkt sequence we're making is finished, before querying
7878 the stub for more events with the corresponding ack command
7879 (vStopped, for example). E.g., if we started a vStopped sequence
7880 immediately upon receiving the notification, something like this
7881 could happen:
7882
7883 1.1) --> Hg 1
7884 1.2) <-- OK
7885 1.3) --> g
7886 1.4) <-- %Stop
7887 1.5) --> vStopped
7888 1.6) <-- (registers reply to step #1.3)
7889
7890 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7891 query.
7892
7893 To solve this, whenever we parse a %Stop notification successfully,
7894 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7895 doing whatever we were doing:
7896
7897 2.1) --> Hg 1
7898 2.2) <-- OK
7899 2.3) --> g
7900 2.4) <-- %Stop
7901 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7902 2.5) <-- (registers reply to step #2.3)
7903
7904 Eventually after step #2.5, we return to the event loop, which
7905 notices there's an event on the
7906 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7907 associated callback --- the function below. At this point, we're
7908 always safe to start a vStopped sequence. :
7909
7910 2.6) --> vStopped
7911 2.7) <-- T05 thread:2
7912 2.8) --> vStopped
7913 2.9) --> OK
7914 */
7915
7916 void
7917 remote_target::remote_notif_get_pending_events (notif_client *nc)
7918 {
7919 struct remote_state *rs = get_remote_state ();
7920
7921 if (rs->notif_state->pending_event[nc->id] != NULL)
7922 {
7923 if (notif_debug)
7924 fprintf_unfiltered (gdb_stdlog,
7925 "notif: process: '%s' ack pending event\n",
7926 nc->name);
7927
7928 /* acknowledge */
7929 nc->ack (this, nc, rs->buf.data (),
7930 rs->notif_state->pending_event[nc->id]);
7931 rs->notif_state->pending_event[nc->id] = NULL;
7932
7933 while (1)
7934 {
7935 getpkt (&rs->buf, 0);
7936 if (strcmp (rs->buf.data (), "OK") == 0)
7937 break;
7938 else
7939 remote_notif_ack (this, nc, rs->buf.data ());
7940 }
7941 }
7942 else
7943 {
7944 if (notif_debug)
7945 fprintf_unfiltered (gdb_stdlog,
7946 "notif: process: '%s' no pending reply\n",
7947 nc->name);
7948 }
7949 }
7950
7951 /* Wrapper around remote_target::remote_notif_get_pending_events to
7952 avoid having to export the whole remote_target class. */
7953
7954 void
7955 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7956 {
7957 remote->remote_notif_get_pending_events (nc);
7958 }
7959
7960 /* Called from process_stop_reply when the stop packet we are responding
7961 to didn't include a process-id or thread-id. STATUS is the stop event
7962 we are responding to.
7963
7964 It is the task of this function to select a suitable thread (or process)
7965 and return its ptid, this is the thread (or process) we will assume the
7966 stop event came from.
7967
7968 In some cases there isn't really any choice about which thread (or
7969 process) is selected, a basic remote with a single process containing a
7970 single thread might choose not to send any process-id or thread-id in
7971 its stop packets, this function will select and return the one and only
7972 thread.
7973
7974 However, if a target supports multiple threads (or processes) and still
7975 doesn't include a thread-id (or process-id) in its stop packet then
7976 first, this is a badly behaving target, and second, we're going to have
7977 to select a thread (or process) at random and use that. This function
7978 will print a warning to the user if it detects that there is the
7979 possibility that GDB is guessing which thread (or process) to
7980 report.
7981
7982 Note that this is called before GDB fetches the updated thread list from the
7983 target. So it's possible for the stop reply to be ambiguous and for GDB to
7984 not realize it. For example, if there's initially one thread, the target
7985 spawns a second thread, and then sends a stop reply without an id that
7986 concerns the first thread. GDB will assume the stop reply is about the
7987 first thread - the only thread it knows about - without printing a warning.
7988 Anyway, if the remote meant for the stop reply to be about the second thread,
7989 then it would be really broken, because GDB doesn't know about that thread
7990 yet. */
7991
7992 ptid_t
7993 remote_target::select_thread_for_ambiguous_stop_reply
7994 (const target_waitstatus &status)
7995 {
7996 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7997
7998 /* Some stop events apply to all threads in an inferior, while others
7999 only apply to a single thread. */
8000 bool process_wide_stop
8001 = (status.kind () == TARGET_WAITKIND_EXITED
8002 || status.kind () == TARGET_WAITKIND_SIGNALLED);
8003
8004 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
8005
8006 thread_info *first_resumed_thread = nullptr;
8007 bool ambiguous = false;
8008
8009 /* Consider all non-exited threads of the target, find the first resumed
8010 one. */
8011 for (thread_info *thr : all_non_exited_threads (this))
8012 {
8013 remote_thread_info *remote_thr = get_remote_thread_info (thr);
8014
8015 if (remote_thr->get_resume_state () != resume_state::RESUMED)
8016 continue;
8017
8018 if (first_resumed_thread == nullptr)
8019 first_resumed_thread = thr;
8020 else if (!process_wide_stop
8021 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
8022 ambiguous = true;
8023 }
8024
8025 remote_debug_printf ("first resumed thread is %s",
8026 pid_to_str (first_resumed_thread->ptid).c_str ());
8027 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
8028
8029 gdb_assert (first_resumed_thread != nullptr);
8030
8031 /* Warn if the remote target is sending ambiguous stop replies. */
8032 if (ambiguous)
8033 {
8034 static bool warned = false;
8035
8036 if (!warned)
8037 {
8038 /* If you are seeing this warning then the remote target has
8039 stopped without specifying a thread-id, but the target
8040 does have multiple threads (or inferiors), and so GDB is
8041 having to guess which thread stopped.
8042
8043 Examples of what might cause this are the target sending
8044 and 'S' stop packet, or a 'T' stop packet and not
8045 including a thread-id.
8046
8047 Additionally, the target might send a 'W' or 'X packet
8048 without including a process-id, when the target has
8049 multiple running inferiors. */
8050 if (process_wide_stop)
8051 warning (_("multi-inferior target stopped without "
8052 "sending a process-id, using first "
8053 "non-exited inferior"));
8054 else
8055 warning (_("multi-threaded target stopped without "
8056 "sending a thread-id, using first "
8057 "non-exited thread"));
8058 warned = true;
8059 }
8060 }
8061
8062 /* If this is a stop for all threads then don't use a particular threads
8063 ptid, instead create a new ptid where only the pid field is set. */
8064 if (process_wide_stop)
8065 return ptid_t (first_resumed_thread->ptid.pid ());
8066 else
8067 return first_resumed_thread->ptid;
8068 }
8069
8070 /* Called when it is decided that STOP_REPLY holds the info of the
8071 event that is to be returned to the core. This function always
8072 destroys STOP_REPLY. */
8073
8074 ptid_t
8075 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8076 struct target_waitstatus *status)
8077 {
8078 *status = stop_reply->ws;
8079 ptid_t ptid = stop_reply->ptid;
8080
8081 /* If no thread/process was reported by the stub then select a suitable
8082 thread/process. */
8083 if (ptid == null_ptid)
8084 ptid = select_thread_for_ambiguous_stop_reply (*status);
8085 gdb_assert (ptid != null_ptid);
8086
8087 if (status->kind () != TARGET_WAITKIND_EXITED
8088 && status->kind () != TARGET_WAITKIND_SIGNALLED
8089 && status->kind () != TARGET_WAITKIND_NO_RESUMED)
8090 {
8091 /* Expedited registers. */
8092 if (!stop_reply->regcache.empty ())
8093 {
8094 struct regcache *regcache
8095 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8096
8097 for (cached_reg_t &reg : stop_reply->regcache)
8098 {
8099 regcache->raw_supply (reg.num, reg.data);
8100 xfree (reg.data);
8101 }
8102
8103 stop_reply->regcache.clear ();
8104 }
8105
8106 remote_notice_new_inferior (ptid, false);
8107 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8108 remote_thr->core = stop_reply->core;
8109 remote_thr->stop_reason = stop_reply->stop_reason;
8110 remote_thr->watch_data_address = stop_reply->watch_data_address;
8111
8112 if (target_is_non_stop_p ())
8113 {
8114 /* If the target works in non-stop mode, a stop-reply indicates that
8115 only this thread stopped. */
8116 remote_thr->set_not_resumed ();
8117 }
8118 else
8119 {
8120 /* If the target works in all-stop mode, a stop-reply indicates that
8121 all the target's threads stopped. */
8122 for (thread_info *tp : all_non_exited_threads (this))
8123 get_remote_thread_info (tp)->set_not_resumed ();
8124 }
8125 }
8126
8127 delete stop_reply;
8128 return ptid;
8129 }
8130
8131 /* The non-stop mode version of target_wait. */
8132
8133 ptid_t
8134 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8135 target_wait_flags options)
8136 {
8137 struct remote_state *rs = get_remote_state ();
8138 struct stop_reply *stop_reply;
8139 int ret;
8140 int is_notif = 0;
8141
8142 /* If in non-stop mode, get out of getpkt even if a
8143 notification is received. */
8144
8145 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8146 while (1)
8147 {
8148 if (ret != -1 && !is_notif)
8149 switch (rs->buf[0])
8150 {
8151 case 'E': /* Error of some sort. */
8152 /* We're out of sync with the target now. Did it continue
8153 or not? We can't tell which thread it was in non-stop,
8154 so just ignore this. */
8155 warning (_("Remote failure reply: %s"), rs->buf.data ());
8156 break;
8157 case 'O': /* Console output. */
8158 remote_console_output (&rs->buf[1]);
8159 break;
8160 default:
8161 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8162 break;
8163 }
8164
8165 /* Acknowledge a pending stop reply that may have arrived in the
8166 mean time. */
8167 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8168 remote_notif_get_pending_events (&notif_client_stop);
8169
8170 /* If indeed we noticed a stop reply, we're done. */
8171 stop_reply = queued_stop_reply (ptid);
8172 if (stop_reply != NULL)
8173 return process_stop_reply (stop_reply, status);
8174
8175 /* Still no event. If we're just polling for an event, then
8176 return to the event loop. */
8177 if (options & TARGET_WNOHANG)
8178 {
8179 status->set_ignore ();
8180 return minus_one_ptid;
8181 }
8182
8183 /* Otherwise do a blocking wait. */
8184 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8185 }
8186 }
8187
8188 /* Return the first resumed thread. */
8189
8190 static ptid_t
8191 first_remote_resumed_thread (remote_target *target)
8192 {
8193 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8194 if (tp->resumed ())
8195 return tp->ptid;
8196 return null_ptid;
8197 }
8198
8199 /* Wait until the remote machine stops, then return, storing status in
8200 STATUS just as `wait' would. */
8201
8202 ptid_t
8203 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8204 target_wait_flags options)
8205 {
8206 struct remote_state *rs = get_remote_state ();
8207 ptid_t event_ptid = null_ptid;
8208 char *buf;
8209 struct stop_reply *stop_reply;
8210
8211 again:
8212
8213 status->set_ignore ();
8214
8215 stop_reply = queued_stop_reply (ptid);
8216 if (stop_reply != NULL)
8217 return process_stop_reply (stop_reply, status);
8218
8219 if (rs->cached_wait_status)
8220 /* Use the cached wait status, but only once. */
8221 rs->cached_wait_status = 0;
8222 else
8223 {
8224 int ret;
8225 int is_notif;
8226 int forever = ((options & TARGET_WNOHANG) == 0
8227 && rs->wait_forever_enabled_p);
8228
8229 if (!rs->waiting_for_stop_reply)
8230 {
8231 status->set_no_resumed ();
8232 return minus_one_ptid;
8233 }
8234
8235 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8236 _never_ wait for ever -> test on target_is_async_p().
8237 However, before we do that we need to ensure that the caller
8238 knows how to take the target into/out of async mode. */
8239 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8240
8241 /* GDB gets a notification. Return to core as this event is
8242 not interesting. */
8243 if (ret != -1 && is_notif)
8244 return minus_one_ptid;
8245
8246 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8247 return minus_one_ptid;
8248 }
8249
8250 buf = rs->buf.data ();
8251
8252 /* Assume that the target has acknowledged Ctrl-C unless we receive
8253 an 'F' or 'O' packet. */
8254 if (buf[0] != 'F' && buf[0] != 'O')
8255 rs->ctrlc_pending_p = 0;
8256
8257 switch (buf[0])
8258 {
8259 case 'E': /* Error of some sort. */
8260 /* We're out of sync with the target now. Did it continue or
8261 not? Not is more likely, so report a stop. */
8262 rs->waiting_for_stop_reply = 0;
8263
8264 warning (_("Remote failure reply: %s"), buf);
8265 status->set_stopped (GDB_SIGNAL_0);
8266 break;
8267 case 'F': /* File-I/O request. */
8268 /* GDB may access the inferior memory while handling the File-I/O
8269 request, but we don't want GDB accessing memory while waiting
8270 for a stop reply. See the comments in putpkt_binary. Set
8271 waiting_for_stop_reply to 0 temporarily. */
8272 rs->waiting_for_stop_reply = 0;
8273 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8274 rs->ctrlc_pending_p = 0;
8275 /* GDB handled the File-I/O request, and the target is running
8276 again. Keep waiting for events. */
8277 rs->waiting_for_stop_reply = 1;
8278 break;
8279 case 'N': case 'T': case 'S': case 'X': case 'W':
8280 {
8281 /* There is a stop reply to handle. */
8282 rs->waiting_for_stop_reply = 0;
8283
8284 stop_reply
8285 = (struct stop_reply *) remote_notif_parse (this,
8286 &notif_client_stop,
8287 rs->buf.data ());
8288
8289 event_ptid = process_stop_reply (stop_reply, status);
8290 break;
8291 }
8292 case 'O': /* Console output. */
8293 remote_console_output (buf + 1);
8294 break;
8295 case '\0':
8296 if (rs->last_sent_signal != GDB_SIGNAL_0)
8297 {
8298 /* Zero length reply means that we tried 'S' or 'C' and the
8299 remote system doesn't support it. */
8300 target_terminal::ours_for_output ();
8301 printf_filtered
8302 ("Can't send signals to this remote system. %s not sent.\n",
8303 gdb_signal_to_name (rs->last_sent_signal));
8304 rs->last_sent_signal = GDB_SIGNAL_0;
8305 target_terminal::inferior ();
8306
8307 strcpy (buf, rs->last_sent_step ? "s" : "c");
8308 putpkt (buf);
8309 break;
8310 }
8311 /* fallthrough */
8312 default:
8313 warning (_("Invalid remote reply: %s"), buf);
8314 break;
8315 }
8316
8317 if (status->kind () == TARGET_WAITKIND_NO_RESUMED)
8318 return minus_one_ptid;
8319 else if (status->kind () == TARGET_WAITKIND_IGNORE)
8320 {
8321 /* Nothing interesting happened. If we're doing a non-blocking
8322 poll, we're done. Otherwise, go back to waiting. */
8323 if (options & TARGET_WNOHANG)
8324 return minus_one_ptid;
8325 else
8326 goto again;
8327 }
8328 else if (status->kind () != TARGET_WAITKIND_EXITED
8329 && status->kind () != TARGET_WAITKIND_SIGNALLED)
8330 {
8331 if (event_ptid != null_ptid)
8332 record_currthread (rs, event_ptid);
8333 else
8334 event_ptid = first_remote_resumed_thread (this);
8335 }
8336 else
8337 {
8338 /* A process exit. Invalidate our notion of current thread. */
8339 record_currthread (rs, minus_one_ptid);
8340 /* It's possible that the packet did not include a pid. */
8341 if (event_ptid == null_ptid)
8342 event_ptid = first_remote_resumed_thread (this);
8343 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8344 if (event_ptid == null_ptid)
8345 event_ptid = magic_null_ptid;
8346 }
8347
8348 return event_ptid;
8349 }
8350
8351 /* Wait until the remote machine stops, then return, storing status in
8352 STATUS just as `wait' would. */
8353
8354 ptid_t
8355 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8356 target_wait_flags options)
8357 {
8358 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8359
8360 remote_state *rs = get_remote_state ();
8361
8362 /* Start by clearing the flag that asks for our wait method to be called,
8363 we'll mark it again at the end if needed. */
8364 if (target_is_async_p ())
8365 clear_async_event_handler (rs->remote_async_inferior_event_token);
8366
8367 ptid_t event_ptid;
8368
8369 if (target_is_non_stop_p ())
8370 event_ptid = wait_ns (ptid, status, options);
8371 else
8372 event_ptid = wait_as (ptid, status, options);
8373
8374 if (target_is_async_p ())
8375 {
8376 /* If there are events left in the queue, or unacknowledged
8377 notifications, then tell the event loop to call us again. */
8378 if (!rs->stop_reply_queue.empty ()
8379 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8380 mark_async_event_handler (rs->remote_async_inferior_event_token);
8381 }
8382
8383 return event_ptid;
8384 }
8385
8386 /* Fetch a single register using a 'p' packet. */
8387
8388 int
8389 remote_target::fetch_register_using_p (struct regcache *regcache,
8390 packet_reg *reg)
8391 {
8392 struct gdbarch *gdbarch = regcache->arch ();
8393 struct remote_state *rs = get_remote_state ();
8394 char *buf, *p;
8395 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8396 int i;
8397
8398 if (packet_support (PACKET_p) == PACKET_DISABLE)
8399 return 0;
8400
8401 if (reg->pnum == -1)
8402 return 0;
8403
8404 p = rs->buf.data ();
8405 *p++ = 'p';
8406 p += hexnumstr (p, reg->pnum);
8407 *p++ = '\0';
8408 putpkt (rs->buf);
8409 getpkt (&rs->buf, 0);
8410
8411 buf = rs->buf.data ();
8412
8413 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8414 {
8415 case PACKET_OK:
8416 break;
8417 case PACKET_UNKNOWN:
8418 return 0;
8419 case PACKET_ERROR:
8420 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8421 gdbarch_register_name (regcache->arch (),
8422 reg->regnum),
8423 buf);
8424 }
8425
8426 /* If this register is unfetchable, tell the regcache. */
8427 if (buf[0] == 'x')
8428 {
8429 regcache->raw_supply (reg->regnum, NULL);
8430 return 1;
8431 }
8432
8433 /* Otherwise, parse and supply the value. */
8434 p = buf;
8435 i = 0;
8436 while (p[0] != 0)
8437 {
8438 if (p[1] == 0)
8439 error (_("fetch_register_using_p: early buf termination"));
8440
8441 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8442 p += 2;
8443 }
8444 regcache->raw_supply (reg->regnum, regp);
8445 return 1;
8446 }
8447
8448 /* Fetch the registers included in the target's 'g' packet. */
8449
8450 int
8451 remote_target::send_g_packet ()
8452 {
8453 struct remote_state *rs = get_remote_state ();
8454 int buf_len;
8455
8456 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8457 putpkt (rs->buf);
8458 getpkt (&rs->buf, 0);
8459 if (packet_check_result (rs->buf) == PACKET_ERROR)
8460 error (_("Could not read registers; remote failure reply '%s'"),
8461 rs->buf.data ());
8462
8463 /* We can get out of synch in various cases. If the first character
8464 in the buffer is not a hex character, assume that has happened
8465 and try to fetch another packet to read. */
8466 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8467 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8468 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8469 && rs->buf[0] != 'x') /* New: unavailable register value. */
8470 {
8471 remote_debug_printf ("Bad register packet; fetching a new packet");
8472 getpkt (&rs->buf, 0);
8473 }
8474
8475 buf_len = strlen (rs->buf.data ());
8476
8477 /* Sanity check the received packet. */
8478 if (buf_len % 2 != 0)
8479 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8480
8481 return buf_len / 2;
8482 }
8483
8484 void
8485 remote_target::process_g_packet (struct regcache *regcache)
8486 {
8487 struct gdbarch *gdbarch = regcache->arch ();
8488 struct remote_state *rs = get_remote_state ();
8489 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8490 int i, buf_len;
8491 char *p;
8492 char *regs;
8493
8494 buf_len = strlen (rs->buf.data ());
8495
8496 /* Further sanity checks, with knowledge of the architecture. */
8497 if (buf_len > 2 * rsa->sizeof_g_packet)
8498 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8499 "bytes): %s"),
8500 rsa->sizeof_g_packet, buf_len / 2,
8501 rs->buf.data ());
8502
8503 /* Save the size of the packet sent to us by the target. It is used
8504 as a heuristic when determining the max size of packets that the
8505 target can safely receive. */
8506 if (rsa->actual_register_packet_size == 0)
8507 rsa->actual_register_packet_size = buf_len;
8508
8509 /* If this is smaller than we guessed the 'g' packet would be,
8510 update our records. A 'g' reply that doesn't include a register's
8511 value implies either that the register is not available, or that
8512 the 'p' packet must be used. */
8513 if (buf_len < 2 * rsa->sizeof_g_packet)
8514 {
8515 long sizeof_g_packet = buf_len / 2;
8516
8517 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8518 {
8519 long offset = rsa->regs[i].offset;
8520 long reg_size = register_size (gdbarch, i);
8521
8522 if (rsa->regs[i].pnum == -1)
8523 continue;
8524
8525 if (offset >= sizeof_g_packet)
8526 rsa->regs[i].in_g_packet = 0;
8527 else if (offset + reg_size > sizeof_g_packet)
8528 error (_("Truncated register %d in remote 'g' packet"), i);
8529 else
8530 rsa->regs[i].in_g_packet = 1;
8531 }
8532
8533 /* Looks valid enough, we can assume this is the correct length
8534 for a 'g' packet. It's important not to adjust
8535 rsa->sizeof_g_packet if we have truncated registers otherwise
8536 this "if" won't be run the next time the method is called
8537 with a packet of the same size and one of the internal errors
8538 below will trigger instead. */
8539 rsa->sizeof_g_packet = sizeof_g_packet;
8540 }
8541
8542 regs = (char *) alloca (rsa->sizeof_g_packet);
8543
8544 /* Unimplemented registers read as all bits zero. */
8545 memset (regs, 0, rsa->sizeof_g_packet);
8546
8547 /* Reply describes registers byte by byte, each byte encoded as two
8548 hex characters. Suck them all up, then supply them to the
8549 register cacheing/storage mechanism. */
8550
8551 p = rs->buf.data ();
8552 for (i = 0; i < rsa->sizeof_g_packet; i++)
8553 {
8554 if (p[0] == 0 || p[1] == 0)
8555 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8556 internal_error (__FILE__, __LINE__,
8557 _("unexpected end of 'g' packet reply"));
8558
8559 if (p[0] == 'x' && p[1] == 'x')
8560 regs[i] = 0; /* 'x' */
8561 else
8562 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8563 p += 2;
8564 }
8565
8566 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8567 {
8568 struct packet_reg *r = &rsa->regs[i];
8569 long reg_size = register_size (gdbarch, i);
8570
8571 if (r->in_g_packet)
8572 {
8573 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8574 /* This shouldn't happen - we adjusted in_g_packet above. */
8575 internal_error (__FILE__, __LINE__,
8576 _("unexpected end of 'g' packet reply"));
8577 else if (rs->buf[r->offset * 2] == 'x')
8578 {
8579 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8580 /* The register isn't available, mark it as such (at
8581 the same time setting the value to zero). */
8582 regcache->raw_supply (r->regnum, NULL);
8583 }
8584 else
8585 regcache->raw_supply (r->regnum, regs + r->offset);
8586 }
8587 }
8588 }
8589
8590 void
8591 remote_target::fetch_registers_using_g (struct regcache *regcache)
8592 {
8593 send_g_packet ();
8594 process_g_packet (regcache);
8595 }
8596
8597 /* Make the remote selected traceframe match GDB's selected
8598 traceframe. */
8599
8600 void
8601 remote_target::set_remote_traceframe ()
8602 {
8603 int newnum;
8604 struct remote_state *rs = get_remote_state ();
8605
8606 if (rs->remote_traceframe_number == get_traceframe_number ())
8607 return;
8608
8609 /* Avoid recursion, remote_trace_find calls us again. */
8610 rs->remote_traceframe_number = get_traceframe_number ();
8611
8612 newnum = target_trace_find (tfind_number,
8613 get_traceframe_number (), 0, 0, NULL);
8614
8615 /* Should not happen. If it does, all bets are off. */
8616 if (newnum != get_traceframe_number ())
8617 warning (_("could not set remote traceframe"));
8618 }
8619
8620 void
8621 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8622 {
8623 struct gdbarch *gdbarch = regcache->arch ();
8624 struct remote_state *rs = get_remote_state ();
8625 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8626 int i;
8627
8628 set_remote_traceframe ();
8629 set_general_thread (regcache->ptid ());
8630
8631 if (regnum >= 0)
8632 {
8633 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8634
8635 gdb_assert (reg != NULL);
8636
8637 /* If this register might be in the 'g' packet, try that first -
8638 we are likely to read more than one register. If this is the
8639 first 'g' packet, we might be overly optimistic about its
8640 contents, so fall back to 'p'. */
8641 if (reg->in_g_packet)
8642 {
8643 fetch_registers_using_g (regcache);
8644 if (reg->in_g_packet)
8645 return;
8646 }
8647
8648 if (fetch_register_using_p (regcache, reg))
8649 return;
8650
8651 /* This register is not available. */
8652 regcache->raw_supply (reg->regnum, NULL);
8653
8654 return;
8655 }
8656
8657 fetch_registers_using_g (regcache);
8658
8659 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8660 if (!rsa->regs[i].in_g_packet)
8661 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8662 {
8663 /* This register is not available. */
8664 regcache->raw_supply (i, NULL);
8665 }
8666 }
8667
8668 /* Prepare to store registers. Since we may send them all (using a
8669 'G' request), we have to read out the ones we don't want to change
8670 first. */
8671
8672 void
8673 remote_target::prepare_to_store (struct regcache *regcache)
8674 {
8675 struct remote_state *rs = get_remote_state ();
8676 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8677 int i;
8678
8679 /* Make sure the entire registers array is valid. */
8680 switch (packet_support (PACKET_P))
8681 {
8682 case PACKET_DISABLE:
8683 case PACKET_SUPPORT_UNKNOWN:
8684 /* Make sure all the necessary registers are cached. */
8685 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8686 if (rsa->regs[i].in_g_packet)
8687 regcache->raw_update (rsa->regs[i].regnum);
8688 break;
8689 case PACKET_ENABLE:
8690 break;
8691 }
8692 }
8693
8694 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8695 packet was not recognized. */
8696
8697 int
8698 remote_target::store_register_using_P (const struct regcache *regcache,
8699 packet_reg *reg)
8700 {
8701 struct gdbarch *gdbarch = regcache->arch ();
8702 struct remote_state *rs = get_remote_state ();
8703 /* Try storing a single register. */
8704 char *buf = rs->buf.data ();
8705 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8706 char *p;
8707
8708 if (packet_support (PACKET_P) == PACKET_DISABLE)
8709 return 0;
8710
8711 if (reg->pnum == -1)
8712 return 0;
8713
8714 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8715 p = buf + strlen (buf);
8716 regcache->raw_collect (reg->regnum, regp);
8717 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8718 putpkt (rs->buf);
8719 getpkt (&rs->buf, 0);
8720
8721 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8722 {
8723 case PACKET_OK:
8724 return 1;
8725 case PACKET_ERROR:
8726 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8727 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8728 case PACKET_UNKNOWN:
8729 return 0;
8730 default:
8731 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8732 }
8733 }
8734
8735 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8736 contents of the register cache buffer. FIXME: ignores errors. */
8737
8738 void
8739 remote_target::store_registers_using_G (const struct regcache *regcache)
8740 {
8741 struct remote_state *rs = get_remote_state ();
8742 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8743 gdb_byte *regs;
8744 char *p;
8745
8746 /* Extract all the registers in the regcache copying them into a
8747 local buffer. */
8748 {
8749 int i;
8750
8751 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8752 memset (regs, 0, rsa->sizeof_g_packet);
8753 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8754 {
8755 struct packet_reg *r = &rsa->regs[i];
8756
8757 if (r->in_g_packet)
8758 regcache->raw_collect (r->regnum, regs + r->offset);
8759 }
8760 }
8761
8762 /* Command describes registers byte by byte,
8763 each byte encoded as two hex characters. */
8764 p = rs->buf.data ();
8765 *p++ = 'G';
8766 bin2hex (regs, p, rsa->sizeof_g_packet);
8767 putpkt (rs->buf);
8768 getpkt (&rs->buf, 0);
8769 if (packet_check_result (rs->buf) == PACKET_ERROR)
8770 error (_("Could not write registers; remote failure reply '%s'"),
8771 rs->buf.data ());
8772 }
8773
8774 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8775 of the register cache buffer. FIXME: ignores errors. */
8776
8777 void
8778 remote_target::store_registers (struct regcache *regcache, int regnum)
8779 {
8780 struct gdbarch *gdbarch = regcache->arch ();
8781 struct remote_state *rs = get_remote_state ();
8782 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8783 int i;
8784
8785 set_remote_traceframe ();
8786 set_general_thread (regcache->ptid ());
8787
8788 if (regnum >= 0)
8789 {
8790 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8791
8792 gdb_assert (reg != NULL);
8793
8794 /* Always prefer to store registers using the 'P' packet if
8795 possible; we often change only a small number of registers.
8796 Sometimes we change a larger number; we'd need help from a
8797 higher layer to know to use 'G'. */
8798 if (store_register_using_P (regcache, reg))
8799 return;
8800
8801 /* For now, don't complain if we have no way to write the
8802 register. GDB loses track of unavailable registers too
8803 easily. Some day, this may be an error. We don't have
8804 any way to read the register, either... */
8805 if (!reg->in_g_packet)
8806 return;
8807
8808 store_registers_using_G (regcache);
8809 return;
8810 }
8811
8812 store_registers_using_G (regcache);
8813
8814 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8815 if (!rsa->regs[i].in_g_packet)
8816 if (!store_register_using_P (regcache, &rsa->regs[i]))
8817 /* See above for why we do not issue an error here. */
8818 continue;
8819 }
8820 \f
8821
8822 /* Return the number of hex digits in num. */
8823
8824 static int
8825 hexnumlen (ULONGEST num)
8826 {
8827 int i;
8828
8829 for (i = 0; num != 0; i++)
8830 num >>= 4;
8831
8832 return std::max (i, 1);
8833 }
8834
8835 /* Set BUF to the minimum number of hex digits representing NUM. */
8836
8837 static int
8838 hexnumstr (char *buf, ULONGEST num)
8839 {
8840 int len = hexnumlen (num);
8841
8842 return hexnumnstr (buf, num, len);
8843 }
8844
8845
8846 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8847
8848 static int
8849 hexnumnstr (char *buf, ULONGEST num, int width)
8850 {
8851 int i;
8852
8853 buf[width] = '\0';
8854
8855 for (i = width - 1; i >= 0; i--)
8856 {
8857 buf[i] = "0123456789abcdef"[(num & 0xf)];
8858 num >>= 4;
8859 }
8860
8861 return width;
8862 }
8863
8864 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8865
8866 static CORE_ADDR
8867 remote_address_masked (CORE_ADDR addr)
8868 {
8869 unsigned int address_size = remote_address_size;
8870
8871 /* If "remoteaddresssize" was not set, default to target address size. */
8872 if (!address_size)
8873 address_size = gdbarch_addr_bit (target_gdbarch ());
8874
8875 if (address_size > 0
8876 && address_size < (sizeof (ULONGEST) * 8))
8877 {
8878 /* Only create a mask when that mask can safely be constructed
8879 in a ULONGEST variable. */
8880 ULONGEST mask = 1;
8881
8882 mask = (mask << address_size) - 1;
8883 addr &= mask;
8884 }
8885 return addr;
8886 }
8887
8888 /* Determine whether the remote target supports binary downloading.
8889 This is accomplished by sending a no-op memory write of zero length
8890 to the target at the specified address. It does not suffice to send
8891 the whole packet, since many stubs strip the eighth bit and
8892 subsequently compute a wrong checksum, which causes real havoc with
8893 remote_write_bytes.
8894
8895 NOTE: This can still lose if the serial line is not eight-bit
8896 clean. In cases like this, the user should clear "remote
8897 X-packet". */
8898
8899 void
8900 remote_target::check_binary_download (CORE_ADDR addr)
8901 {
8902 struct remote_state *rs = get_remote_state ();
8903
8904 switch (packet_support (PACKET_X))
8905 {
8906 case PACKET_DISABLE:
8907 break;
8908 case PACKET_ENABLE:
8909 break;
8910 case PACKET_SUPPORT_UNKNOWN:
8911 {
8912 char *p;
8913
8914 p = rs->buf.data ();
8915 *p++ = 'X';
8916 p += hexnumstr (p, (ULONGEST) addr);
8917 *p++ = ',';
8918 p += hexnumstr (p, (ULONGEST) 0);
8919 *p++ = ':';
8920 *p = '\0';
8921
8922 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8923 getpkt (&rs->buf, 0);
8924
8925 if (rs->buf[0] == '\0')
8926 {
8927 remote_debug_printf ("binary downloading NOT supported by target");
8928 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8929 }
8930 else
8931 {
8932 remote_debug_printf ("binary downloading supported by target");
8933 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8934 }
8935 break;
8936 }
8937 }
8938 }
8939
8940 /* Helper function to resize the payload in order to try to get a good
8941 alignment. We try to write an amount of data such that the next write will
8942 start on an address aligned on REMOTE_ALIGN_WRITES. */
8943
8944 static int
8945 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8946 {
8947 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8948 }
8949
8950 /* Write memory data directly to the remote machine.
8951 This does not inform the data cache; the data cache uses this.
8952 HEADER is the starting part of the packet.
8953 MEMADDR is the address in the remote memory space.
8954 MYADDR is the address of the buffer in our space.
8955 LEN_UNITS is the number of addressable units to write.
8956 UNIT_SIZE is the length in bytes of an addressable unit.
8957 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8958 should send data as binary ('X'), or hex-encoded ('M').
8959
8960 The function creates packet of the form
8961 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8962
8963 where encoding of <DATA> is terminated by PACKET_FORMAT.
8964
8965 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8966 are omitted.
8967
8968 Return the transferred status, error or OK (an
8969 'enum target_xfer_status' value). Save the number of addressable units
8970 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8971
8972 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8973 exchange between gdb and the stub could look like (?? in place of the
8974 checksum):
8975
8976 -> $m1000,4#??
8977 <- aaaabbbbccccdddd
8978
8979 -> $M1000,3:eeeeffffeeee#??
8980 <- OK
8981
8982 -> $m1000,4#??
8983 <- eeeeffffeeeedddd */
8984
8985 target_xfer_status
8986 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8987 const gdb_byte *myaddr,
8988 ULONGEST len_units,
8989 int unit_size,
8990 ULONGEST *xfered_len_units,
8991 char packet_format, int use_length)
8992 {
8993 struct remote_state *rs = get_remote_state ();
8994 char *p;
8995 char *plen = NULL;
8996 int plenlen = 0;
8997 int todo_units;
8998 int units_written;
8999 int payload_capacity_bytes;
9000 int payload_length_bytes;
9001
9002 if (packet_format != 'X' && packet_format != 'M')
9003 internal_error (__FILE__, __LINE__,
9004 _("remote_write_bytes_aux: bad packet format"));
9005
9006 if (len_units == 0)
9007 return TARGET_XFER_EOF;
9008
9009 payload_capacity_bytes = get_memory_write_packet_size ();
9010
9011 /* The packet buffer will be large enough for the payload;
9012 get_memory_packet_size ensures this. */
9013 rs->buf[0] = '\0';
9014
9015 /* Compute the size of the actual payload by subtracting out the
9016 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
9017
9018 payload_capacity_bytes -= strlen ("$,:#NN");
9019 if (!use_length)
9020 /* The comma won't be used. */
9021 payload_capacity_bytes += 1;
9022 payload_capacity_bytes -= strlen (header);
9023 payload_capacity_bytes -= hexnumlen (memaddr);
9024
9025 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
9026
9027 strcat (rs->buf.data (), header);
9028 p = rs->buf.data () + strlen (header);
9029
9030 /* Compute a best guess of the number of bytes actually transfered. */
9031 if (packet_format == 'X')
9032 {
9033 /* Best guess at number of bytes that will fit. */
9034 todo_units = std::min (len_units,
9035 (ULONGEST) payload_capacity_bytes / unit_size);
9036 if (use_length)
9037 payload_capacity_bytes -= hexnumlen (todo_units);
9038 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
9039 }
9040 else
9041 {
9042 /* Number of bytes that will fit. */
9043 todo_units
9044 = std::min (len_units,
9045 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
9046 if (use_length)
9047 payload_capacity_bytes -= hexnumlen (todo_units);
9048 todo_units = std::min (todo_units,
9049 (payload_capacity_bytes / unit_size) / 2);
9050 }
9051
9052 if (todo_units <= 0)
9053 internal_error (__FILE__, __LINE__,
9054 _("minimum packet size too small to write data"));
9055
9056 /* If we already need another packet, then try to align the end
9057 of this packet to a useful boundary. */
9058 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9059 todo_units = align_for_efficient_write (todo_units, memaddr);
9060
9061 /* Append "<memaddr>". */
9062 memaddr = remote_address_masked (memaddr);
9063 p += hexnumstr (p, (ULONGEST) memaddr);
9064
9065 if (use_length)
9066 {
9067 /* Append ",". */
9068 *p++ = ',';
9069
9070 /* Append the length and retain its location and size. It may need to be
9071 adjusted once the packet body has been created. */
9072 plen = p;
9073 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9074 p += plenlen;
9075 }
9076
9077 /* Append ":". */
9078 *p++ = ':';
9079 *p = '\0';
9080
9081 /* Append the packet body. */
9082 if (packet_format == 'X')
9083 {
9084 /* Binary mode. Send target system values byte by byte, in
9085 increasing byte addresses. Only escape certain critical
9086 characters. */
9087 payload_length_bytes =
9088 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9089 &units_written, payload_capacity_bytes);
9090
9091 /* If not all TODO units fit, then we'll need another packet. Make
9092 a second try to keep the end of the packet aligned. Don't do
9093 this if the packet is tiny. */
9094 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9095 {
9096 int new_todo_units;
9097
9098 new_todo_units = align_for_efficient_write (units_written, memaddr);
9099
9100 if (new_todo_units != units_written)
9101 payload_length_bytes =
9102 remote_escape_output (myaddr, new_todo_units, unit_size,
9103 (gdb_byte *) p, &units_written,
9104 payload_capacity_bytes);
9105 }
9106
9107 p += payload_length_bytes;
9108 if (use_length && units_written < todo_units)
9109 {
9110 /* Escape chars have filled up the buffer prematurely,
9111 and we have actually sent fewer units than planned.
9112 Fix-up the length field of the packet. Use the same
9113 number of characters as before. */
9114 plen += hexnumnstr (plen, (ULONGEST) units_written,
9115 plenlen);
9116 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9117 }
9118 }
9119 else
9120 {
9121 /* Normal mode: Send target system values byte by byte, in
9122 increasing byte addresses. Each byte is encoded as a two hex
9123 value. */
9124 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9125 units_written = todo_units;
9126 }
9127
9128 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9129 getpkt (&rs->buf, 0);
9130
9131 if (rs->buf[0] == 'E')
9132 return TARGET_XFER_E_IO;
9133
9134 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9135 send fewer units than we'd planned. */
9136 *xfered_len_units = (ULONGEST) units_written;
9137 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9138 }
9139
9140 /* Write memory data directly to the remote machine.
9141 This does not inform the data cache; the data cache uses this.
9142 MEMADDR is the address in the remote memory space.
9143 MYADDR is the address of the buffer in our space.
9144 LEN is the number of bytes.
9145
9146 Return the transferred status, error or OK (an
9147 'enum target_xfer_status' value). Save the number of bytes
9148 transferred in *XFERED_LEN. Only transfer a single packet. */
9149
9150 target_xfer_status
9151 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9152 ULONGEST len, int unit_size,
9153 ULONGEST *xfered_len)
9154 {
9155 const char *packet_format = NULL;
9156
9157 /* Check whether the target supports binary download. */
9158 check_binary_download (memaddr);
9159
9160 switch (packet_support (PACKET_X))
9161 {
9162 case PACKET_ENABLE:
9163 packet_format = "X";
9164 break;
9165 case PACKET_DISABLE:
9166 packet_format = "M";
9167 break;
9168 case PACKET_SUPPORT_UNKNOWN:
9169 internal_error (__FILE__, __LINE__,
9170 _("remote_write_bytes: bad internal state"));
9171 default:
9172 internal_error (__FILE__, __LINE__, _("bad switch"));
9173 }
9174
9175 return remote_write_bytes_aux (packet_format,
9176 memaddr, myaddr, len, unit_size, xfered_len,
9177 packet_format[0], 1);
9178 }
9179
9180 /* Read memory data directly from the remote machine.
9181 This does not use the data cache; the data cache uses this.
9182 MEMADDR is the address in the remote memory space.
9183 MYADDR is the address of the buffer in our space.
9184 LEN_UNITS is the number of addressable memory units to read..
9185 UNIT_SIZE is the length in bytes of an addressable unit.
9186
9187 Return the transferred status, error or OK (an
9188 'enum target_xfer_status' value). Save the number of bytes
9189 transferred in *XFERED_LEN_UNITS.
9190
9191 See the comment of remote_write_bytes_aux for an example of
9192 memory read/write exchange between gdb and the stub. */
9193
9194 target_xfer_status
9195 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9196 ULONGEST len_units,
9197 int unit_size, ULONGEST *xfered_len_units)
9198 {
9199 struct remote_state *rs = get_remote_state ();
9200 int buf_size_bytes; /* Max size of packet output buffer. */
9201 char *p;
9202 int todo_units;
9203 int decoded_bytes;
9204
9205 buf_size_bytes = get_memory_read_packet_size ();
9206 /* The packet buffer will be large enough for the payload;
9207 get_memory_packet_size ensures this. */
9208
9209 /* Number of units that will fit. */
9210 todo_units = std::min (len_units,
9211 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9212
9213 /* Construct "m"<memaddr>","<len>". */
9214 memaddr = remote_address_masked (memaddr);
9215 p = rs->buf.data ();
9216 *p++ = 'm';
9217 p += hexnumstr (p, (ULONGEST) memaddr);
9218 *p++ = ',';
9219 p += hexnumstr (p, (ULONGEST) todo_units);
9220 *p = '\0';
9221 putpkt (rs->buf);
9222 getpkt (&rs->buf, 0);
9223 if (rs->buf[0] == 'E'
9224 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9225 && rs->buf[3] == '\0')
9226 return TARGET_XFER_E_IO;
9227 /* Reply describes memory byte by byte, each byte encoded as two hex
9228 characters. */
9229 p = rs->buf.data ();
9230 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9231 /* Return what we have. Let higher layers handle partial reads. */
9232 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9233 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9234 }
9235
9236 /* Using the set of read-only target sections of remote, read live
9237 read-only memory.
9238
9239 For interface/parameters/return description see target.h,
9240 to_xfer_partial. */
9241
9242 target_xfer_status
9243 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9244 ULONGEST memaddr,
9245 ULONGEST len,
9246 int unit_size,
9247 ULONGEST *xfered_len)
9248 {
9249 const struct target_section *secp;
9250
9251 secp = target_section_by_addr (this, memaddr);
9252 if (secp != NULL
9253 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9254 {
9255 ULONGEST memend = memaddr + len;
9256
9257 const target_section_table *table = target_get_section_table (this);
9258 for (const target_section &p : *table)
9259 {
9260 if (memaddr >= p.addr)
9261 {
9262 if (memend <= p.endaddr)
9263 {
9264 /* Entire transfer is within this section. */
9265 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9266 xfered_len);
9267 }
9268 else if (memaddr >= p.endaddr)
9269 {
9270 /* This section ends before the transfer starts. */
9271 continue;
9272 }
9273 else
9274 {
9275 /* This section overlaps the transfer. Just do half. */
9276 len = p.endaddr - memaddr;
9277 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9278 xfered_len);
9279 }
9280 }
9281 }
9282 }
9283
9284 return TARGET_XFER_EOF;
9285 }
9286
9287 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9288 first if the requested memory is unavailable in traceframe.
9289 Otherwise, fall back to remote_read_bytes_1. */
9290
9291 target_xfer_status
9292 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9293 gdb_byte *myaddr, ULONGEST len, int unit_size,
9294 ULONGEST *xfered_len)
9295 {
9296 if (len == 0)
9297 return TARGET_XFER_EOF;
9298
9299 if (get_traceframe_number () != -1)
9300 {
9301 std::vector<mem_range> available;
9302
9303 /* If we fail to get the set of available memory, then the
9304 target does not support querying traceframe info, and so we
9305 attempt reading from the traceframe anyway (assuming the
9306 target implements the old QTro packet then). */
9307 if (traceframe_available_memory (&available, memaddr, len))
9308 {
9309 if (available.empty () || available[0].start != memaddr)
9310 {
9311 enum target_xfer_status res;
9312
9313 /* Don't read into the traceframe's available
9314 memory. */
9315 if (!available.empty ())
9316 {
9317 LONGEST oldlen = len;
9318
9319 len = available[0].start - memaddr;
9320 gdb_assert (len <= oldlen);
9321 }
9322
9323 /* This goes through the topmost target again. */
9324 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9325 len, unit_size, xfered_len);
9326 if (res == TARGET_XFER_OK)
9327 return TARGET_XFER_OK;
9328 else
9329 {
9330 /* No use trying further, we know some memory starting
9331 at MEMADDR isn't available. */
9332 *xfered_len = len;
9333 return (*xfered_len != 0) ?
9334 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9335 }
9336 }
9337
9338 /* Don't try to read more than how much is available, in
9339 case the target implements the deprecated QTro packet to
9340 cater for older GDBs (the target's knowledge of read-only
9341 sections may be outdated by now). */
9342 len = available[0].length;
9343 }
9344 }
9345
9346 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9347 }
9348
9349 \f
9350
9351 /* Sends a packet with content determined by the printf format string
9352 FORMAT and the remaining arguments, then gets the reply. Returns
9353 whether the packet was a success, a failure, or unknown. */
9354
9355 packet_result
9356 remote_target::remote_send_printf (const char *format, ...)
9357 {
9358 struct remote_state *rs = get_remote_state ();
9359 int max_size = get_remote_packet_size ();
9360 va_list ap;
9361
9362 va_start (ap, format);
9363
9364 rs->buf[0] = '\0';
9365 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9366
9367 va_end (ap);
9368
9369 if (size >= max_size)
9370 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9371
9372 if (putpkt (rs->buf) < 0)
9373 error (_("Communication problem with target."));
9374
9375 rs->buf[0] = '\0';
9376 getpkt (&rs->buf, 0);
9377
9378 return packet_check_result (rs->buf);
9379 }
9380
9381 /* Flash writing can take quite some time. We'll set
9382 effectively infinite timeout for flash operations.
9383 In future, we'll need to decide on a better approach. */
9384 static const int remote_flash_timeout = 1000;
9385
9386 void
9387 remote_target::flash_erase (ULONGEST address, LONGEST length)
9388 {
9389 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9390 enum packet_result ret;
9391 scoped_restore restore_timeout
9392 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9393
9394 ret = remote_send_printf ("vFlashErase:%s,%s",
9395 phex (address, addr_size),
9396 phex (length, 4));
9397 switch (ret)
9398 {
9399 case PACKET_UNKNOWN:
9400 error (_("Remote target does not support flash erase"));
9401 case PACKET_ERROR:
9402 error (_("Error erasing flash with vFlashErase packet"));
9403 default:
9404 break;
9405 }
9406 }
9407
9408 target_xfer_status
9409 remote_target::remote_flash_write (ULONGEST address,
9410 ULONGEST length, ULONGEST *xfered_len,
9411 const gdb_byte *data)
9412 {
9413 scoped_restore restore_timeout
9414 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9415 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9416 xfered_len,'X', 0);
9417 }
9418
9419 void
9420 remote_target::flash_done ()
9421 {
9422 int ret;
9423
9424 scoped_restore restore_timeout
9425 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9426
9427 ret = remote_send_printf ("vFlashDone");
9428
9429 switch (ret)
9430 {
9431 case PACKET_UNKNOWN:
9432 error (_("Remote target does not support vFlashDone"));
9433 case PACKET_ERROR:
9434 error (_("Error finishing flash operation"));
9435 default:
9436 break;
9437 }
9438 }
9439
9440 void
9441 remote_target::files_info ()
9442 {
9443 puts_filtered ("Debugging a target over a serial line.\n");
9444 }
9445 \f
9446 /* Stuff for dealing with the packets which are part of this protocol.
9447 See comment at top of file for details. */
9448
9449 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9450 error to higher layers. Called when a serial error is detected.
9451 The exception message is STRING, followed by a colon and a blank,
9452 the system error message for errno at function entry and final dot
9453 for output compatibility with throw_perror_with_name. */
9454
9455 static void
9456 unpush_and_perror (remote_target *target, const char *string)
9457 {
9458 int saved_errno = errno;
9459
9460 remote_unpush_target (target);
9461 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9462 safe_strerror (saved_errno));
9463 }
9464
9465 /* Read a single character from the remote end. The current quit
9466 handler is overridden to avoid quitting in the middle of packet
9467 sequence, as that would break communication with the remote server.
9468 See remote_serial_quit_handler for more detail. */
9469
9470 int
9471 remote_target::readchar (int timeout)
9472 {
9473 int ch;
9474 struct remote_state *rs = get_remote_state ();
9475
9476 {
9477 scoped_restore restore_quit_target
9478 = make_scoped_restore (&curr_quit_handler_target, this);
9479 scoped_restore restore_quit
9480 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9481
9482 rs->got_ctrlc_during_io = 0;
9483
9484 ch = serial_readchar (rs->remote_desc, timeout);
9485
9486 if (rs->got_ctrlc_during_io)
9487 set_quit_flag ();
9488 }
9489
9490 if (ch >= 0)
9491 return ch;
9492
9493 switch ((enum serial_rc) ch)
9494 {
9495 case SERIAL_EOF:
9496 remote_unpush_target (this);
9497 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9498 /* no return */
9499 case SERIAL_ERROR:
9500 unpush_and_perror (this, _("Remote communication error. "
9501 "Target disconnected."));
9502 /* no return */
9503 case SERIAL_TIMEOUT:
9504 break;
9505 }
9506 return ch;
9507 }
9508
9509 /* Wrapper for serial_write that closes the target and throws if
9510 writing fails. The current quit handler is overridden to avoid
9511 quitting in the middle of packet sequence, as that would break
9512 communication with the remote server. See
9513 remote_serial_quit_handler for more detail. */
9514
9515 void
9516 remote_target::remote_serial_write (const char *str, int len)
9517 {
9518 struct remote_state *rs = get_remote_state ();
9519
9520 scoped_restore restore_quit_target
9521 = make_scoped_restore (&curr_quit_handler_target, this);
9522 scoped_restore restore_quit
9523 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9524
9525 rs->got_ctrlc_during_io = 0;
9526
9527 if (serial_write (rs->remote_desc, str, len))
9528 {
9529 unpush_and_perror (this, _("Remote communication error. "
9530 "Target disconnected."));
9531 }
9532
9533 if (rs->got_ctrlc_during_io)
9534 set_quit_flag ();
9535 }
9536
9537 /* Return a string representing an escaped version of BUF, of len N.
9538 E.g. \n is converted to \\n, \t to \\t, etc. */
9539
9540 static std::string
9541 escape_buffer (const char *buf, int n)
9542 {
9543 string_file stb;
9544
9545 stb.putstrn (buf, n, '\\');
9546 return std::move (stb.string ());
9547 }
9548
9549 int
9550 remote_target::putpkt (const char *buf)
9551 {
9552 return putpkt_binary (buf, strlen (buf));
9553 }
9554
9555 /* Wrapper around remote_target::putpkt to avoid exporting
9556 remote_target. */
9557
9558 int
9559 putpkt (remote_target *remote, const char *buf)
9560 {
9561 return remote->putpkt (buf);
9562 }
9563
9564 /* Send a packet to the remote machine, with error checking. The data
9565 of the packet is in BUF. The string in BUF can be at most
9566 get_remote_packet_size () - 5 to account for the $, # and checksum,
9567 and for a possible /0 if we are debugging (remote_debug) and want
9568 to print the sent packet as a string. */
9569
9570 int
9571 remote_target::putpkt_binary (const char *buf, int cnt)
9572 {
9573 struct remote_state *rs = get_remote_state ();
9574 int i;
9575 unsigned char csum = 0;
9576 gdb::def_vector<char> data (cnt + 6);
9577 char *buf2 = data.data ();
9578
9579 int ch;
9580 int tcount = 0;
9581 char *p;
9582
9583 /* Catch cases like trying to read memory or listing threads while
9584 we're waiting for a stop reply. The remote server wouldn't be
9585 ready to handle this request, so we'd hang and timeout. We don't
9586 have to worry about this in synchronous mode, because in that
9587 case it's not possible to issue a command while the target is
9588 running. This is not a problem in non-stop mode, because in that
9589 case, the stub is always ready to process serial input. */
9590 if (!target_is_non_stop_p ()
9591 && target_is_async_p ()
9592 && rs->waiting_for_stop_reply)
9593 {
9594 error (_("Cannot execute this command while the target is running.\n"
9595 "Use the \"interrupt\" command to stop the target\n"
9596 "and then try again."));
9597 }
9598
9599 /* We're sending out a new packet. Make sure we don't look at a
9600 stale cached response. */
9601 rs->cached_wait_status = 0;
9602
9603 /* Copy the packet into buffer BUF2, encapsulating it
9604 and giving it a checksum. */
9605
9606 p = buf2;
9607 *p++ = '$';
9608
9609 for (i = 0; i < cnt; i++)
9610 {
9611 csum += buf[i];
9612 *p++ = buf[i];
9613 }
9614 *p++ = '#';
9615 *p++ = tohex ((csum >> 4) & 0xf);
9616 *p++ = tohex (csum & 0xf);
9617
9618 /* Send it over and over until we get a positive ack. */
9619
9620 while (1)
9621 {
9622 if (remote_debug)
9623 {
9624 *p = '\0';
9625
9626 int len = (int) (p - buf2);
9627 int max_chars;
9628
9629 if (remote_packet_max_chars < 0)
9630 max_chars = len;
9631 else
9632 max_chars = remote_packet_max_chars;
9633
9634 std::string str
9635 = escape_buffer (buf2, std::min (len, max_chars));
9636
9637 if (len > max_chars)
9638 remote_debug_printf_nofunc
9639 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9640 len - max_chars);
9641 else
9642 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9643 }
9644 remote_serial_write (buf2, p - buf2);
9645
9646 /* If this is a no acks version of the remote protocol, send the
9647 packet and move on. */
9648 if (rs->noack_mode)
9649 break;
9650
9651 /* Read until either a timeout occurs (-2) or '+' is read.
9652 Handle any notification that arrives in the mean time. */
9653 while (1)
9654 {
9655 ch = readchar (remote_timeout);
9656
9657 switch (ch)
9658 {
9659 case '+':
9660 remote_debug_printf_nofunc ("Received Ack");
9661 return 1;
9662 case '-':
9663 remote_debug_printf_nofunc ("Received Nak");
9664 /* FALLTHROUGH */
9665 case SERIAL_TIMEOUT:
9666 tcount++;
9667 if (tcount > 3)
9668 return 0;
9669 break; /* Retransmit buffer. */
9670 case '$':
9671 {
9672 remote_debug_printf ("Packet instead of Ack, ignoring it");
9673 /* It's probably an old response sent because an ACK
9674 was lost. Gobble up the packet and ack it so it
9675 doesn't get retransmitted when we resend this
9676 packet. */
9677 skip_frame ();
9678 remote_serial_write ("+", 1);
9679 continue; /* Now, go look for +. */
9680 }
9681
9682 case '%':
9683 {
9684 int val;
9685
9686 /* If we got a notification, handle it, and go back to looking
9687 for an ack. */
9688 /* We've found the start of a notification. Now
9689 collect the data. */
9690 val = read_frame (&rs->buf);
9691 if (val >= 0)
9692 {
9693 remote_debug_printf_nofunc
9694 (" Notification received: %s",
9695 escape_buffer (rs->buf.data (), val).c_str ());
9696
9697 handle_notification (rs->notif_state, rs->buf.data ());
9698 /* We're in sync now, rewait for the ack. */
9699 tcount = 0;
9700 }
9701 else
9702 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9703 rs->buf.data ());
9704 continue;
9705 }
9706 /* fall-through */
9707 default:
9708 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9709 rs->buf.data ());
9710 continue;
9711 }
9712 break; /* Here to retransmit. */
9713 }
9714
9715 #if 0
9716 /* This is wrong. If doing a long backtrace, the user should be
9717 able to get out next time we call QUIT, without anything as
9718 violent as interrupt_query. If we want to provide a way out of
9719 here without getting to the next QUIT, it should be based on
9720 hitting ^C twice as in remote_wait. */
9721 if (quit_flag)
9722 {
9723 quit_flag = 0;
9724 interrupt_query ();
9725 }
9726 #endif
9727 }
9728
9729 return 0;
9730 }
9731
9732 /* Come here after finding the start of a frame when we expected an
9733 ack. Do our best to discard the rest of this packet. */
9734
9735 void
9736 remote_target::skip_frame ()
9737 {
9738 int c;
9739
9740 while (1)
9741 {
9742 c = readchar (remote_timeout);
9743 switch (c)
9744 {
9745 case SERIAL_TIMEOUT:
9746 /* Nothing we can do. */
9747 return;
9748 case '#':
9749 /* Discard the two bytes of checksum and stop. */
9750 c = readchar (remote_timeout);
9751 if (c >= 0)
9752 c = readchar (remote_timeout);
9753
9754 return;
9755 case '*': /* Run length encoding. */
9756 /* Discard the repeat count. */
9757 c = readchar (remote_timeout);
9758 if (c < 0)
9759 return;
9760 break;
9761 default:
9762 /* A regular character. */
9763 break;
9764 }
9765 }
9766 }
9767
9768 /* Come here after finding the start of the frame. Collect the rest
9769 into *BUF, verifying the checksum, length, and handling run-length
9770 compression. NUL terminate the buffer. If there is not enough room,
9771 expand *BUF.
9772
9773 Returns -1 on error, number of characters in buffer (ignoring the
9774 trailing NULL) on success. (could be extended to return one of the
9775 SERIAL status indications). */
9776
9777 long
9778 remote_target::read_frame (gdb::char_vector *buf_p)
9779 {
9780 unsigned char csum;
9781 long bc;
9782 int c;
9783 char *buf = buf_p->data ();
9784 struct remote_state *rs = get_remote_state ();
9785
9786 csum = 0;
9787 bc = 0;
9788
9789 while (1)
9790 {
9791 c = readchar (remote_timeout);
9792 switch (c)
9793 {
9794 case SERIAL_TIMEOUT:
9795 remote_debug_printf ("Timeout in mid-packet, retrying");
9796 return -1;
9797
9798 case '$':
9799 remote_debug_printf ("Saw new packet start in middle of old one");
9800 return -1; /* Start a new packet, count retries. */
9801
9802 case '#':
9803 {
9804 unsigned char pktcsum;
9805 int check_0 = 0;
9806 int check_1 = 0;
9807
9808 buf[bc] = '\0';
9809
9810 check_0 = readchar (remote_timeout);
9811 if (check_0 >= 0)
9812 check_1 = readchar (remote_timeout);
9813
9814 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9815 {
9816 remote_debug_printf ("Timeout in checksum, retrying");
9817 return -1;
9818 }
9819 else if (check_0 < 0 || check_1 < 0)
9820 {
9821 remote_debug_printf ("Communication error in checksum");
9822 return -1;
9823 }
9824
9825 /* Don't recompute the checksum; with no ack packets we
9826 don't have any way to indicate a packet retransmission
9827 is necessary. */
9828 if (rs->noack_mode)
9829 return bc;
9830
9831 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9832 if (csum == pktcsum)
9833 return bc;
9834
9835 remote_debug_printf
9836 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9837 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9838
9839 /* Number of characters in buffer ignoring trailing
9840 NULL. */
9841 return -1;
9842 }
9843 case '*': /* Run length encoding. */
9844 {
9845 int repeat;
9846
9847 csum += c;
9848 c = readchar (remote_timeout);
9849 csum += c;
9850 repeat = c - ' ' + 3; /* Compute repeat count. */
9851
9852 /* The character before ``*'' is repeated. */
9853
9854 if (repeat > 0 && repeat <= 255 && bc > 0)
9855 {
9856 if (bc + repeat - 1 >= buf_p->size () - 1)
9857 {
9858 /* Make some more room in the buffer. */
9859 buf_p->resize (buf_p->size () + repeat);
9860 buf = buf_p->data ();
9861 }
9862
9863 memset (&buf[bc], buf[bc - 1], repeat);
9864 bc += repeat;
9865 continue;
9866 }
9867
9868 buf[bc] = '\0';
9869 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9870 return -1;
9871 }
9872 default:
9873 if (bc >= buf_p->size () - 1)
9874 {
9875 /* Make some more room in the buffer. */
9876 buf_p->resize (buf_p->size () * 2);
9877 buf = buf_p->data ();
9878 }
9879
9880 buf[bc++] = c;
9881 csum += c;
9882 continue;
9883 }
9884 }
9885 }
9886
9887 /* Set this to the maximum number of seconds to wait instead of waiting forever
9888 in target_wait(). If this timer times out, then it generates an error and
9889 the command is aborted. This replaces most of the need for timeouts in the
9890 GDB test suite, and makes it possible to distinguish between a hung target
9891 and one with slow communications. */
9892
9893 static int watchdog = 0;
9894 static void
9895 show_watchdog (struct ui_file *file, int from_tty,
9896 struct cmd_list_element *c, const char *value)
9897 {
9898 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9899 }
9900
9901 /* Read a packet from the remote machine, with error checking, and
9902 store it in *BUF. Resize *BUF if necessary to hold the result. If
9903 FOREVER, wait forever rather than timing out; this is used (in
9904 synchronous mode) to wait for a target that is is executing user
9905 code to stop. */
9906 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9907 don't have to change all the calls to getpkt to deal with the
9908 return value, because at the moment I don't know what the right
9909 thing to do it for those. */
9910
9911 void
9912 remote_target::getpkt (gdb::char_vector *buf, int forever)
9913 {
9914 getpkt_sane (buf, forever);
9915 }
9916
9917
9918 /* Read a packet from the remote machine, with error checking, and
9919 store it in *BUF. Resize *BUF if necessary to hold the result. If
9920 FOREVER, wait forever rather than timing out; this is used (in
9921 synchronous mode) to wait for a target that is is executing user
9922 code to stop. If FOREVER == 0, this function is allowed to time
9923 out gracefully and return an indication of this to the caller.
9924 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9925 consider receiving a notification enough reason to return to the
9926 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9927 holds a notification or not (a regular packet). */
9928
9929 int
9930 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9931 int forever, int expecting_notif,
9932 int *is_notif)
9933 {
9934 struct remote_state *rs = get_remote_state ();
9935 int c;
9936 int tries;
9937 int timeout;
9938 int val = -1;
9939
9940 /* We're reading a new response. Make sure we don't look at a
9941 previously cached response. */
9942 rs->cached_wait_status = 0;
9943
9944 strcpy (buf->data (), "timeout");
9945
9946 if (forever)
9947 timeout = watchdog > 0 ? watchdog : -1;
9948 else if (expecting_notif)
9949 timeout = 0; /* There should already be a char in the buffer. If
9950 not, bail out. */
9951 else
9952 timeout = remote_timeout;
9953
9954 #define MAX_TRIES 3
9955
9956 /* Process any number of notifications, and then return when
9957 we get a packet. */
9958 for (;;)
9959 {
9960 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9961 times. */
9962 for (tries = 1; tries <= MAX_TRIES; tries++)
9963 {
9964 /* This can loop forever if the remote side sends us
9965 characters continuously, but if it pauses, we'll get
9966 SERIAL_TIMEOUT from readchar because of timeout. Then
9967 we'll count that as a retry.
9968
9969 Note that even when forever is set, we will only wait
9970 forever prior to the start of a packet. After that, we
9971 expect characters to arrive at a brisk pace. They should
9972 show up within remote_timeout intervals. */
9973 do
9974 c = readchar (timeout);
9975 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9976
9977 if (c == SERIAL_TIMEOUT)
9978 {
9979 if (expecting_notif)
9980 return -1; /* Don't complain, it's normal to not get
9981 anything in this case. */
9982
9983 if (forever) /* Watchdog went off? Kill the target. */
9984 {
9985 remote_unpush_target (this);
9986 throw_error (TARGET_CLOSE_ERROR,
9987 _("Watchdog timeout has expired. "
9988 "Target detached."));
9989 }
9990
9991 remote_debug_printf ("Timed out.");
9992 }
9993 else
9994 {
9995 /* We've found the start of a packet or notification.
9996 Now collect the data. */
9997 val = read_frame (buf);
9998 if (val >= 0)
9999 break;
10000 }
10001
10002 remote_serial_write ("-", 1);
10003 }
10004
10005 if (tries > MAX_TRIES)
10006 {
10007 /* We have tried hard enough, and just can't receive the
10008 packet/notification. Give up. */
10009 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
10010
10011 /* Skip the ack char if we're in no-ack mode. */
10012 if (!rs->noack_mode)
10013 remote_serial_write ("+", 1);
10014 return -1;
10015 }
10016
10017 /* If we got an ordinary packet, return that to our caller. */
10018 if (c == '$')
10019 {
10020 if (remote_debug)
10021 {
10022 int max_chars;
10023
10024 if (remote_packet_max_chars < 0)
10025 max_chars = val;
10026 else
10027 max_chars = remote_packet_max_chars;
10028
10029 std::string str
10030 = escape_buffer (buf->data (),
10031 std::min (val, max_chars));
10032
10033 if (val > max_chars)
10034 remote_debug_printf_nofunc
10035 ("Packet received: %s [%d bytes omitted]", str.c_str (),
10036 val - max_chars);
10037 else
10038 remote_debug_printf_nofunc ("Packet received: %s",
10039 str.c_str ());
10040 }
10041
10042 /* Skip the ack char if we're in no-ack mode. */
10043 if (!rs->noack_mode)
10044 remote_serial_write ("+", 1);
10045 if (is_notif != NULL)
10046 *is_notif = 0;
10047 return val;
10048 }
10049
10050 /* If we got a notification, handle it, and go back to looking
10051 for a packet. */
10052 else
10053 {
10054 gdb_assert (c == '%');
10055
10056 remote_debug_printf_nofunc
10057 (" Notification received: %s",
10058 escape_buffer (buf->data (), val).c_str ());
10059
10060 if (is_notif != NULL)
10061 *is_notif = 1;
10062
10063 handle_notification (rs->notif_state, buf->data ());
10064
10065 /* Notifications require no acknowledgement. */
10066
10067 if (expecting_notif)
10068 return val;
10069 }
10070 }
10071 }
10072
10073 int
10074 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10075 {
10076 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10077 }
10078
10079 int
10080 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10081 int *is_notif)
10082 {
10083 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10084 }
10085
10086 /* Kill any new fork children of inferior INF that haven't been
10087 processed by follow_fork. */
10088
10089 void
10090 remote_target::kill_new_fork_children (inferior *inf)
10091 {
10092 remote_state *rs = get_remote_state ();
10093 struct notif_client *notif = &notif_client_stop;
10094
10095 /* Kill the fork child threads of any threads in inferior INF that are stopped
10096 at a fork event. */
10097 for (thread_info *thread : inf->non_exited_threads ())
10098 {
10099 const target_waitstatus *ws = thread_pending_fork_status (thread);
10100
10101 if (ws == nullptr)
10102 continue;
10103
10104 int child_pid = ws->child_ptid ().pid ();
10105 int res = remote_vkill (child_pid);
10106
10107 if (res != 0)
10108 error (_("Can't kill fork child process %d"), child_pid);
10109 }
10110
10111 /* Check for any pending fork events (not reported or processed yet)
10112 in inferior INF and kill those fork child threads as well. */
10113 remote_notif_get_pending_events (notif);
10114 for (auto &event : rs->stop_reply_queue)
10115 {
10116 if (event->ptid.pid () != inf->pid)
10117 continue;
10118
10119 if (!is_fork_status (event->ws.kind ()))
10120 continue;
10121
10122 int child_pid = event->ws.child_ptid ().pid ();
10123 int res = remote_vkill (child_pid);
10124
10125 if (res != 0)
10126 error (_("Can't kill fork child process %d"), child_pid);
10127 }
10128 }
10129
10130 \f
10131 /* Target hook to kill the current inferior. */
10132
10133 void
10134 remote_target::kill ()
10135 {
10136 int res = -1;
10137 inferior *inf = find_inferior_pid (this, inferior_ptid.pid ());
10138 struct remote_state *rs = get_remote_state ();
10139
10140 gdb_assert (inf != nullptr);
10141
10142 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10143 {
10144 /* If we're stopped while forking and we haven't followed yet,
10145 kill the child task. We need to do this before killing the
10146 parent task because if this is a vfork then the parent will
10147 be sleeping. */
10148 kill_new_fork_children (inf);
10149
10150 res = remote_vkill (inf->pid);
10151 if (res == 0)
10152 {
10153 target_mourn_inferior (inferior_ptid);
10154 return;
10155 }
10156 }
10157
10158 /* If we are in 'target remote' mode and we are killing the only
10159 inferior, then we will tell gdbserver to exit and unpush the
10160 target. */
10161 if (res == -1 && !remote_multi_process_p (rs)
10162 && number_of_live_inferiors (this) == 1)
10163 {
10164 remote_kill_k ();
10165
10166 /* We've killed the remote end, we get to mourn it. If we are
10167 not in extended mode, mourning the inferior also unpushes
10168 remote_ops from the target stack, which closes the remote
10169 connection. */
10170 target_mourn_inferior (inferior_ptid);
10171
10172 return;
10173 }
10174
10175 error (_("Can't kill process"));
10176 }
10177
10178 /* Send a kill request to the target using the 'vKill' packet. */
10179
10180 int
10181 remote_target::remote_vkill (int pid)
10182 {
10183 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10184 return -1;
10185
10186 remote_state *rs = get_remote_state ();
10187
10188 /* Tell the remote target to detach. */
10189 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10190 putpkt (rs->buf);
10191 getpkt (&rs->buf, 0);
10192
10193 switch (packet_ok (rs->buf,
10194 &remote_protocol_packets[PACKET_vKill]))
10195 {
10196 case PACKET_OK:
10197 return 0;
10198 case PACKET_ERROR:
10199 return 1;
10200 case PACKET_UNKNOWN:
10201 return -1;
10202 default:
10203 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10204 }
10205 }
10206
10207 /* Send a kill request to the target using the 'k' packet. */
10208
10209 void
10210 remote_target::remote_kill_k ()
10211 {
10212 /* Catch errors so the user can quit from gdb even when we
10213 aren't on speaking terms with the remote system. */
10214 try
10215 {
10216 putpkt ("k");
10217 }
10218 catch (const gdb_exception_error &ex)
10219 {
10220 if (ex.error == TARGET_CLOSE_ERROR)
10221 {
10222 /* If we got an (EOF) error that caused the target
10223 to go away, then we're done, that's what we wanted.
10224 "k" is susceptible to cause a premature EOF, given
10225 that the remote server isn't actually required to
10226 reply to "k", and it can happen that it doesn't
10227 even get to reply ACK to the "k". */
10228 return;
10229 }
10230
10231 /* Otherwise, something went wrong. We didn't actually kill
10232 the target. Just propagate the exception, and let the
10233 user or higher layers decide what to do. */
10234 throw;
10235 }
10236 }
10237
10238 void
10239 remote_target::mourn_inferior ()
10240 {
10241 struct remote_state *rs = get_remote_state ();
10242
10243 /* We're no longer interested in notification events of an inferior
10244 that exited or was killed/detached. */
10245 discard_pending_stop_replies (current_inferior ());
10246
10247 /* In 'target remote' mode with one inferior, we close the connection. */
10248 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10249 {
10250 remote_unpush_target (this);
10251 return;
10252 }
10253
10254 /* In case we got here due to an error, but we're going to stay
10255 connected. */
10256 rs->waiting_for_stop_reply = 0;
10257
10258 /* If the current general thread belonged to the process we just
10259 detached from or has exited, the remote side current general
10260 thread becomes undefined. Considering a case like this:
10261
10262 - We just got here due to a detach.
10263 - The process that we're detaching from happens to immediately
10264 report a global breakpoint being hit in non-stop mode, in the
10265 same thread we had selected before.
10266 - GDB attaches to this process again.
10267 - This event happens to be the next event we handle.
10268
10269 GDB would consider that the current general thread didn't need to
10270 be set on the stub side (with Hg), since for all it knew,
10271 GENERAL_THREAD hadn't changed.
10272
10273 Notice that although in all-stop mode, the remote server always
10274 sets the current thread to the thread reporting the stop event,
10275 that doesn't happen in non-stop mode; in non-stop, the stub *must
10276 not* change the current thread when reporting a breakpoint hit,
10277 due to the decoupling of event reporting and event handling.
10278
10279 To keep things simple, we always invalidate our notion of the
10280 current thread. */
10281 record_currthread (rs, minus_one_ptid);
10282
10283 /* Call common code to mark the inferior as not running. */
10284 generic_mourn_inferior ();
10285 }
10286
10287 bool
10288 extended_remote_target::supports_disable_randomization ()
10289 {
10290 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10291 }
10292
10293 void
10294 remote_target::extended_remote_disable_randomization (int val)
10295 {
10296 struct remote_state *rs = get_remote_state ();
10297 char *reply;
10298
10299 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10300 "QDisableRandomization:%x", val);
10301 putpkt (rs->buf);
10302 reply = remote_get_noisy_reply ();
10303 if (*reply == '\0')
10304 error (_("Target does not support QDisableRandomization."));
10305 if (strcmp (reply, "OK") != 0)
10306 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10307 }
10308
10309 int
10310 remote_target::extended_remote_run (const std::string &args)
10311 {
10312 struct remote_state *rs = get_remote_state ();
10313 int len;
10314 const char *remote_exec_file = get_remote_exec_file ();
10315
10316 /* If the user has disabled vRun support, or we have detected that
10317 support is not available, do not try it. */
10318 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10319 return -1;
10320
10321 strcpy (rs->buf.data (), "vRun;");
10322 len = strlen (rs->buf.data ());
10323
10324 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10325 error (_("Remote file name too long for run packet"));
10326 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10327 strlen (remote_exec_file));
10328
10329 if (!args.empty ())
10330 {
10331 int i;
10332
10333 gdb_argv argv (args.c_str ());
10334 for (i = 0; argv[i] != NULL; i++)
10335 {
10336 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10337 error (_("Argument list too long for run packet"));
10338 rs->buf[len++] = ';';
10339 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10340 strlen (argv[i]));
10341 }
10342 }
10343
10344 rs->buf[len++] = '\0';
10345
10346 putpkt (rs->buf);
10347 getpkt (&rs->buf, 0);
10348
10349 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10350 {
10351 case PACKET_OK:
10352 /* We have a wait response. All is well. */
10353 return 0;
10354 case PACKET_UNKNOWN:
10355 return -1;
10356 case PACKET_ERROR:
10357 if (remote_exec_file[0] == '\0')
10358 error (_("Running the default executable on the remote target failed; "
10359 "try \"set remote exec-file\"?"));
10360 else
10361 error (_("Running \"%s\" on the remote target failed"),
10362 remote_exec_file);
10363 default:
10364 gdb_assert_not_reached ("bad switch");
10365 }
10366 }
10367
10368 /* Helper function to send set/unset environment packets. ACTION is
10369 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10370 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10371 sent. */
10372
10373 void
10374 remote_target::send_environment_packet (const char *action,
10375 const char *packet,
10376 const char *value)
10377 {
10378 remote_state *rs = get_remote_state ();
10379
10380 /* Convert the environment variable to an hex string, which
10381 is the best format to be transmitted over the wire. */
10382 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10383 strlen (value));
10384
10385 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10386 "%s:%s", packet, encoded_value.c_str ());
10387
10388 putpkt (rs->buf);
10389 getpkt (&rs->buf, 0);
10390 if (strcmp (rs->buf.data (), "OK") != 0)
10391 warning (_("Unable to %s environment variable '%s' on remote."),
10392 action, value);
10393 }
10394
10395 /* Helper function to handle the QEnvironment* packets. */
10396
10397 void
10398 remote_target::extended_remote_environment_support ()
10399 {
10400 remote_state *rs = get_remote_state ();
10401
10402 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10403 {
10404 putpkt ("QEnvironmentReset");
10405 getpkt (&rs->buf, 0);
10406 if (strcmp (rs->buf.data (), "OK") != 0)
10407 warning (_("Unable to reset environment on remote."));
10408 }
10409
10410 gdb_environ *e = &current_inferior ()->environment;
10411
10412 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10413 for (const std::string &el : e->user_set_env ())
10414 send_environment_packet ("set", "QEnvironmentHexEncoded",
10415 el.c_str ());
10416
10417 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10418 for (const std::string &el : e->user_unset_env ())
10419 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10420 }
10421
10422 /* Helper function to set the current working directory for the
10423 inferior in the remote target. */
10424
10425 void
10426 remote_target::extended_remote_set_inferior_cwd ()
10427 {
10428 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10429 {
10430 const std::string &inferior_cwd = current_inferior ()->cwd ();
10431 remote_state *rs = get_remote_state ();
10432
10433 if (!inferior_cwd.empty ())
10434 {
10435 std::string hexpath
10436 = bin2hex ((const gdb_byte *) inferior_cwd.data (),
10437 inferior_cwd.size ());
10438
10439 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10440 "QSetWorkingDir:%s", hexpath.c_str ());
10441 }
10442 else
10443 {
10444 /* An empty inferior_cwd means that the user wants us to
10445 reset the remote server's inferior's cwd. */
10446 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10447 "QSetWorkingDir:");
10448 }
10449
10450 putpkt (rs->buf);
10451 getpkt (&rs->buf, 0);
10452 if (packet_ok (rs->buf,
10453 &remote_protocol_packets[PACKET_QSetWorkingDir])
10454 != PACKET_OK)
10455 error (_("\
10456 Remote replied unexpectedly while setting the inferior's working\n\
10457 directory: %s"),
10458 rs->buf.data ());
10459
10460 }
10461 }
10462
10463 /* In the extended protocol we want to be able to do things like
10464 "run" and have them basically work as expected. So we need
10465 a special create_inferior function. We support changing the
10466 executable file and the command line arguments, but not the
10467 environment. */
10468
10469 void
10470 extended_remote_target::create_inferior (const char *exec_file,
10471 const std::string &args,
10472 char **env, int from_tty)
10473 {
10474 int run_worked;
10475 char *stop_reply;
10476 struct remote_state *rs = get_remote_state ();
10477 const char *remote_exec_file = get_remote_exec_file ();
10478
10479 /* If running asynchronously, register the target file descriptor
10480 with the event loop. */
10481 if (target_can_async_p ())
10482 target_async (1);
10483
10484 /* Disable address space randomization if requested (and supported). */
10485 if (supports_disable_randomization ())
10486 extended_remote_disable_randomization (disable_randomization);
10487
10488 /* If startup-with-shell is on, we inform gdbserver to start the
10489 remote inferior using a shell. */
10490 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10491 {
10492 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10493 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10494 putpkt (rs->buf);
10495 getpkt (&rs->buf, 0);
10496 if (strcmp (rs->buf.data (), "OK") != 0)
10497 error (_("\
10498 Remote replied unexpectedly while setting startup-with-shell: %s"),
10499 rs->buf.data ());
10500 }
10501
10502 extended_remote_environment_support ();
10503
10504 extended_remote_set_inferior_cwd ();
10505
10506 /* Now restart the remote server. */
10507 run_worked = extended_remote_run (args) != -1;
10508 if (!run_worked)
10509 {
10510 /* vRun was not supported. Fail if we need it to do what the
10511 user requested. */
10512 if (remote_exec_file[0])
10513 error (_("Remote target does not support \"set remote exec-file\""));
10514 if (!args.empty ())
10515 error (_("Remote target does not support \"set args\" or run ARGS"));
10516
10517 /* Fall back to "R". */
10518 extended_remote_restart ();
10519 }
10520
10521 /* vRun's success return is a stop reply. */
10522 stop_reply = run_worked ? rs->buf.data () : NULL;
10523 add_current_inferior_and_thread (stop_reply);
10524
10525 /* Get updated offsets, if the stub uses qOffsets. */
10526 get_offsets ();
10527 }
10528 \f
10529
10530 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10531 the list of conditions (in agent expression bytecode format), if any, the
10532 target needs to evaluate. The output is placed into the packet buffer
10533 started from BUF and ended at BUF_END. */
10534
10535 static int
10536 remote_add_target_side_condition (struct gdbarch *gdbarch,
10537 struct bp_target_info *bp_tgt, char *buf,
10538 char *buf_end)
10539 {
10540 if (bp_tgt->conditions.empty ())
10541 return 0;
10542
10543 buf += strlen (buf);
10544 xsnprintf (buf, buf_end - buf, "%s", ";");
10545 buf++;
10546
10547 /* Send conditions to the target. */
10548 for (agent_expr *aexpr : bp_tgt->conditions)
10549 {
10550 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10551 buf += strlen (buf);
10552 for (int i = 0; i < aexpr->len; ++i)
10553 buf = pack_hex_byte (buf, aexpr->buf[i]);
10554 *buf = '\0';
10555 }
10556 return 0;
10557 }
10558
10559 static void
10560 remote_add_target_side_commands (struct gdbarch *gdbarch,
10561 struct bp_target_info *bp_tgt, char *buf)
10562 {
10563 if (bp_tgt->tcommands.empty ())
10564 return;
10565
10566 buf += strlen (buf);
10567
10568 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10569 buf += strlen (buf);
10570
10571 /* Concatenate all the agent expressions that are commands into the
10572 cmds parameter. */
10573 for (agent_expr *aexpr : bp_tgt->tcommands)
10574 {
10575 sprintf (buf, "X%x,", aexpr->len);
10576 buf += strlen (buf);
10577 for (int i = 0; i < aexpr->len; ++i)
10578 buf = pack_hex_byte (buf, aexpr->buf[i]);
10579 *buf = '\0';
10580 }
10581 }
10582
10583 /* Insert a breakpoint. On targets that have software breakpoint
10584 support, we ask the remote target to do the work; on targets
10585 which don't, we insert a traditional memory breakpoint. */
10586
10587 int
10588 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10589 struct bp_target_info *bp_tgt)
10590 {
10591 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10592 If it succeeds, then set the support to PACKET_ENABLE. If it
10593 fails, and the user has explicitly requested the Z support then
10594 report an error, otherwise, mark it disabled and go on. */
10595
10596 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10597 {
10598 CORE_ADDR addr = bp_tgt->reqstd_address;
10599 struct remote_state *rs;
10600 char *p, *endbuf;
10601
10602 /* Make sure the remote is pointing at the right process, if
10603 necessary. */
10604 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10605 set_general_process ();
10606
10607 rs = get_remote_state ();
10608 p = rs->buf.data ();
10609 endbuf = p + get_remote_packet_size ();
10610
10611 *(p++) = 'Z';
10612 *(p++) = '0';
10613 *(p++) = ',';
10614 addr = (ULONGEST) remote_address_masked (addr);
10615 p += hexnumstr (p, addr);
10616 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10617
10618 if (supports_evaluation_of_breakpoint_conditions ())
10619 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10620
10621 if (can_run_breakpoint_commands ())
10622 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10623
10624 putpkt (rs->buf);
10625 getpkt (&rs->buf, 0);
10626
10627 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10628 {
10629 case PACKET_ERROR:
10630 return -1;
10631 case PACKET_OK:
10632 return 0;
10633 case PACKET_UNKNOWN:
10634 break;
10635 }
10636 }
10637
10638 /* If this breakpoint has target-side commands but this stub doesn't
10639 support Z0 packets, throw error. */
10640 if (!bp_tgt->tcommands.empty ())
10641 throw_error (NOT_SUPPORTED_ERROR, _("\
10642 Target doesn't support breakpoints that have target side commands."));
10643
10644 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10645 }
10646
10647 int
10648 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10649 struct bp_target_info *bp_tgt,
10650 enum remove_bp_reason reason)
10651 {
10652 CORE_ADDR addr = bp_tgt->placed_address;
10653 struct remote_state *rs = get_remote_state ();
10654
10655 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10656 {
10657 char *p = rs->buf.data ();
10658 char *endbuf = p + get_remote_packet_size ();
10659
10660 /* Make sure the remote is pointing at the right process, if
10661 necessary. */
10662 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10663 set_general_process ();
10664
10665 *(p++) = 'z';
10666 *(p++) = '0';
10667 *(p++) = ',';
10668
10669 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10670 p += hexnumstr (p, addr);
10671 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10672
10673 putpkt (rs->buf);
10674 getpkt (&rs->buf, 0);
10675
10676 return (rs->buf[0] == 'E');
10677 }
10678
10679 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10680 }
10681
10682 static enum Z_packet_type
10683 watchpoint_to_Z_packet (int type)
10684 {
10685 switch (type)
10686 {
10687 case hw_write:
10688 return Z_PACKET_WRITE_WP;
10689 break;
10690 case hw_read:
10691 return Z_PACKET_READ_WP;
10692 break;
10693 case hw_access:
10694 return Z_PACKET_ACCESS_WP;
10695 break;
10696 default:
10697 internal_error (__FILE__, __LINE__,
10698 _("hw_bp_to_z: bad watchpoint type %d"), type);
10699 }
10700 }
10701
10702 int
10703 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10704 enum target_hw_bp_type type, struct expression *cond)
10705 {
10706 struct remote_state *rs = get_remote_state ();
10707 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10708 char *p;
10709 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10710
10711 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10712 return 1;
10713
10714 /* Make sure the remote is pointing at the right process, if
10715 necessary. */
10716 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10717 set_general_process ();
10718
10719 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10720 p = strchr (rs->buf.data (), '\0');
10721 addr = remote_address_masked (addr);
10722 p += hexnumstr (p, (ULONGEST) addr);
10723 xsnprintf (p, endbuf - p, ",%x", len);
10724
10725 putpkt (rs->buf);
10726 getpkt (&rs->buf, 0);
10727
10728 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10729 {
10730 case PACKET_ERROR:
10731 return -1;
10732 case PACKET_UNKNOWN:
10733 return 1;
10734 case PACKET_OK:
10735 return 0;
10736 }
10737 internal_error (__FILE__, __LINE__,
10738 _("remote_insert_watchpoint: reached end of function"));
10739 }
10740
10741 bool
10742 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10743 CORE_ADDR start, int length)
10744 {
10745 CORE_ADDR diff = remote_address_masked (addr - start);
10746
10747 return diff < length;
10748 }
10749
10750
10751 int
10752 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10753 enum target_hw_bp_type type, struct expression *cond)
10754 {
10755 struct remote_state *rs = get_remote_state ();
10756 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10757 char *p;
10758 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10759
10760 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10761 return -1;
10762
10763 /* Make sure the remote is pointing at the right process, if
10764 necessary. */
10765 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10766 set_general_process ();
10767
10768 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10769 p = strchr (rs->buf.data (), '\0');
10770 addr = remote_address_masked (addr);
10771 p += hexnumstr (p, (ULONGEST) addr);
10772 xsnprintf (p, endbuf - p, ",%x", len);
10773 putpkt (rs->buf);
10774 getpkt (&rs->buf, 0);
10775
10776 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10777 {
10778 case PACKET_ERROR:
10779 case PACKET_UNKNOWN:
10780 return -1;
10781 case PACKET_OK:
10782 return 0;
10783 }
10784 internal_error (__FILE__, __LINE__,
10785 _("remote_remove_watchpoint: reached end of function"));
10786 }
10787
10788
10789 static int remote_hw_watchpoint_limit = -1;
10790 static int remote_hw_watchpoint_length_limit = -1;
10791 static int remote_hw_breakpoint_limit = -1;
10792
10793 int
10794 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10795 {
10796 if (remote_hw_watchpoint_length_limit == 0)
10797 return 0;
10798 else if (remote_hw_watchpoint_length_limit < 0)
10799 return 1;
10800 else if (len <= remote_hw_watchpoint_length_limit)
10801 return 1;
10802 else
10803 return 0;
10804 }
10805
10806 int
10807 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10808 {
10809 if (type == bp_hardware_breakpoint)
10810 {
10811 if (remote_hw_breakpoint_limit == 0)
10812 return 0;
10813 else if (remote_hw_breakpoint_limit < 0)
10814 return 1;
10815 else if (cnt <= remote_hw_breakpoint_limit)
10816 return 1;
10817 }
10818 else
10819 {
10820 if (remote_hw_watchpoint_limit == 0)
10821 return 0;
10822 else if (remote_hw_watchpoint_limit < 0)
10823 return 1;
10824 else if (ot)
10825 return -1;
10826 else if (cnt <= remote_hw_watchpoint_limit)
10827 return 1;
10828 }
10829 return -1;
10830 }
10831
10832 /* The to_stopped_by_sw_breakpoint method of target remote. */
10833
10834 bool
10835 remote_target::stopped_by_sw_breakpoint ()
10836 {
10837 struct thread_info *thread = inferior_thread ();
10838
10839 return (thread->priv != NULL
10840 && (get_remote_thread_info (thread)->stop_reason
10841 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10842 }
10843
10844 /* The to_supports_stopped_by_sw_breakpoint method of target
10845 remote. */
10846
10847 bool
10848 remote_target::supports_stopped_by_sw_breakpoint ()
10849 {
10850 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10851 }
10852
10853 /* The to_stopped_by_hw_breakpoint method of target remote. */
10854
10855 bool
10856 remote_target::stopped_by_hw_breakpoint ()
10857 {
10858 struct thread_info *thread = inferior_thread ();
10859
10860 return (thread->priv != NULL
10861 && (get_remote_thread_info (thread)->stop_reason
10862 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10863 }
10864
10865 /* The to_supports_stopped_by_hw_breakpoint method of target
10866 remote. */
10867
10868 bool
10869 remote_target::supports_stopped_by_hw_breakpoint ()
10870 {
10871 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10872 }
10873
10874 bool
10875 remote_target::stopped_by_watchpoint ()
10876 {
10877 struct thread_info *thread = inferior_thread ();
10878
10879 return (thread->priv != NULL
10880 && (get_remote_thread_info (thread)->stop_reason
10881 == TARGET_STOPPED_BY_WATCHPOINT));
10882 }
10883
10884 bool
10885 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10886 {
10887 struct thread_info *thread = inferior_thread ();
10888
10889 if (thread->priv != NULL
10890 && (get_remote_thread_info (thread)->stop_reason
10891 == TARGET_STOPPED_BY_WATCHPOINT))
10892 {
10893 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10894 return true;
10895 }
10896
10897 return false;
10898 }
10899
10900
10901 int
10902 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10903 struct bp_target_info *bp_tgt)
10904 {
10905 CORE_ADDR addr = bp_tgt->reqstd_address;
10906 struct remote_state *rs;
10907 char *p, *endbuf;
10908 char *message;
10909
10910 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10911 return -1;
10912
10913 /* Make sure the remote is pointing at the right process, if
10914 necessary. */
10915 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10916 set_general_process ();
10917
10918 rs = get_remote_state ();
10919 p = rs->buf.data ();
10920 endbuf = p + get_remote_packet_size ();
10921
10922 *(p++) = 'Z';
10923 *(p++) = '1';
10924 *(p++) = ',';
10925
10926 addr = remote_address_masked (addr);
10927 p += hexnumstr (p, (ULONGEST) addr);
10928 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10929
10930 if (supports_evaluation_of_breakpoint_conditions ())
10931 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10932
10933 if (can_run_breakpoint_commands ())
10934 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10935
10936 putpkt (rs->buf);
10937 getpkt (&rs->buf, 0);
10938
10939 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10940 {
10941 case PACKET_ERROR:
10942 if (rs->buf[1] == '.')
10943 {
10944 message = strchr (&rs->buf[2], '.');
10945 if (message)
10946 error (_("Remote failure reply: %s"), message + 1);
10947 }
10948 return -1;
10949 case PACKET_UNKNOWN:
10950 return -1;
10951 case PACKET_OK:
10952 return 0;
10953 }
10954 internal_error (__FILE__, __LINE__,
10955 _("remote_insert_hw_breakpoint: reached end of function"));
10956 }
10957
10958
10959 int
10960 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10961 struct bp_target_info *bp_tgt)
10962 {
10963 CORE_ADDR addr;
10964 struct remote_state *rs = get_remote_state ();
10965 char *p = rs->buf.data ();
10966 char *endbuf = p + get_remote_packet_size ();
10967
10968 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10969 return -1;
10970
10971 /* Make sure the remote is pointing at the right process, if
10972 necessary. */
10973 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10974 set_general_process ();
10975
10976 *(p++) = 'z';
10977 *(p++) = '1';
10978 *(p++) = ',';
10979
10980 addr = remote_address_masked (bp_tgt->placed_address);
10981 p += hexnumstr (p, (ULONGEST) addr);
10982 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10983
10984 putpkt (rs->buf);
10985 getpkt (&rs->buf, 0);
10986
10987 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10988 {
10989 case PACKET_ERROR:
10990 case PACKET_UNKNOWN:
10991 return -1;
10992 case PACKET_OK:
10993 return 0;
10994 }
10995 internal_error (__FILE__, __LINE__,
10996 _("remote_remove_hw_breakpoint: reached end of function"));
10997 }
10998
10999 /* Verify memory using the "qCRC:" request. */
11000
11001 int
11002 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
11003 {
11004 struct remote_state *rs = get_remote_state ();
11005 unsigned long host_crc, target_crc;
11006 char *tmp;
11007
11008 /* It doesn't make sense to use qCRC if the remote target is
11009 connected but not running. */
11010 if (target_has_execution ()
11011 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
11012 {
11013 enum packet_result result;
11014
11015 /* Make sure the remote is pointing at the right process. */
11016 set_general_process ();
11017
11018 /* FIXME: assumes lma can fit into long. */
11019 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
11020 (long) lma, (long) size);
11021 putpkt (rs->buf);
11022
11023 /* Be clever; compute the host_crc before waiting for target
11024 reply. */
11025 host_crc = xcrc32 (data, size, 0xffffffff);
11026
11027 getpkt (&rs->buf, 0);
11028
11029 result = packet_ok (rs->buf,
11030 &remote_protocol_packets[PACKET_qCRC]);
11031 if (result == PACKET_ERROR)
11032 return -1;
11033 else if (result == PACKET_OK)
11034 {
11035 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
11036 target_crc = target_crc * 16 + fromhex (*tmp);
11037
11038 return (host_crc == target_crc);
11039 }
11040 }
11041
11042 return simple_verify_memory (this, data, lma, size);
11043 }
11044
11045 /* compare-sections command
11046
11047 With no arguments, compares each loadable section in the exec bfd
11048 with the same memory range on the target, and reports mismatches.
11049 Useful for verifying the image on the target against the exec file. */
11050
11051 static void
11052 compare_sections_command (const char *args, int from_tty)
11053 {
11054 asection *s;
11055 const char *sectname;
11056 bfd_size_type size;
11057 bfd_vma lma;
11058 int matched = 0;
11059 int mismatched = 0;
11060 int res;
11061 int read_only = 0;
11062
11063 if (!current_program_space->exec_bfd ())
11064 error (_("command cannot be used without an exec file"));
11065
11066 if (args != NULL && strcmp (args, "-r") == 0)
11067 {
11068 read_only = 1;
11069 args = NULL;
11070 }
11071
11072 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11073 {
11074 if (!(s->flags & SEC_LOAD))
11075 continue; /* Skip non-loadable section. */
11076
11077 if (read_only && (s->flags & SEC_READONLY) == 0)
11078 continue; /* Skip writeable sections */
11079
11080 size = bfd_section_size (s);
11081 if (size == 0)
11082 continue; /* Skip zero-length section. */
11083
11084 sectname = bfd_section_name (s);
11085 if (args && strcmp (args, sectname) != 0)
11086 continue; /* Not the section selected by user. */
11087
11088 matched = 1; /* Do this section. */
11089 lma = s->lma;
11090
11091 gdb::byte_vector sectdata (size);
11092 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11093 sectdata.data (), 0, size);
11094
11095 res = target_verify_memory (sectdata.data (), lma, size);
11096
11097 if (res == -1)
11098 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11099 paddress (target_gdbarch (), lma),
11100 paddress (target_gdbarch (), lma + size));
11101
11102 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11103 paddress (target_gdbarch (), lma),
11104 paddress (target_gdbarch (), lma + size));
11105 if (res)
11106 printf_filtered ("matched.\n");
11107 else
11108 {
11109 printf_filtered ("MIS-MATCHED!\n");
11110 mismatched++;
11111 }
11112 }
11113 if (mismatched > 0)
11114 warning (_("One or more sections of the target image does not match\n\
11115 the loaded file\n"));
11116 if (args && !matched)
11117 printf_filtered (_("No loaded section named '%s'.\n"), args);
11118 }
11119
11120 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11121 into remote target. The number of bytes written to the remote
11122 target is returned, or -1 for error. */
11123
11124 target_xfer_status
11125 remote_target::remote_write_qxfer (const char *object_name,
11126 const char *annex, const gdb_byte *writebuf,
11127 ULONGEST offset, LONGEST len,
11128 ULONGEST *xfered_len,
11129 struct packet_config *packet)
11130 {
11131 int i, buf_len;
11132 ULONGEST n;
11133 struct remote_state *rs = get_remote_state ();
11134 int max_size = get_memory_write_packet_size ();
11135
11136 if (packet_config_support (packet) == PACKET_DISABLE)
11137 return TARGET_XFER_E_IO;
11138
11139 /* Insert header. */
11140 i = snprintf (rs->buf.data (), max_size,
11141 "qXfer:%s:write:%s:%s:",
11142 object_name, annex ? annex : "",
11143 phex_nz (offset, sizeof offset));
11144 max_size -= (i + 1);
11145
11146 /* Escape as much data as fits into rs->buf. */
11147 buf_len = remote_escape_output
11148 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11149
11150 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11151 || getpkt_sane (&rs->buf, 0) < 0
11152 || packet_ok (rs->buf, packet) != PACKET_OK)
11153 return TARGET_XFER_E_IO;
11154
11155 unpack_varlen_hex (rs->buf.data (), &n);
11156
11157 *xfered_len = n;
11158 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11159 }
11160
11161 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11162 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11163 number of bytes read is returned, or 0 for EOF, or -1 for error.
11164 The number of bytes read may be less than LEN without indicating an
11165 EOF. PACKET is checked and updated to indicate whether the remote
11166 target supports this object. */
11167
11168 target_xfer_status
11169 remote_target::remote_read_qxfer (const char *object_name,
11170 const char *annex,
11171 gdb_byte *readbuf, ULONGEST offset,
11172 LONGEST len,
11173 ULONGEST *xfered_len,
11174 struct packet_config *packet)
11175 {
11176 struct remote_state *rs = get_remote_state ();
11177 LONGEST i, n, packet_len;
11178
11179 if (packet_config_support (packet) == PACKET_DISABLE)
11180 return TARGET_XFER_E_IO;
11181
11182 /* Check whether we've cached an end-of-object packet that matches
11183 this request. */
11184 if (rs->finished_object)
11185 {
11186 if (strcmp (object_name, rs->finished_object) == 0
11187 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11188 && offset == rs->finished_offset)
11189 return TARGET_XFER_EOF;
11190
11191
11192 /* Otherwise, we're now reading something different. Discard
11193 the cache. */
11194 xfree (rs->finished_object);
11195 xfree (rs->finished_annex);
11196 rs->finished_object = NULL;
11197 rs->finished_annex = NULL;
11198 }
11199
11200 /* Request only enough to fit in a single packet. The actual data
11201 may not, since we don't know how much of it will need to be escaped;
11202 the target is free to respond with slightly less data. We subtract
11203 five to account for the response type and the protocol frame. */
11204 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11205 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11206 "qXfer:%s:read:%s:%s,%s",
11207 object_name, annex ? annex : "",
11208 phex_nz (offset, sizeof offset),
11209 phex_nz (n, sizeof n));
11210 i = putpkt (rs->buf);
11211 if (i < 0)
11212 return TARGET_XFER_E_IO;
11213
11214 rs->buf[0] = '\0';
11215 packet_len = getpkt_sane (&rs->buf, 0);
11216 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11217 return TARGET_XFER_E_IO;
11218
11219 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11220 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11221
11222 /* 'm' means there is (or at least might be) more data after this
11223 batch. That does not make sense unless there's at least one byte
11224 of data in this reply. */
11225 if (rs->buf[0] == 'm' && packet_len == 1)
11226 error (_("Remote qXfer reply contained no data."));
11227
11228 /* Got some data. */
11229 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11230 packet_len - 1, readbuf, n);
11231
11232 /* 'l' is an EOF marker, possibly including a final block of data,
11233 or possibly empty. If we have the final block of a non-empty
11234 object, record this fact to bypass a subsequent partial read. */
11235 if (rs->buf[0] == 'l' && offset + i > 0)
11236 {
11237 rs->finished_object = xstrdup (object_name);
11238 rs->finished_annex = xstrdup (annex ? annex : "");
11239 rs->finished_offset = offset + i;
11240 }
11241
11242 if (i == 0)
11243 return TARGET_XFER_EOF;
11244 else
11245 {
11246 *xfered_len = i;
11247 return TARGET_XFER_OK;
11248 }
11249 }
11250
11251 enum target_xfer_status
11252 remote_target::xfer_partial (enum target_object object,
11253 const char *annex, gdb_byte *readbuf,
11254 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11255 ULONGEST *xfered_len)
11256 {
11257 struct remote_state *rs;
11258 int i;
11259 char *p2;
11260 char query_type;
11261 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11262
11263 set_remote_traceframe ();
11264 set_general_thread (inferior_ptid);
11265
11266 rs = get_remote_state ();
11267
11268 /* Handle memory using the standard memory routines. */
11269 if (object == TARGET_OBJECT_MEMORY)
11270 {
11271 /* If the remote target is connected but not running, we should
11272 pass this request down to a lower stratum (e.g. the executable
11273 file). */
11274 if (!target_has_execution ())
11275 return TARGET_XFER_EOF;
11276
11277 if (writebuf != NULL)
11278 return remote_write_bytes (offset, writebuf, len, unit_size,
11279 xfered_len);
11280 else
11281 return remote_read_bytes (offset, readbuf, len, unit_size,
11282 xfered_len);
11283 }
11284
11285 /* Handle extra signal info using qxfer packets. */
11286 if (object == TARGET_OBJECT_SIGNAL_INFO)
11287 {
11288 if (readbuf)
11289 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11290 xfered_len, &remote_protocol_packets
11291 [PACKET_qXfer_siginfo_read]);
11292 else
11293 return remote_write_qxfer ("siginfo", annex,
11294 writebuf, offset, len, xfered_len,
11295 &remote_protocol_packets
11296 [PACKET_qXfer_siginfo_write]);
11297 }
11298
11299 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11300 {
11301 if (readbuf)
11302 return remote_read_qxfer ("statictrace", annex,
11303 readbuf, offset, len, xfered_len,
11304 &remote_protocol_packets
11305 [PACKET_qXfer_statictrace_read]);
11306 else
11307 return TARGET_XFER_E_IO;
11308 }
11309
11310 /* Only handle flash writes. */
11311 if (writebuf != NULL)
11312 {
11313 switch (object)
11314 {
11315 case TARGET_OBJECT_FLASH:
11316 return remote_flash_write (offset, len, xfered_len,
11317 writebuf);
11318
11319 default:
11320 return TARGET_XFER_E_IO;
11321 }
11322 }
11323
11324 /* Map pre-existing objects onto letters. DO NOT do this for new
11325 objects!!! Instead specify new query packets. */
11326 switch (object)
11327 {
11328 case TARGET_OBJECT_AVR:
11329 query_type = 'R';
11330 break;
11331
11332 case TARGET_OBJECT_AUXV:
11333 gdb_assert (annex == NULL);
11334 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11335 xfered_len,
11336 &remote_protocol_packets[PACKET_qXfer_auxv]);
11337
11338 case TARGET_OBJECT_AVAILABLE_FEATURES:
11339 return remote_read_qxfer
11340 ("features", annex, readbuf, offset, len, xfered_len,
11341 &remote_protocol_packets[PACKET_qXfer_features]);
11342
11343 case TARGET_OBJECT_LIBRARIES:
11344 return remote_read_qxfer
11345 ("libraries", annex, readbuf, offset, len, xfered_len,
11346 &remote_protocol_packets[PACKET_qXfer_libraries]);
11347
11348 case TARGET_OBJECT_LIBRARIES_SVR4:
11349 return remote_read_qxfer
11350 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11351 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11352
11353 case TARGET_OBJECT_MEMORY_MAP:
11354 gdb_assert (annex == NULL);
11355 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11356 xfered_len,
11357 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11358
11359 case TARGET_OBJECT_OSDATA:
11360 /* Should only get here if we're connected. */
11361 gdb_assert (rs->remote_desc);
11362 return remote_read_qxfer
11363 ("osdata", annex, readbuf, offset, len, xfered_len,
11364 &remote_protocol_packets[PACKET_qXfer_osdata]);
11365
11366 case TARGET_OBJECT_THREADS:
11367 gdb_assert (annex == NULL);
11368 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11369 xfered_len,
11370 &remote_protocol_packets[PACKET_qXfer_threads]);
11371
11372 case TARGET_OBJECT_TRACEFRAME_INFO:
11373 gdb_assert (annex == NULL);
11374 return remote_read_qxfer
11375 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11376 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11377
11378 case TARGET_OBJECT_FDPIC:
11379 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11380 xfered_len,
11381 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11382
11383 case TARGET_OBJECT_OPENVMS_UIB:
11384 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11385 xfered_len,
11386 &remote_protocol_packets[PACKET_qXfer_uib]);
11387
11388 case TARGET_OBJECT_BTRACE:
11389 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11390 xfered_len,
11391 &remote_protocol_packets[PACKET_qXfer_btrace]);
11392
11393 case TARGET_OBJECT_BTRACE_CONF:
11394 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11395 len, xfered_len,
11396 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11397
11398 case TARGET_OBJECT_EXEC_FILE:
11399 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11400 len, xfered_len,
11401 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11402
11403 default:
11404 return TARGET_XFER_E_IO;
11405 }
11406
11407 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11408 large enough let the caller deal with it. */
11409 if (len < get_remote_packet_size ())
11410 return TARGET_XFER_E_IO;
11411 len = get_remote_packet_size ();
11412
11413 /* Except for querying the minimum buffer size, target must be open. */
11414 if (!rs->remote_desc)
11415 error (_("remote query is only available after target open"));
11416
11417 gdb_assert (annex != NULL);
11418 gdb_assert (readbuf != NULL);
11419
11420 p2 = rs->buf.data ();
11421 *p2++ = 'q';
11422 *p2++ = query_type;
11423
11424 /* We used one buffer char for the remote protocol q command and
11425 another for the query type. As the remote protocol encapsulation
11426 uses 4 chars plus one extra in case we are debugging
11427 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11428 string. */
11429 i = 0;
11430 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11431 {
11432 /* Bad caller may have sent forbidden characters. */
11433 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11434 *p2++ = annex[i];
11435 i++;
11436 }
11437 *p2 = '\0';
11438 gdb_assert (annex[i] == '\0');
11439
11440 i = putpkt (rs->buf);
11441 if (i < 0)
11442 return TARGET_XFER_E_IO;
11443
11444 getpkt (&rs->buf, 0);
11445 strcpy ((char *) readbuf, rs->buf.data ());
11446
11447 *xfered_len = strlen ((char *) readbuf);
11448 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11449 }
11450
11451 /* Implementation of to_get_memory_xfer_limit. */
11452
11453 ULONGEST
11454 remote_target::get_memory_xfer_limit ()
11455 {
11456 return get_memory_write_packet_size ();
11457 }
11458
11459 int
11460 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11461 const gdb_byte *pattern, ULONGEST pattern_len,
11462 CORE_ADDR *found_addrp)
11463 {
11464 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11465 struct remote_state *rs = get_remote_state ();
11466 int max_size = get_memory_write_packet_size ();
11467 struct packet_config *packet =
11468 &remote_protocol_packets[PACKET_qSearch_memory];
11469 /* Number of packet bytes used to encode the pattern;
11470 this could be more than PATTERN_LEN due to escape characters. */
11471 int escaped_pattern_len;
11472 /* Amount of pattern that was encodable in the packet. */
11473 int used_pattern_len;
11474 int i;
11475 int found;
11476 ULONGEST found_addr;
11477
11478 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11479 {
11480 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11481 == len);
11482 };
11483
11484 /* Don't go to the target if we don't have to. This is done before
11485 checking packet_config_support to avoid the possibility that a
11486 success for this edge case means the facility works in
11487 general. */
11488 if (pattern_len > search_space_len)
11489 return 0;
11490 if (pattern_len == 0)
11491 {
11492 *found_addrp = start_addr;
11493 return 1;
11494 }
11495
11496 /* If we already know the packet isn't supported, fall back to the simple
11497 way of searching memory. */
11498
11499 if (packet_config_support (packet) == PACKET_DISABLE)
11500 {
11501 /* Target doesn't provided special support, fall back and use the
11502 standard support (copy memory and do the search here). */
11503 return simple_search_memory (read_memory, start_addr, search_space_len,
11504 pattern, pattern_len, found_addrp);
11505 }
11506
11507 /* Make sure the remote is pointing at the right process. */
11508 set_general_process ();
11509
11510 /* Insert header. */
11511 i = snprintf (rs->buf.data (), max_size,
11512 "qSearch:memory:%s;%s;",
11513 phex_nz (start_addr, addr_size),
11514 phex_nz (search_space_len, sizeof (search_space_len)));
11515 max_size -= (i + 1);
11516
11517 /* Escape as much data as fits into rs->buf. */
11518 escaped_pattern_len =
11519 remote_escape_output (pattern, pattern_len, 1,
11520 (gdb_byte *) rs->buf.data () + i,
11521 &used_pattern_len, max_size);
11522
11523 /* Bail if the pattern is too large. */
11524 if (used_pattern_len != pattern_len)
11525 error (_("Pattern is too large to transmit to remote target."));
11526
11527 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11528 || getpkt_sane (&rs->buf, 0) < 0
11529 || packet_ok (rs->buf, packet) != PACKET_OK)
11530 {
11531 /* The request may not have worked because the command is not
11532 supported. If so, fall back to the simple way. */
11533 if (packet_config_support (packet) == PACKET_DISABLE)
11534 {
11535 return simple_search_memory (read_memory, start_addr, search_space_len,
11536 pattern, pattern_len, found_addrp);
11537 }
11538 return -1;
11539 }
11540
11541 if (rs->buf[0] == '0')
11542 found = 0;
11543 else if (rs->buf[0] == '1')
11544 {
11545 found = 1;
11546 if (rs->buf[1] != ',')
11547 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11548 unpack_varlen_hex (&rs->buf[2], &found_addr);
11549 *found_addrp = found_addr;
11550 }
11551 else
11552 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11553
11554 return found;
11555 }
11556
11557 void
11558 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11559 {
11560 struct remote_state *rs = get_remote_state ();
11561 char *p = rs->buf.data ();
11562
11563 if (!rs->remote_desc)
11564 error (_("remote rcmd is only available after target open"));
11565
11566 /* Send a NULL command across as an empty command. */
11567 if (command == NULL)
11568 command = "";
11569
11570 /* The query prefix. */
11571 strcpy (rs->buf.data (), "qRcmd,");
11572 p = strchr (rs->buf.data (), '\0');
11573
11574 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11575 > get_remote_packet_size ())
11576 error (_("\"monitor\" command ``%s'' is too long."), command);
11577
11578 /* Encode the actual command. */
11579 bin2hex ((const gdb_byte *) command, p, strlen (command));
11580
11581 if (putpkt (rs->buf) < 0)
11582 error (_("Communication problem with target."));
11583
11584 /* get/display the response */
11585 while (1)
11586 {
11587 char *buf;
11588
11589 /* XXX - see also remote_get_noisy_reply(). */
11590 QUIT; /* Allow user to bail out with ^C. */
11591 rs->buf[0] = '\0';
11592 if (getpkt_sane (&rs->buf, 0) == -1)
11593 {
11594 /* Timeout. Continue to (try to) read responses.
11595 This is better than stopping with an error, assuming the stub
11596 is still executing the (long) monitor command.
11597 If needed, the user can interrupt gdb using C-c, obtaining
11598 an effect similar to stop on timeout. */
11599 continue;
11600 }
11601 buf = rs->buf.data ();
11602 if (buf[0] == '\0')
11603 error (_("Target does not support this command."));
11604 if (buf[0] == 'O' && buf[1] != 'K')
11605 {
11606 remote_console_output (buf + 1); /* 'O' message from stub. */
11607 continue;
11608 }
11609 if (strcmp (buf, "OK") == 0)
11610 break;
11611 if (strlen (buf) == 3 && buf[0] == 'E'
11612 && isdigit (buf[1]) && isdigit (buf[2]))
11613 {
11614 error (_("Protocol error with Rcmd"));
11615 }
11616 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11617 {
11618 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11619
11620 fputc_unfiltered (c, outbuf);
11621 }
11622 break;
11623 }
11624 }
11625
11626 std::vector<mem_region>
11627 remote_target::memory_map ()
11628 {
11629 std::vector<mem_region> result;
11630 gdb::optional<gdb::char_vector> text
11631 = target_read_stralloc (current_inferior ()->top_target (),
11632 TARGET_OBJECT_MEMORY_MAP, NULL);
11633
11634 if (text)
11635 result = parse_memory_map (text->data ());
11636
11637 return result;
11638 }
11639
11640 /* Set of callbacks used to implement the 'maint packet' command. */
11641
11642 struct cli_packet_command_callbacks : public send_remote_packet_callbacks
11643 {
11644 /* Called before the packet is sent. BUF is the packet content before
11645 the protocol specific prefix, suffix, and escaping is added. */
11646
11647 void sending (gdb::array_view<const char> &buf) override
11648 {
11649 puts_filtered ("sending: ");
11650 print_packet (buf);
11651 puts_filtered ("\n");
11652 }
11653
11654 /* Called with BUF, the reply from the remote target. */
11655
11656 void received (gdb::array_view<const char> &buf) override
11657 {
11658 puts_filtered ("received: \"");
11659 print_packet (buf);
11660 puts_filtered ("\"\n");
11661 }
11662
11663 private:
11664
11665 /* Print BUF o gdb_stdout. Any non-printable bytes in BUF are printed as
11666 '\x??' with '??' replaced by the hexadecimal value of the byte. */
11667
11668 static void
11669 print_packet (gdb::array_view<const char> &buf)
11670 {
11671 string_file stb;
11672
11673 for (int i = 0; i < buf.size (); ++i)
11674 {
11675 gdb_byte c = buf[i];
11676 if (isprint (c))
11677 fputc_unfiltered (c, &stb);
11678 else
11679 fprintf_unfiltered (&stb, "\\x%02x", (unsigned char) c);
11680 }
11681
11682 puts_filtered (stb.string ().c_str ());
11683 }
11684 };
11685
11686 /* See remote.h. */
11687
11688 void
11689 send_remote_packet (gdb::array_view<const char> &buf,
11690 send_remote_packet_callbacks *callbacks)
11691 {
11692 if (buf.size () == 0 || buf.data ()[0] == '\0')
11693 error (_("a remote packet must not be empty"));
11694
11695 remote_target *remote = get_current_remote_target ();
11696 if (remote == nullptr)
11697 error (_("packets can only be sent to a remote target"));
11698
11699 callbacks->sending (buf);
11700
11701 remote->putpkt_binary (buf.data (), buf.size ());
11702 remote_state *rs = remote->get_remote_state ();
11703 int bytes = remote->getpkt_sane (&rs->buf, 0);
11704
11705 if (bytes < 0)
11706 error (_("error while fetching packet from remote target"));
11707
11708 gdb::array_view<const char> view (&rs->buf[0], bytes);
11709 callbacks->received (view);
11710 }
11711
11712 /* Entry point for the 'maint packet' command. */
11713
11714 static void
11715 cli_packet_command (const char *args, int from_tty)
11716 {
11717 cli_packet_command_callbacks cb;
11718 gdb::array_view<const char> view
11719 = gdb::make_array_view (args, args == nullptr ? 0 : strlen (args));
11720 send_remote_packet (view, &cb);
11721 }
11722
11723 #if 0
11724 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11725
11726 static void display_thread_info (struct gdb_ext_thread_info *info);
11727
11728 static void threadset_test_cmd (char *cmd, int tty);
11729
11730 static void threadalive_test (char *cmd, int tty);
11731
11732 static void threadlist_test_cmd (char *cmd, int tty);
11733
11734 int get_and_display_threadinfo (threadref *ref);
11735
11736 static void threadinfo_test_cmd (char *cmd, int tty);
11737
11738 static int thread_display_step (threadref *ref, void *context);
11739
11740 static void threadlist_update_test_cmd (char *cmd, int tty);
11741
11742 static void init_remote_threadtests (void);
11743
11744 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11745
11746 static void
11747 threadset_test_cmd (const char *cmd, int tty)
11748 {
11749 int sample_thread = SAMPLE_THREAD;
11750
11751 printf_filtered (_("Remote threadset test\n"));
11752 set_general_thread (sample_thread);
11753 }
11754
11755
11756 static void
11757 threadalive_test (const char *cmd, int tty)
11758 {
11759 int sample_thread = SAMPLE_THREAD;
11760 int pid = inferior_ptid.pid ();
11761 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11762
11763 if (remote_thread_alive (ptid))
11764 printf_filtered ("PASS: Thread alive test\n");
11765 else
11766 printf_filtered ("FAIL: Thread alive test\n");
11767 }
11768
11769 void output_threadid (char *title, threadref *ref);
11770
11771 void
11772 output_threadid (char *title, threadref *ref)
11773 {
11774 char hexid[20];
11775
11776 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11777 hexid[16] = 0;
11778 printf_filtered ("%s %s\n", title, (&hexid[0]));
11779 }
11780
11781 static void
11782 threadlist_test_cmd (const char *cmd, int tty)
11783 {
11784 int startflag = 1;
11785 threadref nextthread;
11786 int done, result_count;
11787 threadref threadlist[3];
11788
11789 printf_filtered ("Remote Threadlist test\n");
11790 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11791 &result_count, &threadlist[0]))
11792 printf_filtered ("FAIL: threadlist test\n");
11793 else
11794 {
11795 threadref *scan = threadlist;
11796 threadref *limit = scan + result_count;
11797
11798 while (scan < limit)
11799 output_threadid (" thread ", scan++);
11800 }
11801 }
11802
11803 void
11804 display_thread_info (struct gdb_ext_thread_info *info)
11805 {
11806 output_threadid ("Threadid: ", &info->threadid);
11807 printf_filtered ("Name: %s\n ", info->shortname);
11808 printf_filtered ("State: %s\n", info->display);
11809 printf_filtered ("other: %s\n\n", info->more_display);
11810 }
11811
11812 int
11813 get_and_display_threadinfo (threadref *ref)
11814 {
11815 int result;
11816 int set;
11817 struct gdb_ext_thread_info threadinfo;
11818
11819 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11820 | TAG_MOREDISPLAY | TAG_DISPLAY;
11821 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11822 display_thread_info (&threadinfo);
11823 return result;
11824 }
11825
11826 static void
11827 threadinfo_test_cmd (const char *cmd, int tty)
11828 {
11829 int athread = SAMPLE_THREAD;
11830 threadref thread;
11831 int set;
11832
11833 int_to_threadref (&thread, athread);
11834 printf_filtered ("Remote Threadinfo test\n");
11835 if (!get_and_display_threadinfo (&thread))
11836 printf_filtered ("FAIL cannot get thread info\n");
11837 }
11838
11839 static int
11840 thread_display_step (threadref *ref, void *context)
11841 {
11842 /* output_threadid(" threadstep ",ref); *//* simple test */
11843 return get_and_display_threadinfo (ref);
11844 }
11845
11846 static void
11847 threadlist_update_test_cmd (const char *cmd, int tty)
11848 {
11849 printf_filtered ("Remote Threadlist update test\n");
11850 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11851 }
11852
11853 static void
11854 init_remote_threadtests (void)
11855 {
11856 add_com ("tlist", class_obscure, threadlist_test_cmd,
11857 _("Fetch and print the remote list of "
11858 "thread identifiers, one pkt only."));
11859 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11860 _("Fetch and display info about one thread."));
11861 add_com ("tset", class_obscure, threadset_test_cmd,
11862 _("Test setting to a different thread."));
11863 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11864 _("Iterate through updating all remote thread info."));
11865 add_com ("talive", class_obscure, threadalive_test,
11866 _("Remote thread alive test."));
11867 }
11868
11869 #endif /* 0 */
11870
11871 /* Convert a thread ID to a string. */
11872
11873 std::string
11874 remote_target::pid_to_str (ptid_t ptid)
11875 {
11876 struct remote_state *rs = get_remote_state ();
11877
11878 if (ptid == null_ptid)
11879 return normal_pid_to_str (ptid);
11880 else if (ptid.is_pid ())
11881 {
11882 /* Printing an inferior target id. */
11883
11884 /* When multi-process extensions are off, there's no way in the
11885 remote protocol to know the remote process id, if there's any
11886 at all. There's one exception --- when we're connected with
11887 target extended-remote, and we manually attached to a process
11888 with "attach PID". We don't record anywhere a flag that
11889 allows us to distinguish that case from the case of
11890 connecting with extended-remote and the stub already being
11891 attached to a process, and reporting yes to qAttached, hence
11892 no smart special casing here. */
11893 if (!remote_multi_process_p (rs))
11894 return "Remote target";
11895
11896 return normal_pid_to_str (ptid);
11897 }
11898 else
11899 {
11900 if (magic_null_ptid == ptid)
11901 return "Thread <main>";
11902 else if (remote_multi_process_p (rs))
11903 if (ptid.lwp () == 0)
11904 return normal_pid_to_str (ptid);
11905 else
11906 return string_printf ("Thread %d.%ld",
11907 ptid.pid (), ptid.lwp ());
11908 else
11909 return string_printf ("Thread %ld", ptid.lwp ());
11910 }
11911 }
11912
11913 /* Get the address of the thread local variable in OBJFILE which is
11914 stored at OFFSET within the thread local storage for thread PTID. */
11915
11916 CORE_ADDR
11917 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11918 CORE_ADDR offset)
11919 {
11920 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11921 {
11922 struct remote_state *rs = get_remote_state ();
11923 char *p = rs->buf.data ();
11924 char *endp = p + get_remote_packet_size ();
11925 enum packet_result result;
11926
11927 strcpy (p, "qGetTLSAddr:");
11928 p += strlen (p);
11929 p = write_ptid (p, endp, ptid);
11930 *p++ = ',';
11931 p += hexnumstr (p, offset);
11932 *p++ = ',';
11933 p += hexnumstr (p, lm);
11934 *p++ = '\0';
11935
11936 putpkt (rs->buf);
11937 getpkt (&rs->buf, 0);
11938 result = packet_ok (rs->buf,
11939 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11940 if (result == PACKET_OK)
11941 {
11942 ULONGEST addr;
11943
11944 unpack_varlen_hex (rs->buf.data (), &addr);
11945 return addr;
11946 }
11947 else if (result == PACKET_UNKNOWN)
11948 throw_error (TLS_GENERIC_ERROR,
11949 _("Remote target doesn't support qGetTLSAddr packet"));
11950 else
11951 throw_error (TLS_GENERIC_ERROR,
11952 _("Remote target failed to process qGetTLSAddr request"));
11953 }
11954 else
11955 throw_error (TLS_GENERIC_ERROR,
11956 _("TLS not supported or disabled on this target"));
11957 /* Not reached. */
11958 return 0;
11959 }
11960
11961 /* Provide thread local base, i.e. Thread Information Block address.
11962 Returns 1 if ptid is found and thread_local_base is non zero. */
11963
11964 bool
11965 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11966 {
11967 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11968 {
11969 struct remote_state *rs = get_remote_state ();
11970 char *p = rs->buf.data ();
11971 char *endp = p + get_remote_packet_size ();
11972 enum packet_result result;
11973
11974 strcpy (p, "qGetTIBAddr:");
11975 p += strlen (p);
11976 p = write_ptid (p, endp, ptid);
11977 *p++ = '\0';
11978
11979 putpkt (rs->buf);
11980 getpkt (&rs->buf, 0);
11981 result = packet_ok (rs->buf,
11982 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11983 if (result == PACKET_OK)
11984 {
11985 ULONGEST val;
11986 unpack_varlen_hex (rs->buf.data (), &val);
11987 if (addr)
11988 *addr = (CORE_ADDR) val;
11989 return true;
11990 }
11991 else if (result == PACKET_UNKNOWN)
11992 error (_("Remote target doesn't support qGetTIBAddr packet"));
11993 else
11994 error (_("Remote target failed to process qGetTIBAddr request"));
11995 }
11996 else
11997 error (_("qGetTIBAddr not supported or disabled on this target"));
11998 /* Not reached. */
11999 return false;
12000 }
12001
12002 /* Support for inferring a target description based on the current
12003 architecture and the size of a 'g' packet. While the 'g' packet
12004 can have any size (since optional registers can be left off the
12005 end), some sizes are easily recognizable given knowledge of the
12006 approximate architecture. */
12007
12008 struct remote_g_packet_guess
12009 {
12010 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
12011 : bytes (bytes_),
12012 tdesc (tdesc_)
12013 {
12014 }
12015
12016 int bytes;
12017 const struct target_desc *tdesc;
12018 };
12019
12020 struct remote_g_packet_data : public allocate_on_obstack
12021 {
12022 std::vector<remote_g_packet_guess> guesses;
12023 };
12024
12025 static struct gdbarch_data *remote_g_packet_data_handle;
12026
12027 static void *
12028 remote_g_packet_data_init (struct obstack *obstack)
12029 {
12030 return new (obstack) remote_g_packet_data;
12031 }
12032
12033 void
12034 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
12035 const struct target_desc *tdesc)
12036 {
12037 struct remote_g_packet_data *data
12038 = ((struct remote_g_packet_data *)
12039 gdbarch_data (gdbarch, remote_g_packet_data_handle));
12040
12041 gdb_assert (tdesc != NULL);
12042
12043 for (const remote_g_packet_guess &guess : data->guesses)
12044 if (guess.bytes == bytes)
12045 internal_error (__FILE__, __LINE__,
12046 _("Duplicate g packet description added for size %d"),
12047 bytes);
12048
12049 data->guesses.emplace_back (bytes, tdesc);
12050 }
12051
12052 /* Return true if remote_read_description would do anything on this target
12053 and architecture, false otherwise. */
12054
12055 static bool
12056 remote_read_description_p (struct target_ops *target)
12057 {
12058 struct remote_g_packet_data *data
12059 = ((struct remote_g_packet_data *)
12060 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
12061
12062 return !data->guesses.empty ();
12063 }
12064
12065 const struct target_desc *
12066 remote_target::read_description ()
12067 {
12068 struct remote_g_packet_data *data
12069 = ((struct remote_g_packet_data *)
12070 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
12071
12072 /* Do not try this during initial connection, when we do not know
12073 whether there is a running but stopped thread. */
12074 if (!target_has_execution () || inferior_ptid == null_ptid)
12075 return beneath ()->read_description ();
12076
12077 if (!data->guesses.empty ())
12078 {
12079 int bytes = send_g_packet ();
12080
12081 for (const remote_g_packet_guess &guess : data->guesses)
12082 if (guess.bytes == bytes)
12083 return guess.tdesc;
12084
12085 /* We discard the g packet. A minor optimization would be to
12086 hold on to it, and fill the register cache once we have selected
12087 an architecture, but it's too tricky to do safely. */
12088 }
12089
12090 return beneath ()->read_description ();
12091 }
12092
12093 /* Remote file transfer support. This is host-initiated I/O, not
12094 target-initiated; for target-initiated, see remote-fileio.c. */
12095
12096 /* If *LEFT is at least the length of STRING, copy STRING to
12097 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12098 decrease *LEFT. Otherwise raise an error. */
12099
12100 static void
12101 remote_buffer_add_string (char **buffer, int *left, const char *string)
12102 {
12103 int len = strlen (string);
12104
12105 if (len > *left)
12106 error (_("Packet too long for target."));
12107
12108 memcpy (*buffer, string, len);
12109 *buffer += len;
12110 *left -= len;
12111
12112 /* NUL-terminate the buffer as a convenience, if there is
12113 room. */
12114 if (*left)
12115 **buffer = '\0';
12116 }
12117
12118 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12119 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12120 decrease *LEFT. Otherwise raise an error. */
12121
12122 static void
12123 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12124 int len)
12125 {
12126 if (2 * len > *left)
12127 error (_("Packet too long for target."));
12128
12129 bin2hex (bytes, *buffer, len);
12130 *buffer += 2 * len;
12131 *left -= 2 * len;
12132
12133 /* NUL-terminate the buffer as a convenience, if there is
12134 room. */
12135 if (*left)
12136 **buffer = '\0';
12137 }
12138
12139 /* If *LEFT is large enough, convert VALUE to hex and add it to
12140 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12141 decrease *LEFT. Otherwise raise an error. */
12142
12143 static void
12144 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12145 {
12146 int len = hexnumlen (value);
12147
12148 if (len > *left)
12149 error (_("Packet too long for target."));
12150
12151 hexnumstr (*buffer, value);
12152 *buffer += len;
12153 *left -= len;
12154
12155 /* NUL-terminate the buffer as a convenience, if there is
12156 room. */
12157 if (*left)
12158 **buffer = '\0';
12159 }
12160
12161 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12162 value, *REMOTE_ERRNO to the remote error number or zero if none
12163 was included, and *ATTACHMENT to point to the start of the annex
12164 if any. The length of the packet isn't needed here; there may
12165 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12166
12167 Return 0 if the packet could be parsed, -1 if it could not. If
12168 -1 is returned, the other variables may not be initialized. */
12169
12170 static int
12171 remote_hostio_parse_result (const char *buffer, int *retcode,
12172 int *remote_errno, const char **attachment)
12173 {
12174 char *p, *p2;
12175
12176 *remote_errno = 0;
12177 *attachment = NULL;
12178
12179 if (buffer[0] != 'F')
12180 return -1;
12181
12182 errno = 0;
12183 *retcode = strtol (&buffer[1], &p, 16);
12184 if (errno != 0 || p == &buffer[1])
12185 return -1;
12186
12187 /* Check for ",errno". */
12188 if (*p == ',')
12189 {
12190 errno = 0;
12191 *remote_errno = strtol (p + 1, &p2, 16);
12192 if (errno != 0 || p + 1 == p2)
12193 return -1;
12194 p = p2;
12195 }
12196
12197 /* Check for ";attachment". If there is no attachment, the
12198 packet should end here. */
12199 if (*p == ';')
12200 {
12201 *attachment = p + 1;
12202 return 0;
12203 }
12204 else if (*p == '\0')
12205 return 0;
12206 else
12207 return -1;
12208 }
12209
12210 /* Send a prepared I/O packet to the target and read its response.
12211 The prepared packet is in the global RS->BUF before this function
12212 is called, and the answer is there when we return.
12213
12214 COMMAND_BYTES is the length of the request to send, which may include
12215 binary data. WHICH_PACKET is the packet configuration to check
12216 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12217 is set to the error number and -1 is returned. Otherwise the value
12218 returned by the function is returned.
12219
12220 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12221 attachment is expected; an error will be reported if there's a
12222 mismatch. If one is found, *ATTACHMENT will be set to point into
12223 the packet buffer and *ATTACHMENT_LEN will be set to the
12224 attachment's length. */
12225
12226 int
12227 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12228 int *remote_errno, const char **attachment,
12229 int *attachment_len)
12230 {
12231 struct remote_state *rs = get_remote_state ();
12232 int ret, bytes_read;
12233 const char *attachment_tmp;
12234
12235 if (packet_support (which_packet) == PACKET_DISABLE)
12236 {
12237 *remote_errno = FILEIO_ENOSYS;
12238 return -1;
12239 }
12240
12241 putpkt_binary (rs->buf.data (), command_bytes);
12242 bytes_read = getpkt_sane (&rs->buf, 0);
12243
12244 /* If it timed out, something is wrong. Don't try to parse the
12245 buffer. */
12246 if (bytes_read < 0)
12247 {
12248 *remote_errno = FILEIO_EINVAL;
12249 return -1;
12250 }
12251
12252 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12253 {
12254 case PACKET_ERROR:
12255 *remote_errno = FILEIO_EINVAL;
12256 return -1;
12257 case PACKET_UNKNOWN:
12258 *remote_errno = FILEIO_ENOSYS;
12259 return -1;
12260 case PACKET_OK:
12261 break;
12262 }
12263
12264 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12265 &attachment_tmp))
12266 {
12267 *remote_errno = FILEIO_EINVAL;
12268 return -1;
12269 }
12270
12271 /* Make sure we saw an attachment if and only if we expected one. */
12272 if ((attachment_tmp == NULL && attachment != NULL)
12273 || (attachment_tmp != NULL && attachment == NULL))
12274 {
12275 *remote_errno = FILEIO_EINVAL;
12276 return -1;
12277 }
12278
12279 /* If an attachment was found, it must point into the packet buffer;
12280 work out how many bytes there were. */
12281 if (attachment_tmp != NULL)
12282 {
12283 *attachment = attachment_tmp;
12284 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12285 }
12286
12287 return ret;
12288 }
12289
12290 /* See declaration.h. */
12291
12292 void
12293 readahead_cache::invalidate ()
12294 {
12295 this->fd = -1;
12296 }
12297
12298 /* See declaration.h. */
12299
12300 void
12301 readahead_cache::invalidate_fd (int fd)
12302 {
12303 if (this->fd == fd)
12304 this->fd = -1;
12305 }
12306
12307 /* Set the filesystem remote_hostio functions that take FILENAME
12308 arguments will use. Return 0 on success, or -1 if an error
12309 occurs (and set *REMOTE_ERRNO). */
12310
12311 int
12312 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12313 int *remote_errno)
12314 {
12315 struct remote_state *rs = get_remote_state ();
12316 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12317 char *p = rs->buf.data ();
12318 int left = get_remote_packet_size () - 1;
12319 char arg[9];
12320 int ret;
12321
12322 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12323 return 0;
12324
12325 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12326 return 0;
12327
12328 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12329
12330 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12331 remote_buffer_add_string (&p, &left, arg);
12332
12333 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12334 remote_errno, NULL, NULL);
12335
12336 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12337 return 0;
12338
12339 if (ret == 0)
12340 rs->fs_pid = required_pid;
12341
12342 return ret;
12343 }
12344
12345 /* Implementation of to_fileio_open. */
12346
12347 int
12348 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12349 int flags, int mode, int warn_if_slow,
12350 int *remote_errno)
12351 {
12352 struct remote_state *rs = get_remote_state ();
12353 char *p = rs->buf.data ();
12354 int left = get_remote_packet_size () - 1;
12355
12356 if (warn_if_slow)
12357 {
12358 static int warning_issued = 0;
12359
12360 printf_unfiltered (_("Reading %s from remote target...\n"),
12361 filename);
12362
12363 if (!warning_issued)
12364 {
12365 warning (_("File transfers from remote targets can be slow."
12366 " Use \"set sysroot\" to access files locally"
12367 " instead."));
12368 warning_issued = 1;
12369 }
12370 }
12371
12372 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12373 return -1;
12374
12375 remote_buffer_add_string (&p, &left, "vFile:open:");
12376
12377 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12378 strlen (filename));
12379 remote_buffer_add_string (&p, &left, ",");
12380
12381 remote_buffer_add_int (&p, &left, flags);
12382 remote_buffer_add_string (&p, &left, ",");
12383
12384 remote_buffer_add_int (&p, &left, mode);
12385
12386 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12387 remote_errno, NULL, NULL);
12388 }
12389
12390 int
12391 remote_target::fileio_open (struct inferior *inf, const char *filename,
12392 int flags, int mode, int warn_if_slow,
12393 int *remote_errno)
12394 {
12395 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12396 remote_errno);
12397 }
12398
12399 /* Implementation of to_fileio_pwrite. */
12400
12401 int
12402 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12403 ULONGEST offset, int *remote_errno)
12404 {
12405 struct remote_state *rs = get_remote_state ();
12406 char *p = rs->buf.data ();
12407 int left = get_remote_packet_size ();
12408 int out_len;
12409
12410 rs->readahead_cache.invalidate_fd (fd);
12411
12412 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12413
12414 remote_buffer_add_int (&p, &left, fd);
12415 remote_buffer_add_string (&p, &left, ",");
12416
12417 remote_buffer_add_int (&p, &left, offset);
12418 remote_buffer_add_string (&p, &left, ",");
12419
12420 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12421 (get_remote_packet_size ()
12422 - (p - rs->buf.data ())));
12423
12424 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12425 remote_errno, NULL, NULL);
12426 }
12427
12428 int
12429 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12430 ULONGEST offset, int *remote_errno)
12431 {
12432 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12433 }
12434
12435 /* Helper for the implementation of to_fileio_pread. Read the file
12436 from the remote side with vFile:pread. */
12437
12438 int
12439 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12440 ULONGEST offset, int *remote_errno)
12441 {
12442 struct remote_state *rs = get_remote_state ();
12443 char *p = rs->buf.data ();
12444 const char *attachment;
12445 int left = get_remote_packet_size ();
12446 int ret, attachment_len;
12447 int read_len;
12448
12449 remote_buffer_add_string (&p, &left, "vFile:pread:");
12450
12451 remote_buffer_add_int (&p, &left, fd);
12452 remote_buffer_add_string (&p, &left, ",");
12453
12454 remote_buffer_add_int (&p, &left, len);
12455 remote_buffer_add_string (&p, &left, ",");
12456
12457 remote_buffer_add_int (&p, &left, offset);
12458
12459 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12460 remote_errno, &attachment,
12461 &attachment_len);
12462
12463 if (ret < 0)
12464 return ret;
12465
12466 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12467 read_buf, len);
12468 if (read_len != ret)
12469 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12470
12471 return ret;
12472 }
12473
12474 /* See declaration.h. */
12475
12476 int
12477 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12478 ULONGEST offset)
12479 {
12480 if (this->fd == fd
12481 && this->offset <= offset
12482 && offset < this->offset + this->bufsize)
12483 {
12484 ULONGEST max = this->offset + this->bufsize;
12485
12486 if (offset + len > max)
12487 len = max - offset;
12488
12489 memcpy (read_buf, this->buf + offset - this->offset, len);
12490 return len;
12491 }
12492
12493 return 0;
12494 }
12495
12496 /* Implementation of to_fileio_pread. */
12497
12498 int
12499 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12500 ULONGEST offset, int *remote_errno)
12501 {
12502 int ret;
12503 struct remote_state *rs = get_remote_state ();
12504 readahead_cache *cache = &rs->readahead_cache;
12505
12506 ret = cache->pread (fd, read_buf, len, offset);
12507 if (ret > 0)
12508 {
12509 cache->hit_count++;
12510
12511 remote_debug_printf ("readahead cache hit %s",
12512 pulongest (cache->hit_count));
12513 return ret;
12514 }
12515
12516 cache->miss_count++;
12517
12518 remote_debug_printf ("readahead cache miss %s",
12519 pulongest (cache->miss_count));
12520
12521 cache->fd = fd;
12522 cache->offset = offset;
12523 cache->bufsize = get_remote_packet_size ();
12524 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12525
12526 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12527 cache->offset, remote_errno);
12528 if (ret <= 0)
12529 {
12530 cache->invalidate_fd (fd);
12531 return ret;
12532 }
12533
12534 cache->bufsize = ret;
12535 return cache->pread (fd, read_buf, len, offset);
12536 }
12537
12538 int
12539 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12540 ULONGEST offset, int *remote_errno)
12541 {
12542 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12543 }
12544
12545 /* Implementation of to_fileio_close. */
12546
12547 int
12548 remote_target::remote_hostio_close (int fd, int *remote_errno)
12549 {
12550 struct remote_state *rs = get_remote_state ();
12551 char *p = rs->buf.data ();
12552 int left = get_remote_packet_size () - 1;
12553
12554 rs->readahead_cache.invalidate_fd (fd);
12555
12556 remote_buffer_add_string (&p, &left, "vFile:close:");
12557
12558 remote_buffer_add_int (&p, &left, fd);
12559
12560 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12561 remote_errno, NULL, NULL);
12562 }
12563
12564 int
12565 remote_target::fileio_close (int fd, int *remote_errno)
12566 {
12567 return remote_hostio_close (fd, remote_errno);
12568 }
12569
12570 /* Implementation of to_fileio_unlink. */
12571
12572 int
12573 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12574 int *remote_errno)
12575 {
12576 struct remote_state *rs = get_remote_state ();
12577 char *p = rs->buf.data ();
12578 int left = get_remote_packet_size () - 1;
12579
12580 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12581 return -1;
12582
12583 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12584
12585 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12586 strlen (filename));
12587
12588 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12589 remote_errno, NULL, NULL);
12590 }
12591
12592 int
12593 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12594 int *remote_errno)
12595 {
12596 return remote_hostio_unlink (inf, filename, remote_errno);
12597 }
12598
12599 /* Implementation of to_fileio_readlink. */
12600
12601 gdb::optional<std::string>
12602 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12603 int *remote_errno)
12604 {
12605 struct remote_state *rs = get_remote_state ();
12606 char *p = rs->buf.data ();
12607 const char *attachment;
12608 int left = get_remote_packet_size ();
12609 int len, attachment_len;
12610 int read_len;
12611
12612 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12613 return {};
12614
12615 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12616
12617 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12618 strlen (filename));
12619
12620 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12621 remote_errno, &attachment,
12622 &attachment_len);
12623
12624 if (len < 0)
12625 return {};
12626
12627 std::string ret (len, '\0');
12628
12629 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12630 (gdb_byte *) &ret[0], len);
12631 if (read_len != len)
12632 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12633
12634 return ret;
12635 }
12636
12637 /* Implementation of to_fileio_fstat. */
12638
12639 int
12640 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12641 {
12642 struct remote_state *rs = get_remote_state ();
12643 char *p = rs->buf.data ();
12644 int left = get_remote_packet_size ();
12645 int attachment_len, ret;
12646 const char *attachment;
12647 struct fio_stat fst;
12648 int read_len;
12649
12650 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12651
12652 remote_buffer_add_int (&p, &left, fd);
12653
12654 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12655 remote_errno, &attachment,
12656 &attachment_len);
12657 if (ret < 0)
12658 {
12659 if (*remote_errno != FILEIO_ENOSYS)
12660 return ret;
12661
12662 /* Strictly we should return -1, ENOSYS here, but when
12663 "set sysroot remote:" was implemented in August 2008
12664 BFD's need for a stat function was sidestepped with
12665 this hack. This was not remedied until March 2015
12666 so we retain the previous behavior to avoid breaking
12667 compatibility.
12668
12669 Note that the memset is a March 2015 addition; older
12670 GDBs set st_size *and nothing else* so the structure
12671 would have garbage in all other fields. This might
12672 break something but retaining the previous behavior
12673 here would be just too wrong. */
12674
12675 memset (st, 0, sizeof (struct stat));
12676 st->st_size = INT_MAX;
12677 return 0;
12678 }
12679
12680 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12681 (gdb_byte *) &fst, sizeof (fst));
12682
12683 if (read_len != ret)
12684 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12685
12686 if (read_len != sizeof (fst))
12687 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12688 read_len, (int) sizeof (fst));
12689
12690 remote_fileio_to_host_stat (&fst, st);
12691
12692 return 0;
12693 }
12694
12695 /* Implementation of to_filesystem_is_local. */
12696
12697 bool
12698 remote_target::filesystem_is_local ()
12699 {
12700 /* Valgrind GDB presents itself as a remote target but works
12701 on the local filesystem: it does not implement remote get
12702 and users are not expected to set a sysroot. To handle
12703 this case we treat the remote filesystem as local if the
12704 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12705 does not support vFile:open. */
12706 if (gdb_sysroot == TARGET_SYSROOT_PREFIX)
12707 {
12708 enum packet_support ps = packet_support (PACKET_vFile_open);
12709
12710 if (ps == PACKET_SUPPORT_UNKNOWN)
12711 {
12712 int fd, remote_errno;
12713
12714 /* Try opening a file to probe support. The supplied
12715 filename is irrelevant, we only care about whether
12716 the stub recognizes the packet or not. */
12717 fd = remote_hostio_open (NULL, "just probing",
12718 FILEIO_O_RDONLY, 0700, 0,
12719 &remote_errno);
12720
12721 if (fd >= 0)
12722 remote_hostio_close (fd, &remote_errno);
12723
12724 ps = packet_support (PACKET_vFile_open);
12725 }
12726
12727 if (ps == PACKET_DISABLE)
12728 {
12729 static int warning_issued = 0;
12730
12731 if (!warning_issued)
12732 {
12733 warning (_("remote target does not support file"
12734 " transfer, attempting to access files"
12735 " from local filesystem."));
12736 warning_issued = 1;
12737 }
12738
12739 return true;
12740 }
12741 }
12742
12743 return false;
12744 }
12745
12746 static int
12747 remote_fileio_errno_to_host (int errnum)
12748 {
12749 switch (errnum)
12750 {
12751 case FILEIO_EPERM:
12752 return EPERM;
12753 case FILEIO_ENOENT:
12754 return ENOENT;
12755 case FILEIO_EINTR:
12756 return EINTR;
12757 case FILEIO_EIO:
12758 return EIO;
12759 case FILEIO_EBADF:
12760 return EBADF;
12761 case FILEIO_EACCES:
12762 return EACCES;
12763 case FILEIO_EFAULT:
12764 return EFAULT;
12765 case FILEIO_EBUSY:
12766 return EBUSY;
12767 case FILEIO_EEXIST:
12768 return EEXIST;
12769 case FILEIO_ENODEV:
12770 return ENODEV;
12771 case FILEIO_ENOTDIR:
12772 return ENOTDIR;
12773 case FILEIO_EISDIR:
12774 return EISDIR;
12775 case FILEIO_EINVAL:
12776 return EINVAL;
12777 case FILEIO_ENFILE:
12778 return ENFILE;
12779 case FILEIO_EMFILE:
12780 return EMFILE;
12781 case FILEIO_EFBIG:
12782 return EFBIG;
12783 case FILEIO_ENOSPC:
12784 return ENOSPC;
12785 case FILEIO_ESPIPE:
12786 return ESPIPE;
12787 case FILEIO_EROFS:
12788 return EROFS;
12789 case FILEIO_ENOSYS:
12790 return ENOSYS;
12791 case FILEIO_ENAMETOOLONG:
12792 return ENAMETOOLONG;
12793 }
12794 return -1;
12795 }
12796
12797 static char *
12798 remote_hostio_error (int errnum)
12799 {
12800 int host_error = remote_fileio_errno_to_host (errnum);
12801
12802 if (host_error == -1)
12803 error (_("Unknown remote I/O error %d"), errnum);
12804 else
12805 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12806 }
12807
12808 /* A RAII wrapper around a remote file descriptor. */
12809
12810 class scoped_remote_fd
12811 {
12812 public:
12813 scoped_remote_fd (remote_target *remote, int fd)
12814 : m_remote (remote), m_fd (fd)
12815 {
12816 }
12817
12818 ~scoped_remote_fd ()
12819 {
12820 if (m_fd != -1)
12821 {
12822 try
12823 {
12824 int remote_errno;
12825 m_remote->remote_hostio_close (m_fd, &remote_errno);
12826 }
12827 catch (...)
12828 {
12829 /* Swallow exception before it escapes the dtor. If
12830 something goes wrong, likely the connection is gone,
12831 and there's nothing else that can be done. */
12832 }
12833 }
12834 }
12835
12836 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12837
12838 /* Release ownership of the file descriptor, and return it. */
12839 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12840 {
12841 int fd = m_fd;
12842 m_fd = -1;
12843 return fd;
12844 }
12845
12846 /* Return the owned file descriptor. */
12847 int get () const noexcept
12848 {
12849 return m_fd;
12850 }
12851
12852 private:
12853 /* The remote target. */
12854 remote_target *m_remote;
12855
12856 /* The owned remote I/O file descriptor. */
12857 int m_fd;
12858 };
12859
12860 void
12861 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12862 {
12863 remote_target *remote = get_current_remote_target ();
12864
12865 if (remote == nullptr)
12866 error (_("command can only be used with remote target"));
12867
12868 remote->remote_file_put (local_file, remote_file, from_tty);
12869 }
12870
12871 void
12872 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12873 int from_tty)
12874 {
12875 int retcode, remote_errno, bytes, io_size;
12876 int bytes_in_buffer;
12877 int saw_eof;
12878 ULONGEST offset;
12879
12880 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12881 if (file == NULL)
12882 perror_with_name (local_file);
12883
12884 scoped_remote_fd fd
12885 (this, remote_hostio_open (NULL,
12886 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12887 | FILEIO_O_TRUNC),
12888 0700, 0, &remote_errno));
12889 if (fd.get () == -1)
12890 remote_hostio_error (remote_errno);
12891
12892 /* Send up to this many bytes at once. They won't all fit in the
12893 remote packet limit, so we'll transfer slightly fewer. */
12894 io_size = get_remote_packet_size ();
12895 gdb::byte_vector buffer (io_size);
12896
12897 bytes_in_buffer = 0;
12898 saw_eof = 0;
12899 offset = 0;
12900 while (bytes_in_buffer || !saw_eof)
12901 {
12902 if (!saw_eof)
12903 {
12904 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12905 io_size - bytes_in_buffer,
12906 file.get ());
12907 if (bytes == 0)
12908 {
12909 if (ferror (file.get ()))
12910 error (_("Error reading %s."), local_file);
12911 else
12912 {
12913 /* EOF. Unless there is something still in the
12914 buffer from the last iteration, we are done. */
12915 saw_eof = 1;
12916 if (bytes_in_buffer == 0)
12917 break;
12918 }
12919 }
12920 }
12921 else
12922 bytes = 0;
12923
12924 bytes += bytes_in_buffer;
12925 bytes_in_buffer = 0;
12926
12927 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12928 offset, &remote_errno);
12929
12930 if (retcode < 0)
12931 remote_hostio_error (remote_errno);
12932 else if (retcode == 0)
12933 error (_("Remote write of %d bytes returned 0!"), bytes);
12934 else if (retcode < bytes)
12935 {
12936 /* Short write. Save the rest of the read data for the next
12937 write. */
12938 bytes_in_buffer = bytes - retcode;
12939 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12940 }
12941
12942 offset += retcode;
12943 }
12944
12945 if (remote_hostio_close (fd.release (), &remote_errno))
12946 remote_hostio_error (remote_errno);
12947
12948 if (from_tty)
12949 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12950 }
12951
12952 void
12953 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12954 {
12955 remote_target *remote = get_current_remote_target ();
12956
12957 if (remote == nullptr)
12958 error (_("command can only be used with remote target"));
12959
12960 remote->remote_file_get (remote_file, local_file, from_tty);
12961 }
12962
12963 void
12964 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12965 int from_tty)
12966 {
12967 int remote_errno, bytes, io_size;
12968 ULONGEST offset;
12969
12970 scoped_remote_fd fd
12971 (this, remote_hostio_open (NULL,
12972 remote_file, FILEIO_O_RDONLY, 0, 0,
12973 &remote_errno));
12974 if (fd.get () == -1)
12975 remote_hostio_error (remote_errno);
12976
12977 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12978 if (file == NULL)
12979 perror_with_name (local_file);
12980
12981 /* Send up to this many bytes at once. They won't all fit in the
12982 remote packet limit, so we'll transfer slightly fewer. */
12983 io_size = get_remote_packet_size ();
12984 gdb::byte_vector buffer (io_size);
12985
12986 offset = 0;
12987 while (1)
12988 {
12989 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12990 &remote_errno);
12991 if (bytes == 0)
12992 /* Success, but no bytes, means end-of-file. */
12993 break;
12994 if (bytes == -1)
12995 remote_hostio_error (remote_errno);
12996
12997 offset += bytes;
12998
12999 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
13000 if (bytes == 0)
13001 perror_with_name (local_file);
13002 }
13003
13004 if (remote_hostio_close (fd.release (), &remote_errno))
13005 remote_hostio_error (remote_errno);
13006
13007 if (from_tty)
13008 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
13009 }
13010
13011 void
13012 remote_file_delete (const char *remote_file, int from_tty)
13013 {
13014 remote_target *remote = get_current_remote_target ();
13015
13016 if (remote == nullptr)
13017 error (_("command can only be used with remote target"));
13018
13019 remote->remote_file_delete (remote_file, from_tty);
13020 }
13021
13022 void
13023 remote_target::remote_file_delete (const char *remote_file, int from_tty)
13024 {
13025 int retcode, remote_errno;
13026
13027 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
13028 if (retcode == -1)
13029 remote_hostio_error (remote_errno);
13030
13031 if (from_tty)
13032 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
13033 }
13034
13035 static void
13036 remote_put_command (const char *args, int from_tty)
13037 {
13038 if (args == NULL)
13039 error_no_arg (_("file to put"));
13040
13041 gdb_argv argv (args);
13042 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
13043 error (_("Invalid parameters to remote put"));
13044
13045 remote_file_put (argv[0], argv[1], from_tty);
13046 }
13047
13048 static void
13049 remote_get_command (const char *args, int from_tty)
13050 {
13051 if (args == NULL)
13052 error_no_arg (_("file to get"));
13053
13054 gdb_argv argv (args);
13055 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
13056 error (_("Invalid parameters to remote get"));
13057
13058 remote_file_get (argv[0], argv[1], from_tty);
13059 }
13060
13061 static void
13062 remote_delete_command (const char *args, int from_tty)
13063 {
13064 if (args == NULL)
13065 error_no_arg (_("file to delete"));
13066
13067 gdb_argv argv (args);
13068 if (argv[0] == NULL || argv[1] != NULL)
13069 error (_("Invalid parameters to remote delete"));
13070
13071 remote_file_delete (argv[0], from_tty);
13072 }
13073
13074 bool
13075 remote_target::can_execute_reverse ()
13076 {
13077 if (packet_support (PACKET_bs) == PACKET_ENABLE
13078 || packet_support (PACKET_bc) == PACKET_ENABLE)
13079 return true;
13080 else
13081 return false;
13082 }
13083
13084 bool
13085 remote_target::supports_non_stop ()
13086 {
13087 return true;
13088 }
13089
13090 bool
13091 remote_target::supports_disable_randomization ()
13092 {
13093 /* Only supported in extended mode. */
13094 return false;
13095 }
13096
13097 bool
13098 remote_target::supports_multi_process ()
13099 {
13100 struct remote_state *rs = get_remote_state ();
13101
13102 return remote_multi_process_p (rs);
13103 }
13104
13105 static int
13106 remote_supports_cond_tracepoints ()
13107 {
13108 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13109 }
13110
13111 bool
13112 remote_target::supports_evaluation_of_breakpoint_conditions ()
13113 {
13114 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13115 }
13116
13117 static int
13118 remote_supports_fast_tracepoints ()
13119 {
13120 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13121 }
13122
13123 static int
13124 remote_supports_static_tracepoints ()
13125 {
13126 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13127 }
13128
13129 static int
13130 remote_supports_install_in_trace ()
13131 {
13132 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13133 }
13134
13135 bool
13136 remote_target::supports_enable_disable_tracepoint ()
13137 {
13138 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13139 == PACKET_ENABLE);
13140 }
13141
13142 bool
13143 remote_target::supports_string_tracing ()
13144 {
13145 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13146 }
13147
13148 bool
13149 remote_target::can_run_breakpoint_commands ()
13150 {
13151 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13152 }
13153
13154 void
13155 remote_target::trace_init ()
13156 {
13157 struct remote_state *rs = get_remote_state ();
13158
13159 putpkt ("QTinit");
13160 remote_get_noisy_reply ();
13161 if (strcmp (rs->buf.data (), "OK") != 0)
13162 error (_("Target does not support this command."));
13163 }
13164
13165 /* Recursive routine to walk through command list including loops, and
13166 download packets for each command. */
13167
13168 void
13169 remote_target::remote_download_command_source (int num, ULONGEST addr,
13170 struct command_line *cmds)
13171 {
13172 struct remote_state *rs = get_remote_state ();
13173 struct command_line *cmd;
13174
13175 for (cmd = cmds; cmd; cmd = cmd->next)
13176 {
13177 QUIT; /* Allow user to bail out with ^C. */
13178 strcpy (rs->buf.data (), "QTDPsrc:");
13179 encode_source_string (num, addr, "cmd", cmd->line,
13180 rs->buf.data () + strlen (rs->buf.data ()),
13181 rs->buf.size () - strlen (rs->buf.data ()));
13182 putpkt (rs->buf);
13183 remote_get_noisy_reply ();
13184 if (strcmp (rs->buf.data (), "OK"))
13185 warning (_("Target does not support source download."));
13186
13187 if (cmd->control_type == while_control
13188 || cmd->control_type == while_stepping_control)
13189 {
13190 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13191
13192 QUIT; /* Allow user to bail out with ^C. */
13193 strcpy (rs->buf.data (), "QTDPsrc:");
13194 encode_source_string (num, addr, "cmd", "end",
13195 rs->buf.data () + strlen (rs->buf.data ()),
13196 rs->buf.size () - strlen (rs->buf.data ()));
13197 putpkt (rs->buf);
13198 remote_get_noisy_reply ();
13199 if (strcmp (rs->buf.data (), "OK"))
13200 warning (_("Target does not support source download."));
13201 }
13202 }
13203 }
13204
13205 void
13206 remote_target::download_tracepoint (struct bp_location *loc)
13207 {
13208 CORE_ADDR tpaddr;
13209 char addrbuf[40];
13210 std::vector<std::string> tdp_actions;
13211 std::vector<std::string> stepping_actions;
13212 char *pkt;
13213 struct breakpoint *b = loc->owner;
13214 struct tracepoint *t = (struct tracepoint *) b;
13215 struct remote_state *rs = get_remote_state ();
13216 int ret;
13217 const char *err_msg = _("Tracepoint packet too large for target.");
13218 size_t size_left;
13219
13220 /* We use a buffer other than rs->buf because we'll build strings
13221 across multiple statements, and other statements in between could
13222 modify rs->buf. */
13223 gdb::char_vector buf (get_remote_packet_size ());
13224
13225 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13226
13227 tpaddr = loc->address;
13228 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13229 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13230 b->number, addrbuf, /* address */
13231 (b->enable_state == bp_enabled ? 'E' : 'D'),
13232 t->step_count, t->pass_count);
13233
13234 if (ret < 0 || ret >= buf.size ())
13235 error ("%s", err_msg);
13236
13237 /* Fast tracepoints are mostly handled by the target, but we can
13238 tell the target how big of an instruction block should be moved
13239 around. */
13240 if (b->type == bp_fast_tracepoint)
13241 {
13242 /* Only test for support at download time; we may not know
13243 target capabilities at definition time. */
13244 if (remote_supports_fast_tracepoints ())
13245 {
13246 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13247 NULL))
13248 {
13249 size_left = buf.size () - strlen (buf.data ());
13250 ret = snprintf (buf.data () + strlen (buf.data ()),
13251 size_left, ":F%x",
13252 gdb_insn_length (loc->gdbarch, tpaddr));
13253
13254 if (ret < 0 || ret >= size_left)
13255 error ("%s", err_msg);
13256 }
13257 else
13258 /* If it passed validation at definition but fails now,
13259 something is very wrong. */
13260 internal_error (__FILE__, __LINE__,
13261 _("Fast tracepoint not "
13262 "valid during download"));
13263 }
13264 else
13265 /* Fast tracepoints are functionally identical to regular
13266 tracepoints, so don't take lack of support as a reason to
13267 give up on the trace run. */
13268 warning (_("Target does not support fast tracepoints, "
13269 "downloading %d as regular tracepoint"), b->number);
13270 }
13271 else if (b->type == bp_static_tracepoint)
13272 {
13273 /* Only test for support at download time; we may not know
13274 target capabilities at definition time. */
13275 if (remote_supports_static_tracepoints ())
13276 {
13277 struct static_tracepoint_marker marker;
13278
13279 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13280 {
13281 size_left = buf.size () - strlen (buf.data ());
13282 ret = snprintf (buf.data () + strlen (buf.data ()),
13283 size_left, ":S");
13284
13285 if (ret < 0 || ret >= size_left)
13286 error ("%s", err_msg);
13287 }
13288 else
13289 error (_("Static tracepoint not valid during download"));
13290 }
13291 else
13292 /* Fast tracepoints are functionally identical to regular
13293 tracepoints, so don't take lack of support as a reason
13294 to give up on the trace run. */
13295 error (_("Target does not support static tracepoints"));
13296 }
13297 /* If the tracepoint has a conditional, make it into an agent
13298 expression and append to the definition. */
13299 if (loc->cond)
13300 {
13301 /* Only test support at download time, we may not know target
13302 capabilities at definition time. */
13303 if (remote_supports_cond_tracepoints ())
13304 {
13305 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13306 loc->cond.get ());
13307
13308 size_left = buf.size () - strlen (buf.data ());
13309
13310 ret = snprintf (buf.data () + strlen (buf.data ()),
13311 size_left, ":X%x,", aexpr->len);
13312
13313 if (ret < 0 || ret >= size_left)
13314 error ("%s", err_msg);
13315
13316 size_left = buf.size () - strlen (buf.data ());
13317
13318 /* Two bytes to encode each aexpr byte, plus the terminating
13319 null byte. */
13320 if (aexpr->len * 2 + 1 > size_left)
13321 error ("%s", err_msg);
13322
13323 pkt = buf.data () + strlen (buf.data ());
13324
13325 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13326 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13327 *pkt = '\0';
13328 }
13329 else
13330 warning (_("Target does not support conditional tracepoints, "
13331 "ignoring tp %d cond"), b->number);
13332 }
13333
13334 if (b->commands || !default_collect.empty ())
13335 {
13336 size_left = buf.size () - strlen (buf.data ());
13337
13338 ret = snprintf (buf.data () + strlen (buf.data ()),
13339 size_left, "-");
13340
13341 if (ret < 0 || ret >= size_left)
13342 error ("%s", err_msg);
13343 }
13344
13345 putpkt (buf.data ());
13346 remote_get_noisy_reply ();
13347 if (strcmp (rs->buf.data (), "OK"))
13348 error (_("Target does not support tracepoints."));
13349
13350 /* do_single_steps (t); */
13351 for (auto action_it = tdp_actions.begin ();
13352 action_it != tdp_actions.end (); action_it++)
13353 {
13354 QUIT; /* Allow user to bail out with ^C. */
13355
13356 bool has_more = ((action_it + 1) != tdp_actions.end ()
13357 || !stepping_actions.empty ());
13358
13359 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13360 b->number, addrbuf, /* address */
13361 action_it->c_str (),
13362 has_more ? '-' : 0);
13363
13364 if (ret < 0 || ret >= buf.size ())
13365 error ("%s", err_msg);
13366
13367 putpkt (buf.data ());
13368 remote_get_noisy_reply ();
13369 if (strcmp (rs->buf.data (), "OK"))
13370 error (_("Error on target while setting tracepoints."));
13371 }
13372
13373 for (auto action_it = stepping_actions.begin ();
13374 action_it != stepping_actions.end (); action_it++)
13375 {
13376 QUIT; /* Allow user to bail out with ^C. */
13377
13378 bool is_first = action_it == stepping_actions.begin ();
13379 bool has_more = (action_it + 1) != stepping_actions.end ();
13380
13381 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13382 b->number, addrbuf, /* address */
13383 is_first ? "S" : "",
13384 action_it->c_str (),
13385 has_more ? "-" : "");
13386
13387 if (ret < 0 || ret >= buf.size ())
13388 error ("%s", err_msg);
13389
13390 putpkt (buf.data ());
13391 remote_get_noisy_reply ();
13392 if (strcmp (rs->buf.data (), "OK"))
13393 error (_("Error on target while setting tracepoints."));
13394 }
13395
13396 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13397 {
13398 if (b->location != NULL)
13399 {
13400 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13401
13402 if (ret < 0 || ret >= buf.size ())
13403 error ("%s", err_msg);
13404
13405 encode_source_string (b->number, loc->address, "at",
13406 event_location_to_string (b->location.get ()),
13407 buf.data () + strlen (buf.data ()),
13408 buf.size () - strlen (buf.data ()));
13409 putpkt (buf.data ());
13410 remote_get_noisy_reply ();
13411 if (strcmp (rs->buf.data (), "OK"))
13412 warning (_("Target does not support source download."));
13413 }
13414 if (b->cond_string)
13415 {
13416 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13417
13418 if (ret < 0 || ret >= buf.size ())
13419 error ("%s", err_msg);
13420
13421 encode_source_string (b->number, loc->address,
13422 "cond", b->cond_string.get (),
13423 buf.data () + strlen (buf.data ()),
13424 buf.size () - strlen (buf.data ()));
13425 putpkt (buf.data ());
13426 remote_get_noisy_reply ();
13427 if (strcmp (rs->buf.data (), "OK"))
13428 warning (_("Target does not support source download."));
13429 }
13430 remote_download_command_source (b->number, loc->address,
13431 breakpoint_commands (b));
13432 }
13433 }
13434
13435 bool
13436 remote_target::can_download_tracepoint ()
13437 {
13438 struct remote_state *rs = get_remote_state ();
13439 struct trace_status *ts;
13440 int status;
13441
13442 /* Don't try to install tracepoints until we've relocated our
13443 symbols, and fetched and merged the target's tracepoint list with
13444 ours. */
13445 if (rs->starting_up)
13446 return false;
13447
13448 ts = current_trace_status ();
13449 status = get_trace_status (ts);
13450
13451 if (status == -1 || !ts->running_known || !ts->running)
13452 return false;
13453
13454 /* If we are in a tracing experiment, but remote stub doesn't support
13455 installing tracepoint in trace, we have to return. */
13456 if (!remote_supports_install_in_trace ())
13457 return false;
13458
13459 return true;
13460 }
13461
13462
13463 void
13464 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13465 {
13466 struct remote_state *rs = get_remote_state ();
13467 char *p;
13468
13469 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13470 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13471 tsv.builtin);
13472 p = rs->buf.data () + strlen (rs->buf.data ());
13473 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13474 >= get_remote_packet_size ())
13475 error (_("Trace state variable name too long for tsv definition packet"));
13476 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13477 *p++ = '\0';
13478 putpkt (rs->buf);
13479 remote_get_noisy_reply ();
13480 if (rs->buf[0] == '\0')
13481 error (_("Target does not support this command."));
13482 if (strcmp (rs->buf.data (), "OK") != 0)
13483 error (_("Error on target while downloading trace state variable."));
13484 }
13485
13486 void
13487 remote_target::enable_tracepoint (struct bp_location *location)
13488 {
13489 struct remote_state *rs = get_remote_state ();
13490
13491 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13492 location->owner->number,
13493 phex (location->address, sizeof (CORE_ADDR)));
13494 putpkt (rs->buf);
13495 remote_get_noisy_reply ();
13496 if (rs->buf[0] == '\0')
13497 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13498 if (strcmp (rs->buf.data (), "OK") != 0)
13499 error (_("Error on target while enabling tracepoint."));
13500 }
13501
13502 void
13503 remote_target::disable_tracepoint (struct bp_location *location)
13504 {
13505 struct remote_state *rs = get_remote_state ();
13506
13507 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13508 location->owner->number,
13509 phex (location->address, sizeof (CORE_ADDR)));
13510 putpkt (rs->buf);
13511 remote_get_noisy_reply ();
13512 if (rs->buf[0] == '\0')
13513 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13514 if (strcmp (rs->buf.data (), "OK") != 0)
13515 error (_("Error on target while disabling tracepoint."));
13516 }
13517
13518 void
13519 remote_target::trace_set_readonly_regions ()
13520 {
13521 asection *s;
13522 bfd_size_type size;
13523 bfd_vma vma;
13524 int anysecs = 0;
13525 int offset = 0;
13526
13527 if (!current_program_space->exec_bfd ())
13528 return; /* No information to give. */
13529
13530 struct remote_state *rs = get_remote_state ();
13531
13532 strcpy (rs->buf.data (), "QTro");
13533 offset = strlen (rs->buf.data ());
13534 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13535 {
13536 char tmp1[40], tmp2[40];
13537 int sec_length;
13538
13539 if ((s->flags & SEC_LOAD) == 0 ||
13540 /* (s->flags & SEC_CODE) == 0 || */
13541 (s->flags & SEC_READONLY) == 0)
13542 continue;
13543
13544 anysecs = 1;
13545 vma = bfd_section_vma (s);
13546 size = bfd_section_size (s);
13547 sprintf_vma (tmp1, vma);
13548 sprintf_vma (tmp2, vma + size);
13549 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13550 if (offset + sec_length + 1 > rs->buf.size ())
13551 {
13552 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13553 warning (_("\
13554 Too many sections for read-only sections definition packet."));
13555 break;
13556 }
13557 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13558 tmp1, tmp2);
13559 offset += sec_length;
13560 }
13561 if (anysecs)
13562 {
13563 putpkt (rs->buf);
13564 getpkt (&rs->buf, 0);
13565 }
13566 }
13567
13568 void
13569 remote_target::trace_start ()
13570 {
13571 struct remote_state *rs = get_remote_state ();
13572
13573 putpkt ("QTStart");
13574 remote_get_noisy_reply ();
13575 if (rs->buf[0] == '\0')
13576 error (_("Target does not support this command."));
13577 if (strcmp (rs->buf.data (), "OK") != 0)
13578 error (_("Bogus reply from target: %s"), rs->buf.data ());
13579 }
13580
13581 int
13582 remote_target::get_trace_status (struct trace_status *ts)
13583 {
13584 /* Initialize it just to avoid a GCC false warning. */
13585 char *p = NULL;
13586 enum packet_result result;
13587 struct remote_state *rs = get_remote_state ();
13588
13589 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13590 return -1;
13591
13592 /* FIXME we need to get register block size some other way. */
13593 trace_regblock_size
13594 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13595
13596 putpkt ("qTStatus");
13597
13598 try
13599 {
13600 p = remote_get_noisy_reply ();
13601 }
13602 catch (const gdb_exception_error &ex)
13603 {
13604 if (ex.error != TARGET_CLOSE_ERROR)
13605 {
13606 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13607 return -1;
13608 }
13609 throw;
13610 }
13611
13612 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13613
13614 /* If the remote target doesn't do tracing, flag it. */
13615 if (result == PACKET_UNKNOWN)
13616 return -1;
13617
13618 /* We're working with a live target. */
13619 ts->filename = NULL;
13620
13621 if (*p++ != 'T')
13622 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13623
13624 /* Function 'parse_trace_status' sets default value of each field of
13625 'ts' at first, so we don't have to do it here. */
13626 parse_trace_status (p, ts);
13627
13628 return ts->running;
13629 }
13630
13631 void
13632 remote_target::get_tracepoint_status (struct breakpoint *bp,
13633 struct uploaded_tp *utp)
13634 {
13635 struct remote_state *rs = get_remote_state ();
13636 char *reply;
13637 struct tracepoint *tp = (struct tracepoint *) bp;
13638 size_t size = get_remote_packet_size ();
13639
13640 if (tp)
13641 {
13642 tp->hit_count = 0;
13643 tp->traceframe_usage = 0;
13644 for (bp_location *loc : tp->locations ())
13645 {
13646 /* If the tracepoint was never downloaded, don't go asking for
13647 any status. */
13648 if (tp->number_on_target == 0)
13649 continue;
13650 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13651 phex_nz (loc->address, 0));
13652 putpkt (rs->buf);
13653 reply = remote_get_noisy_reply ();
13654 if (reply && *reply)
13655 {
13656 if (*reply == 'V')
13657 parse_tracepoint_status (reply + 1, bp, utp);
13658 }
13659 }
13660 }
13661 else if (utp)
13662 {
13663 utp->hit_count = 0;
13664 utp->traceframe_usage = 0;
13665 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13666 phex_nz (utp->addr, 0));
13667 putpkt (rs->buf);
13668 reply = remote_get_noisy_reply ();
13669 if (reply && *reply)
13670 {
13671 if (*reply == 'V')
13672 parse_tracepoint_status (reply + 1, bp, utp);
13673 }
13674 }
13675 }
13676
13677 void
13678 remote_target::trace_stop ()
13679 {
13680 struct remote_state *rs = get_remote_state ();
13681
13682 putpkt ("QTStop");
13683 remote_get_noisy_reply ();
13684 if (rs->buf[0] == '\0')
13685 error (_("Target does not support this command."));
13686 if (strcmp (rs->buf.data (), "OK") != 0)
13687 error (_("Bogus reply from target: %s"), rs->buf.data ());
13688 }
13689
13690 int
13691 remote_target::trace_find (enum trace_find_type type, int num,
13692 CORE_ADDR addr1, CORE_ADDR addr2,
13693 int *tpp)
13694 {
13695 struct remote_state *rs = get_remote_state ();
13696 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13697 char *p, *reply;
13698 int target_frameno = -1, target_tracept = -1;
13699
13700 /* Lookups other than by absolute frame number depend on the current
13701 trace selected, so make sure it is correct on the remote end
13702 first. */
13703 if (type != tfind_number)
13704 set_remote_traceframe ();
13705
13706 p = rs->buf.data ();
13707 strcpy (p, "QTFrame:");
13708 p = strchr (p, '\0');
13709 switch (type)
13710 {
13711 case tfind_number:
13712 xsnprintf (p, endbuf - p, "%x", num);
13713 break;
13714 case tfind_pc:
13715 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13716 break;
13717 case tfind_tp:
13718 xsnprintf (p, endbuf - p, "tdp:%x", num);
13719 break;
13720 case tfind_range:
13721 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13722 phex_nz (addr2, 0));
13723 break;
13724 case tfind_outside:
13725 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13726 phex_nz (addr2, 0));
13727 break;
13728 default:
13729 error (_("Unknown trace find type %d"), type);
13730 }
13731
13732 putpkt (rs->buf);
13733 reply = remote_get_noisy_reply ();
13734 if (*reply == '\0')
13735 error (_("Target does not support this command."));
13736
13737 while (reply && *reply)
13738 switch (*reply)
13739 {
13740 case 'F':
13741 p = ++reply;
13742 target_frameno = (int) strtol (p, &reply, 16);
13743 if (reply == p)
13744 error (_("Unable to parse trace frame number"));
13745 /* Don't update our remote traceframe number cache on failure
13746 to select a remote traceframe. */
13747 if (target_frameno == -1)
13748 return -1;
13749 break;
13750 case 'T':
13751 p = ++reply;
13752 target_tracept = (int) strtol (p, &reply, 16);
13753 if (reply == p)
13754 error (_("Unable to parse tracepoint number"));
13755 break;
13756 case 'O': /* "OK"? */
13757 if (reply[1] == 'K' && reply[2] == '\0')
13758 reply += 2;
13759 else
13760 error (_("Bogus reply from target: %s"), reply);
13761 break;
13762 default:
13763 error (_("Bogus reply from target: %s"), reply);
13764 }
13765 if (tpp)
13766 *tpp = target_tracept;
13767
13768 rs->remote_traceframe_number = target_frameno;
13769 return target_frameno;
13770 }
13771
13772 bool
13773 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13774 {
13775 struct remote_state *rs = get_remote_state ();
13776 char *reply;
13777 ULONGEST uval;
13778
13779 set_remote_traceframe ();
13780
13781 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13782 putpkt (rs->buf);
13783 reply = remote_get_noisy_reply ();
13784 if (reply && *reply)
13785 {
13786 if (*reply == 'V')
13787 {
13788 unpack_varlen_hex (reply + 1, &uval);
13789 *val = (LONGEST) uval;
13790 return true;
13791 }
13792 }
13793 return false;
13794 }
13795
13796 int
13797 remote_target::save_trace_data (const char *filename)
13798 {
13799 struct remote_state *rs = get_remote_state ();
13800 char *p, *reply;
13801
13802 p = rs->buf.data ();
13803 strcpy (p, "QTSave:");
13804 p += strlen (p);
13805 if ((p - rs->buf.data ()) + strlen (filename) * 2
13806 >= get_remote_packet_size ())
13807 error (_("Remote file name too long for trace save packet"));
13808 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13809 *p++ = '\0';
13810 putpkt (rs->buf);
13811 reply = remote_get_noisy_reply ();
13812 if (*reply == '\0')
13813 error (_("Target does not support this command."));
13814 if (strcmp (reply, "OK") != 0)
13815 error (_("Bogus reply from target: %s"), reply);
13816 return 0;
13817 }
13818
13819 /* This is basically a memory transfer, but needs to be its own packet
13820 because we don't know how the target actually organizes its trace
13821 memory, plus we want to be able to ask for as much as possible, but
13822 not be unhappy if we don't get as much as we ask for. */
13823
13824 LONGEST
13825 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13826 {
13827 struct remote_state *rs = get_remote_state ();
13828 char *reply;
13829 char *p;
13830 int rslt;
13831
13832 p = rs->buf.data ();
13833 strcpy (p, "qTBuffer:");
13834 p += strlen (p);
13835 p += hexnumstr (p, offset);
13836 *p++ = ',';
13837 p += hexnumstr (p, len);
13838 *p++ = '\0';
13839
13840 putpkt (rs->buf);
13841 reply = remote_get_noisy_reply ();
13842 if (reply && *reply)
13843 {
13844 /* 'l' by itself means we're at the end of the buffer and
13845 there is nothing more to get. */
13846 if (*reply == 'l')
13847 return 0;
13848
13849 /* Convert the reply into binary. Limit the number of bytes to
13850 convert according to our passed-in buffer size, rather than
13851 what was returned in the packet; if the target is
13852 unexpectedly generous and gives us a bigger reply than we
13853 asked for, we don't want to crash. */
13854 rslt = hex2bin (reply, buf, len);
13855 return rslt;
13856 }
13857
13858 /* Something went wrong, flag as an error. */
13859 return -1;
13860 }
13861
13862 void
13863 remote_target::set_disconnected_tracing (int val)
13864 {
13865 struct remote_state *rs = get_remote_state ();
13866
13867 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13868 {
13869 char *reply;
13870
13871 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13872 "QTDisconnected:%x", val);
13873 putpkt (rs->buf);
13874 reply = remote_get_noisy_reply ();
13875 if (*reply == '\0')
13876 error (_("Target does not support this command."));
13877 if (strcmp (reply, "OK") != 0)
13878 error (_("Bogus reply from target: %s"), reply);
13879 }
13880 else if (val)
13881 warning (_("Target does not support disconnected tracing."));
13882 }
13883
13884 int
13885 remote_target::core_of_thread (ptid_t ptid)
13886 {
13887 thread_info *info = find_thread_ptid (this, ptid);
13888
13889 if (info != NULL && info->priv != NULL)
13890 return get_remote_thread_info (info)->core;
13891
13892 return -1;
13893 }
13894
13895 void
13896 remote_target::set_circular_trace_buffer (int val)
13897 {
13898 struct remote_state *rs = get_remote_state ();
13899 char *reply;
13900
13901 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13902 "QTBuffer:circular:%x", val);
13903 putpkt (rs->buf);
13904 reply = remote_get_noisy_reply ();
13905 if (*reply == '\0')
13906 error (_("Target does not support this command."));
13907 if (strcmp (reply, "OK") != 0)
13908 error (_("Bogus reply from target: %s"), reply);
13909 }
13910
13911 traceframe_info_up
13912 remote_target::traceframe_info ()
13913 {
13914 gdb::optional<gdb::char_vector> text
13915 = target_read_stralloc (current_inferior ()->top_target (),
13916 TARGET_OBJECT_TRACEFRAME_INFO,
13917 NULL);
13918 if (text)
13919 return parse_traceframe_info (text->data ());
13920
13921 return NULL;
13922 }
13923
13924 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13925 instruction on which a fast tracepoint may be placed. Returns -1
13926 if the packet is not supported, and 0 if the minimum instruction
13927 length is unknown. */
13928
13929 int
13930 remote_target::get_min_fast_tracepoint_insn_len ()
13931 {
13932 struct remote_state *rs = get_remote_state ();
13933 char *reply;
13934
13935 /* If we're not debugging a process yet, the IPA can't be
13936 loaded. */
13937 if (!target_has_execution ())
13938 return 0;
13939
13940 /* Make sure the remote is pointing at the right process. */
13941 set_general_process ();
13942
13943 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13944 putpkt (rs->buf);
13945 reply = remote_get_noisy_reply ();
13946 if (*reply == '\0')
13947 return -1;
13948 else
13949 {
13950 ULONGEST min_insn_len;
13951
13952 unpack_varlen_hex (reply, &min_insn_len);
13953
13954 return (int) min_insn_len;
13955 }
13956 }
13957
13958 void
13959 remote_target::set_trace_buffer_size (LONGEST val)
13960 {
13961 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13962 {
13963 struct remote_state *rs = get_remote_state ();
13964 char *buf = rs->buf.data ();
13965 char *endbuf = buf + get_remote_packet_size ();
13966 enum packet_result result;
13967
13968 gdb_assert (val >= 0 || val == -1);
13969 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13970 /* Send -1 as literal "-1" to avoid host size dependency. */
13971 if (val < 0)
13972 {
13973 *buf++ = '-';
13974 buf += hexnumstr (buf, (ULONGEST) -val);
13975 }
13976 else
13977 buf += hexnumstr (buf, (ULONGEST) val);
13978
13979 putpkt (rs->buf);
13980 remote_get_noisy_reply ();
13981 result = packet_ok (rs->buf,
13982 &remote_protocol_packets[PACKET_QTBuffer_size]);
13983
13984 if (result != PACKET_OK)
13985 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13986 }
13987 }
13988
13989 bool
13990 remote_target::set_trace_notes (const char *user, const char *notes,
13991 const char *stop_notes)
13992 {
13993 struct remote_state *rs = get_remote_state ();
13994 char *reply;
13995 char *buf = rs->buf.data ();
13996 char *endbuf = buf + get_remote_packet_size ();
13997 int nbytes;
13998
13999 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
14000 if (user)
14001 {
14002 buf += xsnprintf (buf, endbuf - buf, "user:");
14003 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
14004 buf += 2 * nbytes;
14005 *buf++ = ';';
14006 }
14007 if (notes)
14008 {
14009 buf += xsnprintf (buf, endbuf - buf, "notes:");
14010 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
14011 buf += 2 * nbytes;
14012 *buf++ = ';';
14013 }
14014 if (stop_notes)
14015 {
14016 buf += xsnprintf (buf, endbuf - buf, "tstop:");
14017 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
14018 buf += 2 * nbytes;
14019 *buf++ = ';';
14020 }
14021 /* Ensure the buffer is terminated. */
14022 *buf = '\0';
14023
14024 putpkt (rs->buf);
14025 reply = remote_get_noisy_reply ();
14026 if (*reply == '\0')
14027 return false;
14028
14029 if (strcmp (reply, "OK") != 0)
14030 error (_("Bogus reply from target: %s"), reply);
14031
14032 return true;
14033 }
14034
14035 bool
14036 remote_target::use_agent (bool use)
14037 {
14038 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
14039 {
14040 struct remote_state *rs = get_remote_state ();
14041
14042 /* If the stub supports QAgent. */
14043 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
14044 putpkt (rs->buf);
14045 getpkt (&rs->buf, 0);
14046
14047 if (strcmp (rs->buf.data (), "OK") == 0)
14048 {
14049 ::use_agent = use;
14050 return true;
14051 }
14052 }
14053
14054 return false;
14055 }
14056
14057 bool
14058 remote_target::can_use_agent ()
14059 {
14060 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
14061 }
14062
14063 struct btrace_target_info
14064 {
14065 /* The ptid of the traced thread. */
14066 ptid_t ptid;
14067
14068 /* The obtained branch trace configuration. */
14069 struct btrace_config conf;
14070 };
14071
14072 /* Reset our idea of our target's btrace configuration. */
14073
14074 static void
14075 remote_btrace_reset (remote_state *rs)
14076 {
14077 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
14078 }
14079
14080 /* Synchronize the configuration with the target. */
14081
14082 void
14083 remote_target::btrace_sync_conf (const btrace_config *conf)
14084 {
14085 struct packet_config *packet;
14086 struct remote_state *rs;
14087 char *buf, *pos, *endbuf;
14088
14089 rs = get_remote_state ();
14090 buf = rs->buf.data ();
14091 endbuf = buf + get_remote_packet_size ();
14092
14093 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
14094 if (packet_config_support (packet) == PACKET_ENABLE
14095 && conf->bts.size != rs->btrace_config.bts.size)
14096 {
14097 pos = buf;
14098 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14099 conf->bts.size);
14100
14101 putpkt (buf);
14102 getpkt (&rs->buf, 0);
14103
14104 if (packet_ok (buf, packet) == PACKET_ERROR)
14105 {
14106 if (buf[0] == 'E' && buf[1] == '.')
14107 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14108 else
14109 error (_("Failed to configure the BTS buffer size."));
14110 }
14111
14112 rs->btrace_config.bts.size = conf->bts.size;
14113 }
14114
14115 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14116 if (packet_config_support (packet) == PACKET_ENABLE
14117 && conf->pt.size != rs->btrace_config.pt.size)
14118 {
14119 pos = buf;
14120 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14121 conf->pt.size);
14122
14123 putpkt (buf);
14124 getpkt (&rs->buf, 0);
14125
14126 if (packet_ok (buf, packet) == PACKET_ERROR)
14127 {
14128 if (buf[0] == 'E' && buf[1] == '.')
14129 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14130 else
14131 error (_("Failed to configure the trace buffer size."));
14132 }
14133
14134 rs->btrace_config.pt.size = conf->pt.size;
14135 }
14136 }
14137
14138 /* Read the current thread's btrace configuration from the target and
14139 store it into CONF. */
14140
14141 static void
14142 btrace_read_config (struct btrace_config *conf)
14143 {
14144 gdb::optional<gdb::char_vector> xml
14145 = target_read_stralloc (current_inferior ()->top_target (),
14146 TARGET_OBJECT_BTRACE_CONF, "");
14147 if (xml)
14148 parse_xml_btrace_conf (conf, xml->data ());
14149 }
14150
14151 /* Maybe reopen target btrace. */
14152
14153 void
14154 remote_target::remote_btrace_maybe_reopen ()
14155 {
14156 struct remote_state *rs = get_remote_state ();
14157 int btrace_target_pushed = 0;
14158 #if !defined (HAVE_LIBIPT)
14159 int warned = 0;
14160 #endif
14161
14162 /* Don't bother walking the entirety of the remote thread list when
14163 we know the feature isn't supported by the remote. */
14164 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14165 return;
14166
14167 scoped_restore_current_thread restore_thread;
14168
14169 for (thread_info *tp : all_non_exited_threads (this))
14170 {
14171 set_general_thread (tp->ptid);
14172
14173 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14174 btrace_read_config (&rs->btrace_config);
14175
14176 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14177 continue;
14178
14179 #if !defined (HAVE_LIBIPT)
14180 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14181 {
14182 if (!warned)
14183 {
14184 warned = 1;
14185 warning (_("Target is recording using Intel Processor Trace "
14186 "but support was disabled at compile time."));
14187 }
14188
14189 continue;
14190 }
14191 #endif /* !defined (HAVE_LIBIPT) */
14192
14193 /* Push target, once, but before anything else happens. This way our
14194 changes to the threads will be cleaned up by unpushing the target
14195 in case btrace_read_config () throws. */
14196 if (!btrace_target_pushed)
14197 {
14198 btrace_target_pushed = 1;
14199 record_btrace_push_target ();
14200 printf_filtered (_("Target is recording using %s.\n"),
14201 btrace_format_string (rs->btrace_config.format));
14202 }
14203
14204 tp->btrace.target = XCNEW (struct btrace_target_info);
14205 tp->btrace.target->ptid = tp->ptid;
14206 tp->btrace.target->conf = rs->btrace_config;
14207 }
14208 }
14209
14210 /* Enable branch tracing. */
14211
14212 struct btrace_target_info *
14213 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14214 {
14215 struct btrace_target_info *tinfo = NULL;
14216 struct packet_config *packet = NULL;
14217 struct remote_state *rs = get_remote_state ();
14218 char *buf = rs->buf.data ();
14219 char *endbuf = buf + get_remote_packet_size ();
14220
14221 switch (conf->format)
14222 {
14223 case BTRACE_FORMAT_BTS:
14224 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14225 break;
14226
14227 case BTRACE_FORMAT_PT:
14228 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14229 break;
14230 }
14231
14232 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14233 error (_("Target does not support branch tracing."));
14234
14235 btrace_sync_conf (conf);
14236
14237 set_general_thread (ptid);
14238
14239 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14240 putpkt (rs->buf);
14241 getpkt (&rs->buf, 0);
14242
14243 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14244 {
14245 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14246 error (_("Could not enable branch tracing for %s: %s"),
14247 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14248 else
14249 error (_("Could not enable branch tracing for %s."),
14250 target_pid_to_str (ptid).c_str ());
14251 }
14252
14253 tinfo = XCNEW (struct btrace_target_info);
14254 tinfo->ptid = ptid;
14255
14256 /* If we fail to read the configuration, we lose some information, but the
14257 tracing itself is not impacted. */
14258 try
14259 {
14260 btrace_read_config (&tinfo->conf);
14261 }
14262 catch (const gdb_exception_error &err)
14263 {
14264 if (err.message != NULL)
14265 warning ("%s", err.what ());
14266 }
14267
14268 return tinfo;
14269 }
14270
14271 /* Disable branch tracing. */
14272
14273 void
14274 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14275 {
14276 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14277 struct remote_state *rs = get_remote_state ();
14278 char *buf = rs->buf.data ();
14279 char *endbuf = buf + get_remote_packet_size ();
14280
14281 if (packet_config_support (packet) != PACKET_ENABLE)
14282 error (_("Target does not support branch tracing."));
14283
14284 set_general_thread (tinfo->ptid);
14285
14286 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14287 putpkt (rs->buf);
14288 getpkt (&rs->buf, 0);
14289
14290 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14291 {
14292 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14293 error (_("Could not disable branch tracing for %s: %s"),
14294 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14295 else
14296 error (_("Could not disable branch tracing for %s."),
14297 target_pid_to_str (tinfo->ptid).c_str ());
14298 }
14299
14300 xfree (tinfo);
14301 }
14302
14303 /* Teardown branch tracing. */
14304
14305 void
14306 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14307 {
14308 /* We must not talk to the target during teardown. */
14309 xfree (tinfo);
14310 }
14311
14312 /* Read the branch trace. */
14313
14314 enum btrace_error
14315 remote_target::read_btrace (struct btrace_data *btrace,
14316 struct btrace_target_info *tinfo,
14317 enum btrace_read_type type)
14318 {
14319 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14320 const char *annex;
14321
14322 if (packet_config_support (packet) != PACKET_ENABLE)
14323 error (_("Target does not support branch tracing."));
14324
14325 #if !defined(HAVE_LIBEXPAT)
14326 error (_("Cannot process branch tracing result. XML parsing not supported."));
14327 #endif
14328
14329 switch (type)
14330 {
14331 case BTRACE_READ_ALL:
14332 annex = "all";
14333 break;
14334 case BTRACE_READ_NEW:
14335 annex = "new";
14336 break;
14337 case BTRACE_READ_DELTA:
14338 annex = "delta";
14339 break;
14340 default:
14341 internal_error (__FILE__, __LINE__,
14342 _("Bad branch tracing read type: %u."),
14343 (unsigned int) type);
14344 }
14345
14346 gdb::optional<gdb::char_vector> xml
14347 = target_read_stralloc (current_inferior ()->top_target (),
14348 TARGET_OBJECT_BTRACE, annex);
14349 if (!xml)
14350 return BTRACE_ERR_UNKNOWN;
14351
14352 parse_xml_btrace (btrace, xml->data ());
14353
14354 return BTRACE_ERR_NONE;
14355 }
14356
14357 const struct btrace_config *
14358 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14359 {
14360 return &tinfo->conf;
14361 }
14362
14363 bool
14364 remote_target::augmented_libraries_svr4_read ()
14365 {
14366 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14367 == PACKET_ENABLE);
14368 }
14369
14370 /* Implementation of to_load. */
14371
14372 void
14373 remote_target::load (const char *name, int from_tty)
14374 {
14375 generic_load (name, from_tty);
14376 }
14377
14378 /* Accepts an integer PID; returns a string representing a file that
14379 can be opened on the remote side to get the symbols for the child
14380 process. Returns NULL if the operation is not supported. */
14381
14382 char *
14383 remote_target::pid_to_exec_file (int pid)
14384 {
14385 static gdb::optional<gdb::char_vector> filename;
14386 char *annex = NULL;
14387
14388 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14389 return NULL;
14390
14391 inferior *inf = find_inferior_pid (this, pid);
14392 if (inf == NULL)
14393 internal_error (__FILE__, __LINE__,
14394 _("not currently attached to process %d"), pid);
14395
14396 if (!inf->fake_pid_p)
14397 {
14398 const int annex_size = 9;
14399
14400 annex = (char *) alloca (annex_size);
14401 xsnprintf (annex, annex_size, "%x", pid);
14402 }
14403
14404 filename = target_read_stralloc (current_inferior ()->top_target (),
14405 TARGET_OBJECT_EXEC_FILE, annex);
14406
14407 return filename ? filename->data () : nullptr;
14408 }
14409
14410 /* Implement the to_can_do_single_step target_ops method. */
14411
14412 int
14413 remote_target::can_do_single_step ()
14414 {
14415 /* We can only tell whether target supports single step or not by
14416 supported s and S vCont actions if the stub supports vContSupported
14417 feature. If the stub doesn't support vContSupported feature,
14418 we have conservatively to think target doesn't supports single
14419 step. */
14420 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14421 {
14422 struct remote_state *rs = get_remote_state ();
14423
14424 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14425 remote_vcont_probe ();
14426
14427 return rs->supports_vCont.s && rs->supports_vCont.S;
14428 }
14429 else
14430 return 0;
14431 }
14432
14433 /* Implementation of the to_execution_direction method for the remote
14434 target. */
14435
14436 enum exec_direction_kind
14437 remote_target::execution_direction ()
14438 {
14439 struct remote_state *rs = get_remote_state ();
14440
14441 return rs->last_resume_exec_dir;
14442 }
14443
14444 /* Return pointer to the thread_info struct which corresponds to
14445 THREAD_HANDLE (having length HANDLE_LEN). */
14446
14447 thread_info *
14448 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14449 int handle_len,
14450 inferior *inf)
14451 {
14452 for (thread_info *tp : all_non_exited_threads (this))
14453 {
14454 remote_thread_info *priv = get_remote_thread_info (tp);
14455
14456 if (tp->inf == inf && priv != NULL)
14457 {
14458 if (handle_len != priv->thread_handle.size ())
14459 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14460 handle_len, priv->thread_handle.size ());
14461 if (memcmp (thread_handle, priv->thread_handle.data (),
14462 handle_len) == 0)
14463 return tp;
14464 }
14465 }
14466
14467 return NULL;
14468 }
14469
14470 gdb::byte_vector
14471 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14472 {
14473 remote_thread_info *priv = get_remote_thread_info (tp);
14474 return priv->thread_handle;
14475 }
14476
14477 bool
14478 remote_target::can_async_p ()
14479 {
14480 /* This flag should be checked in the common target.c code. */
14481 gdb_assert (target_async_permitted);
14482
14483 /* We're async whenever the serial device can. */
14484 struct remote_state *rs = get_remote_state ();
14485 return serial_can_async_p (rs->remote_desc);
14486 }
14487
14488 bool
14489 remote_target::is_async_p ()
14490 {
14491 /* We're async whenever the serial device is. */
14492 struct remote_state *rs = get_remote_state ();
14493 return serial_is_async_p (rs->remote_desc);
14494 }
14495
14496 /* Pass the SERIAL event on and up to the client. One day this code
14497 will be able to delay notifying the client of an event until the
14498 point where an entire packet has been received. */
14499
14500 static serial_event_ftype remote_async_serial_handler;
14501
14502 static void
14503 remote_async_serial_handler (struct serial *scb, void *context)
14504 {
14505 /* Don't propogate error information up to the client. Instead let
14506 the client find out about the error by querying the target. */
14507 inferior_event_handler (INF_REG_EVENT);
14508 }
14509
14510 static void
14511 remote_async_inferior_event_handler (gdb_client_data data)
14512 {
14513 inferior_event_handler (INF_REG_EVENT);
14514 }
14515
14516 int
14517 remote_target::async_wait_fd ()
14518 {
14519 struct remote_state *rs = get_remote_state ();
14520 return rs->remote_desc->fd;
14521 }
14522
14523 void
14524 remote_target::async (int enable)
14525 {
14526 struct remote_state *rs = get_remote_state ();
14527
14528 if (enable)
14529 {
14530 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14531
14532 /* If there are pending events in the stop reply queue tell the
14533 event loop to process them. */
14534 if (!rs->stop_reply_queue.empty ())
14535 mark_async_event_handler (rs->remote_async_inferior_event_token);
14536 /* For simplicity, below we clear the pending events token
14537 without remembering whether it is marked, so here we always
14538 mark it. If there's actually no pending notification to
14539 process, this ends up being a no-op (other than a spurious
14540 event-loop wakeup). */
14541 if (target_is_non_stop_p ())
14542 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14543 }
14544 else
14545 {
14546 serial_async (rs->remote_desc, NULL, NULL);
14547 /* If the core is disabling async, it doesn't want to be
14548 disturbed with target events. Clear all async event sources
14549 too. */
14550 clear_async_event_handler (rs->remote_async_inferior_event_token);
14551 if (target_is_non_stop_p ())
14552 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14553 }
14554 }
14555
14556 /* Implementation of the to_thread_events method. */
14557
14558 void
14559 remote_target::thread_events (int enable)
14560 {
14561 struct remote_state *rs = get_remote_state ();
14562 size_t size = get_remote_packet_size ();
14563
14564 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14565 return;
14566
14567 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14568 putpkt (rs->buf);
14569 getpkt (&rs->buf, 0);
14570
14571 switch (packet_ok (rs->buf,
14572 &remote_protocol_packets[PACKET_QThreadEvents]))
14573 {
14574 case PACKET_OK:
14575 if (strcmp (rs->buf.data (), "OK") != 0)
14576 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14577 break;
14578 case PACKET_ERROR:
14579 warning (_("Remote failure reply: %s"), rs->buf.data ());
14580 break;
14581 case PACKET_UNKNOWN:
14582 break;
14583 }
14584 }
14585
14586 static void
14587 show_remote_cmd (const char *args, int from_tty)
14588 {
14589 /* We can't just use cmd_show_list here, because we want to skip
14590 the redundant "show remote Z-packet" and the legacy aliases. */
14591 struct cmd_list_element *list = remote_show_cmdlist;
14592 struct ui_out *uiout = current_uiout;
14593
14594 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14595 for (; list != NULL; list = list->next)
14596 if (strcmp (list->name, "Z-packet") == 0)
14597 continue;
14598 else if (list->type == not_set_cmd)
14599 /* Alias commands are exactly like the original, except they
14600 don't have the normal type. */
14601 continue;
14602 else
14603 {
14604 ui_out_emit_tuple option_emitter (uiout, "option");
14605
14606 uiout->field_string ("name", list->name);
14607 uiout->text (": ");
14608 if (list->type == show_cmd)
14609 do_show_command (NULL, from_tty, list);
14610 else
14611 cmd_func (list, NULL, from_tty);
14612 }
14613 }
14614
14615
14616 /* Function to be called whenever a new objfile (shlib) is detected. */
14617 static void
14618 remote_new_objfile (struct objfile *objfile)
14619 {
14620 remote_target *remote = get_current_remote_target ();
14621
14622 /* First, check whether the current inferior's process target is a remote
14623 target. */
14624 if (remote == nullptr)
14625 return;
14626
14627 /* When we are attaching or handling a fork child and the shared library
14628 subsystem reads the list of loaded libraries, we receive new objfile
14629 events in between each found library. The libraries are read in an
14630 undefined order, so if we gave the remote side a chance to look up
14631 symbols between each objfile, we might give it an inconsistent picture
14632 of the inferior. It could appear that a library A appears loaded but
14633 a library B does not, even though library A requires library B. That
14634 would present a state that couldn't normally exist in the inferior.
14635
14636 So, skip these events, we'll give the remote a chance to look up symbols
14637 once all the loaded libraries and their symbols are known to GDB. */
14638 if (current_inferior ()->in_initial_library_scan)
14639 return;
14640
14641 remote->remote_check_symbols ();
14642 }
14643
14644 /* Pull all the tracepoints defined on the target and create local
14645 data structures representing them. We don't want to create real
14646 tracepoints yet, we don't want to mess up the user's existing
14647 collection. */
14648
14649 int
14650 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14651 {
14652 struct remote_state *rs = get_remote_state ();
14653 char *p;
14654
14655 /* Ask for a first packet of tracepoint definition. */
14656 putpkt ("qTfP");
14657 getpkt (&rs->buf, 0);
14658 p = rs->buf.data ();
14659 while (*p && *p != 'l')
14660 {
14661 parse_tracepoint_definition (p, utpp);
14662 /* Ask for another packet of tracepoint definition. */
14663 putpkt ("qTsP");
14664 getpkt (&rs->buf, 0);
14665 p = rs->buf.data ();
14666 }
14667 return 0;
14668 }
14669
14670 int
14671 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14672 {
14673 struct remote_state *rs = get_remote_state ();
14674 char *p;
14675
14676 /* Ask for a first packet of variable definition. */
14677 putpkt ("qTfV");
14678 getpkt (&rs->buf, 0);
14679 p = rs->buf.data ();
14680 while (*p && *p != 'l')
14681 {
14682 parse_tsv_definition (p, utsvp);
14683 /* Ask for another packet of variable definition. */
14684 putpkt ("qTsV");
14685 getpkt (&rs->buf, 0);
14686 p = rs->buf.data ();
14687 }
14688 return 0;
14689 }
14690
14691 /* The "set/show range-stepping" show hook. */
14692
14693 static void
14694 show_range_stepping (struct ui_file *file, int from_tty,
14695 struct cmd_list_element *c,
14696 const char *value)
14697 {
14698 fprintf_filtered (file,
14699 _("Debugger's willingness to use range stepping "
14700 "is %s.\n"), value);
14701 }
14702
14703 /* Return true if the vCont;r action is supported by the remote
14704 stub. */
14705
14706 bool
14707 remote_target::vcont_r_supported ()
14708 {
14709 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14710 remote_vcont_probe ();
14711
14712 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14713 && get_remote_state ()->supports_vCont.r);
14714 }
14715
14716 /* The "set/show range-stepping" set hook. */
14717
14718 static void
14719 set_range_stepping (const char *ignore_args, int from_tty,
14720 struct cmd_list_element *c)
14721 {
14722 /* When enabling, check whether range stepping is actually supported
14723 by the target, and warn if not. */
14724 if (use_range_stepping)
14725 {
14726 remote_target *remote = get_current_remote_target ();
14727 if (remote == NULL
14728 || !remote->vcont_r_supported ())
14729 warning (_("Range stepping is not supported by the current target"));
14730 }
14731 }
14732
14733 static void
14734 show_remote_debug (struct ui_file *file, int from_tty,
14735 struct cmd_list_element *c, const char *value)
14736 {
14737 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14738 value);
14739 }
14740
14741 static void
14742 show_remote_timeout (struct ui_file *file, int from_tty,
14743 struct cmd_list_element *c, const char *value)
14744 {
14745 fprintf_filtered (file,
14746 _("Timeout limit to wait for target to respond is %s.\n"),
14747 value);
14748 }
14749
14750 /* Implement the "supports_memory_tagging" target_ops method. */
14751
14752 bool
14753 remote_target::supports_memory_tagging ()
14754 {
14755 return remote_memory_tagging_p ();
14756 }
14757
14758 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14759
14760 static void
14761 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14762 size_t len, int type)
14763 {
14764 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14765
14766 std::string request = string_printf ("qMemTags:%s,%s:%s",
14767 phex_nz (address, addr_size),
14768 phex_nz (len, sizeof (len)),
14769 phex_nz (type, sizeof (type)));
14770
14771 strcpy (packet.data (), request.c_str ());
14772 }
14773
14774 /* Parse the qMemTags packet reply into TAGS.
14775
14776 Return true if successful, false otherwise. */
14777
14778 static bool
14779 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14780 gdb::byte_vector &tags)
14781 {
14782 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14783 return false;
14784
14785 /* Copy the tag data. */
14786 tags = hex2bin (reply.data () + 1);
14787
14788 return true;
14789 }
14790
14791 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14792
14793 static void
14794 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14795 size_t len, int type,
14796 const gdb::byte_vector &tags)
14797 {
14798 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14799
14800 /* Put together the main packet, address and length. */
14801 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14802 phex_nz (address, addr_size),
14803 phex_nz (len, sizeof (len)),
14804 phex_nz (type, sizeof (type)));
14805 request += bin2hex (tags.data (), tags.size ());
14806
14807 /* Check if we have exceeded the maximum packet size. */
14808 if (packet.size () < request.length ())
14809 error (_("Contents too big for packet QMemTags."));
14810
14811 strcpy (packet.data (), request.c_str ());
14812 }
14813
14814 /* Implement the "fetch_memtags" target_ops method. */
14815
14816 bool
14817 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14818 gdb::byte_vector &tags, int type)
14819 {
14820 /* Make sure the qMemTags packet is supported. */
14821 if (!remote_memory_tagging_p ())
14822 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14823
14824 struct remote_state *rs = get_remote_state ();
14825
14826 create_fetch_memtags_request (rs->buf, address, len, type);
14827
14828 putpkt (rs->buf);
14829 getpkt (&rs->buf, 0);
14830
14831 return parse_fetch_memtags_reply (rs->buf, tags);
14832 }
14833
14834 /* Implement the "store_memtags" target_ops method. */
14835
14836 bool
14837 remote_target::store_memtags (CORE_ADDR address, size_t len,
14838 const gdb::byte_vector &tags, int type)
14839 {
14840 /* Make sure the QMemTags packet is supported. */
14841 if (!remote_memory_tagging_p ())
14842 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14843
14844 struct remote_state *rs = get_remote_state ();
14845
14846 create_store_memtags_request (rs->buf, address, len, type, tags);
14847
14848 putpkt (rs->buf);
14849 getpkt (&rs->buf, 0);
14850
14851 /* Verify if the request was successful. */
14852 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14853 }
14854
14855 /* Return true if remote target T is non-stop. */
14856
14857 bool
14858 remote_target_is_non_stop_p (remote_target *t)
14859 {
14860 scoped_restore_current_thread restore_thread;
14861 switch_to_target_no_thread (t);
14862
14863 return target_is_non_stop_p ();
14864 }
14865
14866 #if GDB_SELF_TEST
14867
14868 namespace selftests {
14869
14870 static void
14871 test_memory_tagging_functions ()
14872 {
14873 remote_target remote;
14874
14875 struct packet_config *config
14876 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14877
14878 scoped_restore restore_memtag_support_
14879 = make_scoped_restore (&config->support);
14880
14881 /* Test memory tagging packet support. */
14882 config->support = PACKET_SUPPORT_UNKNOWN;
14883 SELF_CHECK (remote.supports_memory_tagging () == false);
14884 config->support = PACKET_DISABLE;
14885 SELF_CHECK (remote.supports_memory_tagging () == false);
14886 config->support = PACKET_ENABLE;
14887 SELF_CHECK (remote.supports_memory_tagging () == true);
14888
14889 /* Setup testing. */
14890 gdb::char_vector packet;
14891 gdb::byte_vector tags, bv;
14892 std::string expected, reply;
14893 packet.resize (32000);
14894
14895 /* Test creating a qMemTags request. */
14896
14897 expected = "qMemTags:0,0:0";
14898 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14899 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14900
14901 expected = "qMemTags:deadbeef,10:1";
14902 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14903 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14904
14905 /* Test parsing a qMemTags reply. */
14906
14907 /* Error reply, tags vector unmodified. */
14908 reply = "E00";
14909 strcpy (packet.data (), reply.c_str ());
14910 tags.resize (0);
14911 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14912 SELF_CHECK (tags.size () == 0);
14913
14914 /* Valid reply, tags vector updated. */
14915 tags.resize (0);
14916 bv.resize (0);
14917
14918 for (int i = 0; i < 5; i++)
14919 bv.push_back (i);
14920
14921 reply = "m" + bin2hex (bv.data (), bv.size ());
14922 strcpy (packet.data (), reply.c_str ());
14923
14924 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14925 SELF_CHECK (tags.size () == 5);
14926
14927 for (int i = 0; i < 5; i++)
14928 SELF_CHECK (tags[i] == i);
14929
14930 /* Test creating a QMemTags request. */
14931
14932 /* Empty tag data. */
14933 tags.resize (0);
14934 expected = "QMemTags:0,0:0:";
14935 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14936 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14937 expected.length ()) == 0);
14938
14939 /* Non-empty tag data. */
14940 tags.resize (0);
14941 for (int i = 0; i < 5; i++)
14942 tags.push_back (i);
14943 expected = "QMemTags:deadbeef,ff:1:0001020304";
14944 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14945 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14946 expected.length ()) == 0);
14947 }
14948
14949 } // namespace selftests
14950 #endif /* GDB_SELF_TEST */
14951
14952 void _initialize_remote ();
14953 void
14954 _initialize_remote ()
14955 {
14956 /* architecture specific data */
14957 remote_g_packet_data_handle =
14958 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14959
14960 add_target (remote_target_info, remote_target::open);
14961 add_target (extended_remote_target_info, extended_remote_target::open);
14962
14963 /* Hook into new objfile notification. */
14964 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14965
14966 #if 0
14967 init_remote_threadtests ();
14968 #endif
14969
14970 /* set/show remote ... */
14971
14972 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14973 Remote protocol specific variables.\n\
14974 Configure various remote-protocol specific variables such as\n\
14975 the packets being used."),
14976 &remote_set_cmdlist,
14977 0 /* allow-unknown */, &setlist);
14978 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14979 Remote protocol specific variables.\n\
14980 Configure various remote-protocol specific variables such as\n\
14981 the packets being used."),
14982 &remote_show_cmdlist,
14983 0 /* allow-unknown */, &showlist);
14984
14985 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14986 Compare section data on target to the exec file.\n\
14987 Argument is a single section name (default: all loaded sections).\n\
14988 To compare only read-only loaded sections, specify the -r option."),
14989 &cmdlist);
14990
14991 add_cmd ("packet", class_maintenance, cli_packet_command, _("\
14992 Send an arbitrary packet to a remote target.\n\
14993 maintenance packet TEXT\n\
14994 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14995 this command sends the string TEXT to the inferior, and displays the\n\
14996 response packet. GDB supplies the initial `$' character, and the\n\
14997 terminating `#' character and checksum."),
14998 &maintenancelist);
14999
15000 set_show_commands remotebreak_cmds
15001 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
15002 Set whether to send break if interrupted."), _("\
15003 Show whether to send break if interrupted."), _("\
15004 If set, a break, instead of a cntrl-c, is sent to the remote target."),
15005 set_remotebreak, show_remotebreak,
15006 &setlist, &showlist);
15007 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
15008 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
15009
15010 add_setshow_enum_cmd ("interrupt-sequence", class_support,
15011 interrupt_sequence_modes, &interrupt_sequence_mode,
15012 _("\
15013 Set interrupt sequence to remote target."), _("\
15014 Show interrupt sequence to remote target."), _("\
15015 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
15016 NULL, show_interrupt_sequence,
15017 &remote_set_cmdlist,
15018 &remote_show_cmdlist);
15019
15020 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
15021 &interrupt_on_connect, _("\
15022 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
15023 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
15024 If set, interrupt sequence is sent to remote target."),
15025 NULL, NULL,
15026 &remote_set_cmdlist, &remote_show_cmdlist);
15027
15028 /* Install commands for configuring memory read/write packets. */
15029
15030 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
15031 Set the maximum number of bytes per memory write packet (deprecated)."),
15032 &setlist);
15033 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
15034 Show the maximum number of bytes per memory write packet (deprecated)."),
15035 &showlist);
15036 add_cmd ("memory-write-packet-size", no_class,
15037 set_memory_write_packet_size, _("\
15038 Set the maximum number of bytes per memory-write packet.\n\
15039 Specify the number of bytes in a packet or 0 (zero) for the\n\
15040 default packet size. The actual limit is further reduced\n\
15041 dependent on the target. Specify ``fixed'' to disable the\n\
15042 further restriction and ``limit'' to enable that restriction."),
15043 &remote_set_cmdlist);
15044 add_cmd ("memory-read-packet-size", no_class,
15045 set_memory_read_packet_size, _("\
15046 Set the maximum number of bytes per memory-read packet.\n\
15047 Specify the number of bytes in a packet or 0 (zero) for the\n\
15048 default packet size. The actual limit is further reduced\n\
15049 dependent on the target. Specify ``fixed'' to disable the\n\
15050 further restriction and ``limit'' to enable that restriction."),
15051 &remote_set_cmdlist);
15052 add_cmd ("memory-write-packet-size", no_class,
15053 show_memory_write_packet_size,
15054 _("Show the maximum number of bytes per memory-write packet."),
15055 &remote_show_cmdlist);
15056 add_cmd ("memory-read-packet-size", no_class,
15057 show_memory_read_packet_size,
15058 _("Show the maximum number of bytes per memory-read packet."),
15059 &remote_show_cmdlist);
15060
15061 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
15062 &remote_hw_watchpoint_limit, _("\
15063 Set the maximum number of target hardware watchpoints."), _("\
15064 Show the maximum number of target hardware watchpoints."), _("\
15065 Specify \"unlimited\" for unlimited hardware watchpoints."),
15066 NULL, show_hardware_watchpoint_limit,
15067 &remote_set_cmdlist,
15068 &remote_show_cmdlist);
15069 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
15070 no_class,
15071 &remote_hw_watchpoint_length_limit, _("\
15072 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
15073 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
15074 Specify \"unlimited\" to allow watchpoints of unlimited size."),
15075 NULL, show_hardware_watchpoint_length_limit,
15076 &remote_set_cmdlist, &remote_show_cmdlist);
15077 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
15078 &remote_hw_breakpoint_limit, _("\
15079 Set the maximum number of target hardware breakpoints."), _("\
15080 Show the maximum number of target hardware breakpoints."), _("\
15081 Specify \"unlimited\" for unlimited hardware breakpoints."),
15082 NULL, show_hardware_breakpoint_limit,
15083 &remote_set_cmdlist, &remote_show_cmdlist);
15084
15085 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
15086 &remote_address_size, _("\
15087 Set the maximum size of the address (in bits) in a memory packet."), _("\
15088 Show the maximum size of the address (in bits) in a memory packet."), NULL,
15089 NULL,
15090 NULL, /* FIXME: i18n: */
15091 &setlist, &showlist);
15092
15093 init_all_packet_configs ();
15094
15095 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
15096 "X", "binary-download", 1);
15097
15098 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15099 "vCont", "verbose-resume", 0);
15100
15101 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15102 "QPassSignals", "pass-signals", 0);
15103
15104 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15105 "QCatchSyscalls", "catch-syscalls", 0);
15106
15107 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15108 "QProgramSignals", "program-signals", 0);
15109
15110 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15111 "QSetWorkingDir", "set-working-dir", 0);
15112
15113 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15114 "QStartupWithShell", "startup-with-shell", 0);
15115
15116 add_packet_config_cmd (&remote_protocol_packets
15117 [PACKET_QEnvironmentHexEncoded],
15118 "QEnvironmentHexEncoded", "environment-hex-encoded",
15119 0);
15120
15121 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15122 "QEnvironmentReset", "environment-reset",
15123 0);
15124
15125 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15126 "QEnvironmentUnset", "environment-unset",
15127 0);
15128
15129 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15130 "qSymbol", "symbol-lookup", 0);
15131
15132 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15133 "P", "set-register", 1);
15134
15135 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15136 "p", "fetch-register", 1);
15137
15138 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15139 "Z0", "software-breakpoint", 0);
15140
15141 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15142 "Z1", "hardware-breakpoint", 0);
15143
15144 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15145 "Z2", "write-watchpoint", 0);
15146
15147 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15148 "Z3", "read-watchpoint", 0);
15149
15150 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15151 "Z4", "access-watchpoint", 0);
15152
15153 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15154 "qXfer:auxv:read", "read-aux-vector", 0);
15155
15156 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15157 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15158
15159 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15160 "qXfer:features:read", "target-features", 0);
15161
15162 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15163 "qXfer:libraries:read", "library-info", 0);
15164
15165 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15166 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15167
15168 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15169 "qXfer:memory-map:read", "memory-map", 0);
15170
15171 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15172 "qXfer:osdata:read", "osdata", 0);
15173
15174 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15175 "qXfer:threads:read", "threads", 0);
15176
15177 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15178 "qXfer:siginfo:read", "read-siginfo-object", 0);
15179
15180 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15181 "qXfer:siginfo:write", "write-siginfo-object", 0);
15182
15183 add_packet_config_cmd
15184 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15185 "qXfer:traceframe-info:read", "traceframe-info", 0);
15186
15187 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15188 "qXfer:uib:read", "unwind-info-block", 0);
15189
15190 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15191 "qGetTLSAddr", "get-thread-local-storage-address",
15192 0);
15193
15194 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15195 "qGetTIBAddr", "get-thread-information-block-address",
15196 0);
15197
15198 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15199 "bc", "reverse-continue", 0);
15200
15201 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15202 "bs", "reverse-step", 0);
15203
15204 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15205 "qSupported", "supported-packets", 0);
15206
15207 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15208 "qSearch:memory", "search-memory", 0);
15209
15210 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15211 "qTStatus", "trace-status", 0);
15212
15213 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15214 "vFile:setfs", "hostio-setfs", 0);
15215
15216 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15217 "vFile:open", "hostio-open", 0);
15218
15219 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15220 "vFile:pread", "hostio-pread", 0);
15221
15222 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15223 "vFile:pwrite", "hostio-pwrite", 0);
15224
15225 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15226 "vFile:close", "hostio-close", 0);
15227
15228 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15229 "vFile:unlink", "hostio-unlink", 0);
15230
15231 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15232 "vFile:readlink", "hostio-readlink", 0);
15233
15234 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15235 "vFile:fstat", "hostio-fstat", 0);
15236
15237 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15238 "vAttach", "attach", 0);
15239
15240 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15241 "vRun", "run", 0);
15242
15243 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15244 "QStartNoAckMode", "noack", 0);
15245
15246 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15247 "vKill", "kill", 0);
15248
15249 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15250 "qAttached", "query-attached", 0);
15251
15252 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15253 "ConditionalTracepoints",
15254 "conditional-tracepoints", 0);
15255
15256 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15257 "ConditionalBreakpoints",
15258 "conditional-breakpoints", 0);
15259
15260 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15261 "BreakpointCommands",
15262 "breakpoint-commands", 0);
15263
15264 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15265 "FastTracepoints", "fast-tracepoints", 0);
15266
15267 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15268 "TracepointSource", "TracepointSource", 0);
15269
15270 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15271 "QAllow", "allow", 0);
15272
15273 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15274 "StaticTracepoints", "static-tracepoints", 0);
15275
15276 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15277 "InstallInTrace", "install-in-trace", 0);
15278
15279 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15280 "qXfer:statictrace:read", "read-sdata-object", 0);
15281
15282 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15283 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15284
15285 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15286 "QDisableRandomization", "disable-randomization", 0);
15287
15288 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15289 "QAgent", "agent", 0);
15290
15291 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15292 "QTBuffer:size", "trace-buffer-size", 0);
15293
15294 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15295 "Qbtrace:off", "disable-btrace", 0);
15296
15297 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15298 "Qbtrace:bts", "enable-btrace-bts", 0);
15299
15300 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15301 "Qbtrace:pt", "enable-btrace-pt", 0);
15302
15303 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15304 "qXfer:btrace", "read-btrace", 0);
15305
15306 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15307 "qXfer:btrace-conf", "read-btrace-conf", 0);
15308
15309 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15310 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15311
15312 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15313 "multiprocess-feature", "multiprocess-feature", 0);
15314
15315 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15316 "swbreak-feature", "swbreak-feature", 0);
15317
15318 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15319 "hwbreak-feature", "hwbreak-feature", 0);
15320
15321 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15322 "fork-event-feature", "fork-event-feature", 0);
15323
15324 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15325 "vfork-event-feature", "vfork-event-feature", 0);
15326
15327 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15328 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15329
15330 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15331 "vContSupported", "verbose-resume-supported", 0);
15332
15333 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15334 "exec-event-feature", "exec-event-feature", 0);
15335
15336 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15337 "vCtrlC", "ctrl-c", 0);
15338
15339 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15340 "QThreadEvents", "thread-events", 0);
15341
15342 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15343 "N stop reply", "no-resumed-stop-reply", 0);
15344
15345 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15346 "memory-tagging-feature", "memory-tagging-feature", 0);
15347
15348 /* Assert that we've registered "set remote foo-packet" commands
15349 for all packet configs. */
15350 {
15351 int i;
15352
15353 for (i = 0; i < PACKET_MAX; i++)
15354 {
15355 /* Ideally all configs would have a command associated. Some
15356 still don't though. */
15357 int excepted;
15358
15359 switch (i)
15360 {
15361 case PACKET_QNonStop:
15362 case PACKET_EnableDisableTracepoints_feature:
15363 case PACKET_tracenz_feature:
15364 case PACKET_DisconnectedTracing_feature:
15365 case PACKET_augmented_libraries_svr4_read_feature:
15366 case PACKET_qCRC:
15367 /* Additions to this list need to be well justified:
15368 pre-existing packets are OK; new packets are not. */
15369 excepted = 1;
15370 break;
15371 default:
15372 excepted = 0;
15373 break;
15374 }
15375
15376 /* This catches both forgetting to add a config command, and
15377 forgetting to remove a packet from the exception list. */
15378 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15379 }
15380 }
15381
15382 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15383 Z sub-packet has its own set and show commands, but users may
15384 have sets to this variable in their .gdbinit files (or in their
15385 documentation). */
15386 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15387 &remote_Z_packet_detect, _("\
15388 Set use of remote protocol `Z' packets."), _("\
15389 Show use of remote protocol `Z' packets."), _("\
15390 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15391 packets."),
15392 set_remote_protocol_Z_packet_cmd,
15393 show_remote_protocol_Z_packet_cmd,
15394 /* FIXME: i18n: Use of remote protocol
15395 `Z' packets is %s. */
15396 &remote_set_cmdlist, &remote_show_cmdlist);
15397
15398 add_basic_prefix_cmd ("remote", class_files, _("\
15399 Manipulate files on the remote system.\n\
15400 Transfer files to and from the remote target system."),
15401 &remote_cmdlist,
15402 0 /* allow-unknown */, &cmdlist);
15403
15404 add_cmd ("put", class_files, remote_put_command,
15405 _("Copy a local file to the remote system."),
15406 &remote_cmdlist);
15407
15408 add_cmd ("get", class_files, remote_get_command,
15409 _("Copy a remote file to the local system."),
15410 &remote_cmdlist);
15411
15412 add_cmd ("delete", class_files, remote_delete_command,
15413 _("Delete a remote file."),
15414 &remote_cmdlist);
15415
15416 add_setshow_string_noescape_cmd ("exec-file", class_files,
15417 &remote_exec_file_var, _("\
15418 Set the remote pathname for \"run\"."), _("\
15419 Show the remote pathname for \"run\"."), NULL,
15420 set_remote_exec_file,
15421 show_remote_exec_file,
15422 &remote_set_cmdlist,
15423 &remote_show_cmdlist);
15424
15425 add_setshow_boolean_cmd ("range-stepping", class_run,
15426 &use_range_stepping, _("\
15427 Enable or disable range stepping."), _("\
15428 Show whether target-assisted range stepping is enabled."), _("\
15429 If on, and the target supports it, when stepping a source line, GDB\n\
15430 tells the target to step the corresponding range of addresses itself instead\n\
15431 of issuing multiple single-steps. This speeds up source level\n\
15432 stepping. If off, GDB always issues single-steps, even if range\n\
15433 stepping is supported by the target. The default is on."),
15434 set_range_stepping,
15435 show_range_stepping,
15436 &setlist,
15437 &showlist);
15438
15439 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15440 Set watchdog timer."), _("\
15441 Show watchdog timer."), _("\
15442 When non-zero, this timeout is used instead of waiting forever for a target\n\
15443 to finish a low-level step or continue operation. If the specified amount\n\
15444 of time passes without a response from the target, an error occurs."),
15445 NULL,
15446 show_watchdog,
15447 &setlist, &showlist);
15448
15449 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15450 &remote_packet_max_chars, _("\
15451 Set the maximum number of characters to display for each remote packet."), _("\
15452 Show the maximum number of characters to display for each remote packet."), _("\
15453 Specify \"unlimited\" to display all the characters."),
15454 NULL, show_remote_packet_max_chars,
15455 &setdebuglist, &showdebuglist);
15456
15457 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15458 _("Set debugging of remote protocol."),
15459 _("Show debugging of remote protocol."),
15460 _("\
15461 When enabled, each packet sent or received with the remote target\n\
15462 is displayed."),
15463 NULL,
15464 show_remote_debug,
15465 &setdebuglist, &showdebuglist);
15466
15467 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15468 &remote_timeout, _("\
15469 Set timeout limit to wait for target to respond."), _("\
15470 Show timeout limit to wait for target to respond."), _("\
15471 This value is used to set the time limit for gdb to wait for a response\n\
15472 from the target."),
15473 NULL,
15474 show_remote_timeout,
15475 &setlist, &showlist);
15476
15477 /* Eventually initialize fileio. See fileio.c */
15478 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15479
15480 #if GDB_SELF_TEST
15481 selftests::register_test ("remote_memory_tagging",
15482 selftests::test_memory_tagging_functions);
15483 #endif
15484 }