]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Implement -trace-find.
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* temp hacks for tracepoint encoding migration */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 char ***tdp_actions, char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static int remote_async_mask (int new_mask);
138
139 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140
141 static void remote_interrupt (int signo);
142
143 static void remote_interrupt_twice (int signo);
144
145 static void interrupt_query (void);
146
147 static void set_general_thread (struct ptid ptid);
148 static void set_continue_thread (struct ptid ptid);
149
150 static void get_offsets (void);
151
152 static void skip_frame (void);
153
154 static long read_frame (char **buf_p, long *sizeof_buf);
155
156 static int hexnumlen (ULONGEST num);
157
158 static void init_remote_ops (void);
159
160 static void init_extended_remote_ops (void);
161
162 static void remote_stop (ptid_t);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int hexnumstr (char *, ULONGEST);
169
170 static int hexnumnstr (char *, ULONGEST, int);
171
172 static CORE_ADDR remote_address_masked (CORE_ADDR);
173
174 static void print_packet (char *);
175
176 static unsigned long crc32 (unsigned char *, int, unsigned int);
177
178 static void compare_sections_command (char *, int);
179
180 static void packet_command (char *, int);
181
182 static int stub_unpack_int (char *buff, int fieldlength);
183
184 static ptid_t remote_current_thread (ptid_t oldptid);
185
186 static void remote_find_new_threads (void);
187
188 static void record_currthread (ptid_t currthread);
189
190 static int fromhex (int a);
191
192 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
193
194 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
195
196 static int putpkt_binary (char *buf, int cnt);
197
198 static void check_binary_download (CORE_ADDR addr);
199
200 struct packet_config;
201
202 static void show_packet_config_cmd (struct packet_config *config);
203
204 static void update_packet_config (struct packet_config *config);
205
206 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
207 struct cmd_list_element *c);
208
209 static void show_remote_protocol_packet_cmd (struct ui_file *file,
210 int from_tty,
211 struct cmd_list_element *c,
212 const char *value);
213
214 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
215 static ptid_t read_ptid (char *buf, char **obuf);
216
217 struct remote_state;
218 static int remote_get_trace_status (struct trace_status *ts);
219
220 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
221
222 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
223
224 static void remote_query_supported (void);
225
226 static void remote_check_symbols (struct objfile *objfile);
227
228 void _initialize_remote (void);
229
230 struct stop_reply;
231 static struct stop_reply *stop_reply_xmalloc (void);
232 static void stop_reply_xfree (struct stop_reply *);
233 static void do_stop_reply_xfree (void *arg);
234 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
235 static void push_stop_reply (struct stop_reply *);
236 static void remote_get_pending_stop_replies (void);
237 static void discard_pending_stop_replies (int pid);
238 static int peek_stop_reply (ptid_t ptid);
239
240 static void remote_async_inferior_event_handler (gdb_client_data);
241 static void remote_async_get_pending_events_handler (gdb_client_data);
242
243 static void remote_terminal_ours (void);
244
245 static int remote_read_description_p (struct target_ops *target);
246
247 /* The non-stop remote protocol provisions for one pending stop reply.
248 This is where we keep it until it is acknowledged. */
249
250 static struct stop_reply *pending_stop_reply = NULL;
251
252 /* For "remote". */
253
254 static struct cmd_list_element *remote_cmdlist;
255
256 /* For "set remote" and "show remote". */
257
258 static struct cmd_list_element *remote_set_cmdlist;
259 static struct cmd_list_element *remote_show_cmdlist;
260
261 /* Description of the remote protocol state for the currently
262 connected target. This is per-target state, and independent of the
263 selected architecture. */
264
265 struct remote_state
266 {
267 /* A buffer to use for incoming packets, and its current size. The
268 buffer is grown dynamically for larger incoming packets.
269 Outgoing packets may also be constructed in this buffer.
270 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
271 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
272 packets. */
273 char *buf;
274 long buf_size;
275
276 /* If we negotiated packet size explicitly (and thus can bypass
277 heuristics for the largest packet size that will not overflow
278 a buffer in the stub), this will be set to that packet size.
279 Otherwise zero, meaning to use the guessed size. */
280 long explicit_packet_size;
281
282 /* remote_wait is normally called when the target is running and
283 waits for a stop reply packet. But sometimes we need to call it
284 when the target is already stopped. We can send a "?" packet
285 and have remote_wait read the response. Or, if we already have
286 the response, we can stash it in BUF and tell remote_wait to
287 skip calling getpkt. This flag is set when BUF contains a
288 stop reply packet and the target is not waiting. */
289 int cached_wait_status;
290
291 /* True, if in no ack mode. That is, neither GDB nor the stub will
292 expect acks from each other. The connection is assumed to be
293 reliable. */
294 int noack_mode;
295
296 /* True if we're connected in extended remote mode. */
297 int extended;
298
299 /* True if the stub reported support for multi-process
300 extensions. */
301 int multi_process_aware;
302
303 /* True if we resumed the target and we're waiting for the target to
304 stop. In the mean time, we can't start another command/query.
305 The remote server wouldn't be ready to process it, so we'd
306 timeout waiting for a reply that would never come and eventually
307 we'd close the connection. This can happen in asynchronous mode
308 because we allow GDB commands while the target is running. */
309 int waiting_for_stop_reply;
310
311 /* True if the stub reports support for non-stop mode. */
312 int non_stop_aware;
313
314 /* True if the stub reports support for vCont;t. */
315 int support_vCont_t;
316
317 /* True if the stub reports support for conditional tracepoints. */
318 int cond_tracepoints;
319
320 /* True if the stub reports support for fast tracepoints. */
321 int fast_tracepoints;
322
323 /* True if the stub can continue running a trace while GDB is
324 disconnected. */
325 int disconnected_tracing;
326
327 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
328 responded to that. */
329 int ctrlc_pending_p;
330 };
331
332 /* Private data that we'll store in (struct thread_info)->private. */
333 struct private_thread_info
334 {
335 char *extra;
336 int core;
337 };
338
339 static void
340 free_private_thread_info (struct private_thread_info *info)
341 {
342 xfree (info->extra);
343 xfree (info);
344 }
345
346 /* Returns true if the multi-process extensions are in effect. */
347 static int
348 remote_multi_process_p (struct remote_state *rs)
349 {
350 return rs->extended && rs->multi_process_aware;
351 }
352
353 /* This data could be associated with a target, but we do not always
354 have access to the current target when we need it, so for now it is
355 static. This will be fine for as long as only one target is in use
356 at a time. */
357 static struct remote_state remote_state;
358
359 static struct remote_state *
360 get_remote_state_raw (void)
361 {
362 return &remote_state;
363 }
364
365 /* Description of the remote protocol for a given architecture. */
366
367 struct packet_reg
368 {
369 long offset; /* Offset into G packet. */
370 long regnum; /* GDB's internal register number. */
371 LONGEST pnum; /* Remote protocol register number. */
372 int in_g_packet; /* Always part of G packet. */
373 /* long size in bytes; == register_size (target_gdbarch, regnum);
374 at present. */
375 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
376 at present. */
377 };
378
379 struct remote_arch_state
380 {
381 /* Description of the remote protocol registers. */
382 long sizeof_g_packet;
383
384 /* Description of the remote protocol registers indexed by REGNUM
385 (making an array gdbarch_num_regs in size). */
386 struct packet_reg *regs;
387
388 /* This is the size (in chars) of the first response to the ``g''
389 packet. It is used as a heuristic when determining the maximum
390 size of memory-read and memory-write packets. A target will
391 typically only reserve a buffer large enough to hold the ``g''
392 packet. The size does not include packet overhead (headers and
393 trailers). */
394 long actual_register_packet_size;
395
396 /* This is the maximum size (in chars) of a non read/write packet.
397 It is also used as a cap on the size of read/write packets. */
398 long remote_packet_size;
399 };
400
401 long sizeof_pkt = 2000;
402
403 /* Utility: generate error from an incoming stub packet. */
404 static void
405 trace_error (char *buf)
406 {
407 if (*buf++ != 'E')
408 return; /* not an error msg */
409 switch (*buf)
410 {
411 case '1': /* malformed packet error */
412 if (*++buf == '0') /* general case: */
413 error (_("remote.c: error in outgoing packet."));
414 else
415 error (_("remote.c: error in outgoing packet at field #%ld."),
416 strtol (buf, NULL, 16));
417 case '2':
418 error (_("trace API error 0x%s."), ++buf);
419 default:
420 error (_("Target returns error code '%s'."), buf);
421 }
422 }
423
424 /* Utility: wait for reply from stub, while accepting "O" packets. */
425 static char *
426 remote_get_noisy_reply (char **buf_p,
427 long *sizeof_buf)
428 {
429 do /* Loop on reply from remote stub. */
430 {
431 char *buf;
432 QUIT; /* allow user to bail out with ^C */
433 getpkt (buf_p, sizeof_buf, 0);
434 buf = *buf_p;
435 if (buf[0] == 0)
436 error (_("Target does not support this command."));
437 else if (buf[0] == 'E')
438 trace_error (buf);
439 else if (buf[0] == 'O' &&
440 buf[1] != 'K')
441 remote_console_output (buf + 1); /* 'O' message from stub */
442 else
443 return buf; /* here's the actual reply */
444 }
445 while (1);
446 }
447
448 /* Handle for retreving the remote protocol data from gdbarch. */
449 static struct gdbarch_data *remote_gdbarch_data_handle;
450
451 static struct remote_arch_state *
452 get_remote_arch_state (void)
453 {
454 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
455 }
456
457 /* Fetch the global remote target state. */
458
459 static struct remote_state *
460 get_remote_state (void)
461 {
462 /* Make sure that the remote architecture state has been
463 initialized, because doing so might reallocate rs->buf. Any
464 function which calls getpkt also needs to be mindful of changes
465 to rs->buf, but this call limits the number of places which run
466 into trouble. */
467 get_remote_arch_state ();
468
469 return get_remote_state_raw ();
470 }
471
472 static int
473 compare_pnums (const void *lhs_, const void *rhs_)
474 {
475 const struct packet_reg * const *lhs = lhs_;
476 const struct packet_reg * const *rhs = rhs_;
477
478 if ((*lhs)->pnum < (*rhs)->pnum)
479 return -1;
480 else if ((*lhs)->pnum == (*rhs)->pnum)
481 return 0;
482 else
483 return 1;
484 }
485
486 static void *
487 init_remote_state (struct gdbarch *gdbarch)
488 {
489 int regnum, num_remote_regs, offset;
490 struct remote_state *rs = get_remote_state_raw ();
491 struct remote_arch_state *rsa;
492 struct packet_reg **remote_regs;
493
494 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
495
496 /* Use the architecture to build a regnum<->pnum table, which will be
497 1:1 unless a feature set specifies otherwise. */
498 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
499 gdbarch_num_regs (gdbarch),
500 struct packet_reg);
501 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
502 {
503 struct packet_reg *r = &rsa->regs[regnum];
504
505 if (register_size (gdbarch, regnum) == 0)
506 /* Do not try to fetch zero-sized (placeholder) registers. */
507 r->pnum = -1;
508 else
509 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
510
511 r->regnum = regnum;
512 }
513
514 /* Define the g/G packet format as the contents of each register
515 with a remote protocol number, in order of ascending protocol
516 number. */
517
518 remote_regs = alloca (gdbarch_num_regs (gdbarch)
519 * sizeof (struct packet_reg *));
520 for (num_remote_regs = 0, regnum = 0;
521 regnum < gdbarch_num_regs (gdbarch);
522 regnum++)
523 if (rsa->regs[regnum].pnum != -1)
524 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
525
526 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
527 compare_pnums);
528
529 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
530 {
531 remote_regs[regnum]->in_g_packet = 1;
532 remote_regs[regnum]->offset = offset;
533 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
534 }
535
536 /* Record the maximum possible size of the g packet - it may turn out
537 to be smaller. */
538 rsa->sizeof_g_packet = offset;
539
540 /* Default maximum number of characters in a packet body. Many
541 remote stubs have a hardwired buffer size of 400 bytes
542 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
543 as the maximum packet-size to ensure that the packet and an extra
544 NUL character can always fit in the buffer. This stops GDB
545 trashing stubs that try to squeeze an extra NUL into what is
546 already a full buffer (As of 1999-12-04 that was most stubs). */
547 rsa->remote_packet_size = 400 - 1;
548
549 /* This one is filled in when a ``g'' packet is received. */
550 rsa->actual_register_packet_size = 0;
551
552 /* Should rsa->sizeof_g_packet needs more space than the
553 default, adjust the size accordingly. Remember that each byte is
554 encoded as two characters. 32 is the overhead for the packet
555 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
556 (``$NN:G...#NN'') is a better guess, the below has been padded a
557 little. */
558 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
559 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
560
561 /* Make sure that the packet buffer is plenty big enough for
562 this architecture. */
563 if (rs->buf_size < rsa->remote_packet_size)
564 {
565 rs->buf_size = 2 * rsa->remote_packet_size;
566 rs->buf = xrealloc (rs->buf, rs->buf_size);
567 }
568
569 return rsa;
570 }
571
572 /* Return the current allowed size of a remote packet. This is
573 inferred from the current architecture, and should be used to
574 limit the length of outgoing packets. */
575 static long
576 get_remote_packet_size (void)
577 {
578 struct remote_state *rs = get_remote_state ();
579 struct remote_arch_state *rsa = get_remote_arch_state ();
580
581 if (rs->explicit_packet_size)
582 return rs->explicit_packet_size;
583
584 return rsa->remote_packet_size;
585 }
586
587 static struct packet_reg *
588 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
589 {
590 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
591 return NULL;
592 else
593 {
594 struct packet_reg *r = &rsa->regs[regnum];
595 gdb_assert (r->regnum == regnum);
596 return r;
597 }
598 }
599
600 static struct packet_reg *
601 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
602 {
603 int i;
604 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
605 {
606 struct packet_reg *r = &rsa->regs[i];
607 if (r->pnum == pnum)
608 return r;
609 }
610 return NULL;
611 }
612
613 /* FIXME: graces/2002-08-08: These variables should eventually be
614 bound to an instance of the target object (as in gdbarch-tdep()),
615 when such a thing exists. */
616
617 /* This is set to the data address of the access causing the target
618 to stop for a watchpoint. */
619 static CORE_ADDR remote_watch_data_address;
620
621 /* This is non-zero if target stopped for a watchpoint. */
622 static int remote_stopped_by_watchpoint_p;
623
624 static struct target_ops remote_ops;
625
626 static struct target_ops extended_remote_ops;
627
628 static int remote_async_mask_value = 1;
629
630 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
631 ``forever'' still use the normal timeout mechanism. This is
632 currently used by the ASYNC code to guarentee that target reads
633 during the initial connect always time-out. Once getpkt has been
634 modified to return a timeout indication and, in turn
635 remote_wait()/wait_for_inferior() have gained a timeout parameter
636 this can go away. */
637 static int wait_forever_enabled_p = 1;
638
639 /* Allow the user to specify what sequence to send to the remote
640 when he requests a program interruption: Although ^C is usually
641 what remote systems expect (this is the default, here), it is
642 sometimes preferable to send a break. On other systems such
643 as the Linux kernel, a break followed by g, which is Magic SysRq g
644 is required in order to interrupt the execution. */
645 const char interrupt_sequence_control_c[] = "Ctrl-C";
646 const char interrupt_sequence_break[] = "BREAK";
647 const char interrupt_sequence_break_g[] = "BREAK-g";
648 static const char *interrupt_sequence_modes[] =
649 {
650 interrupt_sequence_control_c,
651 interrupt_sequence_break,
652 interrupt_sequence_break_g,
653 NULL
654 };
655 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
656
657 static void
658 show_interrupt_sequence (struct ui_file *file, int from_tty,
659 struct cmd_list_element *c,
660 const char *value)
661 {
662 if (interrupt_sequence_mode == interrupt_sequence_control_c)
663 fprintf_filtered (file,
664 _("Send the ASCII ETX character (Ctrl-c) "
665 "to the remote target to interrupt the "
666 "execution of the program.\n"));
667 else if (interrupt_sequence_mode == interrupt_sequence_break)
668 fprintf_filtered (file,
669 _("send a break signal to the remote target "
670 "to interrupt the execution of the program.\n"));
671 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
672 fprintf_filtered (file,
673 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
674 "the remote target to interrupt the execution "
675 "of Linux kernel.\n"));
676 else
677 internal_error (__FILE__, __LINE__,
678 _("Invalid value for interrupt_sequence_mode: %s."),
679 interrupt_sequence_mode);
680 }
681
682 /* This boolean variable specifies whether interrupt_sequence is sent
683 to the remote target when gdb connects to it.
684 This is mostly needed when you debug the Linux kernel: The Linux kernel
685 expects BREAK g which is Magic SysRq g for connecting gdb. */
686 static int interrupt_on_connect = 0;
687
688 /* This variable is used to implement the "set/show remotebreak" commands.
689 Since these commands are now deprecated in favor of "set/show remote
690 interrupt-sequence", it no longer has any effect on the code. */
691 static int remote_break;
692
693 static void
694 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
695 {
696 if (remote_break)
697 interrupt_sequence_mode = interrupt_sequence_break;
698 else
699 interrupt_sequence_mode = interrupt_sequence_control_c;
700 }
701
702 static void
703 show_remotebreak (struct ui_file *file, int from_tty,
704 struct cmd_list_element *c,
705 const char *value)
706 {
707 }
708
709 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
710 remote_open knows that we don't have a file open when the program
711 starts. */
712 static struct serial *remote_desc = NULL;
713
714 /* This variable sets the number of bits in an address that are to be
715 sent in a memory ("M" or "m") packet. Normally, after stripping
716 leading zeros, the entire address would be sent. This variable
717 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
718 initial implementation of remote.c restricted the address sent in
719 memory packets to ``host::sizeof long'' bytes - (typically 32
720 bits). Consequently, for 64 bit targets, the upper 32 bits of an
721 address was never sent. Since fixing this bug may cause a break in
722 some remote targets this variable is principly provided to
723 facilitate backward compatibility. */
724
725 static int remote_address_size;
726
727 /* Temporary to track who currently owns the terminal. See
728 remote_terminal_* for more details. */
729
730 static int remote_async_terminal_ours_p;
731
732 /* The executable file to use for "run" on the remote side. */
733
734 static char *remote_exec_file = "";
735
736 \f
737 /* User configurable variables for the number of characters in a
738 memory read/write packet. MIN (rsa->remote_packet_size,
739 rsa->sizeof_g_packet) is the default. Some targets need smaller
740 values (fifo overruns, et.al.) and some users need larger values
741 (speed up transfers). The variables ``preferred_*'' (the user
742 request), ``current_*'' (what was actually set) and ``forced_*''
743 (Positive - a soft limit, negative - a hard limit). */
744
745 struct memory_packet_config
746 {
747 char *name;
748 long size;
749 int fixed_p;
750 };
751
752 /* Compute the current size of a read/write packet. Since this makes
753 use of ``actual_register_packet_size'' the computation is dynamic. */
754
755 static long
756 get_memory_packet_size (struct memory_packet_config *config)
757 {
758 struct remote_state *rs = get_remote_state ();
759 struct remote_arch_state *rsa = get_remote_arch_state ();
760
761 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
762 law?) that some hosts don't cope very well with large alloca()
763 calls. Eventually the alloca() code will be replaced by calls to
764 xmalloc() and make_cleanups() allowing this restriction to either
765 be lifted or removed. */
766 #ifndef MAX_REMOTE_PACKET_SIZE
767 #define MAX_REMOTE_PACKET_SIZE 16384
768 #endif
769 /* NOTE: 20 ensures we can write at least one byte. */
770 #ifndef MIN_REMOTE_PACKET_SIZE
771 #define MIN_REMOTE_PACKET_SIZE 20
772 #endif
773 long what_they_get;
774 if (config->fixed_p)
775 {
776 if (config->size <= 0)
777 what_they_get = MAX_REMOTE_PACKET_SIZE;
778 else
779 what_they_get = config->size;
780 }
781 else
782 {
783 what_they_get = get_remote_packet_size ();
784 /* Limit the packet to the size specified by the user. */
785 if (config->size > 0
786 && what_they_get > config->size)
787 what_they_get = config->size;
788
789 /* Limit it to the size of the targets ``g'' response unless we have
790 permission from the stub to use a larger packet size. */
791 if (rs->explicit_packet_size == 0
792 && rsa->actual_register_packet_size > 0
793 && what_they_get > rsa->actual_register_packet_size)
794 what_they_get = rsa->actual_register_packet_size;
795 }
796 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
797 what_they_get = MAX_REMOTE_PACKET_SIZE;
798 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
799 what_they_get = MIN_REMOTE_PACKET_SIZE;
800
801 /* Make sure there is room in the global buffer for this packet
802 (including its trailing NUL byte). */
803 if (rs->buf_size < what_they_get + 1)
804 {
805 rs->buf_size = 2 * what_they_get;
806 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
807 }
808
809 return what_they_get;
810 }
811
812 /* Update the size of a read/write packet. If they user wants
813 something really big then do a sanity check. */
814
815 static void
816 set_memory_packet_size (char *args, struct memory_packet_config *config)
817 {
818 int fixed_p = config->fixed_p;
819 long size = config->size;
820 if (args == NULL)
821 error (_("Argument required (integer, `fixed' or `limited')."));
822 else if (strcmp (args, "hard") == 0
823 || strcmp (args, "fixed") == 0)
824 fixed_p = 1;
825 else if (strcmp (args, "soft") == 0
826 || strcmp (args, "limit") == 0)
827 fixed_p = 0;
828 else
829 {
830 char *end;
831 size = strtoul (args, &end, 0);
832 if (args == end)
833 error (_("Invalid %s (bad syntax)."), config->name);
834 #if 0
835 /* Instead of explicitly capping the size of a packet to
836 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
837 instead allowed to set the size to something arbitrarily
838 large. */
839 if (size > MAX_REMOTE_PACKET_SIZE)
840 error (_("Invalid %s (too large)."), config->name);
841 #endif
842 }
843 /* Extra checks? */
844 if (fixed_p && !config->fixed_p)
845 {
846 if (! query (_("The target may not be able to correctly handle a %s\n"
847 "of %ld bytes. Change the packet size? "),
848 config->name, size))
849 error (_("Packet size not changed."));
850 }
851 /* Update the config. */
852 config->fixed_p = fixed_p;
853 config->size = size;
854 }
855
856 static void
857 show_memory_packet_size (struct memory_packet_config *config)
858 {
859 printf_filtered (_("The %s is %ld. "), config->name, config->size);
860 if (config->fixed_p)
861 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
862 get_memory_packet_size (config));
863 else
864 printf_filtered (_("Packets are limited to %ld bytes.\n"),
865 get_memory_packet_size (config));
866 }
867
868 static struct memory_packet_config memory_write_packet_config =
869 {
870 "memory-write-packet-size",
871 };
872
873 static void
874 set_memory_write_packet_size (char *args, int from_tty)
875 {
876 set_memory_packet_size (args, &memory_write_packet_config);
877 }
878
879 static void
880 show_memory_write_packet_size (char *args, int from_tty)
881 {
882 show_memory_packet_size (&memory_write_packet_config);
883 }
884
885 static long
886 get_memory_write_packet_size (void)
887 {
888 return get_memory_packet_size (&memory_write_packet_config);
889 }
890
891 static struct memory_packet_config memory_read_packet_config =
892 {
893 "memory-read-packet-size",
894 };
895
896 static void
897 set_memory_read_packet_size (char *args, int from_tty)
898 {
899 set_memory_packet_size (args, &memory_read_packet_config);
900 }
901
902 static void
903 show_memory_read_packet_size (char *args, int from_tty)
904 {
905 show_memory_packet_size (&memory_read_packet_config);
906 }
907
908 static long
909 get_memory_read_packet_size (void)
910 {
911 long size = get_memory_packet_size (&memory_read_packet_config);
912 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
913 extra buffer size argument before the memory read size can be
914 increased beyond this. */
915 if (size > get_remote_packet_size ())
916 size = get_remote_packet_size ();
917 return size;
918 }
919
920 \f
921 /* Generic configuration support for packets the stub optionally
922 supports. Allows the user to specify the use of the packet as well
923 as allowing GDB to auto-detect support in the remote stub. */
924
925 enum packet_support
926 {
927 PACKET_SUPPORT_UNKNOWN = 0,
928 PACKET_ENABLE,
929 PACKET_DISABLE
930 };
931
932 struct packet_config
933 {
934 const char *name;
935 const char *title;
936 enum auto_boolean detect;
937 enum packet_support support;
938 };
939
940 /* Analyze a packet's return value and update the packet config
941 accordingly. */
942
943 enum packet_result
944 {
945 PACKET_ERROR,
946 PACKET_OK,
947 PACKET_UNKNOWN
948 };
949
950 static void
951 update_packet_config (struct packet_config *config)
952 {
953 switch (config->detect)
954 {
955 case AUTO_BOOLEAN_TRUE:
956 config->support = PACKET_ENABLE;
957 break;
958 case AUTO_BOOLEAN_FALSE:
959 config->support = PACKET_DISABLE;
960 break;
961 case AUTO_BOOLEAN_AUTO:
962 config->support = PACKET_SUPPORT_UNKNOWN;
963 break;
964 }
965 }
966
967 static void
968 show_packet_config_cmd (struct packet_config *config)
969 {
970 char *support = "internal-error";
971 switch (config->support)
972 {
973 case PACKET_ENABLE:
974 support = "enabled";
975 break;
976 case PACKET_DISABLE:
977 support = "disabled";
978 break;
979 case PACKET_SUPPORT_UNKNOWN:
980 support = "unknown";
981 break;
982 }
983 switch (config->detect)
984 {
985 case AUTO_BOOLEAN_AUTO:
986 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
987 config->name, support);
988 break;
989 case AUTO_BOOLEAN_TRUE:
990 case AUTO_BOOLEAN_FALSE:
991 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
992 config->name, support);
993 break;
994 }
995 }
996
997 static void
998 add_packet_config_cmd (struct packet_config *config, const char *name,
999 const char *title, int legacy)
1000 {
1001 char *set_doc;
1002 char *show_doc;
1003 char *cmd_name;
1004
1005 config->name = name;
1006 config->title = title;
1007 config->detect = AUTO_BOOLEAN_AUTO;
1008 config->support = PACKET_SUPPORT_UNKNOWN;
1009 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1010 name, title);
1011 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
1012 name, title);
1013 /* set/show TITLE-packet {auto,on,off} */
1014 cmd_name = xstrprintf ("%s-packet", title);
1015 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1016 &config->detect, set_doc, show_doc, NULL, /* help_doc */
1017 set_remote_protocol_packet_cmd,
1018 show_remote_protocol_packet_cmd,
1019 &remote_set_cmdlist, &remote_show_cmdlist);
1020 /* The command code copies the documentation strings. */
1021 xfree (set_doc);
1022 xfree (show_doc);
1023 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1024 if (legacy)
1025 {
1026 char *legacy_name;
1027 legacy_name = xstrprintf ("%s-packet", name);
1028 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1029 &remote_set_cmdlist);
1030 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1031 &remote_show_cmdlist);
1032 }
1033 }
1034
1035 static enum packet_result
1036 packet_check_result (const char *buf)
1037 {
1038 if (buf[0] != '\0')
1039 {
1040 /* The stub recognized the packet request. Check that the
1041 operation succeeded. */
1042 if (buf[0] == 'E'
1043 && isxdigit (buf[1]) && isxdigit (buf[2])
1044 && buf[3] == '\0')
1045 /* "Enn" - definitly an error. */
1046 return PACKET_ERROR;
1047
1048 /* Always treat "E." as an error. This will be used for
1049 more verbose error messages, such as E.memtypes. */
1050 if (buf[0] == 'E' && buf[1] == '.')
1051 return PACKET_ERROR;
1052
1053 /* The packet may or may not be OK. Just assume it is. */
1054 return PACKET_OK;
1055 }
1056 else
1057 /* The stub does not support the packet. */
1058 return PACKET_UNKNOWN;
1059 }
1060
1061 static enum packet_result
1062 packet_ok (const char *buf, struct packet_config *config)
1063 {
1064 enum packet_result result;
1065
1066 result = packet_check_result (buf);
1067 switch (result)
1068 {
1069 case PACKET_OK:
1070 case PACKET_ERROR:
1071 /* The stub recognized the packet request. */
1072 switch (config->support)
1073 {
1074 case PACKET_SUPPORT_UNKNOWN:
1075 if (remote_debug)
1076 fprintf_unfiltered (gdb_stdlog,
1077 "Packet %s (%s) is supported\n",
1078 config->name, config->title);
1079 config->support = PACKET_ENABLE;
1080 break;
1081 case PACKET_DISABLE:
1082 internal_error (__FILE__, __LINE__,
1083 _("packet_ok: attempt to use a disabled packet"));
1084 break;
1085 case PACKET_ENABLE:
1086 break;
1087 }
1088 break;
1089 case PACKET_UNKNOWN:
1090 /* The stub does not support the packet. */
1091 switch (config->support)
1092 {
1093 case PACKET_ENABLE:
1094 if (config->detect == AUTO_BOOLEAN_AUTO)
1095 /* If the stub previously indicated that the packet was
1096 supported then there is a protocol error.. */
1097 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1098 config->name, config->title);
1099 else
1100 /* The user set it wrong. */
1101 error (_("Enabled packet %s (%s) not recognized by stub"),
1102 config->name, config->title);
1103 break;
1104 case PACKET_SUPPORT_UNKNOWN:
1105 if (remote_debug)
1106 fprintf_unfiltered (gdb_stdlog,
1107 "Packet %s (%s) is NOT supported\n",
1108 config->name, config->title);
1109 config->support = PACKET_DISABLE;
1110 break;
1111 case PACKET_DISABLE:
1112 break;
1113 }
1114 break;
1115 }
1116
1117 return result;
1118 }
1119
1120 enum {
1121 PACKET_vCont = 0,
1122 PACKET_X,
1123 PACKET_qSymbol,
1124 PACKET_P,
1125 PACKET_p,
1126 PACKET_Z0,
1127 PACKET_Z1,
1128 PACKET_Z2,
1129 PACKET_Z3,
1130 PACKET_Z4,
1131 PACKET_vFile_open,
1132 PACKET_vFile_pread,
1133 PACKET_vFile_pwrite,
1134 PACKET_vFile_close,
1135 PACKET_vFile_unlink,
1136 PACKET_qXfer_auxv,
1137 PACKET_qXfer_features,
1138 PACKET_qXfer_libraries,
1139 PACKET_qXfer_memory_map,
1140 PACKET_qXfer_spu_read,
1141 PACKET_qXfer_spu_write,
1142 PACKET_qXfer_osdata,
1143 PACKET_qXfer_threads,
1144 PACKET_qGetTLSAddr,
1145 PACKET_qSupported,
1146 PACKET_QPassSignals,
1147 PACKET_qSearch_memory,
1148 PACKET_vAttach,
1149 PACKET_vRun,
1150 PACKET_QStartNoAckMode,
1151 PACKET_vKill,
1152 PACKET_qXfer_siginfo_read,
1153 PACKET_qXfer_siginfo_write,
1154 PACKET_qAttached,
1155 PACKET_ConditionalTracepoints,
1156 PACKET_FastTracepoints,
1157 PACKET_bc,
1158 PACKET_bs,
1159 PACKET_MAX
1160 };
1161
1162 static struct packet_config remote_protocol_packets[PACKET_MAX];
1163
1164 static void
1165 set_remote_protocol_packet_cmd (char *args, int from_tty,
1166 struct cmd_list_element *c)
1167 {
1168 struct packet_config *packet;
1169
1170 for (packet = remote_protocol_packets;
1171 packet < &remote_protocol_packets[PACKET_MAX];
1172 packet++)
1173 {
1174 if (&packet->detect == c->var)
1175 {
1176 update_packet_config (packet);
1177 return;
1178 }
1179 }
1180 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1181 c->name);
1182 }
1183
1184 static void
1185 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1186 struct cmd_list_element *c,
1187 const char *value)
1188 {
1189 struct packet_config *packet;
1190
1191 for (packet = remote_protocol_packets;
1192 packet < &remote_protocol_packets[PACKET_MAX];
1193 packet++)
1194 {
1195 if (&packet->detect == c->var)
1196 {
1197 show_packet_config_cmd (packet);
1198 return;
1199 }
1200 }
1201 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1202 c->name);
1203 }
1204
1205 /* Should we try one of the 'Z' requests? */
1206
1207 enum Z_packet_type
1208 {
1209 Z_PACKET_SOFTWARE_BP,
1210 Z_PACKET_HARDWARE_BP,
1211 Z_PACKET_WRITE_WP,
1212 Z_PACKET_READ_WP,
1213 Z_PACKET_ACCESS_WP,
1214 NR_Z_PACKET_TYPES
1215 };
1216
1217 /* For compatibility with older distributions. Provide a ``set remote
1218 Z-packet ...'' command that updates all the Z packet types. */
1219
1220 static enum auto_boolean remote_Z_packet_detect;
1221
1222 static void
1223 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1224 struct cmd_list_element *c)
1225 {
1226 int i;
1227 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1228 {
1229 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1230 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1231 }
1232 }
1233
1234 static void
1235 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1236 struct cmd_list_element *c,
1237 const char *value)
1238 {
1239 int i;
1240 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1241 {
1242 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1243 }
1244 }
1245
1246 /* Should we try the 'ThreadInfo' query packet?
1247
1248 This variable (NOT available to the user: auto-detect only!)
1249 determines whether GDB will use the new, simpler "ThreadInfo"
1250 query or the older, more complex syntax for thread queries.
1251 This is an auto-detect variable (set to true at each connect,
1252 and set to false when the target fails to recognize it). */
1253
1254 static int use_threadinfo_query;
1255 static int use_threadextra_query;
1256
1257 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1258 static struct async_signal_handler *sigint_remote_twice_token;
1259 static struct async_signal_handler *sigint_remote_token;
1260
1261 \f
1262 /* Asynchronous signal handle registered as event loop source for
1263 when we have pending events ready to be passed to the core. */
1264
1265 static struct async_event_handler *remote_async_inferior_event_token;
1266
1267 /* Asynchronous signal handle registered as event loop source for when
1268 the remote sent us a %Stop notification. The registered callback
1269 will do a vStopped sequence to pull the rest of the events out of
1270 the remote side into our event queue. */
1271
1272 static struct async_event_handler *remote_async_get_pending_events_token;
1273 \f
1274
1275 static ptid_t magic_null_ptid;
1276 static ptid_t not_sent_ptid;
1277 static ptid_t any_thread_ptid;
1278
1279 /* These are the threads which we last sent to the remote system. The
1280 TID member will be -1 for all or -2 for not sent yet. */
1281
1282 static ptid_t general_thread;
1283 static ptid_t continue_thread;
1284
1285 /* Find out if the stub attached to PID (and hence GDB should offer to
1286 detach instead of killing it when bailing out). */
1287
1288 static int
1289 remote_query_attached (int pid)
1290 {
1291 struct remote_state *rs = get_remote_state ();
1292
1293 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1294 return 0;
1295
1296 if (remote_multi_process_p (rs))
1297 sprintf (rs->buf, "qAttached:%x", pid);
1298 else
1299 sprintf (rs->buf, "qAttached");
1300
1301 putpkt (rs->buf);
1302 getpkt (&rs->buf, &rs->buf_size, 0);
1303
1304 switch (packet_ok (rs->buf,
1305 &remote_protocol_packets[PACKET_qAttached]))
1306 {
1307 case PACKET_OK:
1308 if (strcmp (rs->buf, "1") == 0)
1309 return 1;
1310 break;
1311 case PACKET_ERROR:
1312 warning (_("Remote failure reply: %s"), rs->buf);
1313 break;
1314 case PACKET_UNKNOWN:
1315 break;
1316 }
1317
1318 return 0;
1319 }
1320
1321 /* Add PID to GDB's inferior table. Since we can be connected to a
1322 remote system before before knowing about any inferior, mark the
1323 target with execution when we find the first inferior. If ATTACHED
1324 is 1, then we had just attached to this inferior. If it is 0, then
1325 we just created this inferior. If it is -1, then try querying the
1326 remote stub to find out if it had attached to the inferior or
1327 not. */
1328
1329 static struct inferior *
1330 remote_add_inferior (int pid, int attached)
1331 {
1332 struct inferior *inf;
1333
1334 /* Check whether this process we're learning about is to be
1335 considered attached, or if is to be considered to have been
1336 spawned by the stub. */
1337 if (attached == -1)
1338 attached = remote_query_attached (pid);
1339
1340 if (gdbarch_has_global_solist (target_gdbarch))
1341 {
1342 /* If the target shares code across all inferiors, then every
1343 attach adds a new inferior. */
1344 inf = add_inferior (pid);
1345
1346 /* ... and every inferior is bound to the same program space.
1347 However, each inferior may still have its own address
1348 space. */
1349 inf->aspace = maybe_new_address_space ();
1350 inf->pspace = current_program_space;
1351 }
1352 else
1353 {
1354 /* In the traditional debugging scenario, there's a 1-1 match
1355 between program/address spaces. We simply bind the inferior
1356 to the program space's address space. */
1357 inf = current_inferior ();
1358 inferior_appeared (inf, pid);
1359 }
1360
1361 inf->attach_flag = attached;
1362
1363 return inf;
1364 }
1365
1366 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1367 according to RUNNING. */
1368
1369 static void
1370 remote_add_thread (ptid_t ptid, int running)
1371 {
1372 add_thread (ptid);
1373
1374 set_executing (ptid, running);
1375 set_running (ptid, running);
1376 }
1377
1378 /* Come here when we learn about a thread id from the remote target.
1379 It may be the first time we hear about such thread, so take the
1380 opportunity to add it to GDB's thread list. In case this is the
1381 first time we're noticing its corresponding inferior, add it to
1382 GDB's inferior list as well. */
1383
1384 static void
1385 remote_notice_new_inferior (ptid_t currthread, int running)
1386 {
1387 /* If this is a new thread, add it to GDB's thread list.
1388 If we leave it up to WFI to do this, bad things will happen. */
1389
1390 if (in_thread_list (currthread) && is_exited (currthread))
1391 {
1392 /* We're seeing an event on a thread id we knew had exited.
1393 This has to be a new thread reusing the old id. Add it. */
1394 remote_add_thread (currthread, running);
1395 return;
1396 }
1397
1398 if (!in_thread_list (currthread))
1399 {
1400 struct inferior *inf = NULL;
1401 int pid = ptid_get_pid (currthread);
1402
1403 if (ptid_is_pid (inferior_ptid)
1404 && pid == ptid_get_pid (inferior_ptid))
1405 {
1406 /* inferior_ptid has no thread member yet. This can happen
1407 with the vAttach -> remote_wait,"TAAthread:" path if the
1408 stub doesn't support qC. This is the first stop reported
1409 after an attach, so this is the main thread. Update the
1410 ptid in the thread list. */
1411 if (in_thread_list (pid_to_ptid (pid)))
1412 thread_change_ptid (inferior_ptid, currthread);
1413 else
1414 {
1415 remote_add_thread (currthread, running);
1416 inferior_ptid = currthread;
1417 }
1418 return;
1419 }
1420
1421 if (ptid_equal (magic_null_ptid, inferior_ptid))
1422 {
1423 /* inferior_ptid is not set yet. This can happen with the
1424 vRun -> remote_wait,"TAAthread:" path if the stub
1425 doesn't support qC. This is the first stop reported
1426 after an attach, so this is the main thread. Update the
1427 ptid in the thread list. */
1428 thread_change_ptid (inferior_ptid, currthread);
1429 return;
1430 }
1431
1432 /* When connecting to a target remote, or to a target
1433 extended-remote which already was debugging an inferior, we
1434 may not know about it yet. Add it before adding its child
1435 thread, so notifications are emitted in a sensible order. */
1436 if (!in_inferior_list (ptid_get_pid (currthread)))
1437 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1438
1439 /* This is really a new thread. Add it. */
1440 remote_add_thread (currthread, running);
1441
1442 /* If we found a new inferior, let the common code do whatever
1443 it needs to with it (e.g., read shared libraries, insert
1444 breakpoints). */
1445 if (inf != NULL)
1446 notice_new_inferior (currthread, running, 0);
1447 }
1448 }
1449
1450 /* Return the private thread data, creating it if necessary. */
1451
1452 struct private_thread_info *
1453 demand_private_info (ptid_t ptid)
1454 {
1455 struct thread_info *info = find_thread_ptid (ptid);
1456
1457 gdb_assert (info);
1458
1459 if (!info->private)
1460 {
1461 info->private = xmalloc (sizeof (*(info->private)));
1462 info->private_dtor = free_private_thread_info;
1463 info->private->core = -1;
1464 info->private->extra = 0;
1465 }
1466
1467 return info->private;
1468 }
1469
1470 /* Call this function as a result of
1471 1) A halt indication (T packet) containing a thread id
1472 2) A direct query of currthread
1473 3) Successful execution of set thread
1474 */
1475
1476 static void
1477 record_currthread (ptid_t currthread)
1478 {
1479 general_thread = currthread;
1480 }
1481
1482 static char *last_pass_packet;
1483
1484 /* If 'QPassSignals' is supported, tell the remote stub what signals
1485 it can simply pass through to the inferior without reporting. */
1486
1487 static void
1488 remote_pass_signals (void)
1489 {
1490 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1491 {
1492 char *pass_packet, *p;
1493 int numsigs = (int) TARGET_SIGNAL_LAST;
1494 int count = 0, i;
1495
1496 gdb_assert (numsigs < 256);
1497 for (i = 0; i < numsigs; i++)
1498 {
1499 if (signal_stop_state (i) == 0
1500 && signal_print_state (i) == 0
1501 && signal_pass_state (i) == 1)
1502 count++;
1503 }
1504 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1505 strcpy (pass_packet, "QPassSignals:");
1506 p = pass_packet + strlen (pass_packet);
1507 for (i = 0; i < numsigs; i++)
1508 {
1509 if (signal_stop_state (i) == 0
1510 && signal_print_state (i) == 0
1511 && signal_pass_state (i) == 1)
1512 {
1513 if (i >= 16)
1514 *p++ = tohex (i >> 4);
1515 *p++ = tohex (i & 15);
1516 if (count)
1517 *p++ = ';';
1518 else
1519 break;
1520 count--;
1521 }
1522 }
1523 *p = 0;
1524 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1525 {
1526 struct remote_state *rs = get_remote_state ();
1527 char *buf = rs->buf;
1528
1529 putpkt (pass_packet);
1530 getpkt (&rs->buf, &rs->buf_size, 0);
1531 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1532 if (last_pass_packet)
1533 xfree (last_pass_packet);
1534 last_pass_packet = pass_packet;
1535 }
1536 else
1537 xfree (pass_packet);
1538 }
1539 }
1540
1541 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1542 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1543 thread. If GEN is set, set the general thread, if not, then set
1544 the step/continue thread. */
1545 static void
1546 set_thread (struct ptid ptid, int gen)
1547 {
1548 struct remote_state *rs = get_remote_state ();
1549 ptid_t state = gen ? general_thread : continue_thread;
1550 char *buf = rs->buf;
1551 char *endbuf = rs->buf + get_remote_packet_size ();
1552
1553 if (ptid_equal (state, ptid))
1554 return;
1555
1556 *buf++ = 'H';
1557 *buf++ = gen ? 'g' : 'c';
1558 if (ptid_equal (ptid, magic_null_ptid))
1559 xsnprintf (buf, endbuf - buf, "0");
1560 else if (ptid_equal (ptid, any_thread_ptid))
1561 xsnprintf (buf, endbuf - buf, "0");
1562 else if (ptid_equal (ptid, minus_one_ptid))
1563 xsnprintf (buf, endbuf - buf, "-1");
1564 else
1565 write_ptid (buf, endbuf, ptid);
1566 putpkt (rs->buf);
1567 getpkt (&rs->buf, &rs->buf_size, 0);
1568 if (gen)
1569 general_thread = ptid;
1570 else
1571 continue_thread = ptid;
1572 }
1573
1574 static void
1575 set_general_thread (struct ptid ptid)
1576 {
1577 set_thread (ptid, 1);
1578 }
1579
1580 static void
1581 set_continue_thread (struct ptid ptid)
1582 {
1583 set_thread (ptid, 0);
1584 }
1585
1586 /* Change the remote current process. Which thread within the process
1587 ends up selected isn't important, as long as it is the same process
1588 as what INFERIOR_PTID points to.
1589
1590 This comes from that fact that there is no explicit notion of
1591 "selected process" in the protocol. The selected process for
1592 general operations is the process the selected general thread
1593 belongs to. */
1594
1595 static void
1596 set_general_process (void)
1597 {
1598 struct remote_state *rs = get_remote_state ();
1599
1600 /* If the remote can't handle multiple processes, don't bother. */
1601 if (!remote_multi_process_p (rs))
1602 return;
1603
1604 /* We only need to change the remote current thread if it's pointing
1605 at some other process. */
1606 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1607 set_general_thread (inferior_ptid);
1608 }
1609
1610 \f
1611 /* Return nonzero if the thread PTID is still alive on the remote
1612 system. */
1613
1614 static int
1615 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1616 {
1617 struct remote_state *rs = get_remote_state ();
1618 char *p, *endp;
1619
1620 if (ptid_equal (ptid, magic_null_ptid))
1621 /* The main thread is always alive. */
1622 return 1;
1623
1624 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1625 /* The main thread is always alive. This can happen after a
1626 vAttach, if the remote side doesn't support
1627 multi-threading. */
1628 return 1;
1629
1630 p = rs->buf;
1631 endp = rs->buf + get_remote_packet_size ();
1632
1633 *p++ = 'T';
1634 write_ptid (p, endp, ptid);
1635
1636 putpkt (rs->buf);
1637 getpkt (&rs->buf, &rs->buf_size, 0);
1638 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1639 }
1640
1641 /* About these extended threadlist and threadinfo packets. They are
1642 variable length packets but, the fields within them are often fixed
1643 length. They are redundent enough to send over UDP as is the
1644 remote protocol in general. There is a matching unit test module
1645 in libstub. */
1646
1647 #define OPAQUETHREADBYTES 8
1648
1649 /* a 64 bit opaque identifier */
1650 typedef unsigned char threadref[OPAQUETHREADBYTES];
1651
1652 /* WARNING: This threadref data structure comes from the remote O.S.,
1653 libstub protocol encoding, and remote.c. it is not particularly
1654 changable. */
1655
1656 /* Right now, the internal structure is int. We want it to be bigger.
1657 Plan to fix this.
1658 */
1659
1660 typedef int gdb_threadref; /* Internal GDB thread reference. */
1661
1662 /* gdb_ext_thread_info is an internal GDB data structure which is
1663 equivalent to the reply of the remote threadinfo packet. */
1664
1665 struct gdb_ext_thread_info
1666 {
1667 threadref threadid; /* External form of thread reference. */
1668 int active; /* Has state interesting to GDB?
1669 regs, stack. */
1670 char display[256]; /* Brief state display, name,
1671 blocked/suspended. */
1672 char shortname[32]; /* To be used to name threads. */
1673 char more_display[256]; /* Long info, statistics, queue depth,
1674 whatever. */
1675 };
1676
1677 /* The volume of remote transfers can be limited by submitting
1678 a mask containing bits specifying the desired information.
1679 Use a union of these values as the 'selection' parameter to
1680 get_thread_info. FIXME: Make these TAG names more thread specific.
1681 */
1682
1683 #define TAG_THREADID 1
1684 #define TAG_EXISTS 2
1685 #define TAG_DISPLAY 4
1686 #define TAG_THREADNAME 8
1687 #define TAG_MOREDISPLAY 16
1688
1689 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1690
1691 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1692
1693 static char *unpack_nibble (char *buf, int *val);
1694
1695 static char *pack_nibble (char *buf, int nibble);
1696
1697 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1698
1699 static char *unpack_byte (char *buf, int *value);
1700
1701 static char *pack_int (char *buf, int value);
1702
1703 static char *unpack_int (char *buf, int *value);
1704
1705 static char *unpack_string (char *src, char *dest, int length);
1706
1707 static char *pack_threadid (char *pkt, threadref *id);
1708
1709 static char *unpack_threadid (char *inbuf, threadref *id);
1710
1711 void int_to_threadref (threadref *id, int value);
1712
1713 static int threadref_to_int (threadref *ref);
1714
1715 static void copy_threadref (threadref *dest, threadref *src);
1716
1717 static int threadmatch (threadref *dest, threadref *src);
1718
1719 static char *pack_threadinfo_request (char *pkt, int mode,
1720 threadref *id);
1721
1722 static int remote_unpack_thread_info_response (char *pkt,
1723 threadref *expectedref,
1724 struct gdb_ext_thread_info
1725 *info);
1726
1727
1728 static int remote_get_threadinfo (threadref *threadid,
1729 int fieldset, /*TAG mask */
1730 struct gdb_ext_thread_info *info);
1731
1732 static char *pack_threadlist_request (char *pkt, int startflag,
1733 int threadcount,
1734 threadref *nextthread);
1735
1736 static int parse_threadlist_response (char *pkt,
1737 int result_limit,
1738 threadref *original_echo,
1739 threadref *resultlist,
1740 int *doneflag);
1741
1742 static int remote_get_threadlist (int startflag,
1743 threadref *nextthread,
1744 int result_limit,
1745 int *done,
1746 int *result_count,
1747 threadref *threadlist);
1748
1749 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1750
1751 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1752 void *context, int looplimit);
1753
1754 static int remote_newthread_step (threadref *ref, void *context);
1755
1756
1757 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1758 buffer we're allowed to write to. Returns
1759 BUF+CHARACTERS_WRITTEN. */
1760
1761 static char *
1762 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1763 {
1764 int pid, tid;
1765 struct remote_state *rs = get_remote_state ();
1766
1767 if (remote_multi_process_p (rs))
1768 {
1769 pid = ptid_get_pid (ptid);
1770 if (pid < 0)
1771 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1772 else
1773 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1774 }
1775 tid = ptid_get_tid (ptid);
1776 if (tid < 0)
1777 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1778 else
1779 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1780
1781 return buf;
1782 }
1783
1784 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1785 passed the last parsed char. Returns null_ptid on error. */
1786
1787 static ptid_t
1788 read_ptid (char *buf, char **obuf)
1789 {
1790 char *p = buf;
1791 char *pp;
1792 ULONGEST pid = 0, tid = 0;
1793
1794 if (*p == 'p')
1795 {
1796 /* Multi-process ptid. */
1797 pp = unpack_varlen_hex (p + 1, &pid);
1798 if (*pp != '.')
1799 error (_("invalid remote ptid: %s\n"), p);
1800
1801 p = pp;
1802 pp = unpack_varlen_hex (p + 1, &tid);
1803 if (obuf)
1804 *obuf = pp;
1805 return ptid_build (pid, 0, tid);
1806 }
1807
1808 /* No multi-process. Just a tid. */
1809 pp = unpack_varlen_hex (p, &tid);
1810
1811 /* Since the stub is not sending a process id, then default to
1812 what's in inferior_ptid, unless it's null at this point. If so,
1813 then since there's no way to know the pid of the reported
1814 threads, use the magic number. */
1815 if (ptid_equal (inferior_ptid, null_ptid))
1816 pid = ptid_get_pid (magic_null_ptid);
1817 else
1818 pid = ptid_get_pid (inferior_ptid);
1819
1820 if (obuf)
1821 *obuf = pp;
1822 return ptid_build (pid, 0, tid);
1823 }
1824
1825 /* Encode 64 bits in 16 chars of hex. */
1826
1827 static const char hexchars[] = "0123456789abcdef";
1828
1829 static int
1830 ishex (int ch, int *val)
1831 {
1832 if ((ch >= 'a') && (ch <= 'f'))
1833 {
1834 *val = ch - 'a' + 10;
1835 return 1;
1836 }
1837 if ((ch >= 'A') && (ch <= 'F'))
1838 {
1839 *val = ch - 'A' + 10;
1840 return 1;
1841 }
1842 if ((ch >= '0') && (ch <= '9'))
1843 {
1844 *val = ch - '0';
1845 return 1;
1846 }
1847 return 0;
1848 }
1849
1850 static int
1851 stubhex (int ch)
1852 {
1853 if (ch >= 'a' && ch <= 'f')
1854 return ch - 'a' + 10;
1855 if (ch >= '0' && ch <= '9')
1856 return ch - '0';
1857 if (ch >= 'A' && ch <= 'F')
1858 return ch - 'A' + 10;
1859 return -1;
1860 }
1861
1862 static int
1863 stub_unpack_int (char *buff, int fieldlength)
1864 {
1865 int nibble;
1866 int retval = 0;
1867
1868 while (fieldlength)
1869 {
1870 nibble = stubhex (*buff++);
1871 retval |= nibble;
1872 fieldlength--;
1873 if (fieldlength)
1874 retval = retval << 4;
1875 }
1876 return retval;
1877 }
1878
1879 char *
1880 unpack_varlen_hex (char *buff, /* packet to parse */
1881 ULONGEST *result)
1882 {
1883 int nibble;
1884 ULONGEST retval = 0;
1885
1886 while (ishex (*buff, &nibble))
1887 {
1888 buff++;
1889 retval = retval << 4;
1890 retval |= nibble & 0x0f;
1891 }
1892 *result = retval;
1893 return buff;
1894 }
1895
1896 static char *
1897 unpack_nibble (char *buf, int *val)
1898 {
1899 *val = fromhex (*buf++);
1900 return buf;
1901 }
1902
1903 static char *
1904 pack_nibble (char *buf, int nibble)
1905 {
1906 *buf++ = hexchars[(nibble & 0x0f)];
1907 return buf;
1908 }
1909
1910 static char *
1911 pack_hex_byte (char *pkt, int byte)
1912 {
1913 *pkt++ = hexchars[(byte >> 4) & 0xf];
1914 *pkt++ = hexchars[(byte & 0xf)];
1915 return pkt;
1916 }
1917
1918 static char *
1919 unpack_byte (char *buf, int *value)
1920 {
1921 *value = stub_unpack_int (buf, 2);
1922 return buf + 2;
1923 }
1924
1925 static char *
1926 pack_int (char *buf, int value)
1927 {
1928 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1929 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1930 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1931 buf = pack_hex_byte (buf, (value & 0xff));
1932 return buf;
1933 }
1934
1935 static char *
1936 unpack_int (char *buf, int *value)
1937 {
1938 *value = stub_unpack_int (buf, 8);
1939 return buf + 8;
1940 }
1941
1942 #if 0 /* Currently unused, uncomment when needed. */
1943 static char *pack_string (char *pkt, char *string);
1944
1945 static char *
1946 pack_string (char *pkt, char *string)
1947 {
1948 char ch;
1949 int len;
1950
1951 len = strlen (string);
1952 if (len > 200)
1953 len = 200; /* Bigger than most GDB packets, junk??? */
1954 pkt = pack_hex_byte (pkt, len);
1955 while (len-- > 0)
1956 {
1957 ch = *string++;
1958 if ((ch == '\0') || (ch == '#'))
1959 ch = '*'; /* Protect encapsulation. */
1960 *pkt++ = ch;
1961 }
1962 return pkt;
1963 }
1964 #endif /* 0 (unused) */
1965
1966 static char *
1967 unpack_string (char *src, char *dest, int length)
1968 {
1969 while (length--)
1970 *dest++ = *src++;
1971 *dest = '\0';
1972 return src;
1973 }
1974
1975 static char *
1976 pack_threadid (char *pkt, threadref *id)
1977 {
1978 char *limit;
1979 unsigned char *altid;
1980
1981 altid = (unsigned char *) id;
1982 limit = pkt + BUF_THREAD_ID_SIZE;
1983 while (pkt < limit)
1984 pkt = pack_hex_byte (pkt, *altid++);
1985 return pkt;
1986 }
1987
1988
1989 static char *
1990 unpack_threadid (char *inbuf, threadref *id)
1991 {
1992 char *altref;
1993 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1994 int x, y;
1995
1996 altref = (char *) id;
1997
1998 while (inbuf < limit)
1999 {
2000 x = stubhex (*inbuf++);
2001 y = stubhex (*inbuf++);
2002 *altref++ = (x << 4) | y;
2003 }
2004 return inbuf;
2005 }
2006
2007 /* Externally, threadrefs are 64 bits but internally, they are still
2008 ints. This is due to a mismatch of specifications. We would like
2009 to use 64bit thread references internally. This is an adapter
2010 function. */
2011
2012 void
2013 int_to_threadref (threadref *id, int value)
2014 {
2015 unsigned char *scan;
2016
2017 scan = (unsigned char *) id;
2018 {
2019 int i = 4;
2020 while (i--)
2021 *scan++ = 0;
2022 }
2023 *scan++ = (value >> 24) & 0xff;
2024 *scan++ = (value >> 16) & 0xff;
2025 *scan++ = (value >> 8) & 0xff;
2026 *scan++ = (value & 0xff);
2027 }
2028
2029 static int
2030 threadref_to_int (threadref *ref)
2031 {
2032 int i, value = 0;
2033 unsigned char *scan;
2034
2035 scan = *ref;
2036 scan += 4;
2037 i = 4;
2038 while (i-- > 0)
2039 value = (value << 8) | ((*scan++) & 0xff);
2040 return value;
2041 }
2042
2043 static void
2044 copy_threadref (threadref *dest, threadref *src)
2045 {
2046 int i;
2047 unsigned char *csrc, *cdest;
2048
2049 csrc = (unsigned char *) src;
2050 cdest = (unsigned char *) dest;
2051 i = 8;
2052 while (i--)
2053 *cdest++ = *csrc++;
2054 }
2055
2056 static int
2057 threadmatch (threadref *dest, threadref *src)
2058 {
2059 /* Things are broken right now, so just assume we got a match. */
2060 #if 0
2061 unsigned char *srcp, *destp;
2062 int i, result;
2063 srcp = (char *) src;
2064 destp = (char *) dest;
2065
2066 result = 1;
2067 while (i-- > 0)
2068 result &= (*srcp++ == *destp++) ? 1 : 0;
2069 return result;
2070 #endif
2071 return 1;
2072 }
2073
2074 /*
2075 threadid:1, # always request threadid
2076 context_exists:2,
2077 display:4,
2078 unique_name:8,
2079 more_display:16
2080 */
2081
2082 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2083
2084 static char *
2085 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2086 {
2087 *pkt++ = 'q'; /* Info Query */
2088 *pkt++ = 'P'; /* process or thread info */
2089 pkt = pack_int (pkt, mode); /* mode */
2090 pkt = pack_threadid (pkt, id); /* threadid */
2091 *pkt = '\0'; /* terminate */
2092 return pkt;
2093 }
2094
2095 /* These values tag the fields in a thread info response packet. */
2096 /* Tagging the fields allows us to request specific fields and to
2097 add more fields as time goes by. */
2098
2099 #define TAG_THREADID 1 /* Echo the thread identifier. */
2100 #define TAG_EXISTS 2 /* Is this process defined enough to
2101 fetch registers and its stack? */
2102 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2103 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2104 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2105 the process. */
2106
2107 static int
2108 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2109 struct gdb_ext_thread_info *info)
2110 {
2111 struct remote_state *rs = get_remote_state ();
2112 int mask, length;
2113 int tag;
2114 threadref ref;
2115 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2116 int retval = 1;
2117
2118 /* info->threadid = 0; FIXME: implement zero_threadref. */
2119 info->active = 0;
2120 info->display[0] = '\0';
2121 info->shortname[0] = '\0';
2122 info->more_display[0] = '\0';
2123
2124 /* Assume the characters indicating the packet type have been
2125 stripped. */
2126 pkt = unpack_int (pkt, &mask); /* arg mask */
2127 pkt = unpack_threadid (pkt, &ref);
2128
2129 if (mask == 0)
2130 warning (_("Incomplete response to threadinfo request."));
2131 if (!threadmatch (&ref, expectedref))
2132 { /* This is an answer to a different request. */
2133 warning (_("ERROR RMT Thread info mismatch."));
2134 return 0;
2135 }
2136 copy_threadref (&info->threadid, &ref);
2137
2138 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2139
2140 /* Packets are terminated with nulls. */
2141 while ((pkt < limit) && mask && *pkt)
2142 {
2143 pkt = unpack_int (pkt, &tag); /* tag */
2144 pkt = unpack_byte (pkt, &length); /* length */
2145 if (!(tag & mask)) /* Tags out of synch with mask. */
2146 {
2147 warning (_("ERROR RMT: threadinfo tag mismatch."));
2148 retval = 0;
2149 break;
2150 }
2151 if (tag == TAG_THREADID)
2152 {
2153 if (length != 16)
2154 {
2155 warning (_("ERROR RMT: length of threadid is not 16."));
2156 retval = 0;
2157 break;
2158 }
2159 pkt = unpack_threadid (pkt, &ref);
2160 mask = mask & ~TAG_THREADID;
2161 continue;
2162 }
2163 if (tag == TAG_EXISTS)
2164 {
2165 info->active = stub_unpack_int (pkt, length);
2166 pkt += length;
2167 mask = mask & ~(TAG_EXISTS);
2168 if (length > 8)
2169 {
2170 warning (_("ERROR RMT: 'exists' length too long."));
2171 retval = 0;
2172 break;
2173 }
2174 continue;
2175 }
2176 if (tag == TAG_THREADNAME)
2177 {
2178 pkt = unpack_string (pkt, &info->shortname[0], length);
2179 mask = mask & ~TAG_THREADNAME;
2180 continue;
2181 }
2182 if (tag == TAG_DISPLAY)
2183 {
2184 pkt = unpack_string (pkt, &info->display[0], length);
2185 mask = mask & ~TAG_DISPLAY;
2186 continue;
2187 }
2188 if (tag == TAG_MOREDISPLAY)
2189 {
2190 pkt = unpack_string (pkt, &info->more_display[0], length);
2191 mask = mask & ~TAG_MOREDISPLAY;
2192 continue;
2193 }
2194 warning (_("ERROR RMT: unknown thread info tag."));
2195 break; /* Not a tag we know about. */
2196 }
2197 return retval;
2198 }
2199
2200 static int
2201 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2202 struct gdb_ext_thread_info *info)
2203 {
2204 struct remote_state *rs = get_remote_state ();
2205 int result;
2206
2207 pack_threadinfo_request (rs->buf, fieldset, threadid);
2208 putpkt (rs->buf);
2209 getpkt (&rs->buf, &rs->buf_size, 0);
2210
2211 if (rs->buf[0] == '\0')
2212 return 0;
2213
2214 result = remote_unpack_thread_info_response (rs->buf + 2,
2215 threadid, info);
2216 return result;
2217 }
2218
2219 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2220
2221 static char *
2222 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2223 threadref *nextthread)
2224 {
2225 *pkt++ = 'q'; /* info query packet */
2226 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2227 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2228 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2229 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2230 *pkt = '\0';
2231 return pkt;
2232 }
2233
2234 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2235
2236 static int
2237 parse_threadlist_response (char *pkt, int result_limit,
2238 threadref *original_echo, threadref *resultlist,
2239 int *doneflag)
2240 {
2241 struct remote_state *rs = get_remote_state ();
2242 char *limit;
2243 int count, resultcount, done;
2244
2245 resultcount = 0;
2246 /* Assume the 'q' and 'M chars have been stripped. */
2247 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2248 /* done parse past here */
2249 pkt = unpack_byte (pkt, &count); /* count field */
2250 pkt = unpack_nibble (pkt, &done);
2251 /* The first threadid is the argument threadid. */
2252 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2253 while ((count-- > 0) && (pkt < limit))
2254 {
2255 pkt = unpack_threadid (pkt, resultlist++);
2256 if (resultcount++ >= result_limit)
2257 break;
2258 }
2259 if (doneflag)
2260 *doneflag = done;
2261 return resultcount;
2262 }
2263
2264 static int
2265 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2266 int *done, int *result_count, threadref *threadlist)
2267 {
2268 struct remote_state *rs = get_remote_state ();
2269 static threadref echo_nextthread;
2270 int result = 1;
2271
2272 /* Trancate result limit to be smaller than the packet size. */
2273 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2274 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2275
2276 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2277 putpkt (rs->buf);
2278 getpkt (&rs->buf, &rs->buf_size, 0);
2279
2280 if (*rs->buf == '\0')
2281 *result_count = 0;
2282 else
2283 *result_count =
2284 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2285 threadlist, done);
2286
2287 if (!threadmatch (&echo_nextthread, nextthread))
2288 {
2289 /* FIXME: This is a good reason to drop the packet. */
2290 /* Possably, there is a duplicate response. */
2291 /* Possabilities :
2292 retransmit immediatly - race conditions
2293 retransmit after timeout - yes
2294 exit
2295 wait for packet, then exit
2296 */
2297 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2298 return 0; /* I choose simply exiting. */
2299 }
2300 if (*result_count <= 0)
2301 {
2302 if (*done != 1)
2303 {
2304 warning (_("RMT ERROR : failed to get remote thread list."));
2305 result = 0;
2306 }
2307 return result; /* break; */
2308 }
2309 if (*result_count > result_limit)
2310 {
2311 *result_count = 0;
2312 warning (_("RMT ERROR: threadlist response longer than requested."));
2313 return 0;
2314 }
2315 return result;
2316 }
2317
2318 /* This is the interface between remote and threads, remotes upper
2319 interface. */
2320
2321 /* remote_find_new_threads retrieves the thread list and for each
2322 thread in the list, looks up the thread in GDB's internal list,
2323 adding the thread if it does not already exist. This involves
2324 getting partial thread lists from the remote target so, polling the
2325 quit_flag is required. */
2326
2327
2328 /* About this many threadisds fit in a packet. */
2329
2330 #define MAXTHREADLISTRESULTS 32
2331
2332 static int
2333 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2334 int looplimit)
2335 {
2336 int done, i, result_count;
2337 int startflag = 1;
2338 int result = 1;
2339 int loopcount = 0;
2340 static threadref nextthread;
2341 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2342
2343 done = 0;
2344 while (!done)
2345 {
2346 if (loopcount++ > looplimit)
2347 {
2348 result = 0;
2349 warning (_("Remote fetch threadlist -infinite loop-."));
2350 break;
2351 }
2352 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2353 &done, &result_count, resultthreadlist))
2354 {
2355 result = 0;
2356 break;
2357 }
2358 /* Clear for later iterations. */
2359 startflag = 0;
2360 /* Setup to resume next batch of thread references, set nextthread. */
2361 if (result_count >= 1)
2362 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2363 i = 0;
2364 while (result_count--)
2365 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2366 break;
2367 }
2368 return result;
2369 }
2370
2371 static int
2372 remote_newthread_step (threadref *ref, void *context)
2373 {
2374 int pid = ptid_get_pid (inferior_ptid);
2375 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2376
2377 if (!in_thread_list (ptid))
2378 add_thread (ptid);
2379 return 1; /* continue iterator */
2380 }
2381
2382 #define CRAZY_MAX_THREADS 1000
2383
2384 static ptid_t
2385 remote_current_thread (ptid_t oldpid)
2386 {
2387 struct remote_state *rs = get_remote_state ();
2388
2389 putpkt ("qC");
2390 getpkt (&rs->buf, &rs->buf_size, 0);
2391 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2392 return read_ptid (&rs->buf[2], NULL);
2393 else
2394 return oldpid;
2395 }
2396
2397 /* Find new threads for info threads command.
2398 * Original version, using John Metzler's thread protocol.
2399 */
2400
2401 static void
2402 remote_find_new_threads (void)
2403 {
2404 remote_threadlist_iterator (remote_newthread_step, 0,
2405 CRAZY_MAX_THREADS);
2406 }
2407
2408 #if defined(HAVE_LIBEXPAT)
2409
2410 typedef struct thread_item
2411 {
2412 ptid_t ptid;
2413 char *extra;
2414 int core;
2415 } thread_item_t;
2416 DEF_VEC_O(thread_item_t);
2417
2418 struct threads_parsing_context
2419 {
2420 VEC (thread_item_t) *items;
2421 };
2422
2423 static void
2424 start_thread (struct gdb_xml_parser *parser,
2425 const struct gdb_xml_element *element,
2426 void *user_data, VEC(gdb_xml_value_s) *attributes)
2427 {
2428 struct threads_parsing_context *data = user_data;
2429
2430 struct thread_item item;
2431 char *id;
2432
2433 id = VEC_index (gdb_xml_value_s, attributes, 0)->value;
2434 item.ptid = read_ptid (id, NULL);
2435
2436 if (VEC_length (gdb_xml_value_s, attributes) > 1)
2437 item.core = *(ULONGEST *) VEC_index (gdb_xml_value_s, attributes, 1)->value;
2438 else
2439 item.core = -1;
2440
2441 item.extra = 0;
2442
2443 VEC_safe_push (thread_item_t, data->items, &item);
2444 }
2445
2446 static void
2447 end_thread (struct gdb_xml_parser *parser,
2448 const struct gdb_xml_element *element,
2449 void *user_data, const char *body_text)
2450 {
2451 struct threads_parsing_context *data = user_data;
2452
2453 if (body_text && *body_text)
2454 VEC_last (thread_item_t, data->items)->extra = strdup (body_text);
2455 }
2456
2457 const struct gdb_xml_attribute thread_attributes[] = {
2458 { "id", GDB_XML_AF_NONE, NULL, NULL },
2459 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2460 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2461 };
2462
2463 const struct gdb_xml_element thread_children[] = {
2464 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2465 };
2466
2467 const struct gdb_xml_element threads_children[] = {
2468 { "thread", thread_attributes, thread_children,
2469 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2470 start_thread, end_thread },
2471 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2472 };
2473
2474 const struct gdb_xml_element threads_elements[] = {
2475 { "threads", NULL, threads_children,
2476 GDB_XML_EF_NONE, NULL, NULL },
2477 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2478 };
2479
2480 #endif
2481
2482 /*
2483 * Find all threads for info threads command.
2484 * Uses new thread protocol contributed by Cisco.
2485 * Falls back and attempts to use the older method (above)
2486 * if the target doesn't respond to the new method.
2487 */
2488
2489 static void
2490 remote_threads_info (struct target_ops *ops)
2491 {
2492 struct remote_state *rs = get_remote_state ();
2493 char *bufp;
2494 ptid_t new_thread;
2495
2496 if (remote_desc == 0) /* paranoia */
2497 error (_("Command can only be used when connected to the remote target."));
2498
2499 #if defined(HAVE_LIBEXPAT)
2500 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2501 {
2502 char *xml = target_read_stralloc (&current_target,
2503 TARGET_OBJECT_THREADS, NULL);
2504
2505 struct cleanup *back_to = make_cleanup (xfree, xml);
2506 if (xml && *xml)
2507 {
2508 struct gdb_xml_parser *parser;
2509 struct threads_parsing_context context;
2510 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
2511
2512 context.items = 0;
2513 parser = gdb_xml_create_parser_and_cleanup (_("threads"),
2514 threads_elements,
2515 &context);
2516
2517 gdb_xml_use_dtd (parser, "threads.dtd");
2518
2519 if (gdb_xml_parse (parser, xml) == 0)
2520 {
2521 int i;
2522 struct thread_item *item;
2523
2524 for (i = 0; VEC_iterate (thread_item_t, context.items, i, item); ++i)
2525 {
2526 if (!ptid_equal (item->ptid, null_ptid))
2527 {
2528 struct private_thread_info *info;
2529 /* In non-stop mode, we assume new found threads
2530 are running until proven otherwise with a
2531 stop reply. In all-stop, we can only get
2532 here if all threads are stopped. */
2533 int running = non_stop ? 1 : 0;
2534
2535 remote_notice_new_inferior (item->ptid, running);
2536
2537 info = demand_private_info (item->ptid);
2538 info->core = item->core;
2539 info->extra = item->extra;
2540 item->extra = 0;
2541 }
2542 xfree (item->extra);
2543 }
2544 }
2545
2546 VEC_free (thread_item_t, context.items);
2547 }
2548
2549 do_cleanups (back_to);
2550 return;
2551 }
2552 #endif
2553
2554 if (use_threadinfo_query)
2555 {
2556 putpkt ("qfThreadInfo");
2557 getpkt (&rs->buf, &rs->buf_size, 0);
2558 bufp = rs->buf;
2559 if (bufp[0] != '\0') /* q packet recognized */
2560 {
2561 while (*bufp++ == 'm') /* reply contains one or more TID */
2562 {
2563 do
2564 {
2565 new_thread = read_ptid (bufp, &bufp);
2566 if (!ptid_equal (new_thread, null_ptid))
2567 {
2568 /* In non-stop mode, we assume new found threads
2569 are running until proven otherwise with a
2570 stop reply. In all-stop, we can only get
2571 here if all threads are stopped. */
2572 int running = non_stop ? 1 : 0;
2573
2574 remote_notice_new_inferior (new_thread, running);
2575 }
2576 }
2577 while (*bufp++ == ','); /* comma-separated list */
2578 putpkt ("qsThreadInfo");
2579 getpkt (&rs->buf, &rs->buf_size, 0);
2580 bufp = rs->buf;
2581 }
2582 return; /* done */
2583 }
2584 }
2585
2586 /* Only qfThreadInfo is supported in non-stop mode. */
2587 if (non_stop)
2588 return;
2589
2590 /* Else fall back to old method based on jmetzler protocol. */
2591 use_threadinfo_query = 0;
2592 remote_find_new_threads ();
2593 return;
2594 }
2595
2596 /*
2597 * Collect a descriptive string about the given thread.
2598 * The target may say anything it wants to about the thread
2599 * (typically info about its blocked / runnable state, name, etc.).
2600 * This string will appear in the info threads display.
2601 *
2602 * Optional: targets are not required to implement this function.
2603 */
2604
2605 static char *
2606 remote_threads_extra_info (struct thread_info *tp)
2607 {
2608 struct remote_state *rs = get_remote_state ();
2609 int result;
2610 int set;
2611 threadref id;
2612 struct gdb_ext_thread_info threadinfo;
2613 static char display_buf[100]; /* arbitrary... */
2614 int n = 0; /* position in display_buf */
2615
2616 if (remote_desc == 0) /* paranoia */
2617 internal_error (__FILE__, __LINE__,
2618 _("remote_threads_extra_info"));
2619
2620 if (ptid_equal (tp->ptid, magic_null_ptid)
2621 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2622 /* This is the main thread which was added by GDB. The remote
2623 server doesn't know about it. */
2624 return NULL;
2625
2626 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2627 {
2628 struct thread_info *info = find_thread_ptid (tp->ptid);
2629 if (info && info->private)
2630 return info->private->extra;
2631 else
2632 return NULL;
2633 }
2634
2635 if (use_threadextra_query)
2636 {
2637 char *b = rs->buf;
2638 char *endb = rs->buf + get_remote_packet_size ();
2639
2640 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2641 b += strlen (b);
2642 write_ptid (b, endb, tp->ptid);
2643
2644 putpkt (rs->buf);
2645 getpkt (&rs->buf, &rs->buf_size, 0);
2646 if (rs->buf[0] != 0)
2647 {
2648 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2649 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2650 display_buf [result] = '\0';
2651 return display_buf;
2652 }
2653 }
2654
2655 /* If the above query fails, fall back to the old method. */
2656 use_threadextra_query = 0;
2657 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2658 | TAG_MOREDISPLAY | TAG_DISPLAY;
2659 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2660 if (remote_get_threadinfo (&id, set, &threadinfo))
2661 if (threadinfo.active)
2662 {
2663 if (*threadinfo.shortname)
2664 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2665 " Name: %s,", threadinfo.shortname);
2666 if (*threadinfo.display)
2667 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2668 " State: %s,", threadinfo.display);
2669 if (*threadinfo.more_display)
2670 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2671 " Priority: %s", threadinfo.more_display);
2672
2673 if (n > 0)
2674 {
2675 /* For purely cosmetic reasons, clear up trailing commas. */
2676 if (',' == display_buf[n-1])
2677 display_buf[n-1] = ' ';
2678 return display_buf;
2679 }
2680 }
2681 return NULL;
2682 }
2683 \f
2684
2685 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2686
2687 static ptid_t
2688 remote_get_ada_task_ptid (long lwp, long thread)
2689 {
2690 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2691 }
2692 \f
2693
2694 /* Restart the remote side; this is an extended protocol operation. */
2695
2696 static void
2697 extended_remote_restart (void)
2698 {
2699 struct remote_state *rs = get_remote_state ();
2700
2701 /* Send the restart command; for reasons I don't understand the
2702 remote side really expects a number after the "R". */
2703 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2704 putpkt (rs->buf);
2705
2706 remote_fileio_reset ();
2707 }
2708 \f
2709 /* Clean up connection to a remote debugger. */
2710
2711 static void
2712 remote_close (int quitting)
2713 {
2714 if (remote_desc == NULL)
2715 return; /* already closed */
2716
2717 /* Make sure we leave stdin registered in the event loop, and we
2718 don't leave the async SIGINT signal handler installed. */
2719 remote_terminal_ours ();
2720
2721 serial_close (remote_desc);
2722 remote_desc = NULL;
2723
2724 /* We don't have a connection to the remote stub anymore. Get rid
2725 of all the inferiors and their threads we were controlling. */
2726 discard_all_inferiors ();
2727
2728 /* We're no longer interested in any of these events. */
2729 discard_pending_stop_replies (-1);
2730
2731 if (remote_async_inferior_event_token)
2732 delete_async_event_handler (&remote_async_inferior_event_token);
2733 if (remote_async_get_pending_events_token)
2734 delete_async_event_handler (&remote_async_get_pending_events_token);
2735 }
2736
2737 /* Query the remote side for the text, data and bss offsets. */
2738
2739 static void
2740 get_offsets (void)
2741 {
2742 struct remote_state *rs = get_remote_state ();
2743 char *buf;
2744 char *ptr;
2745 int lose, num_segments = 0, do_sections, do_segments;
2746 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2747 struct section_offsets *offs;
2748 struct symfile_segment_data *data;
2749
2750 if (symfile_objfile == NULL)
2751 return;
2752
2753 putpkt ("qOffsets");
2754 getpkt (&rs->buf, &rs->buf_size, 0);
2755 buf = rs->buf;
2756
2757 if (buf[0] == '\000')
2758 return; /* Return silently. Stub doesn't support
2759 this command. */
2760 if (buf[0] == 'E')
2761 {
2762 warning (_("Remote failure reply: %s"), buf);
2763 return;
2764 }
2765
2766 /* Pick up each field in turn. This used to be done with scanf, but
2767 scanf will make trouble if CORE_ADDR size doesn't match
2768 conversion directives correctly. The following code will work
2769 with any size of CORE_ADDR. */
2770 text_addr = data_addr = bss_addr = 0;
2771 ptr = buf;
2772 lose = 0;
2773
2774 if (strncmp (ptr, "Text=", 5) == 0)
2775 {
2776 ptr += 5;
2777 /* Don't use strtol, could lose on big values. */
2778 while (*ptr && *ptr != ';')
2779 text_addr = (text_addr << 4) + fromhex (*ptr++);
2780
2781 if (strncmp (ptr, ";Data=", 6) == 0)
2782 {
2783 ptr += 6;
2784 while (*ptr && *ptr != ';')
2785 data_addr = (data_addr << 4) + fromhex (*ptr++);
2786 }
2787 else
2788 lose = 1;
2789
2790 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2791 {
2792 ptr += 5;
2793 while (*ptr && *ptr != ';')
2794 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2795
2796 if (bss_addr != data_addr)
2797 warning (_("Target reported unsupported offsets: %s"), buf);
2798 }
2799 else
2800 lose = 1;
2801 }
2802 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2803 {
2804 ptr += 8;
2805 /* Don't use strtol, could lose on big values. */
2806 while (*ptr && *ptr != ';')
2807 text_addr = (text_addr << 4) + fromhex (*ptr++);
2808 num_segments = 1;
2809
2810 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2811 {
2812 ptr += 9;
2813 while (*ptr && *ptr != ';')
2814 data_addr = (data_addr << 4) + fromhex (*ptr++);
2815 num_segments++;
2816 }
2817 }
2818 else
2819 lose = 1;
2820
2821 if (lose)
2822 error (_("Malformed response to offset query, %s"), buf);
2823 else if (*ptr != '\0')
2824 warning (_("Target reported unsupported offsets: %s"), buf);
2825
2826 offs = ((struct section_offsets *)
2827 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2828 memcpy (offs, symfile_objfile->section_offsets,
2829 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2830
2831 data = get_symfile_segment_data (symfile_objfile->obfd);
2832 do_segments = (data != NULL);
2833 do_sections = num_segments == 0;
2834
2835 if (num_segments > 0)
2836 {
2837 segments[0] = text_addr;
2838 segments[1] = data_addr;
2839 }
2840 /* If we have two segments, we can still try to relocate everything
2841 by assuming that the .text and .data offsets apply to the whole
2842 text and data segments. Convert the offsets given in the packet
2843 to base addresses for symfile_map_offsets_to_segments. */
2844 else if (data && data->num_segments == 2)
2845 {
2846 segments[0] = data->segment_bases[0] + text_addr;
2847 segments[1] = data->segment_bases[1] + data_addr;
2848 num_segments = 2;
2849 }
2850 /* If the object file has only one segment, assume that it is text
2851 rather than data; main programs with no writable data are rare,
2852 but programs with no code are useless. Of course the code might
2853 have ended up in the data segment... to detect that we would need
2854 the permissions here. */
2855 else if (data && data->num_segments == 1)
2856 {
2857 segments[0] = data->segment_bases[0] + text_addr;
2858 num_segments = 1;
2859 }
2860 /* There's no way to relocate by segment. */
2861 else
2862 do_segments = 0;
2863
2864 if (do_segments)
2865 {
2866 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2867 offs, num_segments, segments);
2868
2869 if (ret == 0 && !do_sections)
2870 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2871
2872 if (ret > 0)
2873 do_sections = 0;
2874 }
2875
2876 if (data)
2877 free_symfile_segment_data (data);
2878
2879 if (do_sections)
2880 {
2881 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2882
2883 /* This is a temporary kludge to force data and bss to use the same offsets
2884 because that's what nlmconv does now. The real solution requires changes
2885 to the stub and remote.c that I don't have time to do right now. */
2886
2887 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2888 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2889 }
2890
2891 objfile_relocate (symfile_objfile, offs);
2892 }
2893
2894 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2895 threads we know are stopped already. This is used during the
2896 initial remote connection in non-stop mode --- threads that are
2897 reported as already being stopped are left stopped. */
2898
2899 static int
2900 set_stop_requested_callback (struct thread_info *thread, void *data)
2901 {
2902 /* If we have a stop reply for this thread, it must be stopped. */
2903 if (peek_stop_reply (thread->ptid))
2904 set_stop_requested (thread->ptid, 1);
2905
2906 return 0;
2907 }
2908
2909 /* Stub for catch_exception. */
2910
2911 struct start_remote_args
2912 {
2913 int from_tty;
2914
2915 /* The current target. */
2916 struct target_ops *target;
2917
2918 /* Non-zero if this is an extended-remote target. */
2919 int extended_p;
2920 };
2921
2922 /* Send interrupt_sequence to remote target. */
2923 static void
2924 send_interrupt_sequence ()
2925 {
2926 if (interrupt_sequence_mode == interrupt_sequence_control_c)
2927 serial_write (remote_desc, "\x03", 1);
2928 else if (interrupt_sequence_mode == interrupt_sequence_break)
2929 serial_send_break (remote_desc);
2930 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
2931 {
2932 serial_send_break (remote_desc);
2933 serial_write (remote_desc, "g", 1);
2934 }
2935 else
2936 internal_error (__FILE__, __LINE__,
2937 _("Invalid value for interrupt_sequence_mode: %s."),
2938 interrupt_sequence_mode);
2939 }
2940
2941 static void
2942 remote_start_remote (struct ui_out *uiout, void *opaque)
2943 {
2944 struct start_remote_args *args = opaque;
2945 struct remote_state *rs = get_remote_state ();
2946 struct packet_config *noack_config;
2947 char *wait_status = NULL;
2948
2949 immediate_quit++; /* Allow user to interrupt it. */
2950
2951 /* Ack any packet which the remote side has already sent. */
2952 serial_write (remote_desc, "+", 1);
2953
2954 if (interrupt_on_connect)
2955 send_interrupt_sequence ();
2956
2957 /* The first packet we send to the target is the optional "supported
2958 packets" request. If the target can answer this, it will tell us
2959 which later probes to skip. */
2960 remote_query_supported ();
2961
2962 /* Next, we possibly activate noack mode.
2963
2964 If the QStartNoAckMode packet configuration is set to AUTO,
2965 enable noack mode if the stub reported a wish for it with
2966 qSupported.
2967
2968 If set to TRUE, then enable noack mode even if the stub didn't
2969 report it in qSupported. If the stub doesn't reply OK, the
2970 session ends with an error.
2971
2972 If FALSE, then don't activate noack mode, regardless of what the
2973 stub claimed should be the default with qSupported. */
2974
2975 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2976
2977 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2978 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2979 && noack_config->support == PACKET_ENABLE))
2980 {
2981 putpkt ("QStartNoAckMode");
2982 getpkt (&rs->buf, &rs->buf_size, 0);
2983 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2984 rs->noack_mode = 1;
2985 }
2986
2987 if (args->extended_p)
2988 {
2989 /* Tell the remote that we are using the extended protocol. */
2990 putpkt ("!");
2991 getpkt (&rs->buf, &rs->buf_size, 0);
2992 }
2993
2994 /* Next, if the target can specify a description, read it. We do
2995 this before anything involving memory or registers. */
2996 target_find_description ();
2997
2998 /* Next, now that we know something about the target, update the
2999 address spaces in the program spaces. */
3000 update_address_spaces ();
3001
3002 /* On OSs where the list of libraries is global to all
3003 processes, we fetch them early. */
3004 if (gdbarch_has_global_solist (target_gdbarch))
3005 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
3006
3007 if (non_stop)
3008 {
3009 if (!rs->non_stop_aware)
3010 error (_("Non-stop mode requested, but remote does not support non-stop"));
3011
3012 putpkt ("QNonStop:1");
3013 getpkt (&rs->buf, &rs->buf_size, 0);
3014
3015 if (strcmp (rs->buf, "OK") != 0)
3016 error ("Remote refused setting non-stop mode with: %s", rs->buf);
3017
3018 /* Find about threads and processes the stub is already
3019 controlling. We default to adding them in the running state.
3020 The '?' query below will then tell us about which threads are
3021 stopped. */
3022 remote_threads_info (args->target);
3023 }
3024 else if (rs->non_stop_aware)
3025 {
3026 /* Don't assume that the stub can operate in all-stop mode.
3027 Request it explicitely. */
3028 putpkt ("QNonStop:0");
3029 getpkt (&rs->buf, &rs->buf_size, 0);
3030
3031 if (strcmp (rs->buf, "OK") != 0)
3032 error ("Remote refused setting all-stop mode with: %s", rs->buf);
3033 }
3034
3035 /* Check whether the target is running now. */
3036 putpkt ("?");
3037 getpkt (&rs->buf, &rs->buf_size, 0);
3038
3039 if (!non_stop)
3040 {
3041 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3042 {
3043 if (!args->extended_p)
3044 error (_("The target is not running (try extended-remote?)"));
3045
3046 /* We're connected, but not running. Drop out before we
3047 call start_remote. */
3048 return;
3049 }
3050 else
3051 {
3052 /* Save the reply for later. */
3053 wait_status = alloca (strlen (rs->buf) + 1);
3054 strcpy (wait_status, rs->buf);
3055 }
3056
3057 /* Let the stub know that we want it to return the thread. */
3058 set_continue_thread (minus_one_ptid);
3059
3060 /* Without this, some commands which require an active target
3061 (such as kill) won't work. This variable serves (at least)
3062 double duty as both the pid of the target process (if it has
3063 such), and as a flag indicating that a target is active.
3064 These functions should be split out into seperate variables,
3065 especially since GDB will someday have a notion of debugging
3066 several processes. */
3067 inferior_ptid = magic_null_ptid;
3068
3069 /* Now, if we have thread information, update inferior_ptid. */
3070 inferior_ptid = remote_current_thread (inferior_ptid);
3071
3072 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3073
3074 /* Always add the main thread. */
3075 add_thread_silent (inferior_ptid);
3076
3077 get_offsets (); /* Get text, data & bss offsets. */
3078
3079 /* If we could not find a description using qXfer, and we know
3080 how to do it some other way, try again. This is not
3081 supported for non-stop; it could be, but it is tricky if
3082 there are no stopped threads when we connect. */
3083 if (remote_read_description_p (args->target)
3084 && gdbarch_target_desc (target_gdbarch) == NULL)
3085 {
3086 target_clear_description ();
3087 target_find_description ();
3088 }
3089
3090 /* Use the previously fetched status. */
3091 gdb_assert (wait_status != NULL);
3092 strcpy (rs->buf, wait_status);
3093 rs->cached_wait_status = 1;
3094
3095 immediate_quit--;
3096 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
3097 }
3098 else
3099 {
3100 /* Clear WFI global state. Do this before finding about new
3101 threads and inferiors, and setting the current inferior.
3102 Otherwise we would clear the proceed status of the current
3103 inferior when we want its stop_soon state to be preserved
3104 (see notice_new_inferior). */
3105 init_wait_for_inferior ();
3106
3107 /* In non-stop, we will either get an "OK", meaning that there
3108 are no stopped threads at this time; or, a regular stop
3109 reply. In the latter case, there may be more than one thread
3110 stopped --- we pull them all out using the vStopped
3111 mechanism. */
3112 if (strcmp (rs->buf, "OK") != 0)
3113 {
3114 struct stop_reply *stop_reply;
3115 struct cleanup *old_chain;
3116
3117 stop_reply = stop_reply_xmalloc ();
3118 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3119
3120 remote_parse_stop_reply (rs->buf, stop_reply);
3121 discard_cleanups (old_chain);
3122
3123 /* get_pending_stop_replies acks this one, and gets the rest
3124 out. */
3125 pending_stop_reply = stop_reply;
3126 remote_get_pending_stop_replies ();
3127
3128 /* Make sure that threads that were stopped remain
3129 stopped. */
3130 iterate_over_threads (set_stop_requested_callback, NULL);
3131 }
3132
3133 if (target_can_async_p ())
3134 target_async (inferior_event_handler, 0);
3135
3136 if (thread_count () == 0)
3137 {
3138 if (!args->extended_p)
3139 error (_("The target is not running (try extended-remote?)"));
3140
3141 /* We're connected, but not running. Drop out before we
3142 call start_remote. */
3143 return;
3144 }
3145
3146 /* Let the stub know that we want it to return the thread. */
3147
3148 /* Force the stub to choose a thread. */
3149 set_general_thread (null_ptid);
3150
3151 /* Query it. */
3152 inferior_ptid = remote_current_thread (minus_one_ptid);
3153 if (ptid_equal (inferior_ptid, minus_one_ptid))
3154 error (_("remote didn't report the current thread in non-stop mode"));
3155
3156 get_offsets (); /* Get text, data & bss offsets. */
3157
3158 /* In non-stop mode, any cached wait status will be stored in
3159 the stop reply queue. */
3160 gdb_assert (wait_status == NULL);
3161 }
3162
3163 /* If we connected to a live target, do some additional setup. */
3164 if (target_has_execution)
3165 {
3166 if (exec_bfd) /* No use without an exec file. */
3167 remote_check_symbols (symfile_objfile);
3168 }
3169
3170 /* Possibly the target has been engaged in a trace run started
3171 previously; find out where things are at. */
3172 if (rs->disconnected_tracing)
3173 {
3174 struct uploaded_tp *uploaded_tps = NULL;
3175 struct uploaded_tsv *uploaded_tsvs = NULL;
3176
3177 remote_get_trace_status (current_trace_status ());
3178 if (current_trace_status ()->running)
3179 printf_filtered (_("Trace is already running on the target.\n"));
3180
3181 /* Get trace state variables first, they may be checked when
3182 parsing uploaded commands. */
3183
3184 remote_upload_trace_state_variables (&uploaded_tsvs);
3185
3186 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3187
3188 remote_upload_tracepoints (&uploaded_tps);
3189
3190 merge_uploaded_tracepoints (&uploaded_tps);
3191 }
3192
3193 /* If breakpoints are global, insert them now. */
3194 if (gdbarch_has_global_breakpoints (target_gdbarch)
3195 && breakpoints_always_inserted_mode ())
3196 insert_breakpoints ();
3197 }
3198
3199 /* Open a connection to a remote debugger.
3200 NAME is the filename used for communication. */
3201
3202 static void
3203 remote_open (char *name, int from_tty)
3204 {
3205 remote_open_1 (name, from_tty, &remote_ops, 0);
3206 }
3207
3208 /* Open a connection to a remote debugger using the extended
3209 remote gdb protocol. NAME is the filename used for communication. */
3210
3211 static void
3212 extended_remote_open (char *name, int from_tty)
3213 {
3214 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3215 }
3216
3217 /* Generic code for opening a connection to a remote target. */
3218
3219 static void
3220 init_all_packet_configs (void)
3221 {
3222 int i;
3223 for (i = 0; i < PACKET_MAX; i++)
3224 update_packet_config (&remote_protocol_packets[i]);
3225 }
3226
3227 /* Symbol look-up. */
3228
3229 static void
3230 remote_check_symbols (struct objfile *objfile)
3231 {
3232 struct remote_state *rs = get_remote_state ();
3233 char *msg, *reply, *tmp;
3234 struct minimal_symbol *sym;
3235 int end;
3236
3237 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3238 return;
3239
3240 /* Make sure the remote is pointing at the right process. */
3241 set_general_process ();
3242
3243 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3244 because we need both at the same time. */
3245 msg = alloca (get_remote_packet_size ());
3246
3247 /* Invite target to request symbol lookups. */
3248
3249 putpkt ("qSymbol::");
3250 getpkt (&rs->buf, &rs->buf_size, 0);
3251 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3252 reply = rs->buf;
3253
3254 while (strncmp (reply, "qSymbol:", 8) == 0)
3255 {
3256 tmp = &reply[8];
3257 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3258 msg[end] = '\0';
3259 sym = lookup_minimal_symbol (msg, NULL, NULL);
3260 if (sym == NULL)
3261 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3262 else
3263 {
3264 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3265 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3266
3267 /* If this is a function address, return the start of code
3268 instead of any data function descriptor. */
3269 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3270 sym_addr,
3271 &current_target);
3272
3273 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3274 phex_nz (sym_addr, addr_size), &reply[8]);
3275 }
3276
3277 putpkt (msg);
3278 getpkt (&rs->buf, &rs->buf_size, 0);
3279 reply = rs->buf;
3280 }
3281 }
3282
3283 static struct serial *
3284 remote_serial_open (char *name)
3285 {
3286 static int udp_warning = 0;
3287
3288 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3289 of in ser-tcp.c, because it is the remote protocol assuming that the
3290 serial connection is reliable and not the serial connection promising
3291 to be. */
3292 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3293 {
3294 warning (_("\
3295 The remote protocol may be unreliable over UDP.\n\
3296 Some events may be lost, rendering further debugging impossible."));
3297 udp_warning = 1;
3298 }
3299
3300 return serial_open (name);
3301 }
3302
3303 /* This type describes each known response to the qSupported
3304 packet. */
3305 struct protocol_feature
3306 {
3307 /* The name of this protocol feature. */
3308 const char *name;
3309
3310 /* The default for this protocol feature. */
3311 enum packet_support default_support;
3312
3313 /* The function to call when this feature is reported, or after
3314 qSupported processing if the feature is not supported.
3315 The first argument points to this structure. The second
3316 argument indicates whether the packet requested support be
3317 enabled, disabled, or probed (or the default, if this function
3318 is being called at the end of processing and this feature was
3319 not reported). The third argument may be NULL; if not NULL, it
3320 is a NUL-terminated string taken from the packet following
3321 this feature's name and an equals sign. */
3322 void (*func) (const struct protocol_feature *, enum packet_support,
3323 const char *);
3324
3325 /* The corresponding packet for this feature. Only used if
3326 FUNC is remote_supported_packet. */
3327 int packet;
3328 };
3329
3330 static void
3331 remote_supported_packet (const struct protocol_feature *feature,
3332 enum packet_support support,
3333 const char *argument)
3334 {
3335 if (argument)
3336 {
3337 warning (_("Remote qSupported response supplied an unexpected value for"
3338 " \"%s\"."), feature->name);
3339 return;
3340 }
3341
3342 if (remote_protocol_packets[feature->packet].support
3343 == PACKET_SUPPORT_UNKNOWN)
3344 remote_protocol_packets[feature->packet].support = support;
3345 }
3346
3347 static void
3348 remote_packet_size (const struct protocol_feature *feature,
3349 enum packet_support support, const char *value)
3350 {
3351 struct remote_state *rs = get_remote_state ();
3352
3353 int packet_size;
3354 char *value_end;
3355
3356 if (support != PACKET_ENABLE)
3357 return;
3358
3359 if (value == NULL || *value == '\0')
3360 {
3361 warning (_("Remote target reported \"%s\" without a size."),
3362 feature->name);
3363 return;
3364 }
3365
3366 errno = 0;
3367 packet_size = strtol (value, &value_end, 16);
3368 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3369 {
3370 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3371 feature->name, value);
3372 return;
3373 }
3374
3375 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3376 {
3377 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3378 packet_size, MAX_REMOTE_PACKET_SIZE);
3379 packet_size = MAX_REMOTE_PACKET_SIZE;
3380 }
3381
3382 /* Record the new maximum packet size. */
3383 rs->explicit_packet_size = packet_size;
3384 }
3385
3386 static void
3387 remote_multi_process_feature (const struct protocol_feature *feature,
3388 enum packet_support support, const char *value)
3389 {
3390 struct remote_state *rs = get_remote_state ();
3391 rs->multi_process_aware = (support == PACKET_ENABLE);
3392 }
3393
3394 static void
3395 remote_non_stop_feature (const struct protocol_feature *feature,
3396 enum packet_support support, const char *value)
3397 {
3398 struct remote_state *rs = get_remote_state ();
3399 rs->non_stop_aware = (support == PACKET_ENABLE);
3400 }
3401
3402 static void
3403 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3404 enum packet_support support,
3405 const char *value)
3406 {
3407 struct remote_state *rs = get_remote_state ();
3408 rs->cond_tracepoints = (support == PACKET_ENABLE);
3409 }
3410
3411 static void
3412 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3413 enum packet_support support,
3414 const char *value)
3415 {
3416 struct remote_state *rs = get_remote_state ();
3417 rs->fast_tracepoints = (support == PACKET_ENABLE);
3418 }
3419
3420 static void
3421 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3422 enum packet_support support,
3423 const char *value)
3424 {
3425 struct remote_state *rs = get_remote_state ();
3426 rs->disconnected_tracing = (support == PACKET_ENABLE);
3427 }
3428
3429 static struct protocol_feature remote_protocol_features[] = {
3430 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3431 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3432 PACKET_qXfer_auxv },
3433 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3434 PACKET_qXfer_features },
3435 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3436 PACKET_qXfer_libraries },
3437 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3438 PACKET_qXfer_memory_map },
3439 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3440 PACKET_qXfer_spu_read },
3441 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3442 PACKET_qXfer_spu_write },
3443 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3444 PACKET_qXfer_osdata },
3445 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3446 PACKET_qXfer_threads },
3447 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3448 PACKET_QPassSignals },
3449 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3450 PACKET_QStartNoAckMode },
3451 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3452 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3453 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3454 PACKET_qXfer_siginfo_read },
3455 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3456 PACKET_qXfer_siginfo_write },
3457 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3458 PACKET_ConditionalTracepoints },
3459 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3460 PACKET_FastTracepoints },
3461 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3462 -1 },
3463 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3464 PACKET_bc },
3465 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3466 PACKET_bs },
3467 };
3468
3469 static void
3470 remote_query_supported (void)
3471 {
3472 struct remote_state *rs = get_remote_state ();
3473 char *next;
3474 int i;
3475 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3476
3477 /* The packet support flags are handled differently for this packet
3478 than for most others. We treat an error, a disabled packet, and
3479 an empty response identically: any features which must be reported
3480 to be used will be automatically disabled. An empty buffer
3481 accomplishes this, since that is also the representation for a list
3482 containing no features. */
3483
3484 rs->buf[0] = 0;
3485 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3486 {
3487 const char *qsupported = gdbarch_qsupported (target_gdbarch);
3488 if (qsupported)
3489 {
3490 char *q;
3491 if (rs->extended)
3492 q = concat ("qSupported:multiprocess+;", qsupported, NULL);
3493 else
3494 q = concat ("qSupported:", qsupported, NULL);
3495 putpkt (q);
3496 xfree (q);
3497 }
3498 else
3499 {
3500 if (rs->extended)
3501 putpkt ("qSupported:multiprocess+");
3502 else
3503 putpkt ("qSupported");
3504 }
3505
3506 getpkt (&rs->buf, &rs->buf_size, 0);
3507
3508 /* If an error occured, warn, but do not return - just reset the
3509 buffer to empty and go on to disable features. */
3510 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3511 == PACKET_ERROR)
3512 {
3513 warning (_("Remote failure reply: %s"), rs->buf);
3514 rs->buf[0] = 0;
3515 }
3516 }
3517
3518 memset (seen, 0, sizeof (seen));
3519
3520 next = rs->buf;
3521 while (*next)
3522 {
3523 enum packet_support is_supported;
3524 char *p, *end, *name_end, *value;
3525
3526 /* First separate out this item from the rest of the packet. If
3527 there's another item after this, we overwrite the separator
3528 (terminated strings are much easier to work with). */
3529 p = next;
3530 end = strchr (p, ';');
3531 if (end == NULL)
3532 {
3533 end = p + strlen (p);
3534 next = end;
3535 }
3536 else
3537 {
3538 *end = '\0';
3539 next = end + 1;
3540
3541 if (end == p)
3542 {
3543 warning (_("empty item in \"qSupported\" response"));
3544 continue;
3545 }
3546 }
3547
3548 name_end = strchr (p, '=');
3549 if (name_end)
3550 {
3551 /* This is a name=value entry. */
3552 is_supported = PACKET_ENABLE;
3553 value = name_end + 1;
3554 *name_end = '\0';
3555 }
3556 else
3557 {
3558 value = NULL;
3559 switch (end[-1])
3560 {
3561 case '+':
3562 is_supported = PACKET_ENABLE;
3563 break;
3564
3565 case '-':
3566 is_supported = PACKET_DISABLE;
3567 break;
3568
3569 case '?':
3570 is_supported = PACKET_SUPPORT_UNKNOWN;
3571 break;
3572
3573 default:
3574 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3575 continue;
3576 }
3577 end[-1] = '\0';
3578 }
3579
3580 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3581 if (strcmp (remote_protocol_features[i].name, p) == 0)
3582 {
3583 const struct protocol_feature *feature;
3584
3585 seen[i] = 1;
3586 feature = &remote_protocol_features[i];
3587 feature->func (feature, is_supported, value);
3588 break;
3589 }
3590 }
3591
3592 /* If we increased the packet size, make sure to increase the global
3593 buffer size also. We delay this until after parsing the entire
3594 qSupported packet, because this is the same buffer we were
3595 parsing. */
3596 if (rs->buf_size < rs->explicit_packet_size)
3597 {
3598 rs->buf_size = rs->explicit_packet_size;
3599 rs->buf = xrealloc (rs->buf, rs->buf_size);
3600 }
3601
3602 /* Handle the defaults for unmentioned features. */
3603 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3604 if (!seen[i])
3605 {
3606 const struct protocol_feature *feature;
3607
3608 feature = &remote_protocol_features[i];
3609 feature->func (feature, feature->default_support, NULL);
3610 }
3611 }
3612
3613
3614 static void
3615 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3616 {
3617 struct remote_state *rs = get_remote_state ();
3618
3619 if (name == 0)
3620 error (_("To open a remote debug connection, you need to specify what\n"
3621 "serial device is attached to the remote system\n"
3622 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3623
3624 /* See FIXME above. */
3625 if (!target_async_permitted)
3626 wait_forever_enabled_p = 1;
3627
3628 /* If we're connected to a running target, target_preopen will kill it.
3629 But if we're connected to a target system with no running process,
3630 then we will still be connected when it returns. Ask this question
3631 first, before target_preopen has a chance to kill anything. */
3632 if (remote_desc != NULL && !have_inferiors ())
3633 {
3634 if (!from_tty
3635 || query (_("Already connected to a remote target. Disconnect? ")))
3636 pop_target ();
3637 else
3638 error (_("Still connected."));
3639 }
3640
3641 target_preopen (from_tty);
3642
3643 unpush_target (target);
3644
3645 /* This time without a query. If we were connected to an
3646 extended-remote target and target_preopen killed the running
3647 process, we may still be connected. If we are starting "target
3648 remote" now, the extended-remote target will not have been
3649 removed by unpush_target. */
3650 if (remote_desc != NULL && !have_inferiors ())
3651 pop_target ();
3652
3653 /* Make sure we send the passed signals list the next time we resume. */
3654 xfree (last_pass_packet);
3655 last_pass_packet = NULL;
3656
3657 remote_fileio_reset ();
3658 reopen_exec_file ();
3659 reread_symbols ();
3660
3661 remote_desc = remote_serial_open (name);
3662 if (!remote_desc)
3663 perror_with_name (name);
3664
3665 if (baud_rate != -1)
3666 {
3667 if (serial_setbaudrate (remote_desc, baud_rate))
3668 {
3669 /* The requested speed could not be set. Error out to
3670 top level after closing remote_desc. Take care to
3671 set remote_desc to NULL to avoid closing remote_desc
3672 more than once. */
3673 serial_close (remote_desc);
3674 remote_desc = NULL;
3675 perror_with_name (name);
3676 }
3677 }
3678
3679 serial_raw (remote_desc);
3680
3681 /* If there is something sitting in the buffer we might take it as a
3682 response to a command, which would be bad. */
3683 serial_flush_input (remote_desc);
3684
3685 if (from_tty)
3686 {
3687 puts_filtered ("Remote debugging using ");
3688 puts_filtered (name);
3689 puts_filtered ("\n");
3690 }
3691 push_target (target); /* Switch to using remote target now. */
3692
3693 /* Register extra event sources in the event loop. */
3694 remote_async_inferior_event_token
3695 = create_async_event_handler (remote_async_inferior_event_handler,
3696 NULL);
3697 remote_async_get_pending_events_token
3698 = create_async_event_handler (remote_async_get_pending_events_handler,
3699 NULL);
3700
3701 /* Reset the target state; these things will be queried either by
3702 remote_query_supported or as they are needed. */
3703 init_all_packet_configs ();
3704 rs->cached_wait_status = 0;
3705 rs->explicit_packet_size = 0;
3706 rs->noack_mode = 0;
3707 rs->multi_process_aware = 0;
3708 rs->extended = extended_p;
3709 rs->non_stop_aware = 0;
3710 rs->waiting_for_stop_reply = 0;
3711 rs->ctrlc_pending_p = 0;
3712
3713 general_thread = not_sent_ptid;
3714 continue_thread = not_sent_ptid;
3715
3716 /* Probe for ability to use "ThreadInfo" query, as required. */
3717 use_threadinfo_query = 1;
3718 use_threadextra_query = 1;
3719
3720 if (target_async_permitted)
3721 {
3722 /* With this target we start out by owning the terminal. */
3723 remote_async_terminal_ours_p = 1;
3724
3725 /* FIXME: cagney/1999-09-23: During the initial connection it is
3726 assumed that the target is already ready and able to respond to
3727 requests. Unfortunately remote_start_remote() eventually calls
3728 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3729 around this. Eventually a mechanism that allows
3730 wait_for_inferior() to expect/get timeouts will be
3731 implemented. */
3732 wait_forever_enabled_p = 0;
3733 }
3734
3735 /* First delete any symbols previously loaded from shared libraries. */
3736 no_shared_libraries (NULL, 0);
3737
3738 /* Start afresh. */
3739 init_thread_list ();
3740
3741 /* Start the remote connection. If error() or QUIT, discard this
3742 target (we'd otherwise be in an inconsistent state) and then
3743 propogate the error on up the exception chain. This ensures that
3744 the caller doesn't stumble along blindly assuming that the
3745 function succeeded. The CLI doesn't have this problem but other
3746 UI's, such as MI do.
3747
3748 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3749 this function should return an error indication letting the
3750 caller restore the previous state. Unfortunately the command
3751 ``target remote'' is directly wired to this function making that
3752 impossible. On a positive note, the CLI side of this problem has
3753 been fixed - the function set_cmd_context() makes it possible for
3754 all the ``target ....'' commands to share a common callback
3755 function. See cli-dump.c. */
3756 {
3757 struct gdb_exception ex;
3758 struct start_remote_args args;
3759
3760 args.from_tty = from_tty;
3761 args.target = target;
3762 args.extended_p = extended_p;
3763
3764 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3765 if (ex.reason < 0)
3766 {
3767 /* Pop the partially set up target - unless something else did
3768 already before throwing the exception. */
3769 if (remote_desc != NULL)
3770 pop_target ();
3771 if (target_async_permitted)
3772 wait_forever_enabled_p = 1;
3773 throw_exception (ex);
3774 }
3775 }
3776
3777 if (target_async_permitted)
3778 wait_forever_enabled_p = 1;
3779 }
3780
3781 /* This takes a program previously attached to and detaches it. After
3782 this is done, GDB can be used to debug some other program. We
3783 better not have left any breakpoints in the target program or it'll
3784 die when it hits one. */
3785
3786 static void
3787 remote_detach_1 (char *args, int from_tty, int extended)
3788 {
3789 int pid = ptid_get_pid (inferior_ptid);
3790 struct remote_state *rs = get_remote_state ();
3791
3792 if (args)
3793 error (_("Argument given to \"detach\" when remotely debugging."));
3794
3795 if (!target_has_execution)
3796 error (_("No process to detach from."));
3797
3798 /* Tell the remote target to detach. */
3799 if (remote_multi_process_p (rs))
3800 sprintf (rs->buf, "D;%x", pid);
3801 else
3802 strcpy (rs->buf, "D");
3803
3804 putpkt (rs->buf);
3805 getpkt (&rs->buf, &rs->buf_size, 0);
3806
3807 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3808 ;
3809 else if (rs->buf[0] == '\0')
3810 error (_("Remote doesn't know how to detach"));
3811 else
3812 error (_("Can't detach process."));
3813
3814 if (from_tty)
3815 {
3816 if (remote_multi_process_p (rs))
3817 printf_filtered (_("Detached from remote %s.\n"),
3818 target_pid_to_str (pid_to_ptid (pid)));
3819 else
3820 {
3821 if (extended)
3822 puts_filtered (_("Detached from remote process.\n"));
3823 else
3824 puts_filtered (_("Ending remote debugging.\n"));
3825 }
3826 }
3827
3828 discard_pending_stop_replies (pid);
3829 target_mourn_inferior ();
3830 }
3831
3832 static void
3833 remote_detach (struct target_ops *ops, char *args, int from_tty)
3834 {
3835 remote_detach_1 (args, from_tty, 0);
3836 }
3837
3838 static void
3839 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3840 {
3841 remote_detach_1 (args, from_tty, 1);
3842 }
3843
3844 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3845
3846 static void
3847 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3848 {
3849 if (args)
3850 error (_("Argument given to \"disconnect\" when remotely debugging."));
3851
3852 /* Make sure we unpush even the extended remote targets; mourn
3853 won't do it. So call remote_mourn_1 directly instead of
3854 target_mourn_inferior. */
3855 remote_mourn_1 (target);
3856
3857 if (from_tty)
3858 puts_filtered ("Ending remote debugging.\n");
3859 }
3860
3861 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3862 be chatty about it. */
3863
3864 static void
3865 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3866 {
3867 struct remote_state *rs = get_remote_state ();
3868 int pid;
3869 char *wait_status = NULL;
3870
3871 pid = parse_pid_to_attach (args);
3872
3873 /* Remote PID can be freely equal to getpid, do not check it here the same
3874 way as in other targets. */
3875
3876 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3877 error (_("This target does not support attaching to a process"));
3878
3879 sprintf (rs->buf, "vAttach;%x", pid);
3880 putpkt (rs->buf);
3881 getpkt (&rs->buf, &rs->buf_size, 0);
3882
3883 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3884 {
3885 if (from_tty)
3886 printf_unfiltered (_("Attached to %s\n"),
3887 target_pid_to_str (pid_to_ptid (pid)));
3888
3889 if (!non_stop)
3890 {
3891 /* Save the reply for later. */
3892 wait_status = alloca (strlen (rs->buf) + 1);
3893 strcpy (wait_status, rs->buf);
3894 }
3895 else if (strcmp (rs->buf, "OK") != 0)
3896 error (_("Attaching to %s failed with: %s"),
3897 target_pid_to_str (pid_to_ptid (pid)),
3898 rs->buf);
3899 }
3900 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3901 error (_("This target does not support attaching to a process"));
3902 else
3903 error (_("Attaching to %s failed"),
3904 target_pid_to_str (pid_to_ptid (pid)));
3905
3906 set_current_inferior (remote_add_inferior (pid, 1));
3907
3908 inferior_ptid = pid_to_ptid (pid);
3909
3910 if (non_stop)
3911 {
3912 struct thread_info *thread;
3913
3914 /* Get list of threads. */
3915 remote_threads_info (target);
3916
3917 thread = first_thread_of_process (pid);
3918 if (thread)
3919 inferior_ptid = thread->ptid;
3920 else
3921 inferior_ptid = pid_to_ptid (pid);
3922
3923 /* Invalidate our notion of the remote current thread. */
3924 record_currthread (minus_one_ptid);
3925 }
3926 else
3927 {
3928 /* Now, if we have thread information, update inferior_ptid. */
3929 inferior_ptid = remote_current_thread (inferior_ptid);
3930
3931 /* Add the main thread to the thread list. */
3932 add_thread_silent (inferior_ptid);
3933 }
3934
3935 /* Next, if the target can specify a description, read it. We do
3936 this before anything involving memory or registers. */
3937 target_find_description ();
3938
3939 if (!non_stop)
3940 {
3941 /* Use the previously fetched status. */
3942 gdb_assert (wait_status != NULL);
3943
3944 if (target_can_async_p ())
3945 {
3946 struct stop_reply *stop_reply;
3947 struct cleanup *old_chain;
3948
3949 stop_reply = stop_reply_xmalloc ();
3950 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3951 remote_parse_stop_reply (wait_status, stop_reply);
3952 discard_cleanups (old_chain);
3953 push_stop_reply (stop_reply);
3954
3955 target_async (inferior_event_handler, 0);
3956 }
3957 else
3958 {
3959 gdb_assert (wait_status != NULL);
3960 strcpy (rs->buf, wait_status);
3961 rs->cached_wait_status = 1;
3962 }
3963 }
3964 else
3965 gdb_assert (wait_status == NULL);
3966 }
3967
3968 static void
3969 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3970 {
3971 extended_remote_attach_1 (ops, args, from_tty);
3972 }
3973
3974 /* Convert hex digit A to a number. */
3975
3976 static int
3977 fromhex (int a)
3978 {
3979 if (a >= '0' && a <= '9')
3980 return a - '0';
3981 else if (a >= 'a' && a <= 'f')
3982 return a - 'a' + 10;
3983 else if (a >= 'A' && a <= 'F')
3984 return a - 'A' + 10;
3985 else
3986 error (_("Reply contains invalid hex digit %d"), a);
3987 }
3988
3989 int
3990 hex2bin (const char *hex, gdb_byte *bin, int count)
3991 {
3992 int i;
3993
3994 for (i = 0; i < count; i++)
3995 {
3996 if (hex[0] == 0 || hex[1] == 0)
3997 {
3998 /* Hex string is short, or of uneven length.
3999 Return the count that has been converted so far. */
4000 return i;
4001 }
4002 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4003 hex += 2;
4004 }
4005 return i;
4006 }
4007
4008 /* Convert number NIB to a hex digit. */
4009
4010 static int
4011 tohex (int nib)
4012 {
4013 if (nib < 10)
4014 return '0' + nib;
4015 else
4016 return 'a' + nib - 10;
4017 }
4018
4019 int
4020 bin2hex (const gdb_byte *bin, char *hex, int count)
4021 {
4022 int i;
4023 /* May use a length, or a nul-terminated string as input. */
4024 if (count == 0)
4025 count = strlen ((char *) bin);
4026
4027 for (i = 0; i < count; i++)
4028 {
4029 *hex++ = tohex ((*bin >> 4) & 0xf);
4030 *hex++ = tohex (*bin++ & 0xf);
4031 }
4032 *hex = 0;
4033 return i;
4034 }
4035 \f
4036 /* Check for the availability of vCont. This function should also check
4037 the response. */
4038
4039 static void
4040 remote_vcont_probe (struct remote_state *rs)
4041 {
4042 char *buf;
4043
4044 strcpy (rs->buf, "vCont?");
4045 putpkt (rs->buf);
4046 getpkt (&rs->buf, &rs->buf_size, 0);
4047 buf = rs->buf;
4048
4049 /* Make sure that the features we assume are supported. */
4050 if (strncmp (buf, "vCont", 5) == 0)
4051 {
4052 char *p = &buf[5];
4053 int support_s, support_S, support_c, support_C;
4054
4055 support_s = 0;
4056 support_S = 0;
4057 support_c = 0;
4058 support_C = 0;
4059 rs->support_vCont_t = 0;
4060 while (p && *p == ';')
4061 {
4062 p++;
4063 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4064 support_s = 1;
4065 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4066 support_S = 1;
4067 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4068 support_c = 1;
4069 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4070 support_C = 1;
4071 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4072 rs->support_vCont_t = 1;
4073
4074 p = strchr (p, ';');
4075 }
4076
4077 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4078 BUF will make packet_ok disable the packet. */
4079 if (!support_s || !support_S || !support_c || !support_C)
4080 buf[0] = 0;
4081 }
4082
4083 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4084 }
4085
4086 /* Helper function for building "vCont" resumptions. Write a
4087 resumption to P. ENDP points to one-passed-the-end of the buffer
4088 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4089 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4090 resumed thread should be single-stepped and/or signalled. If PTID
4091 equals minus_one_ptid, then all threads are resumed; if PTID
4092 represents a process, then all threads of the process are resumed;
4093 the thread to be stepped and/or signalled is given in the global
4094 INFERIOR_PTID. */
4095
4096 static char *
4097 append_resumption (char *p, char *endp,
4098 ptid_t ptid, int step, enum target_signal siggnal)
4099 {
4100 struct remote_state *rs = get_remote_state ();
4101
4102 if (step && siggnal != TARGET_SIGNAL_0)
4103 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4104 else if (step)
4105 p += xsnprintf (p, endp - p, ";s");
4106 else if (siggnal != TARGET_SIGNAL_0)
4107 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4108 else
4109 p += xsnprintf (p, endp - p, ";c");
4110
4111 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4112 {
4113 ptid_t nptid;
4114
4115 /* All (-1) threads of process. */
4116 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4117
4118 p += xsnprintf (p, endp - p, ":");
4119 p = write_ptid (p, endp, nptid);
4120 }
4121 else if (!ptid_equal (ptid, minus_one_ptid))
4122 {
4123 p += xsnprintf (p, endp - p, ":");
4124 p = write_ptid (p, endp, ptid);
4125 }
4126
4127 return p;
4128 }
4129
4130 /* Resume the remote inferior by using a "vCont" packet. The thread
4131 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4132 resumed thread should be single-stepped and/or signalled. If PTID
4133 equals minus_one_ptid, then all threads are resumed; the thread to
4134 be stepped and/or signalled is given in the global INFERIOR_PTID.
4135 This function returns non-zero iff it resumes the inferior.
4136
4137 This function issues a strict subset of all possible vCont commands at the
4138 moment. */
4139
4140 static int
4141 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4142 {
4143 struct remote_state *rs = get_remote_state ();
4144 char *p;
4145 char *endp;
4146
4147 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4148 remote_vcont_probe (rs);
4149
4150 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4151 return 0;
4152
4153 p = rs->buf;
4154 endp = rs->buf + get_remote_packet_size ();
4155
4156 /* If we could generate a wider range of packets, we'd have to worry
4157 about overflowing BUF. Should there be a generic
4158 "multi-part-packet" packet? */
4159
4160 p += xsnprintf (p, endp - p, "vCont");
4161
4162 if (ptid_equal (ptid, magic_null_ptid))
4163 {
4164 /* MAGIC_NULL_PTID means that we don't have any active threads,
4165 so we don't have any TID numbers the inferior will
4166 understand. Make sure to only send forms that do not specify
4167 a TID. */
4168 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
4169 }
4170 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4171 {
4172 /* Resume all threads (of all processes, or of a single
4173 process), with preference for INFERIOR_PTID. This assumes
4174 inferior_ptid belongs to the set of all threads we are about
4175 to resume. */
4176 if (step || siggnal != TARGET_SIGNAL_0)
4177 {
4178 /* Step inferior_ptid, with or without signal. */
4179 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4180 }
4181
4182 /* And continue others without a signal. */
4183 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4184 }
4185 else
4186 {
4187 /* Scheduler locking; resume only PTID. */
4188 p = append_resumption (p, endp, ptid, step, siggnal);
4189 }
4190
4191 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4192 putpkt (rs->buf);
4193
4194 if (non_stop)
4195 {
4196 /* In non-stop, the stub replies to vCont with "OK". The stop
4197 reply will be reported asynchronously by means of a `%Stop'
4198 notification. */
4199 getpkt (&rs->buf, &rs->buf_size, 0);
4200 if (strcmp (rs->buf, "OK") != 0)
4201 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4202 }
4203
4204 return 1;
4205 }
4206
4207 /* Tell the remote machine to resume. */
4208
4209 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4210
4211 static int last_sent_step;
4212
4213 static void
4214 remote_resume (struct target_ops *ops,
4215 ptid_t ptid, int step, enum target_signal siggnal)
4216 {
4217 struct remote_state *rs = get_remote_state ();
4218 char *buf;
4219
4220 last_sent_signal = siggnal;
4221 last_sent_step = step;
4222
4223 /* Update the inferior on signals to silently pass, if they've changed. */
4224 remote_pass_signals ();
4225
4226 /* The vCont packet doesn't need to specify threads via Hc. */
4227 /* No reverse support (yet) for vCont. */
4228 if (execution_direction != EXEC_REVERSE)
4229 if (remote_vcont_resume (ptid, step, siggnal))
4230 goto done;
4231
4232 /* All other supported resume packets do use Hc, so set the continue
4233 thread. */
4234 if (ptid_equal (ptid, minus_one_ptid))
4235 set_continue_thread (any_thread_ptid);
4236 else
4237 set_continue_thread (ptid);
4238
4239 buf = rs->buf;
4240 if (execution_direction == EXEC_REVERSE)
4241 {
4242 /* We don't pass signals to the target in reverse exec mode. */
4243 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4244 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
4245 siggnal);
4246
4247 if (step
4248 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4249 error (_("Remote reverse-step not supported."));
4250 if (!step
4251 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4252 error (_("Remote reverse-continue not supported."));
4253
4254 strcpy (buf, step ? "bs" : "bc");
4255 }
4256 else if (siggnal != TARGET_SIGNAL_0)
4257 {
4258 buf[0] = step ? 'S' : 'C';
4259 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4260 buf[2] = tohex (((int) siggnal) & 0xf);
4261 buf[3] = '\0';
4262 }
4263 else
4264 strcpy (buf, step ? "s" : "c");
4265
4266 putpkt (buf);
4267
4268 done:
4269 /* We are about to start executing the inferior, let's register it
4270 with the event loop. NOTE: this is the one place where all the
4271 execution commands end up. We could alternatively do this in each
4272 of the execution commands in infcmd.c. */
4273 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4274 into infcmd.c in order to allow inferior function calls to work
4275 NOT asynchronously. */
4276 if (target_can_async_p ())
4277 target_async (inferior_event_handler, 0);
4278
4279 /* We've just told the target to resume. The remote server will
4280 wait for the inferior to stop, and then send a stop reply. In
4281 the mean time, we can't start another command/query ourselves
4282 because the stub wouldn't be ready to process it. This applies
4283 only to the base all-stop protocol, however. In non-stop (which
4284 only supports vCont), the stub replies with an "OK", and is
4285 immediate able to process further serial input. */
4286 if (!non_stop)
4287 rs->waiting_for_stop_reply = 1;
4288 }
4289 \f
4290
4291 /* Set up the signal handler for SIGINT, while the target is
4292 executing, ovewriting the 'regular' SIGINT signal handler. */
4293 static void
4294 initialize_sigint_signal_handler (void)
4295 {
4296 signal (SIGINT, handle_remote_sigint);
4297 }
4298
4299 /* Signal handler for SIGINT, while the target is executing. */
4300 static void
4301 handle_remote_sigint (int sig)
4302 {
4303 signal (sig, handle_remote_sigint_twice);
4304 mark_async_signal_handler_wrapper (sigint_remote_token);
4305 }
4306
4307 /* Signal handler for SIGINT, installed after SIGINT has already been
4308 sent once. It will take effect the second time that the user sends
4309 a ^C. */
4310 static void
4311 handle_remote_sigint_twice (int sig)
4312 {
4313 signal (sig, handle_remote_sigint);
4314 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4315 }
4316
4317 /* Perform the real interruption of the target execution, in response
4318 to a ^C. */
4319 static void
4320 async_remote_interrupt (gdb_client_data arg)
4321 {
4322 if (remote_debug)
4323 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4324
4325 target_stop (inferior_ptid);
4326 }
4327
4328 /* Perform interrupt, if the first attempt did not succeed. Just give
4329 up on the target alltogether. */
4330 void
4331 async_remote_interrupt_twice (gdb_client_data arg)
4332 {
4333 if (remote_debug)
4334 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4335
4336 interrupt_query ();
4337 }
4338
4339 /* Reinstall the usual SIGINT handlers, after the target has
4340 stopped. */
4341 static void
4342 cleanup_sigint_signal_handler (void *dummy)
4343 {
4344 signal (SIGINT, handle_sigint);
4345 }
4346
4347 /* Send ^C to target to halt it. Target will respond, and send us a
4348 packet. */
4349 static void (*ofunc) (int);
4350
4351 /* The command line interface's stop routine. This function is installed
4352 as a signal handler for SIGINT. The first time a user requests a
4353 stop, we call remote_stop to send a break or ^C. If there is no
4354 response from the target (it didn't stop when the user requested it),
4355 we ask the user if he'd like to detach from the target. */
4356 static void
4357 remote_interrupt (int signo)
4358 {
4359 /* If this doesn't work, try more severe steps. */
4360 signal (signo, remote_interrupt_twice);
4361
4362 gdb_call_async_signal_handler (sigint_remote_token, 1);
4363 }
4364
4365 /* The user typed ^C twice. */
4366
4367 static void
4368 remote_interrupt_twice (int signo)
4369 {
4370 signal (signo, ofunc);
4371 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4372 signal (signo, remote_interrupt);
4373 }
4374
4375 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4376 thread, all threads of a remote process, or all threads of all
4377 processes. */
4378
4379 static void
4380 remote_stop_ns (ptid_t ptid)
4381 {
4382 struct remote_state *rs = get_remote_state ();
4383 char *p = rs->buf;
4384 char *endp = rs->buf + get_remote_packet_size ();
4385
4386 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4387 remote_vcont_probe (rs);
4388
4389 if (!rs->support_vCont_t)
4390 error (_("Remote server does not support stopping threads"));
4391
4392 if (ptid_equal (ptid, minus_one_ptid)
4393 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4394 p += xsnprintf (p, endp - p, "vCont;t");
4395 else
4396 {
4397 ptid_t nptid;
4398
4399 p += xsnprintf (p, endp - p, "vCont;t:");
4400
4401 if (ptid_is_pid (ptid))
4402 /* All (-1) threads of process. */
4403 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4404 else
4405 {
4406 /* Small optimization: if we already have a stop reply for
4407 this thread, no use in telling the stub we want this
4408 stopped. */
4409 if (peek_stop_reply (ptid))
4410 return;
4411
4412 nptid = ptid;
4413 }
4414
4415 p = write_ptid (p, endp, nptid);
4416 }
4417
4418 /* In non-stop, we get an immediate OK reply. The stop reply will
4419 come in asynchronously by notification. */
4420 putpkt (rs->buf);
4421 getpkt (&rs->buf, &rs->buf_size, 0);
4422 if (strcmp (rs->buf, "OK") != 0)
4423 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4424 }
4425
4426 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4427 remote target. It is undefined which thread of which process
4428 reports the stop. */
4429
4430 static void
4431 remote_stop_as (ptid_t ptid)
4432 {
4433 struct remote_state *rs = get_remote_state ();
4434
4435 rs->ctrlc_pending_p = 1;
4436
4437 /* If the inferior is stopped already, but the core didn't know
4438 about it yet, just ignore the request. The cached wait status
4439 will be collected in remote_wait. */
4440 if (rs->cached_wait_status)
4441 return;
4442
4443 /* Send interrupt_sequence to remote target. */
4444 send_interrupt_sequence ();
4445 }
4446
4447 /* This is the generic stop called via the target vector. When a target
4448 interrupt is requested, either by the command line or the GUI, we
4449 will eventually end up here. */
4450
4451 static void
4452 remote_stop (ptid_t ptid)
4453 {
4454 if (remote_debug)
4455 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4456
4457 if (non_stop)
4458 remote_stop_ns (ptid);
4459 else
4460 remote_stop_as (ptid);
4461 }
4462
4463 /* Ask the user what to do when an interrupt is received. */
4464
4465 static void
4466 interrupt_query (void)
4467 {
4468 target_terminal_ours ();
4469
4470 if (target_can_async_p ())
4471 {
4472 signal (SIGINT, handle_sigint);
4473 deprecated_throw_reason (RETURN_QUIT);
4474 }
4475 else
4476 {
4477 if (query (_("Interrupted while waiting for the program.\n\
4478 Give up (and stop debugging it)? ")))
4479 {
4480 pop_target ();
4481 deprecated_throw_reason (RETURN_QUIT);
4482 }
4483 }
4484
4485 target_terminal_inferior ();
4486 }
4487
4488 /* Enable/disable target terminal ownership. Most targets can use
4489 terminal groups to control terminal ownership. Remote targets are
4490 different in that explicit transfer of ownership to/from GDB/target
4491 is required. */
4492
4493 static void
4494 remote_terminal_inferior (void)
4495 {
4496 if (!target_async_permitted)
4497 /* Nothing to do. */
4498 return;
4499
4500 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4501 idempotent. The event-loop GDB talking to an asynchronous target
4502 with a synchronous command calls this function from both
4503 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4504 transfer the terminal to the target when it shouldn't this guard
4505 can go away. */
4506 if (!remote_async_terminal_ours_p)
4507 return;
4508 delete_file_handler (input_fd);
4509 remote_async_terminal_ours_p = 0;
4510 initialize_sigint_signal_handler ();
4511 /* NOTE: At this point we could also register our selves as the
4512 recipient of all input. Any characters typed could then be
4513 passed on down to the target. */
4514 }
4515
4516 static void
4517 remote_terminal_ours (void)
4518 {
4519 if (!target_async_permitted)
4520 /* Nothing to do. */
4521 return;
4522
4523 /* See FIXME in remote_terminal_inferior. */
4524 if (remote_async_terminal_ours_p)
4525 return;
4526 cleanup_sigint_signal_handler (NULL);
4527 add_file_handler (input_fd, stdin_event_handler, 0);
4528 remote_async_terminal_ours_p = 1;
4529 }
4530
4531 void
4532 remote_console_output (char *msg)
4533 {
4534 char *p;
4535
4536 for (p = msg; p[0] && p[1]; p += 2)
4537 {
4538 char tb[2];
4539 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4540 tb[0] = c;
4541 tb[1] = 0;
4542 fputs_unfiltered (tb, gdb_stdtarg);
4543 }
4544 gdb_flush (gdb_stdtarg);
4545 }
4546
4547 typedef struct cached_reg
4548 {
4549 int num;
4550 gdb_byte data[MAX_REGISTER_SIZE];
4551 } cached_reg_t;
4552
4553 DEF_VEC_O(cached_reg_t);
4554
4555 struct stop_reply
4556 {
4557 struct stop_reply *next;
4558
4559 ptid_t ptid;
4560
4561 struct target_waitstatus ws;
4562
4563 VEC(cached_reg_t) *regcache;
4564
4565 int stopped_by_watchpoint_p;
4566 CORE_ADDR watch_data_address;
4567
4568 int solibs_changed;
4569 int replay_event;
4570
4571 int core;
4572 };
4573
4574 /* The list of already fetched and acknowledged stop events. */
4575 static struct stop_reply *stop_reply_queue;
4576
4577 static struct stop_reply *
4578 stop_reply_xmalloc (void)
4579 {
4580 struct stop_reply *r = XMALLOC (struct stop_reply);
4581 r->next = NULL;
4582 return r;
4583 }
4584
4585 static void
4586 stop_reply_xfree (struct stop_reply *r)
4587 {
4588 if (r != NULL)
4589 {
4590 VEC_free (cached_reg_t, r->regcache);
4591 xfree (r);
4592 }
4593 }
4594
4595 /* Discard all pending stop replies of inferior PID. If PID is -1,
4596 discard everything. */
4597
4598 static void
4599 discard_pending_stop_replies (int pid)
4600 {
4601 struct stop_reply *prev = NULL, *reply, *next;
4602
4603 /* Discard the in-flight notification. */
4604 if (pending_stop_reply != NULL
4605 && (pid == -1
4606 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4607 {
4608 stop_reply_xfree (pending_stop_reply);
4609 pending_stop_reply = NULL;
4610 }
4611
4612 /* Discard the stop replies we have already pulled with
4613 vStopped. */
4614 for (reply = stop_reply_queue; reply; reply = next)
4615 {
4616 next = reply->next;
4617 if (pid == -1
4618 || ptid_get_pid (reply->ptid) == pid)
4619 {
4620 if (reply == stop_reply_queue)
4621 stop_reply_queue = reply->next;
4622 else
4623 prev->next = reply->next;
4624
4625 stop_reply_xfree (reply);
4626 }
4627 else
4628 prev = reply;
4629 }
4630 }
4631
4632 /* Cleanup wrapper. */
4633
4634 static void
4635 do_stop_reply_xfree (void *arg)
4636 {
4637 struct stop_reply *r = arg;
4638 stop_reply_xfree (r);
4639 }
4640
4641 /* Look for a queued stop reply belonging to PTID. If one is found,
4642 remove it from the queue, and return it. Returns NULL if none is
4643 found. If there are still queued events left to process, tell the
4644 event loop to get back to target_wait soon. */
4645
4646 static struct stop_reply *
4647 queued_stop_reply (ptid_t ptid)
4648 {
4649 struct stop_reply *it;
4650 struct stop_reply **it_link;
4651
4652 it = stop_reply_queue;
4653 it_link = &stop_reply_queue;
4654 while (it)
4655 {
4656 if (ptid_match (it->ptid, ptid))
4657 {
4658 *it_link = it->next;
4659 it->next = NULL;
4660 break;
4661 }
4662
4663 it_link = &it->next;
4664 it = *it_link;
4665 }
4666
4667 if (stop_reply_queue)
4668 /* There's still at least an event left. */
4669 mark_async_event_handler (remote_async_inferior_event_token);
4670
4671 return it;
4672 }
4673
4674 /* Push a fully parsed stop reply in the stop reply queue. Since we
4675 know that we now have at least one queued event left to pass to the
4676 core side, tell the event loop to get back to target_wait soon. */
4677
4678 static void
4679 push_stop_reply (struct stop_reply *new_event)
4680 {
4681 struct stop_reply *event;
4682
4683 if (stop_reply_queue)
4684 {
4685 for (event = stop_reply_queue;
4686 event && event->next;
4687 event = event->next)
4688 ;
4689
4690 event->next = new_event;
4691 }
4692 else
4693 stop_reply_queue = new_event;
4694
4695 mark_async_event_handler (remote_async_inferior_event_token);
4696 }
4697
4698 /* Returns true if we have a stop reply for PTID. */
4699
4700 static int
4701 peek_stop_reply (ptid_t ptid)
4702 {
4703 struct stop_reply *it;
4704
4705 for (it = stop_reply_queue; it; it = it->next)
4706 if (ptid_equal (ptid, it->ptid))
4707 {
4708 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4709 return 1;
4710 }
4711
4712 return 0;
4713 }
4714
4715 /* Parse the stop reply in BUF. Either the function succeeds, and the
4716 result is stored in EVENT, or throws an error. */
4717
4718 static void
4719 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4720 {
4721 struct remote_arch_state *rsa = get_remote_arch_state ();
4722 ULONGEST addr;
4723 char *p;
4724
4725 event->ptid = null_ptid;
4726 event->ws.kind = TARGET_WAITKIND_IGNORE;
4727 event->ws.value.integer = 0;
4728 event->solibs_changed = 0;
4729 event->replay_event = 0;
4730 event->stopped_by_watchpoint_p = 0;
4731 event->regcache = NULL;
4732 event->core = -1;
4733
4734 switch (buf[0])
4735 {
4736 case 'T': /* Status with PC, SP, FP, ... */
4737 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4738 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4739 ss = signal number
4740 n... = register number
4741 r... = register contents
4742 */
4743
4744 p = &buf[3]; /* after Txx */
4745 while (*p)
4746 {
4747 char *p1;
4748 char *p_temp;
4749 int fieldsize;
4750 LONGEST pnum = 0;
4751
4752 /* If the packet contains a register number, save it in
4753 pnum and set p1 to point to the character following it.
4754 Otherwise p1 points to p. */
4755
4756 /* If this packet is an awatch packet, don't parse the 'a'
4757 as a register number. */
4758
4759 if (strncmp (p, "awatch", strlen("awatch")) != 0
4760 && strncmp (p, "core", strlen ("core") != 0))
4761 {
4762 /* Read the ``P'' register number. */
4763 pnum = strtol (p, &p_temp, 16);
4764 p1 = p_temp;
4765 }
4766 else
4767 p1 = p;
4768
4769 if (p1 == p) /* No register number present here. */
4770 {
4771 p1 = strchr (p, ':');
4772 if (p1 == NULL)
4773 error (_("Malformed packet(a) (missing colon): %s\n\
4774 Packet: '%s'\n"),
4775 p, buf);
4776 if (strncmp (p, "thread", p1 - p) == 0)
4777 event->ptid = read_ptid (++p1, &p);
4778 else if ((strncmp (p, "watch", p1 - p) == 0)
4779 || (strncmp (p, "rwatch", p1 - p) == 0)
4780 || (strncmp (p, "awatch", p1 - p) == 0))
4781 {
4782 event->stopped_by_watchpoint_p = 1;
4783 p = unpack_varlen_hex (++p1, &addr);
4784 event->watch_data_address = (CORE_ADDR) addr;
4785 }
4786 else if (strncmp (p, "library", p1 - p) == 0)
4787 {
4788 p1++;
4789 p_temp = p1;
4790 while (*p_temp && *p_temp != ';')
4791 p_temp++;
4792
4793 event->solibs_changed = 1;
4794 p = p_temp;
4795 }
4796 else if (strncmp (p, "replaylog", p1 - p) == 0)
4797 {
4798 /* NO_HISTORY event.
4799 p1 will indicate "begin" or "end", but
4800 it makes no difference for now, so ignore it. */
4801 event->replay_event = 1;
4802 p_temp = strchr (p1 + 1, ';');
4803 if (p_temp)
4804 p = p_temp;
4805 }
4806 else if (strncmp (p, "core", p1 - p) == 0)
4807 {
4808 ULONGEST c;
4809 p = unpack_varlen_hex (++p1, &c);
4810 event->core = c;
4811 }
4812 else
4813 {
4814 /* Silently skip unknown optional info. */
4815 p_temp = strchr (p1 + 1, ';');
4816 if (p_temp)
4817 p = p_temp;
4818 }
4819 }
4820 else
4821 {
4822 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4823 cached_reg_t cached_reg;
4824
4825 p = p1;
4826
4827 if (*p != ':')
4828 error (_("Malformed packet(b) (missing colon): %s\n\
4829 Packet: '%s'\n"),
4830 p, buf);
4831 ++p;
4832
4833 if (reg == NULL)
4834 error (_("Remote sent bad register number %s: %s\n\
4835 Packet: '%s'\n"),
4836 phex_nz (pnum, 0), p, buf);
4837
4838 cached_reg.num = reg->regnum;
4839
4840 fieldsize = hex2bin (p, cached_reg.data,
4841 register_size (target_gdbarch,
4842 reg->regnum));
4843 p += 2 * fieldsize;
4844 if (fieldsize < register_size (target_gdbarch,
4845 reg->regnum))
4846 warning (_("Remote reply is too short: %s"), buf);
4847
4848 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4849 }
4850
4851 if (*p != ';')
4852 error (_("Remote register badly formatted: %s\nhere: %s"),
4853 buf, p);
4854 ++p;
4855 }
4856 /* fall through */
4857 case 'S': /* Old style status, just signal only. */
4858 if (event->solibs_changed)
4859 event->ws.kind = TARGET_WAITKIND_LOADED;
4860 else if (event->replay_event)
4861 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4862 else
4863 {
4864 event->ws.kind = TARGET_WAITKIND_STOPPED;
4865 event->ws.value.sig = (enum target_signal)
4866 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4867 }
4868 break;
4869 case 'W': /* Target exited. */
4870 case 'X':
4871 {
4872 char *p;
4873 int pid;
4874 ULONGEST value;
4875
4876 /* GDB used to accept only 2 hex chars here. Stubs should
4877 only send more if they detect GDB supports multi-process
4878 support. */
4879 p = unpack_varlen_hex (&buf[1], &value);
4880
4881 if (buf[0] == 'W')
4882 {
4883 /* The remote process exited. */
4884 event->ws.kind = TARGET_WAITKIND_EXITED;
4885 event->ws.value.integer = value;
4886 }
4887 else
4888 {
4889 /* The remote process exited with a signal. */
4890 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4891 event->ws.value.sig = (enum target_signal) value;
4892 }
4893
4894 /* If no process is specified, assume inferior_ptid. */
4895 pid = ptid_get_pid (inferior_ptid);
4896 if (*p == '\0')
4897 ;
4898 else if (*p == ';')
4899 {
4900 p++;
4901
4902 if (p == '\0')
4903 ;
4904 else if (strncmp (p,
4905 "process:", sizeof ("process:") - 1) == 0)
4906 {
4907 ULONGEST upid;
4908 p += sizeof ("process:") - 1;
4909 unpack_varlen_hex (p, &upid);
4910 pid = upid;
4911 }
4912 else
4913 error (_("unknown stop reply packet: %s"), buf);
4914 }
4915 else
4916 error (_("unknown stop reply packet: %s"), buf);
4917 event->ptid = pid_to_ptid (pid);
4918 }
4919 break;
4920 }
4921
4922 if (non_stop && ptid_equal (event->ptid, null_ptid))
4923 error (_("No process or thread specified in stop reply: %s"), buf);
4924 }
4925
4926 /* When the stub wants to tell GDB about a new stop reply, it sends a
4927 stop notification (%Stop). Those can come it at any time, hence,
4928 we have to make sure that any pending putpkt/getpkt sequence we're
4929 making is finished, before querying the stub for more events with
4930 vStopped. E.g., if we started a vStopped sequence immediatelly
4931 upon receiving the %Stop notification, something like this could
4932 happen:
4933
4934 1.1) --> Hg 1
4935 1.2) <-- OK
4936 1.3) --> g
4937 1.4) <-- %Stop
4938 1.5) --> vStopped
4939 1.6) <-- (registers reply to step #1.3)
4940
4941 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4942 query.
4943
4944 To solve this, whenever we parse a %Stop notification sucessfully,
4945 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4946 doing whatever we were doing:
4947
4948 2.1) --> Hg 1
4949 2.2) <-- OK
4950 2.3) --> g
4951 2.4) <-- %Stop
4952 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4953 2.5) <-- (registers reply to step #2.3)
4954
4955 Eventualy after step #2.5, we return to the event loop, which
4956 notices there's an event on the
4957 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4958 associated callback --- the function below. At this point, we're
4959 always safe to start a vStopped sequence. :
4960
4961 2.6) --> vStopped
4962 2.7) <-- T05 thread:2
4963 2.8) --> vStopped
4964 2.9) --> OK
4965 */
4966
4967 static void
4968 remote_get_pending_stop_replies (void)
4969 {
4970 struct remote_state *rs = get_remote_state ();
4971
4972 if (pending_stop_reply)
4973 {
4974 /* acknowledge */
4975 putpkt ("vStopped");
4976
4977 /* Now we can rely on it. */
4978 push_stop_reply (pending_stop_reply);
4979 pending_stop_reply = NULL;
4980
4981 while (1)
4982 {
4983 getpkt (&rs->buf, &rs->buf_size, 0);
4984 if (strcmp (rs->buf, "OK") == 0)
4985 break;
4986 else
4987 {
4988 struct cleanup *old_chain;
4989 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4990
4991 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4992 remote_parse_stop_reply (rs->buf, stop_reply);
4993
4994 /* acknowledge */
4995 putpkt ("vStopped");
4996
4997 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4998 {
4999 /* Now we can rely on it. */
5000 discard_cleanups (old_chain);
5001 push_stop_reply (stop_reply);
5002 }
5003 else
5004 /* We got an unknown stop reply. */
5005 do_cleanups (old_chain);
5006 }
5007 }
5008 }
5009 }
5010
5011
5012 /* Called when it is decided that STOP_REPLY holds the info of the
5013 event that is to be returned to the core. This function always
5014 destroys STOP_REPLY. */
5015
5016 static ptid_t
5017 process_stop_reply (struct stop_reply *stop_reply,
5018 struct target_waitstatus *status)
5019 {
5020 ptid_t ptid;
5021 struct thread_info *info;
5022
5023 *status = stop_reply->ws;
5024 ptid = stop_reply->ptid;
5025
5026 /* If no thread/process was reported by the stub, assume the current
5027 inferior. */
5028 if (ptid_equal (ptid, null_ptid))
5029 ptid = inferior_ptid;
5030
5031 if (status->kind != TARGET_WAITKIND_EXITED
5032 && status->kind != TARGET_WAITKIND_SIGNALLED)
5033 {
5034 /* Expedited registers. */
5035 if (stop_reply->regcache)
5036 {
5037 struct regcache *regcache
5038 = get_thread_arch_regcache (ptid, target_gdbarch);
5039 cached_reg_t *reg;
5040 int ix;
5041
5042 for (ix = 0;
5043 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5044 ix++)
5045 regcache_raw_supply (regcache, reg->num, reg->data);
5046 VEC_free (cached_reg_t, stop_reply->regcache);
5047 }
5048
5049 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5050 remote_watch_data_address = stop_reply->watch_data_address;
5051
5052 remote_notice_new_inferior (ptid, 0);
5053 demand_private_info (ptid)->core = stop_reply->core;
5054 }
5055
5056 stop_reply_xfree (stop_reply);
5057 return ptid;
5058 }
5059
5060 /* The non-stop mode version of target_wait. */
5061
5062 static ptid_t
5063 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5064 {
5065 struct remote_state *rs = get_remote_state ();
5066 struct stop_reply *stop_reply;
5067 int ret;
5068
5069 /* If in non-stop mode, get out of getpkt even if a
5070 notification is received. */
5071
5072 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5073 0 /* forever */);
5074 while (1)
5075 {
5076 if (ret != -1)
5077 switch (rs->buf[0])
5078 {
5079 case 'E': /* Error of some sort. */
5080 /* We're out of sync with the target now. Did it continue
5081 or not? We can't tell which thread it was in non-stop,
5082 so just ignore this. */
5083 warning (_("Remote failure reply: %s"), rs->buf);
5084 break;
5085 case 'O': /* Console output. */
5086 remote_console_output (rs->buf + 1);
5087 break;
5088 default:
5089 warning (_("Invalid remote reply: %s"), rs->buf);
5090 break;
5091 }
5092
5093 /* Acknowledge a pending stop reply that may have arrived in the
5094 mean time. */
5095 if (pending_stop_reply != NULL)
5096 remote_get_pending_stop_replies ();
5097
5098 /* If indeed we noticed a stop reply, we're done. */
5099 stop_reply = queued_stop_reply (ptid);
5100 if (stop_reply != NULL)
5101 return process_stop_reply (stop_reply, status);
5102
5103 /* Still no event. If we're just polling for an event, then
5104 return to the event loop. */
5105 if (options & TARGET_WNOHANG)
5106 {
5107 status->kind = TARGET_WAITKIND_IGNORE;
5108 return minus_one_ptid;
5109 }
5110
5111 /* Otherwise do a blocking wait. */
5112 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5113 1 /* forever */);
5114 }
5115 }
5116
5117 /* Wait until the remote machine stops, then return, storing status in
5118 STATUS just as `wait' would. */
5119
5120 static ptid_t
5121 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5122 {
5123 struct remote_state *rs = get_remote_state ();
5124 ptid_t event_ptid = null_ptid;
5125 char *buf;
5126 struct stop_reply *stop_reply;
5127
5128 again:
5129
5130 status->kind = TARGET_WAITKIND_IGNORE;
5131 status->value.integer = 0;
5132
5133 stop_reply = queued_stop_reply (ptid);
5134 if (stop_reply != NULL)
5135 return process_stop_reply (stop_reply, status);
5136
5137 if (rs->cached_wait_status)
5138 /* Use the cached wait status, but only once. */
5139 rs->cached_wait_status = 0;
5140 else
5141 {
5142 int ret;
5143
5144 if (!target_is_async_p ())
5145 {
5146 ofunc = signal (SIGINT, remote_interrupt);
5147 /* If the user hit C-c before this packet, or between packets,
5148 pretend that it was hit right here. */
5149 if (quit_flag)
5150 {
5151 quit_flag = 0;
5152 remote_interrupt (SIGINT);
5153 }
5154 }
5155
5156 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5157 _never_ wait for ever -> test on target_is_async_p().
5158 However, before we do that we need to ensure that the caller
5159 knows how to take the target into/out of async mode. */
5160 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5161 if (!target_is_async_p ())
5162 signal (SIGINT, ofunc);
5163 }
5164
5165 buf = rs->buf;
5166
5167 remote_stopped_by_watchpoint_p = 0;
5168
5169 /* We got something. */
5170 rs->waiting_for_stop_reply = 0;
5171
5172 /* Assume that the target has acknowledged Ctrl-C unless we receive
5173 an 'F' or 'O' packet. */
5174 if (buf[0] != 'F' && buf[0] != 'O')
5175 rs->ctrlc_pending_p = 0;
5176
5177 switch (buf[0])
5178 {
5179 case 'E': /* Error of some sort. */
5180 /* We're out of sync with the target now. Did it continue or
5181 not? Not is more likely, so report a stop. */
5182 warning (_("Remote failure reply: %s"), buf);
5183 status->kind = TARGET_WAITKIND_STOPPED;
5184 status->value.sig = TARGET_SIGNAL_0;
5185 break;
5186 case 'F': /* File-I/O request. */
5187 remote_fileio_request (buf, rs->ctrlc_pending_p);
5188 rs->ctrlc_pending_p = 0;
5189 break;
5190 case 'T': case 'S': case 'X': case 'W':
5191 {
5192 struct stop_reply *stop_reply;
5193 struct cleanup *old_chain;
5194
5195 stop_reply = stop_reply_xmalloc ();
5196 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5197 remote_parse_stop_reply (buf, stop_reply);
5198 discard_cleanups (old_chain);
5199 event_ptid = process_stop_reply (stop_reply, status);
5200 break;
5201 }
5202 case 'O': /* Console output. */
5203 remote_console_output (buf + 1);
5204
5205 /* The target didn't really stop; keep waiting. */
5206 rs->waiting_for_stop_reply = 1;
5207
5208 break;
5209 case '\0':
5210 if (last_sent_signal != TARGET_SIGNAL_0)
5211 {
5212 /* Zero length reply means that we tried 'S' or 'C' and the
5213 remote system doesn't support it. */
5214 target_terminal_ours_for_output ();
5215 printf_filtered
5216 ("Can't send signals to this remote system. %s not sent.\n",
5217 target_signal_to_name (last_sent_signal));
5218 last_sent_signal = TARGET_SIGNAL_0;
5219 target_terminal_inferior ();
5220
5221 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5222 putpkt ((char *) buf);
5223
5224 /* We just told the target to resume, so a stop reply is in
5225 order. */
5226 rs->waiting_for_stop_reply = 1;
5227 break;
5228 }
5229 /* else fallthrough */
5230 default:
5231 warning (_("Invalid remote reply: %s"), buf);
5232 /* Keep waiting. */
5233 rs->waiting_for_stop_reply = 1;
5234 break;
5235 }
5236
5237 if (status->kind == TARGET_WAITKIND_IGNORE)
5238 {
5239 /* Nothing interesting happened. If we're doing a non-blocking
5240 poll, we're done. Otherwise, go back to waiting. */
5241 if (options & TARGET_WNOHANG)
5242 return minus_one_ptid;
5243 else
5244 goto again;
5245 }
5246 else if (status->kind != TARGET_WAITKIND_EXITED
5247 && status->kind != TARGET_WAITKIND_SIGNALLED)
5248 {
5249 if (!ptid_equal (event_ptid, null_ptid))
5250 record_currthread (event_ptid);
5251 else
5252 event_ptid = inferior_ptid;
5253 }
5254 else
5255 /* A process exit. Invalidate our notion of current thread. */
5256 record_currthread (minus_one_ptid);
5257
5258 return event_ptid;
5259 }
5260
5261 /* Wait until the remote machine stops, then return, storing status in
5262 STATUS just as `wait' would. */
5263
5264 static ptid_t
5265 remote_wait (struct target_ops *ops,
5266 ptid_t ptid, struct target_waitstatus *status, int options)
5267 {
5268 ptid_t event_ptid;
5269
5270 if (non_stop)
5271 event_ptid = remote_wait_ns (ptid, status, options);
5272 else
5273 event_ptid = remote_wait_as (ptid, status, options);
5274
5275 if (target_can_async_p ())
5276 {
5277 /* If there are are events left in the queue tell the event loop
5278 to return here. */
5279 if (stop_reply_queue)
5280 mark_async_event_handler (remote_async_inferior_event_token);
5281 }
5282
5283 return event_ptid;
5284 }
5285
5286 /* Fetch a single register using a 'p' packet. */
5287
5288 static int
5289 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5290 {
5291 struct remote_state *rs = get_remote_state ();
5292 char *buf, *p;
5293 char regp[MAX_REGISTER_SIZE];
5294 int i;
5295
5296 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5297 return 0;
5298
5299 if (reg->pnum == -1)
5300 return 0;
5301
5302 p = rs->buf;
5303 *p++ = 'p';
5304 p += hexnumstr (p, reg->pnum);
5305 *p++ = '\0';
5306 putpkt (rs->buf);
5307 getpkt (&rs->buf, &rs->buf_size, 0);
5308
5309 buf = rs->buf;
5310
5311 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5312 {
5313 case PACKET_OK:
5314 break;
5315 case PACKET_UNKNOWN:
5316 return 0;
5317 case PACKET_ERROR:
5318 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5319 gdbarch_register_name (get_regcache_arch (regcache),
5320 reg->regnum),
5321 buf);
5322 }
5323
5324 /* If this register is unfetchable, tell the regcache. */
5325 if (buf[0] == 'x')
5326 {
5327 regcache_raw_supply (regcache, reg->regnum, NULL);
5328 return 1;
5329 }
5330
5331 /* Otherwise, parse and supply the value. */
5332 p = buf;
5333 i = 0;
5334 while (p[0] != 0)
5335 {
5336 if (p[1] == 0)
5337 error (_("fetch_register_using_p: early buf termination"));
5338
5339 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5340 p += 2;
5341 }
5342 regcache_raw_supply (regcache, reg->regnum, regp);
5343 return 1;
5344 }
5345
5346 /* Fetch the registers included in the target's 'g' packet. */
5347
5348 static int
5349 send_g_packet (void)
5350 {
5351 struct remote_state *rs = get_remote_state ();
5352 int buf_len;
5353
5354 sprintf (rs->buf, "g");
5355 remote_send (&rs->buf, &rs->buf_size);
5356
5357 /* We can get out of synch in various cases. If the first character
5358 in the buffer is not a hex character, assume that has happened
5359 and try to fetch another packet to read. */
5360 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5361 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5362 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5363 && rs->buf[0] != 'x') /* New: unavailable register value. */
5364 {
5365 if (remote_debug)
5366 fprintf_unfiltered (gdb_stdlog,
5367 "Bad register packet; fetching a new packet\n");
5368 getpkt (&rs->buf, &rs->buf_size, 0);
5369 }
5370
5371 buf_len = strlen (rs->buf);
5372
5373 /* Sanity check the received packet. */
5374 if (buf_len % 2 != 0)
5375 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5376
5377 return buf_len / 2;
5378 }
5379
5380 static void
5381 process_g_packet (struct regcache *regcache)
5382 {
5383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5384 struct remote_state *rs = get_remote_state ();
5385 struct remote_arch_state *rsa = get_remote_arch_state ();
5386 int i, buf_len;
5387 char *p;
5388 char *regs;
5389
5390 buf_len = strlen (rs->buf);
5391
5392 /* Further sanity checks, with knowledge of the architecture. */
5393 if (buf_len > 2 * rsa->sizeof_g_packet)
5394 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5395
5396 /* Save the size of the packet sent to us by the target. It is used
5397 as a heuristic when determining the max size of packets that the
5398 target can safely receive. */
5399 if (rsa->actual_register_packet_size == 0)
5400 rsa->actual_register_packet_size = buf_len;
5401
5402 /* If this is smaller than we guessed the 'g' packet would be,
5403 update our records. A 'g' reply that doesn't include a register's
5404 value implies either that the register is not available, or that
5405 the 'p' packet must be used. */
5406 if (buf_len < 2 * rsa->sizeof_g_packet)
5407 {
5408 rsa->sizeof_g_packet = buf_len / 2;
5409
5410 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5411 {
5412 if (rsa->regs[i].pnum == -1)
5413 continue;
5414
5415 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5416 rsa->regs[i].in_g_packet = 0;
5417 else
5418 rsa->regs[i].in_g_packet = 1;
5419 }
5420 }
5421
5422 regs = alloca (rsa->sizeof_g_packet);
5423
5424 /* Unimplemented registers read as all bits zero. */
5425 memset (regs, 0, rsa->sizeof_g_packet);
5426
5427 /* Reply describes registers byte by byte, each byte encoded as two
5428 hex characters. Suck them all up, then supply them to the
5429 register cacheing/storage mechanism. */
5430
5431 p = rs->buf;
5432 for (i = 0; i < rsa->sizeof_g_packet; i++)
5433 {
5434 if (p[0] == 0 || p[1] == 0)
5435 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5436 internal_error (__FILE__, __LINE__,
5437 "unexpected end of 'g' packet reply");
5438
5439 if (p[0] == 'x' && p[1] == 'x')
5440 regs[i] = 0; /* 'x' */
5441 else
5442 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5443 p += 2;
5444 }
5445
5446 {
5447 int i;
5448 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5449 {
5450 struct packet_reg *r = &rsa->regs[i];
5451 if (r->in_g_packet)
5452 {
5453 if (r->offset * 2 >= strlen (rs->buf))
5454 /* This shouldn't happen - we adjusted in_g_packet above. */
5455 internal_error (__FILE__, __LINE__,
5456 "unexpected end of 'g' packet reply");
5457 else if (rs->buf[r->offset * 2] == 'x')
5458 {
5459 gdb_assert (r->offset * 2 < strlen (rs->buf));
5460 /* The register isn't available, mark it as such (at
5461 the same time setting the value to zero). */
5462 regcache_raw_supply (regcache, r->regnum, NULL);
5463 }
5464 else
5465 regcache_raw_supply (regcache, r->regnum,
5466 regs + r->offset);
5467 }
5468 }
5469 }
5470 }
5471
5472 static void
5473 fetch_registers_using_g (struct regcache *regcache)
5474 {
5475 send_g_packet ();
5476 process_g_packet (regcache);
5477 }
5478
5479 static void
5480 remote_fetch_registers (struct target_ops *ops,
5481 struct regcache *regcache, int regnum)
5482 {
5483 struct remote_arch_state *rsa = get_remote_arch_state ();
5484 int i;
5485
5486 set_general_thread (inferior_ptid);
5487
5488 if (regnum >= 0)
5489 {
5490 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5491 gdb_assert (reg != NULL);
5492
5493 /* If this register might be in the 'g' packet, try that first -
5494 we are likely to read more than one register. If this is the
5495 first 'g' packet, we might be overly optimistic about its
5496 contents, so fall back to 'p'. */
5497 if (reg->in_g_packet)
5498 {
5499 fetch_registers_using_g (regcache);
5500 if (reg->in_g_packet)
5501 return;
5502 }
5503
5504 if (fetch_register_using_p (regcache, reg))
5505 return;
5506
5507 /* This register is not available. */
5508 regcache_raw_supply (regcache, reg->regnum, NULL);
5509
5510 return;
5511 }
5512
5513 fetch_registers_using_g (regcache);
5514
5515 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5516 if (!rsa->regs[i].in_g_packet)
5517 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5518 {
5519 /* This register is not available. */
5520 regcache_raw_supply (regcache, i, NULL);
5521 }
5522 }
5523
5524 /* Prepare to store registers. Since we may send them all (using a
5525 'G' request), we have to read out the ones we don't want to change
5526 first. */
5527
5528 static void
5529 remote_prepare_to_store (struct regcache *regcache)
5530 {
5531 struct remote_arch_state *rsa = get_remote_arch_state ();
5532 int i;
5533 gdb_byte buf[MAX_REGISTER_SIZE];
5534
5535 /* Make sure the entire registers array is valid. */
5536 switch (remote_protocol_packets[PACKET_P].support)
5537 {
5538 case PACKET_DISABLE:
5539 case PACKET_SUPPORT_UNKNOWN:
5540 /* Make sure all the necessary registers are cached. */
5541 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5542 if (rsa->regs[i].in_g_packet)
5543 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5544 break;
5545 case PACKET_ENABLE:
5546 break;
5547 }
5548 }
5549
5550 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5551 packet was not recognized. */
5552
5553 static int
5554 store_register_using_P (const struct regcache *regcache,
5555 struct packet_reg *reg)
5556 {
5557 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5558 struct remote_state *rs = get_remote_state ();
5559 /* Try storing a single register. */
5560 char *buf = rs->buf;
5561 gdb_byte regp[MAX_REGISTER_SIZE];
5562 char *p;
5563
5564 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5565 return 0;
5566
5567 if (reg->pnum == -1)
5568 return 0;
5569
5570 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5571 p = buf + strlen (buf);
5572 regcache_raw_collect (regcache, reg->regnum, regp);
5573 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5574 putpkt (rs->buf);
5575 getpkt (&rs->buf, &rs->buf_size, 0);
5576
5577 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5578 {
5579 case PACKET_OK:
5580 return 1;
5581 case PACKET_ERROR:
5582 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5583 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5584 case PACKET_UNKNOWN:
5585 return 0;
5586 default:
5587 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5588 }
5589 }
5590
5591 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5592 contents of the register cache buffer. FIXME: ignores errors. */
5593
5594 static void
5595 store_registers_using_G (const struct regcache *regcache)
5596 {
5597 struct remote_state *rs = get_remote_state ();
5598 struct remote_arch_state *rsa = get_remote_arch_state ();
5599 gdb_byte *regs;
5600 char *p;
5601
5602 /* Extract all the registers in the regcache copying them into a
5603 local buffer. */
5604 {
5605 int i;
5606 regs = alloca (rsa->sizeof_g_packet);
5607 memset (regs, 0, rsa->sizeof_g_packet);
5608 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5609 {
5610 struct packet_reg *r = &rsa->regs[i];
5611 if (r->in_g_packet)
5612 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5613 }
5614 }
5615
5616 /* Command describes registers byte by byte,
5617 each byte encoded as two hex characters. */
5618 p = rs->buf;
5619 *p++ = 'G';
5620 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5621 updated. */
5622 bin2hex (regs, p, rsa->sizeof_g_packet);
5623 putpkt (rs->buf);
5624 getpkt (&rs->buf, &rs->buf_size, 0);
5625 if (packet_check_result (rs->buf) == PACKET_ERROR)
5626 error (_("Could not write registers; remote failure reply '%s'"),
5627 rs->buf);
5628 }
5629
5630 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5631 of the register cache buffer. FIXME: ignores errors. */
5632
5633 static void
5634 remote_store_registers (struct target_ops *ops,
5635 struct regcache *regcache, int regnum)
5636 {
5637 struct remote_arch_state *rsa = get_remote_arch_state ();
5638 int i;
5639
5640 set_general_thread (inferior_ptid);
5641
5642 if (regnum >= 0)
5643 {
5644 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5645 gdb_assert (reg != NULL);
5646
5647 /* Always prefer to store registers using the 'P' packet if
5648 possible; we often change only a small number of registers.
5649 Sometimes we change a larger number; we'd need help from a
5650 higher layer to know to use 'G'. */
5651 if (store_register_using_P (regcache, reg))
5652 return;
5653
5654 /* For now, don't complain if we have no way to write the
5655 register. GDB loses track of unavailable registers too
5656 easily. Some day, this may be an error. We don't have
5657 any way to read the register, either... */
5658 if (!reg->in_g_packet)
5659 return;
5660
5661 store_registers_using_G (regcache);
5662 return;
5663 }
5664
5665 store_registers_using_G (regcache);
5666
5667 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5668 if (!rsa->regs[i].in_g_packet)
5669 if (!store_register_using_P (regcache, &rsa->regs[i]))
5670 /* See above for why we do not issue an error here. */
5671 continue;
5672 }
5673 \f
5674
5675 /* Return the number of hex digits in num. */
5676
5677 static int
5678 hexnumlen (ULONGEST num)
5679 {
5680 int i;
5681
5682 for (i = 0; num != 0; i++)
5683 num >>= 4;
5684
5685 return max (i, 1);
5686 }
5687
5688 /* Set BUF to the minimum number of hex digits representing NUM. */
5689
5690 static int
5691 hexnumstr (char *buf, ULONGEST num)
5692 {
5693 int len = hexnumlen (num);
5694 return hexnumnstr (buf, num, len);
5695 }
5696
5697
5698 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5699
5700 static int
5701 hexnumnstr (char *buf, ULONGEST num, int width)
5702 {
5703 int i;
5704
5705 buf[width] = '\0';
5706
5707 for (i = width - 1; i >= 0; i--)
5708 {
5709 buf[i] = "0123456789abcdef"[(num & 0xf)];
5710 num >>= 4;
5711 }
5712
5713 return width;
5714 }
5715
5716 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5717
5718 static CORE_ADDR
5719 remote_address_masked (CORE_ADDR addr)
5720 {
5721 int address_size = remote_address_size;
5722 /* If "remoteaddresssize" was not set, default to target address size. */
5723 if (!address_size)
5724 address_size = gdbarch_addr_bit (target_gdbarch);
5725
5726 if (address_size > 0
5727 && address_size < (sizeof (ULONGEST) * 8))
5728 {
5729 /* Only create a mask when that mask can safely be constructed
5730 in a ULONGEST variable. */
5731 ULONGEST mask = 1;
5732 mask = (mask << address_size) - 1;
5733 addr &= mask;
5734 }
5735 return addr;
5736 }
5737
5738 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5739 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5740 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5741 (which may be more than *OUT_LEN due to escape characters). The
5742 total number of bytes in the output buffer will be at most
5743 OUT_MAXLEN. */
5744
5745 static int
5746 remote_escape_output (const gdb_byte *buffer, int len,
5747 gdb_byte *out_buf, int *out_len,
5748 int out_maxlen)
5749 {
5750 int input_index, output_index;
5751
5752 output_index = 0;
5753 for (input_index = 0; input_index < len; input_index++)
5754 {
5755 gdb_byte b = buffer[input_index];
5756
5757 if (b == '$' || b == '#' || b == '}')
5758 {
5759 /* These must be escaped. */
5760 if (output_index + 2 > out_maxlen)
5761 break;
5762 out_buf[output_index++] = '}';
5763 out_buf[output_index++] = b ^ 0x20;
5764 }
5765 else
5766 {
5767 if (output_index + 1 > out_maxlen)
5768 break;
5769 out_buf[output_index++] = b;
5770 }
5771 }
5772
5773 *out_len = input_index;
5774 return output_index;
5775 }
5776
5777 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5778 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5779 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5780
5781 This function reverses remote_escape_output. It allows more
5782 escaped characters than that function does, in particular because
5783 '*' must be escaped to avoid the run-length encoding processing
5784 in reading packets. */
5785
5786 static int
5787 remote_unescape_input (const gdb_byte *buffer, int len,
5788 gdb_byte *out_buf, int out_maxlen)
5789 {
5790 int input_index, output_index;
5791 int escaped;
5792
5793 output_index = 0;
5794 escaped = 0;
5795 for (input_index = 0; input_index < len; input_index++)
5796 {
5797 gdb_byte b = buffer[input_index];
5798
5799 if (output_index + 1 > out_maxlen)
5800 {
5801 warning (_("Received too much data from remote target;"
5802 " ignoring overflow."));
5803 return output_index;
5804 }
5805
5806 if (escaped)
5807 {
5808 out_buf[output_index++] = b ^ 0x20;
5809 escaped = 0;
5810 }
5811 else if (b == '}')
5812 escaped = 1;
5813 else
5814 out_buf[output_index++] = b;
5815 }
5816
5817 if (escaped)
5818 error (_("Unmatched escape character in target response."));
5819
5820 return output_index;
5821 }
5822
5823 /* Determine whether the remote target supports binary downloading.
5824 This is accomplished by sending a no-op memory write of zero length
5825 to the target at the specified address. It does not suffice to send
5826 the whole packet, since many stubs strip the eighth bit and
5827 subsequently compute a wrong checksum, which causes real havoc with
5828 remote_write_bytes.
5829
5830 NOTE: This can still lose if the serial line is not eight-bit
5831 clean. In cases like this, the user should clear "remote
5832 X-packet". */
5833
5834 static void
5835 check_binary_download (CORE_ADDR addr)
5836 {
5837 struct remote_state *rs = get_remote_state ();
5838
5839 switch (remote_protocol_packets[PACKET_X].support)
5840 {
5841 case PACKET_DISABLE:
5842 break;
5843 case PACKET_ENABLE:
5844 break;
5845 case PACKET_SUPPORT_UNKNOWN:
5846 {
5847 char *p;
5848
5849 p = rs->buf;
5850 *p++ = 'X';
5851 p += hexnumstr (p, (ULONGEST) addr);
5852 *p++ = ',';
5853 p += hexnumstr (p, (ULONGEST) 0);
5854 *p++ = ':';
5855 *p = '\0';
5856
5857 putpkt_binary (rs->buf, (int) (p - rs->buf));
5858 getpkt (&rs->buf, &rs->buf_size, 0);
5859
5860 if (rs->buf[0] == '\0')
5861 {
5862 if (remote_debug)
5863 fprintf_unfiltered (gdb_stdlog,
5864 "binary downloading NOT suppported by target\n");
5865 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5866 }
5867 else
5868 {
5869 if (remote_debug)
5870 fprintf_unfiltered (gdb_stdlog,
5871 "binary downloading suppported by target\n");
5872 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5873 }
5874 break;
5875 }
5876 }
5877 }
5878
5879 /* Write memory data directly to the remote machine.
5880 This does not inform the data cache; the data cache uses this.
5881 HEADER is the starting part of the packet.
5882 MEMADDR is the address in the remote memory space.
5883 MYADDR is the address of the buffer in our space.
5884 LEN is the number of bytes.
5885 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5886 should send data as binary ('X'), or hex-encoded ('M').
5887
5888 The function creates packet of the form
5889 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5890
5891 where encoding of <DATA> is termined by PACKET_FORMAT.
5892
5893 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5894 are omitted.
5895
5896 Returns the number of bytes transferred, or 0 (setting errno) for
5897 error. Only transfer a single packet. */
5898
5899 static int
5900 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5901 const gdb_byte *myaddr, int len,
5902 char packet_format, int use_length)
5903 {
5904 struct remote_state *rs = get_remote_state ();
5905 char *p;
5906 char *plen = NULL;
5907 int plenlen = 0;
5908 int todo;
5909 int nr_bytes;
5910 int payload_size;
5911 int payload_length;
5912 int header_length;
5913
5914 if (packet_format != 'X' && packet_format != 'M')
5915 internal_error (__FILE__, __LINE__,
5916 "remote_write_bytes_aux: bad packet format");
5917
5918 if (len <= 0)
5919 return 0;
5920
5921 payload_size = get_memory_write_packet_size ();
5922
5923 /* The packet buffer will be large enough for the payload;
5924 get_memory_packet_size ensures this. */
5925 rs->buf[0] = '\0';
5926
5927 /* Compute the size of the actual payload by subtracting out the
5928 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5929 */
5930 payload_size -= strlen ("$,:#NN");
5931 if (!use_length)
5932 /* The comma won't be used. */
5933 payload_size += 1;
5934 header_length = strlen (header);
5935 payload_size -= header_length;
5936 payload_size -= hexnumlen (memaddr);
5937
5938 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5939
5940 strcat (rs->buf, header);
5941 p = rs->buf + strlen (header);
5942
5943 /* Compute a best guess of the number of bytes actually transfered. */
5944 if (packet_format == 'X')
5945 {
5946 /* Best guess at number of bytes that will fit. */
5947 todo = min (len, payload_size);
5948 if (use_length)
5949 payload_size -= hexnumlen (todo);
5950 todo = min (todo, payload_size);
5951 }
5952 else
5953 {
5954 /* Num bytes that will fit. */
5955 todo = min (len, payload_size / 2);
5956 if (use_length)
5957 payload_size -= hexnumlen (todo);
5958 todo = min (todo, payload_size / 2);
5959 }
5960
5961 if (todo <= 0)
5962 internal_error (__FILE__, __LINE__,
5963 _("minumum packet size too small to write data"));
5964
5965 /* If we already need another packet, then try to align the end
5966 of this packet to a useful boundary. */
5967 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5968 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5969
5970 /* Append "<memaddr>". */
5971 memaddr = remote_address_masked (memaddr);
5972 p += hexnumstr (p, (ULONGEST) memaddr);
5973
5974 if (use_length)
5975 {
5976 /* Append ",". */
5977 *p++ = ',';
5978
5979 /* Append <len>. Retain the location/size of <len>. It may need to
5980 be adjusted once the packet body has been created. */
5981 plen = p;
5982 plenlen = hexnumstr (p, (ULONGEST) todo);
5983 p += plenlen;
5984 }
5985
5986 /* Append ":". */
5987 *p++ = ':';
5988 *p = '\0';
5989
5990 /* Append the packet body. */
5991 if (packet_format == 'X')
5992 {
5993 /* Binary mode. Send target system values byte by byte, in
5994 increasing byte addresses. Only escape certain critical
5995 characters. */
5996 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5997 payload_size);
5998
5999 /* If not all TODO bytes fit, then we'll need another packet. Make
6000 a second try to keep the end of the packet aligned. Don't do
6001 this if the packet is tiny. */
6002 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6003 {
6004 int new_nr_bytes;
6005
6006 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6007 - memaddr);
6008 if (new_nr_bytes != nr_bytes)
6009 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6010 p, &nr_bytes,
6011 payload_size);
6012 }
6013
6014 p += payload_length;
6015 if (use_length && nr_bytes < todo)
6016 {
6017 /* Escape chars have filled up the buffer prematurely,
6018 and we have actually sent fewer bytes than planned.
6019 Fix-up the length field of the packet. Use the same
6020 number of characters as before. */
6021 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6022 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6023 }
6024 }
6025 else
6026 {
6027 /* Normal mode: Send target system values byte by byte, in
6028 increasing byte addresses. Each byte is encoded as a two hex
6029 value. */
6030 nr_bytes = bin2hex (myaddr, p, todo);
6031 p += 2 * nr_bytes;
6032 }
6033
6034 putpkt_binary (rs->buf, (int) (p - rs->buf));
6035 getpkt (&rs->buf, &rs->buf_size, 0);
6036
6037 if (rs->buf[0] == 'E')
6038 {
6039 /* There is no correspondance between what the remote protocol
6040 uses for errors and errno codes. We would like a cleaner way
6041 of representing errors (big enough to include errno codes,
6042 bfd_error codes, and others). But for now just return EIO. */
6043 errno = EIO;
6044 return 0;
6045 }
6046
6047 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6048 fewer bytes than we'd planned. */
6049 return nr_bytes;
6050 }
6051
6052 /* Write memory data directly to the remote machine.
6053 This does not inform the data cache; the data cache uses this.
6054 MEMADDR is the address in the remote memory space.
6055 MYADDR is the address of the buffer in our space.
6056 LEN is the number of bytes.
6057
6058 Returns number of bytes transferred, or 0 (setting errno) for
6059 error. Only transfer a single packet. */
6060
6061 int
6062 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6063 {
6064 char *packet_format = 0;
6065
6066 /* Check whether the target supports binary download. */
6067 check_binary_download (memaddr);
6068
6069 switch (remote_protocol_packets[PACKET_X].support)
6070 {
6071 case PACKET_ENABLE:
6072 packet_format = "X";
6073 break;
6074 case PACKET_DISABLE:
6075 packet_format = "M";
6076 break;
6077 case PACKET_SUPPORT_UNKNOWN:
6078 internal_error (__FILE__, __LINE__,
6079 _("remote_write_bytes: bad internal state"));
6080 default:
6081 internal_error (__FILE__, __LINE__, _("bad switch"));
6082 }
6083
6084 return remote_write_bytes_aux (packet_format,
6085 memaddr, myaddr, len, packet_format[0], 1);
6086 }
6087
6088 /* Read memory data directly from the remote machine.
6089 This does not use the data cache; the data cache uses this.
6090 MEMADDR is the address in the remote memory space.
6091 MYADDR is the address of the buffer in our space.
6092 LEN is the number of bytes.
6093
6094 Returns number of bytes transferred, or 0 for error. */
6095
6096 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
6097 remote targets) shouldn't attempt to read the entire buffer.
6098 Instead it should read a single packet worth of data and then
6099 return the byte size of that packet to the caller. The caller (its
6100 caller and its callers caller ;-) already contains code for
6101 handling partial reads. */
6102
6103 int
6104 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6105 {
6106 struct remote_state *rs = get_remote_state ();
6107 int max_buf_size; /* Max size of packet output buffer. */
6108 int origlen;
6109
6110 if (len <= 0)
6111 return 0;
6112
6113 max_buf_size = get_memory_read_packet_size ();
6114 /* The packet buffer will be large enough for the payload;
6115 get_memory_packet_size ensures this. */
6116
6117 origlen = len;
6118 while (len > 0)
6119 {
6120 char *p;
6121 int todo;
6122 int i;
6123
6124 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
6125
6126 /* construct "m"<memaddr>","<len>" */
6127 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
6128 memaddr = remote_address_masked (memaddr);
6129 p = rs->buf;
6130 *p++ = 'm';
6131 p += hexnumstr (p, (ULONGEST) memaddr);
6132 *p++ = ',';
6133 p += hexnumstr (p, (ULONGEST) todo);
6134 *p = '\0';
6135
6136 putpkt (rs->buf);
6137 getpkt (&rs->buf, &rs->buf_size, 0);
6138
6139 if (rs->buf[0] == 'E'
6140 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6141 && rs->buf[3] == '\0')
6142 {
6143 /* There is no correspondance between what the remote
6144 protocol uses for errors and errno codes. We would like
6145 a cleaner way of representing errors (big enough to
6146 include errno codes, bfd_error codes, and others). But
6147 for now just return EIO. */
6148 errno = EIO;
6149 return 0;
6150 }
6151
6152 /* Reply describes memory byte by byte,
6153 each byte encoded as two hex characters. */
6154
6155 p = rs->buf;
6156 if ((i = hex2bin (p, myaddr, todo)) < todo)
6157 {
6158 /* Reply is short. This means that we were able to read
6159 only part of what we wanted to. */
6160 return i + (origlen - len);
6161 }
6162 myaddr += todo;
6163 memaddr += todo;
6164 len -= todo;
6165 }
6166 return origlen;
6167 }
6168 \f
6169
6170 /* Remote notification handler. */
6171
6172 static void
6173 handle_notification (char *buf, size_t length)
6174 {
6175 if (strncmp (buf, "Stop:", 5) == 0)
6176 {
6177 if (pending_stop_reply)
6178 {
6179 /* We've already parsed the in-flight stop-reply, but the
6180 stub for some reason thought we didn't, possibly due to
6181 timeout on its side. Just ignore it. */
6182 if (remote_debug)
6183 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6184 }
6185 else
6186 {
6187 struct cleanup *old_chain;
6188 struct stop_reply *reply = stop_reply_xmalloc ();
6189 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6190
6191 remote_parse_stop_reply (buf + 5, reply);
6192
6193 discard_cleanups (old_chain);
6194
6195 /* Be careful to only set it after parsing, since an error
6196 may be thrown then. */
6197 pending_stop_reply = reply;
6198
6199 /* Notify the event loop there's a stop reply to acknowledge
6200 and that there may be more events to fetch. */
6201 mark_async_event_handler (remote_async_get_pending_events_token);
6202
6203 if (remote_debug)
6204 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6205 }
6206 }
6207 else
6208 /* We ignore notifications we don't recognize, for compatibility
6209 with newer stubs. */
6210 ;
6211 }
6212
6213 \f
6214 /* Read or write LEN bytes from inferior memory at MEMADDR,
6215 transferring to or from debugger address BUFFER. Write to inferior
6216 if SHOULD_WRITE is nonzero. Returns length of data written or
6217 read; 0 for error. TARGET is unused. */
6218
6219 static int
6220 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6221 int should_write, struct mem_attrib *attrib,
6222 struct target_ops *target)
6223 {
6224 int res;
6225
6226 set_general_thread (inferior_ptid);
6227
6228 if (should_write)
6229 res = remote_write_bytes (mem_addr, buffer, mem_len);
6230 else
6231 res = remote_read_bytes (mem_addr, buffer, mem_len);
6232
6233 return res;
6234 }
6235
6236 /* Sends a packet with content determined by the printf format string
6237 FORMAT and the remaining arguments, then gets the reply. Returns
6238 whether the packet was a success, a failure, or unknown. */
6239
6240 static enum packet_result
6241 remote_send_printf (const char *format, ...)
6242 {
6243 struct remote_state *rs = get_remote_state ();
6244 int max_size = get_remote_packet_size ();
6245
6246 va_list ap;
6247 va_start (ap, format);
6248
6249 rs->buf[0] = '\0';
6250 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6251 internal_error (__FILE__, __LINE__, "Too long remote packet.");
6252
6253 if (putpkt (rs->buf) < 0)
6254 error (_("Communication problem with target."));
6255
6256 rs->buf[0] = '\0';
6257 getpkt (&rs->buf, &rs->buf_size, 0);
6258
6259 return packet_check_result (rs->buf);
6260 }
6261
6262 static void
6263 restore_remote_timeout (void *p)
6264 {
6265 int value = *(int *)p;
6266 remote_timeout = value;
6267 }
6268
6269 /* Flash writing can take quite some time. We'll set
6270 effectively infinite timeout for flash operations.
6271 In future, we'll need to decide on a better approach. */
6272 static const int remote_flash_timeout = 1000;
6273
6274 static void
6275 remote_flash_erase (struct target_ops *ops,
6276 ULONGEST address, LONGEST length)
6277 {
6278 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6279 int saved_remote_timeout = remote_timeout;
6280 enum packet_result ret;
6281
6282 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6283 &saved_remote_timeout);
6284 remote_timeout = remote_flash_timeout;
6285
6286 ret = remote_send_printf ("vFlashErase:%s,%s",
6287 phex (address, addr_size),
6288 phex (length, 4));
6289 switch (ret)
6290 {
6291 case PACKET_UNKNOWN:
6292 error (_("Remote target does not support flash erase"));
6293 case PACKET_ERROR:
6294 error (_("Error erasing flash with vFlashErase packet"));
6295 default:
6296 break;
6297 }
6298
6299 do_cleanups (back_to);
6300 }
6301
6302 static LONGEST
6303 remote_flash_write (struct target_ops *ops,
6304 ULONGEST address, LONGEST length,
6305 const gdb_byte *data)
6306 {
6307 int saved_remote_timeout = remote_timeout;
6308 int ret;
6309 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6310 &saved_remote_timeout);
6311
6312 remote_timeout = remote_flash_timeout;
6313 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6314 do_cleanups (back_to);
6315
6316 return ret;
6317 }
6318
6319 static void
6320 remote_flash_done (struct target_ops *ops)
6321 {
6322 int saved_remote_timeout = remote_timeout;
6323 int ret;
6324 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6325 &saved_remote_timeout);
6326
6327 remote_timeout = remote_flash_timeout;
6328 ret = remote_send_printf ("vFlashDone");
6329 do_cleanups (back_to);
6330
6331 switch (ret)
6332 {
6333 case PACKET_UNKNOWN:
6334 error (_("Remote target does not support vFlashDone"));
6335 case PACKET_ERROR:
6336 error (_("Error finishing flash operation"));
6337 default:
6338 break;
6339 }
6340 }
6341
6342 static void
6343 remote_files_info (struct target_ops *ignore)
6344 {
6345 puts_filtered ("Debugging a target over a serial line.\n");
6346 }
6347 \f
6348 /* Stuff for dealing with the packets which are part of this protocol.
6349 See comment at top of file for details. */
6350
6351 /* Read a single character from the remote end. */
6352
6353 static int
6354 readchar (int timeout)
6355 {
6356 int ch;
6357
6358 ch = serial_readchar (remote_desc, timeout);
6359
6360 if (ch >= 0)
6361 return ch;
6362
6363 switch ((enum serial_rc) ch)
6364 {
6365 case SERIAL_EOF:
6366 pop_target ();
6367 error (_("Remote connection closed"));
6368 /* no return */
6369 case SERIAL_ERROR:
6370 perror_with_name (_("Remote communication error"));
6371 /* no return */
6372 case SERIAL_TIMEOUT:
6373 break;
6374 }
6375 return ch;
6376 }
6377
6378 /* Send the command in *BUF to the remote machine, and read the reply
6379 into *BUF. Report an error if we get an error reply. Resize
6380 *BUF using xrealloc if necessary to hold the result, and update
6381 *SIZEOF_BUF. */
6382
6383 static void
6384 remote_send (char **buf,
6385 long *sizeof_buf)
6386 {
6387 putpkt (*buf);
6388 getpkt (buf, sizeof_buf, 0);
6389
6390 if ((*buf)[0] == 'E')
6391 error (_("Remote failure reply: %s"), *buf);
6392 }
6393
6394 /* Return a pointer to an xmalloc'ed string representing an escaped
6395 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6396 etc. The caller is responsible for releasing the returned
6397 memory. */
6398
6399 static char *
6400 escape_buffer (const char *buf, int n)
6401 {
6402 struct cleanup *old_chain;
6403 struct ui_file *stb;
6404 char *str;
6405
6406 stb = mem_fileopen ();
6407 old_chain = make_cleanup_ui_file_delete (stb);
6408
6409 fputstrn_unfiltered (buf, n, 0, stb);
6410 str = ui_file_xstrdup (stb, NULL);
6411 do_cleanups (old_chain);
6412 return str;
6413 }
6414
6415 /* Display a null-terminated packet on stdout, for debugging, using C
6416 string notation. */
6417
6418 static void
6419 print_packet (char *buf)
6420 {
6421 puts_filtered ("\"");
6422 fputstr_filtered (buf, '"', gdb_stdout);
6423 puts_filtered ("\"");
6424 }
6425
6426 int
6427 putpkt (char *buf)
6428 {
6429 return putpkt_binary (buf, strlen (buf));
6430 }
6431
6432 /* Send a packet to the remote machine, with error checking. The data
6433 of the packet is in BUF. The string in BUF can be at most
6434 get_remote_packet_size () - 5 to account for the $, # and checksum,
6435 and for a possible /0 if we are debugging (remote_debug) and want
6436 to print the sent packet as a string. */
6437
6438 static int
6439 putpkt_binary (char *buf, int cnt)
6440 {
6441 struct remote_state *rs = get_remote_state ();
6442 int i;
6443 unsigned char csum = 0;
6444 char *buf2 = alloca (cnt + 6);
6445
6446 int ch;
6447 int tcount = 0;
6448 char *p;
6449
6450 /* Catch cases like trying to read memory or listing threads while
6451 we're waiting for a stop reply. The remote server wouldn't be
6452 ready to handle this request, so we'd hang and timeout. We don't
6453 have to worry about this in synchronous mode, because in that
6454 case it's not possible to issue a command while the target is
6455 running. This is not a problem in non-stop mode, because in that
6456 case, the stub is always ready to process serial input. */
6457 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6458 error (_("Cannot execute this command while the target is running."));
6459
6460 /* We're sending out a new packet. Make sure we don't look at a
6461 stale cached response. */
6462 rs->cached_wait_status = 0;
6463
6464 /* Copy the packet into buffer BUF2, encapsulating it
6465 and giving it a checksum. */
6466
6467 p = buf2;
6468 *p++ = '$';
6469
6470 for (i = 0; i < cnt; i++)
6471 {
6472 csum += buf[i];
6473 *p++ = buf[i];
6474 }
6475 *p++ = '#';
6476 *p++ = tohex ((csum >> 4) & 0xf);
6477 *p++ = tohex (csum & 0xf);
6478
6479 /* Send it over and over until we get a positive ack. */
6480
6481 while (1)
6482 {
6483 int started_error_output = 0;
6484
6485 if (remote_debug)
6486 {
6487 struct cleanup *old_chain;
6488 char *str;
6489
6490 *p = '\0';
6491 str = escape_buffer (buf2, p - buf2);
6492 old_chain = make_cleanup (xfree, str);
6493 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6494 gdb_flush (gdb_stdlog);
6495 do_cleanups (old_chain);
6496 }
6497 if (serial_write (remote_desc, buf2, p - buf2))
6498 perror_with_name (_("putpkt: write failed"));
6499
6500 /* If this is a no acks version of the remote protocol, send the
6501 packet and move on. */
6502 if (rs->noack_mode)
6503 break;
6504
6505 /* Read until either a timeout occurs (-2) or '+' is read.
6506 Handle any notification that arrives in the mean time. */
6507 while (1)
6508 {
6509 ch = readchar (remote_timeout);
6510
6511 if (remote_debug)
6512 {
6513 switch (ch)
6514 {
6515 case '+':
6516 case '-':
6517 case SERIAL_TIMEOUT:
6518 case '$':
6519 case '%':
6520 if (started_error_output)
6521 {
6522 putchar_unfiltered ('\n');
6523 started_error_output = 0;
6524 }
6525 }
6526 }
6527
6528 switch (ch)
6529 {
6530 case '+':
6531 if (remote_debug)
6532 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6533 return 1;
6534 case '-':
6535 if (remote_debug)
6536 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6537 case SERIAL_TIMEOUT:
6538 tcount++;
6539 if (tcount > 3)
6540 return 0;
6541 break; /* Retransmit buffer. */
6542 case '$':
6543 {
6544 if (remote_debug)
6545 fprintf_unfiltered (gdb_stdlog,
6546 "Packet instead of Ack, ignoring it\n");
6547 /* It's probably an old response sent because an ACK
6548 was lost. Gobble up the packet and ack it so it
6549 doesn't get retransmitted when we resend this
6550 packet. */
6551 skip_frame ();
6552 serial_write (remote_desc, "+", 1);
6553 continue; /* Now, go look for +. */
6554 }
6555
6556 case '%':
6557 {
6558 int val;
6559
6560 /* If we got a notification, handle it, and go back to looking
6561 for an ack. */
6562 /* We've found the start of a notification. Now
6563 collect the data. */
6564 val = read_frame (&rs->buf, &rs->buf_size);
6565 if (val >= 0)
6566 {
6567 if (remote_debug)
6568 {
6569 struct cleanup *old_chain;
6570 char *str;
6571
6572 str = escape_buffer (rs->buf, val);
6573 old_chain = make_cleanup (xfree, str);
6574 fprintf_unfiltered (gdb_stdlog,
6575 " Notification received: %s\n",
6576 str);
6577 do_cleanups (old_chain);
6578 }
6579 handle_notification (rs->buf, val);
6580 /* We're in sync now, rewait for the ack. */
6581 tcount = 0;
6582 }
6583 else
6584 {
6585 if (remote_debug)
6586 {
6587 if (!started_error_output)
6588 {
6589 started_error_output = 1;
6590 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6591 }
6592 fputc_unfiltered (ch & 0177, gdb_stdlog);
6593 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6594 }
6595 }
6596 continue;
6597 }
6598 /* fall-through */
6599 default:
6600 if (remote_debug)
6601 {
6602 if (!started_error_output)
6603 {
6604 started_error_output = 1;
6605 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6606 }
6607 fputc_unfiltered (ch & 0177, gdb_stdlog);
6608 }
6609 continue;
6610 }
6611 break; /* Here to retransmit. */
6612 }
6613
6614 #if 0
6615 /* This is wrong. If doing a long backtrace, the user should be
6616 able to get out next time we call QUIT, without anything as
6617 violent as interrupt_query. If we want to provide a way out of
6618 here without getting to the next QUIT, it should be based on
6619 hitting ^C twice as in remote_wait. */
6620 if (quit_flag)
6621 {
6622 quit_flag = 0;
6623 interrupt_query ();
6624 }
6625 #endif
6626 }
6627 return 0;
6628 }
6629
6630 /* Come here after finding the start of a frame when we expected an
6631 ack. Do our best to discard the rest of this packet. */
6632
6633 static void
6634 skip_frame (void)
6635 {
6636 int c;
6637
6638 while (1)
6639 {
6640 c = readchar (remote_timeout);
6641 switch (c)
6642 {
6643 case SERIAL_TIMEOUT:
6644 /* Nothing we can do. */
6645 return;
6646 case '#':
6647 /* Discard the two bytes of checksum and stop. */
6648 c = readchar (remote_timeout);
6649 if (c >= 0)
6650 c = readchar (remote_timeout);
6651
6652 return;
6653 case '*': /* Run length encoding. */
6654 /* Discard the repeat count. */
6655 c = readchar (remote_timeout);
6656 if (c < 0)
6657 return;
6658 break;
6659 default:
6660 /* A regular character. */
6661 break;
6662 }
6663 }
6664 }
6665
6666 /* Come here after finding the start of the frame. Collect the rest
6667 into *BUF, verifying the checksum, length, and handling run-length
6668 compression. NUL terminate the buffer. If there is not enough room,
6669 expand *BUF using xrealloc.
6670
6671 Returns -1 on error, number of characters in buffer (ignoring the
6672 trailing NULL) on success. (could be extended to return one of the
6673 SERIAL status indications). */
6674
6675 static long
6676 read_frame (char **buf_p,
6677 long *sizeof_buf)
6678 {
6679 unsigned char csum;
6680 long bc;
6681 int c;
6682 char *buf = *buf_p;
6683 struct remote_state *rs = get_remote_state ();
6684
6685 csum = 0;
6686 bc = 0;
6687
6688 while (1)
6689 {
6690 c = readchar (remote_timeout);
6691 switch (c)
6692 {
6693 case SERIAL_TIMEOUT:
6694 if (remote_debug)
6695 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6696 return -1;
6697 case '$':
6698 if (remote_debug)
6699 fputs_filtered ("Saw new packet start in middle of old one\n",
6700 gdb_stdlog);
6701 return -1; /* Start a new packet, count retries. */
6702 case '#':
6703 {
6704 unsigned char pktcsum;
6705 int check_0 = 0;
6706 int check_1 = 0;
6707
6708 buf[bc] = '\0';
6709
6710 check_0 = readchar (remote_timeout);
6711 if (check_0 >= 0)
6712 check_1 = readchar (remote_timeout);
6713
6714 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6715 {
6716 if (remote_debug)
6717 fputs_filtered ("Timeout in checksum, retrying\n",
6718 gdb_stdlog);
6719 return -1;
6720 }
6721 else if (check_0 < 0 || check_1 < 0)
6722 {
6723 if (remote_debug)
6724 fputs_filtered ("Communication error in checksum\n",
6725 gdb_stdlog);
6726 return -1;
6727 }
6728
6729 /* Don't recompute the checksum; with no ack packets we
6730 don't have any way to indicate a packet retransmission
6731 is necessary. */
6732 if (rs->noack_mode)
6733 return bc;
6734
6735 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6736 if (csum == pktcsum)
6737 return bc;
6738
6739 if (remote_debug)
6740 {
6741 struct cleanup *old_chain;
6742 char *str;
6743
6744 str = escape_buffer (buf, bc);
6745 old_chain = make_cleanup (xfree, str);
6746 fprintf_unfiltered (gdb_stdlog,
6747 "\
6748 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6749 pktcsum, csum, str);
6750 do_cleanups (old_chain);
6751 }
6752 /* Number of characters in buffer ignoring trailing
6753 NULL. */
6754 return -1;
6755 }
6756 case '*': /* Run length encoding. */
6757 {
6758 int repeat;
6759 csum += c;
6760
6761 c = readchar (remote_timeout);
6762 csum += c;
6763 repeat = c - ' ' + 3; /* Compute repeat count. */
6764
6765 /* The character before ``*'' is repeated. */
6766
6767 if (repeat > 0 && repeat <= 255 && bc > 0)
6768 {
6769 if (bc + repeat - 1 >= *sizeof_buf - 1)
6770 {
6771 /* Make some more room in the buffer. */
6772 *sizeof_buf += repeat;
6773 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6774 buf = *buf_p;
6775 }
6776
6777 memset (&buf[bc], buf[bc - 1], repeat);
6778 bc += repeat;
6779 continue;
6780 }
6781
6782 buf[bc] = '\0';
6783 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6784 return -1;
6785 }
6786 default:
6787 if (bc >= *sizeof_buf - 1)
6788 {
6789 /* Make some more room in the buffer. */
6790 *sizeof_buf *= 2;
6791 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6792 buf = *buf_p;
6793 }
6794
6795 buf[bc++] = c;
6796 csum += c;
6797 continue;
6798 }
6799 }
6800 }
6801
6802 /* Read a packet from the remote machine, with error checking, and
6803 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6804 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6805 rather than timing out; this is used (in synchronous mode) to wait
6806 for a target that is is executing user code to stop. */
6807 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6808 don't have to change all the calls to getpkt to deal with the
6809 return value, because at the moment I don't know what the right
6810 thing to do it for those. */
6811 void
6812 getpkt (char **buf,
6813 long *sizeof_buf,
6814 int forever)
6815 {
6816 int timed_out;
6817
6818 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6819 }
6820
6821
6822 /* Read a packet from the remote machine, with error checking, and
6823 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6824 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6825 rather than timing out; this is used (in synchronous mode) to wait
6826 for a target that is is executing user code to stop. If FOREVER ==
6827 0, this function is allowed to time out gracefully and return an
6828 indication of this to the caller. Otherwise return the number of
6829 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6830 enough reason to return to the caller. */
6831
6832 static int
6833 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6834 int expecting_notif)
6835 {
6836 struct remote_state *rs = get_remote_state ();
6837 int c;
6838 int tries;
6839 int timeout;
6840 int val = -1;
6841
6842 /* We're reading a new response. Make sure we don't look at a
6843 previously cached response. */
6844 rs->cached_wait_status = 0;
6845
6846 strcpy (*buf, "timeout");
6847
6848 if (forever)
6849 timeout = watchdog > 0 ? watchdog : -1;
6850 else if (expecting_notif)
6851 timeout = 0; /* There should already be a char in the buffer. If
6852 not, bail out. */
6853 else
6854 timeout = remote_timeout;
6855
6856 #define MAX_TRIES 3
6857
6858 /* Process any number of notifications, and then return when
6859 we get a packet. */
6860 for (;;)
6861 {
6862 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6863 times. */
6864 for (tries = 1; tries <= MAX_TRIES; tries++)
6865 {
6866 /* This can loop forever if the remote side sends us
6867 characters continuously, but if it pauses, we'll get
6868 SERIAL_TIMEOUT from readchar because of timeout. Then
6869 we'll count that as a retry.
6870
6871 Note that even when forever is set, we will only wait
6872 forever prior to the start of a packet. After that, we
6873 expect characters to arrive at a brisk pace. They should
6874 show up within remote_timeout intervals. */
6875 do
6876 c = readchar (timeout);
6877 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6878
6879 if (c == SERIAL_TIMEOUT)
6880 {
6881 if (expecting_notif)
6882 return -1; /* Don't complain, it's normal to not get
6883 anything in this case. */
6884
6885 if (forever) /* Watchdog went off? Kill the target. */
6886 {
6887 QUIT;
6888 pop_target ();
6889 error (_("Watchdog timeout has expired. Target detached."));
6890 }
6891 if (remote_debug)
6892 fputs_filtered ("Timed out.\n", gdb_stdlog);
6893 }
6894 else
6895 {
6896 /* We've found the start of a packet or notification.
6897 Now collect the data. */
6898 val = read_frame (buf, sizeof_buf);
6899 if (val >= 0)
6900 break;
6901 }
6902
6903 serial_write (remote_desc, "-", 1);
6904 }
6905
6906 if (tries > MAX_TRIES)
6907 {
6908 /* We have tried hard enough, and just can't receive the
6909 packet/notification. Give up. */
6910 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6911
6912 /* Skip the ack char if we're in no-ack mode. */
6913 if (!rs->noack_mode)
6914 serial_write (remote_desc, "+", 1);
6915 return -1;
6916 }
6917
6918 /* If we got an ordinary packet, return that to our caller. */
6919 if (c == '$')
6920 {
6921 if (remote_debug)
6922 {
6923 struct cleanup *old_chain;
6924 char *str;
6925
6926 str = escape_buffer (*buf, val);
6927 old_chain = make_cleanup (xfree, str);
6928 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6929 do_cleanups (old_chain);
6930 }
6931
6932 /* Skip the ack char if we're in no-ack mode. */
6933 if (!rs->noack_mode)
6934 serial_write (remote_desc, "+", 1);
6935 return val;
6936 }
6937
6938 /* If we got a notification, handle it, and go back to looking
6939 for a packet. */
6940 else
6941 {
6942 gdb_assert (c == '%');
6943
6944 if (remote_debug)
6945 {
6946 struct cleanup *old_chain;
6947 char *str;
6948
6949 str = escape_buffer (*buf, val);
6950 old_chain = make_cleanup (xfree, str);
6951 fprintf_unfiltered (gdb_stdlog,
6952 " Notification received: %s\n",
6953 str);
6954 do_cleanups (old_chain);
6955 }
6956
6957 handle_notification (*buf, val);
6958
6959 /* Notifications require no acknowledgement. */
6960
6961 if (expecting_notif)
6962 return -1;
6963 }
6964 }
6965 }
6966
6967 static int
6968 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6969 {
6970 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6971 }
6972
6973 static int
6974 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6975 {
6976 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6977 }
6978
6979 \f
6980 static void
6981 remote_kill (struct target_ops *ops)
6982 {
6983 /* Use catch_errors so the user can quit from gdb even when we
6984 aren't on speaking terms with the remote system. */
6985 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6986
6987 /* Don't wait for it to die. I'm not really sure it matters whether
6988 we do or not. For the existing stubs, kill is a noop. */
6989 target_mourn_inferior ();
6990 }
6991
6992 static int
6993 remote_vkill (int pid, struct remote_state *rs)
6994 {
6995 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6996 return -1;
6997
6998 /* Tell the remote target to detach. */
6999 sprintf (rs->buf, "vKill;%x", pid);
7000 putpkt (rs->buf);
7001 getpkt (&rs->buf, &rs->buf_size, 0);
7002
7003 if (packet_ok (rs->buf,
7004 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7005 return 0;
7006 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7007 return -1;
7008 else
7009 return 1;
7010 }
7011
7012 static void
7013 extended_remote_kill (struct target_ops *ops)
7014 {
7015 int res;
7016 int pid = ptid_get_pid (inferior_ptid);
7017 struct remote_state *rs = get_remote_state ();
7018
7019 res = remote_vkill (pid, rs);
7020 if (res == -1 && !remote_multi_process_p (rs))
7021 {
7022 /* Don't try 'k' on a multi-process aware stub -- it has no way
7023 to specify the pid. */
7024
7025 putpkt ("k");
7026 #if 0
7027 getpkt (&rs->buf, &rs->buf_size, 0);
7028 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7029 res = 1;
7030 #else
7031 /* Don't wait for it to die. I'm not really sure it matters whether
7032 we do or not. For the existing stubs, kill is a noop. */
7033 res = 0;
7034 #endif
7035 }
7036
7037 if (res != 0)
7038 error (_("Can't kill process"));
7039
7040 target_mourn_inferior ();
7041 }
7042
7043 static void
7044 remote_mourn (struct target_ops *ops)
7045 {
7046 remote_mourn_1 (ops);
7047 }
7048
7049 /* Worker function for remote_mourn. */
7050 static void
7051 remote_mourn_1 (struct target_ops *target)
7052 {
7053 unpush_target (target);
7054
7055 /* remote_close takes care of doing most of the clean up. */
7056 generic_mourn_inferior ();
7057 }
7058
7059 static void
7060 extended_remote_mourn_1 (struct target_ops *target)
7061 {
7062 struct remote_state *rs = get_remote_state ();
7063
7064 /* In case we got here due to an error, but we're going to stay
7065 connected. */
7066 rs->waiting_for_stop_reply = 0;
7067
7068 /* We're no longer interested in these events. */
7069 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7070
7071 /* If the current general thread belonged to the process we just
7072 detached from or has exited, the remote side current general
7073 thread becomes undefined. Considering a case like this:
7074
7075 - We just got here due to a detach.
7076 - The process that we're detaching from happens to immediately
7077 report a global breakpoint being hit in non-stop mode, in the
7078 same thread we had selected before.
7079 - GDB attaches to this process again.
7080 - This event happens to be the next event we handle.
7081
7082 GDB would consider that the current general thread didn't need to
7083 be set on the stub side (with Hg), since for all it knew,
7084 GENERAL_THREAD hadn't changed.
7085
7086 Notice that although in all-stop mode, the remote server always
7087 sets the current thread to the thread reporting the stop event,
7088 that doesn't happen in non-stop mode; in non-stop, the stub *must
7089 not* change the current thread when reporting a breakpoint hit,
7090 due to the decoupling of event reporting and event handling.
7091
7092 To keep things simple, we always invalidate our notion of the
7093 current thread. */
7094 record_currthread (minus_one_ptid);
7095
7096 /* Unlike "target remote", we do not want to unpush the target; then
7097 the next time the user says "run", we won't be connected. */
7098
7099 /* Call common code to mark the inferior as not running. */
7100 generic_mourn_inferior ();
7101
7102 if (!have_inferiors ())
7103 {
7104 if (!remote_multi_process_p (rs))
7105 {
7106 /* Check whether the target is running now - some remote stubs
7107 automatically restart after kill. */
7108 putpkt ("?");
7109 getpkt (&rs->buf, &rs->buf_size, 0);
7110
7111 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7112 {
7113 /* Assume that the target has been restarted. Set inferior_ptid
7114 so that bits of core GDB realizes there's something here, e.g.,
7115 so that the user can say "kill" again. */
7116 inferior_ptid = magic_null_ptid;
7117 }
7118 }
7119 }
7120 }
7121
7122 static void
7123 extended_remote_mourn (struct target_ops *ops)
7124 {
7125 extended_remote_mourn_1 (ops);
7126 }
7127
7128 static int
7129 extended_remote_run (char *args)
7130 {
7131 struct remote_state *rs = get_remote_state ();
7132 int len;
7133
7134 /* If the user has disabled vRun support, or we have detected that
7135 support is not available, do not try it. */
7136 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7137 return -1;
7138
7139 strcpy (rs->buf, "vRun;");
7140 len = strlen (rs->buf);
7141
7142 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7143 error (_("Remote file name too long for run packet"));
7144 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7145
7146 gdb_assert (args != NULL);
7147 if (*args)
7148 {
7149 struct cleanup *back_to;
7150 int i;
7151 char **argv;
7152
7153 argv = gdb_buildargv (args);
7154 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7155 for (i = 0; argv[i] != NULL; i++)
7156 {
7157 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7158 error (_("Argument list too long for run packet"));
7159 rs->buf[len++] = ';';
7160 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7161 }
7162 do_cleanups (back_to);
7163 }
7164
7165 rs->buf[len++] = '\0';
7166
7167 putpkt (rs->buf);
7168 getpkt (&rs->buf, &rs->buf_size, 0);
7169
7170 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7171 {
7172 /* We have a wait response; we don't need it, though. All is well. */
7173 return 0;
7174 }
7175 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7176 /* It wasn't disabled before, but it is now. */
7177 return -1;
7178 else
7179 {
7180 if (remote_exec_file[0] == '\0')
7181 error (_("Running the default executable on the remote target failed; "
7182 "try \"set remote exec-file\"?"));
7183 else
7184 error (_("Running \"%s\" on the remote target failed"),
7185 remote_exec_file);
7186 }
7187 }
7188
7189 /* In the extended protocol we want to be able to do things like
7190 "run" and have them basically work as expected. So we need
7191 a special create_inferior function. We support changing the
7192 executable file and the command line arguments, but not the
7193 environment. */
7194
7195 static void
7196 extended_remote_create_inferior_1 (char *exec_file, char *args,
7197 char **env, int from_tty)
7198 {
7199 /* If running asynchronously, register the target file descriptor
7200 with the event loop. */
7201 if (target_can_async_p ())
7202 target_async (inferior_event_handler, 0);
7203
7204 /* Now restart the remote server. */
7205 if (extended_remote_run (args) == -1)
7206 {
7207 /* vRun was not supported. Fail if we need it to do what the
7208 user requested. */
7209 if (remote_exec_file[0])
7210 error (_("Remote target does not support \"set remote exec-file\""));
7211 if (args[0])
7212 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7213
7214 /* Fall back to "R". */
7215 extended_remote_restart ();
7216 }
7217
7218 if (!have_inferiors ())
7219 {
7220 /* Clean up from the last time we ran, before we mark the target
7221 running again. This will mark breakpoints uninserted, and
7222 get_offsets may insert breakpoints. */
7223 init_thread_list ();
7224 init_wait_for_inferior ();
7225 }
7226
7227 /* Now mark the inferior as running before we do anything else. */
7228 inferior_ptid = magic_null_ptid;
7229
7230 /* Now, if we have thread information, update inferior_ptid. */
7231 inferior_ptid = remote_current_thread (inferior_ptid);
7232
7233 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7234 add_thread_silent (inferior_ptid);
7235
7236 /* Get updated offsets, if the stub uses qOffsets. */
7237 get_offsets ();
7238 }
7239
7240 static void
7241 extended_remote_create_inferior (struct target_ops *ops,
7242 char *exec_file, char *args,
7243 char **env, int from_tty)
7244 {
7245 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7246 }
7247 \f
7248
7249 /* Insert a breakpoint. On targets that have software breakpoint
7250 support, we ask the remote target to do the work; on targets
7251 which don't, we insert a traditional memory breakpoint. */
7252
7253 static int
7254 remote_insert_breakpoint (struct gdbarch *gdbarch,
7255 struct bp_target_info *bp_tgt)
7256 {
7257 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7258 If it succeeds, then set the support to PACKET_ENABLE. If it
7259 fails, and the user has explicitly requested the Z support then
7260 report an error, otherwise, mark it disabled and go on. */
7261
7262 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7263 {
7264 CORE_ADDR addr = bp_tgt->placed_address;
7265 struct remote_state *rs;
7266 char *p;
7267 int bpsize;
7268
7269 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7270
7271 rs = get_remote_state ();
7272 p = rs->buf;
7273
7274 *(p++) = 'Z';
7275 *(p++) = '0';
7276 *(p++) = ',';
7277 addr = (ULONGEST) remote_address_masked (addr);
7278 p += hexnumstr (p, addr);
7279 sprintf (p, ",%d", bpsize);
7280
7281 putpkt (rs->buf);
7282 getpkt (&rs->buf, &rs->buf_size, 0);
7283
7284 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7285 {
7286 case PACKET_ERROR:
7287 return -1;
7288 case PACKET_OK:
7289 bp_tgt->placed_address = addr;
7290 bp_tgt->placed_size = bpsize;
7291 return 0;
7292 case PACKET_UNKNOWN:
7293 break;
7294 }
7295 }
7296
7297 return memory_insert_breakpoint (gdbarch, bp_tgt);
7298 }
7299
7300 static int
7301 remote_remove_breakpoint (struct gdbarch *gdbarch,
7302 struct bp_target_info *bp_tgt)
7303 {
7304 CORE_ADDR addr = bp_tgt->placed_address;
7305 struct remote_state *rs = get_remote_state ();
7306
7307 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7308 {
7309 char *p = rs->buf;
7310
7311 *(p++) = 'z';
7312 *(p++) = '0';
7313 *(p++) = ',';
7314
7315 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7316 p += hexnumstr (p, addr);
7317 sprintf (p, ",%d", bp_tgt->placed_size);
7318
7319 putpkt (rs->buf);
7320 getpkt (&rs->buf, &rs->buf_size, 0);
7321
7322 return (rs->buf[0] == 'E');
7323 }
7324
7325 return memory_remove_breakpoint (gdbarch, bp_tgt);
7326 }
7327
7328 static int
7329 watchpoint_to_Z_packet (int type)
7330 {
7331 switch (type)
7332 {
7333 case hw_write:
7334 return Z_PACKET_WRITE_WP;
7335 break;
7336 case hw_read:
7337 return Z_PACKET_READ_WP;
7338 break;
7339 case hw_access:
7340 return Z_PACKET_ACCESS_WP;
7341 break;
7342 default:
7343 internal_error (__FILE__, __LINE__,
7344 _("hw_bp_to_z: bad watchpoint type %d"), type);
7345 }
7346 }
7347
7348 static int
7349 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
7350 {
7351 struct remote_state *rs = get_remote_state ();
7352 char *p;
7353 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7354
7355 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7356 return 1;
7357
7358 sprintf (rs->buf, "Z%x,", packet);
7359 p = strchr (rs->buf, '\0');
7360 addr = remote_address_masked (addr);
7361 p += hexnumstr (p, (ULONGEST) addr);
7362 sprintf (p, ",%x", len);
7363
7364 putpkt (rs->buf);
7365 getpkt (&rs->buf, &rs->buf_size, 0);
7366
7367 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7368 {
7369 case PACKET_ERROR:
7370 return -1;
7371 case PACKET_UNKNOWN:
7372 return 1;
7373 case PACKET_OK:
7374 return 0;
7375 }
7376 internal_error (__FILE__, __LINE__,
7377 _("remote_insert_watchpoint: reached end of function"));
7378 }
7379
7380
7381 static int
7382 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
7383 {
7384 struct remote_state *rs = get_remote_state ();
7385 char *p;
7386 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7387
7388 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7389 return -1;
7390
7391 sprintf (rs->buf, "z%x,", packet);
7392 p = strchr (rs->buf, '\0');
7393 addr = remote_address_masked (addr);
7394 p += hexnumstr (p, (ULONGEST) addr);
7395 sprintf (p, ",%x", len);
7396 putpkt (rs->buf);
7397 getpkt (&rs->buf, &rs->buf_size, 0);
7398
7399 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7400 {
7401 case PACKET_ERROR:
7402 case PACKET_UNKNOWN:
7403 return -1;
7404 case PACKET_OK:
7405 return 0;
7406 }
7407 internal_error (__FILE__, __LINE__,
7408 _("remote_remove_watchpoint: reached end of function"));
7409 }
7410
7411
7412 int remote_hw_watchpoint_limit = -1;
7413 int remote_hw_breakpoint_limit = -1;
7414
7415 static int
7416 remote_check_watch_resources (int type, int cnt, int ot)
7417 {
7418 if (type == bp_hardware_breakpoint)
7419 {
7420 if (remote_hw_breakpoint_limit == 0)
7421 return 0;
7422 else if (remote_hw_breakpoint_limit < 0)
7423 return 1;
7424 else if (cnt <= remote_hw_breakpoint_limit)
7425 return 1;
7426 }
7427 else
7428 {
7429 if (remote_hw_watchpoint_limit == 0)
7430 return 0;
7431 else if (remote_hw_watchpoint_limit < 0)
7432 return 1;
7433 else if (ot)
7434 return -1;
7435 else if (cnt <= remote_hw_watchpoint_limit)
7436 return 1;
7437 }
7438 return -1;
7439 }
7440
7441 static int
7442 remote_stopped_by_watchpoint (void)
7443 {
7444 return remote_stopped_by_watchpoint_p;
7445 }
7446
7447 static int
7448 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7449 {
7450 int rc = 0;
7451 if (remote_stopped_by_watchpoint ())
7452 {
7453 *addr_p = remote_watch_data_address;
7454 rc = 1;
7455 }
7456
7457 return rc;
7458 }
7459
7460
7461 static int
7462 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7463 struct bp_target_info *bp_tgt)
7464 {
7465 CORE_ADDR addr;
7466 struct remote_state *rs;
7467 char *p;
7468
7469 /* The length field should be set to the size of a breakpoint
7470 instruction, even though we aren't inserting one ourselves. */
7471
7472 gdbarch_remote_breakpoint_from_pc
7473 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7474
7475 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7476 return -1;
7477
7478 rs = get_remote_state ();
7479 p = rs->buf;
7480
7481 *(p++) = 'Z';
7482 *(p++) = '1';
7483 *(p++) = ',';
7484
7485 addr = remote_address_masked (bp_tgt->placed_address);
7486 p += hexnumstr (p, (ULONGEST) addr);
7487 sprintf (p, ",%x", bp_tgt->placed_size);
7488
7489 putpkt (rs->buf);
7490 getpkt (&rs->buf, &rs->buf_size, 0);
7491
7492 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7493 {
7494 case PACKET_ERROR:
7495 case PACKET_UNKNOWN:
7496 return -1;
7497 case PACKET_OK:
7498 return 0;
7499 }
7500 internal_error (__FILE__, __LINE__,
7501 _("remote_insert_hw_breakpoint: reached end of function"));
7502 }
7503
7504
7505 static int
7506 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7507 struct bp_target_info *bp_tgt)
7508 {
7509 CORE_ADDR addr;
7510 struct remote_state *rs = get_remote_state ();
7511 char *p = rs->buf;
7512
7513 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7514 return -1;
7515
7516 *(p++) = 'z';
7517 *(p++) = '1';
7518 *(p++) = ',';
7519
7520 addr = remote_address_masked (bp_tgt->placed_address);
7521 p += hexnumstr (p, (ULONGEST) addr);
7522 sprintf (p, ",%x", bp_tgt->placed_size);
7523
7524 putpkt (rs->buf);
7525 getpkt (&rs->buf, &rs->buf_size, 0);
7526
7527 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7528 {
7529 case PACKET_ERROR:
7530 case PACKET_UNKNOWN:
7531 return -1;
7532 case PACKET_OK:
7533 return 0;
7534 }
7535 internal_error (__FILE__, __LINE__,
7536 _("remote_remove_hw_breakpoint: reached end of function"));
7537 }
7538
7539 /* Table used by the crc32 function to calcuate the checksum. */
7540
7541 static unsigned long crc32_table[256] =
7542 {0, 0};
7543
7544 static unsigned long
7545 crc32 (unsigned char *buf, int len, unsigned int crc)
7546 {
7547 if (!crc32_table[1])
7548 {
7549 /* Initialize the CRC table and the decoding table. */
7550 int i, j;
7551 unsigned int c;
7552
7553 for (i = 0; i < 256; i++)
7554 {
7555 for (c = i << 24, j = 8; j > 0; --j)
7556 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7557 crc32_table[i] = c;
7558 }
7559 }
7560
7561 while (len--)
7562 {
7563 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7564 buf++;
7565 }
7566 return crc;
7567 }
7568
7569 /* compare-sections command
7570
7571 With no arguments, compares each loadable section in the exec bfd
7572 with the same memory range on the target, and reports mismatches.
7573 Useful for verifying the image on the target against the exec file.
7574 Depends on the target understanding the new "qCRC:" request. */
7575
7576 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7577 target method (target verify memory) and generic version of the
7578 actual command. This will allow other high-level code (especially
7579 generic_load()) to make use of this target functionality. */
7580
7581 static void
7582 compare_sections_command (char *args, int from_tty)
7583 {
7584 struct remote_state *rs = get_remote_state ();
7585 asection *s;
7586 unsigned long host_crc, target_crc;
7587 struct cleanup *old_chain;
7588 char *tmp;
7589 char *sectdata;
7590 const char *sectname;
7591 bfd_size_type size;
7592 bfd_vma lma;
7593 int matched = 0;
7594 int mismatched = 0;
7595
7596 if (!exec_bfd)
7597 error (_("command cannot be used without an exec file"));
7598 if (!current_target.to_shortname ||
7599 strcmp (current_target.to_shortname, "remote") != 0)
7600 error (_("command can only be used with remote target"));
7601
7602 for (s = exec_bfd->sections; s; s = s->next)
7603 {
7604 if (!(s->flags & SEC_LOAD))
7605 continue; /* skip non-loadable section */
7606
7607 size = bfd_get_section_size (s);
7608 if (size == 0)
7609 continue; /* skip zero-length section */
7610
7611 sectname = bfd_get_section_name (exec_bfd, s);
7612 if (args && strcmp (args, sectname) != 0)
7613 continue; /* not the section selected by user */
7614
7615 matched = 1; /* do this section */
7616 lma = s->lma;
7617 /* FIXME: assumes lma can fit into long. */
7618 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7619 (long) lma, (long) size);
7620 putpkt (rs->buf);
7621
7622 /* Be clever; compute the host_crc before waiting for target
7623 reply. */
7624 sectdata = xmalloc (size);
7625 old_chain = make_cleanup (xfree, sectdata);
7626 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7627 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7628
7629 getpkt (&rs->buf, &rs->buf_size, 0);
7630 if (rs->buf[0] == 'E')
7631 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7632 paddress (target_gdbarch, lma),
7633 paddress (target_gdbarch, lma + size));
7634 if (rs->buf[0] != 'C')
7635 error (_("remote target does not support this operation"));
7636
7637 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7638 target_crc = target_crc * 16 + fromhex (*tmp);
7639
7640 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7641 paddress (target_gdbarch, lma),
7642 paddress (target_gdbarch, lma + size));
7643 if (host_crc == target_crc)
7644 printf_filtered ("matched.\n");
7645 else
7646 {
7647 printf_filtered ("MIS-MATCHED!\n");
7648 mismatched++;
7649 }
7650
7651 do_cleanups (old_chain);
7652 }
7653 if (mismatched > 0)
7654 warning (_("One or more sections of the remote executable does not match\n\
7655 the loaded file\n"));
7656 if (args && !matched)
7657 printf_filtered (_("No loaded section named '%s'.\n"), args);
7658 }
7659
7660 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7661 into remote target. The number of bytes written to the remote
7662 target is returned, or -1 for error. */
7663
7664 static LONGEST
7665 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7666 const char *annex, const gdb_byte *writebuf,
7667 ULONGEST offset, LONGEST len,
7668 struct packet_config *packet)
7669 {
7670 int i, buf_len;
7671 ULONGEST n;
7672 struct remote_state *rs = get_remote_state ();
7673 int max_size = get_memory_write_packet_size ();
7674
7675 if (packet->support == PACKET_DISABLE)
7676 return -1;
7677
7678 /* Insert header. */
7679 i = snprintf (rs->buf, max_size,
7680 "qXfer:%s:write:%s:%s:",
7681 object_name, annex ? annex : "",
7682 phex_nz (offset, sizeof offset));
7683 max_size -= (i + 1);
7684
7685 /* Escape as much data as fits into rs->buf. */
7686 buf_len = remote_escape_output
7687 (writebuf, len, (rs->buf + i), &max_size, max_size);
7688
7689 if (putpkt_binary (rs->buf, i + buf_len) < 0
7690 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7691 || packet_ok (rs->buf, packet) != PACKET_OK)
7692 return -1;
7693
7694 unpack_varlen_hex (rs->buf, &n);
7695 return n;
7696 }
7697
7698 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7699 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7700 number of bytes read is returned, or 0 for EOF, or -1 for error.
7701 The number of bytes read may be less than LEN without indicating an
7702 EOF. PACKET is checked and updated to indicate whether the remote
7703 target supports this object. */
7704
7705 static LONGEST
7706 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7707 const char *annex,
7708 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7709 struct packet_config *packet)
7710 {
7711 static char *finished_object;
7712 static char *finished_annex;
7713 static ULONGEST finished_offset;
7714
7715 struct remote_state *rs = get_remote_state ();
7716 LONGEST i, n, packet_len;
7717
7718 if (packet->support == PACKET_DISABLE)
7719 return -1;
7720
7721 /* Check whether we've cached an end-of-object packet that matches
7722 this request. */
7723 if (finished_object)
7724 {
7725 if (strcmp (object_name, finished_object) == 0
7726 && strcmp (annex ? annex : "", finished_annex) == 0
7727 && offset == finished_offset)
7728 return 0;
7729
7730 /* Otherwise, we're now reading something different. Discard
7731 the cache. */
7732 xfree (finished_object);
7733 xfree (finished_annex);
7734 finished_object = NULL;
7735 finished_annex = NULL;
7736 }
7737
7738 /* Request only enough to fit in a single packet. The actual data
7739 may not, since we don't know how much of it will need to be escaped;
7740 the target is free to respond with slightly less data. We subtract
7741 five to account for the response type and the protocol frame. */
7742 n = min (get_remote_packet_size () - 5, len);
7743 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7744 object_name, annex ? annex : "",
7745 phex_nz (offset, sizeof offset),
7746 phex_nz (n, sizeof n));
7747 i = putpkt (rs->buf);
7748 if (i < 0)
7749 return -1;
7750
7751 rs->buf[0] = '\0';
7752 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7753 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7754 return -1;
7755
7756 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7757 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7758
7759 /* 'm' means there is (or at least might be) more data after this
7760 batch. That does not make sense unless there's at least one byte
7761 of data in this reply. */
7762 if (rs->buf[0] == 'm' && packet_len == 1)
7763 error (_("Remote qXfer reply contained no data."));
7764
7765 /* Got some data. */
7766 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7767
7768 /* 'l' is an EOF marker, possibly including a final block of data,
7769 or possibly empty. If we have the final block of a non-empty
7770 object, record this fact to bypass a subsequent partial read. */
7771 if (rs->buf[0] == 'l' && offset + i > 0)
7772 {
7773 finished_object = xstrdup (object_name);
7774 finished_annex = xstrdup (annex ? annex : "");
7775 finished_offset = offset + i;
7776 }
7777
7778 return i;
7779 }
7780
7781 static LONGEST
7782 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7783 const char *annex, gdb_byte *readbuf,
7784 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7785 {
7786 struct remote_state *rs;
7787 int i;
7788 char *p2;
7789 char query_type;
7790
7791 set_general_thread (inferior_ptid);
7792
7793 rs = get_remote_state ();
7794
7795 /* Handle memory using the standard memory routines. */
7796 if (object == TARGET_OBJECT_MEMORY)
7797 {
7798 int xfered;
7799 errno = 0;
7800
7801 /* If the remote target is connected but not running, we should
7802 pass this request down to a lower stratum (e.g. the executable
7803 file). */
7804 if (!target_has_execution)
7805 return 0;
7806
7807 if (writebuf != NULL)
7808 xfered = remote_write_bytes (offset, writebuf, len);
7809 else
7810 xfered = remote_read_bytes (offset, readbuf, len);
7811
7812 if (xfered > 0)
7813 return xfered;
7814 else if (xfered == 0 && errno == 0)
7815 return 0;
7816 else
7817 return -1;
7818 }
7819
7820 /* Handle SPU memory using qxfer packets. */
7821 if (object == TARGET_OBJECT_SPU)
7822 {
7823 if (readbuf)
7824 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7825 &remote_protocol_packets
7826 [PACKET_qXfer_spu_read]);
7827 else
7828 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7829 &remote_protocol_packets
7830 [PACKET_qXfer_spu_write]);
7831 }
7832
7833 /* Handle extra signal info using qxfer packets. */
7834 if (object == TARGET_OBJECT_SIGNAL_INFO)
7835 {
7836 if (readbuf)
7837 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7838 &remote_protocol_packets
7839 [PACKET_qXfer_siginfo_read]);
7840 else
7841 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7842 &remote_protocol_packets
7843 [PACKET_qXfer_siginfo_write]);
7844 }
7845
7846 /* Only handle flash writes. */
7847 if (writebuf != NULL)
7848 {
7849 LONGEST xfered;
7850
7851 switch (object)
7852 {
7853 case TARGET_OBJECT_FLASH:
7854 xfered = remote_flash_write (ops, offset, len, writebuf);
7855
7856 if (xfered > 0)
7857 return xfered;
7858 else if (xfered == 0 && errno == 0)
7859 return 0;
7860 else
7861 return -1;
7862
7863 default:
7864 return -1;
7865 }
7866 }
7867
7868 /* Map pre-existing objects onto letters. DO NOT do this for new
7869 objects!!! Instead specify new query packets. */
7870 switch (object)
7871 {
7872 case TARGET_OBJECT_AVR:
7873 query_type = 'R';
7874 break;
7875
7876 case TARGET_OBJECT_AUXV:
7877 gdb_assert (annex == NULL);
7878 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7879 &remote_protocol_packets[PACKET_qXfer_auxv]);
7880
7881 case TARGET_OBJECT_AVAILABLE_FEATURES:
7882 return remote_read_qxfer
7883 (ops, "features", annex, readbuf, offset, len,
7884 &remote_protocol_packets[PACKET_qXfer_features]);
7885
7886 case TARGET_OBJECT_LIBRARIES:
7887 return remote_read_qxfer
7888 (ops, "libraries", annex, readbuf, offset, len,
7889 &remote_protocol_packets[PACKET_qXfer_libraries]);
7890
7891 case TARGET_OBJECT_MEMORY_MAP:
7892 gdb_assert (annex == NULL);
7893 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7894 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7895
7896 case TARGET_OBJECT_OSDATA:
7897 /* Should only get here if we're connected. */
7898 gdb_assert (remote_desc);
7899 return remote_read_qxfer
7900 (ops, "osdata", annex, readbuf, offset, len,
7901 &remote_protocol_packets[PACKET_qXfer_osdata]);
7902
7903 case TARGET_OBJECT_THREADS:
7904 gdb_assert (annex == NULL);
7905 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
7906 &remote_protocol_packets[PACKET_qXfer_threads]);
7907
7908 default:
7909 return -1;
7910 }
7911
7912 /* Note: a zero OFFSET and LEN can be used to query the minimum
7913 buffer size. */
7914 if (offset == 0 && len == 0)
7915 return (get_remote_packet_size ());
7916 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7917 large enough let the caller deal with it. */
7918 if (len < get_remote_packet_size ())
7919 return -1;
7920 len = get_remote_packet_size ();
7921
7922 /* Except for querying the minimum buffer size, target must be open. */
7923 if (!remote_desc)
7924 error (_("remote query is only available after target open"));
7925
7926 gdb_assert (annex != NULL);
7927 gdb_assert (readbuf != NULL);
7928
7929 p2 = rs->buf;
7930 *p2++ = 'q';
7931 *p2++ = query_type;
7932
7933 /* We used one buffer char for the remote protocol q command and
7934 another for the query type. As the remote protocol encapsulation
7935 uses 4 chars plus one extra in case we are debugging
7936 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7937 string. */
7938 i = 0;
7939 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7940 {
7941 /* Bad caller may have sent forbidden characters. */
7942 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7943 *p2++ = annex[i];
7944 i++;
7945 }
7946 *p2 = '\0';
7947 gdb_assert (annex[i] == '\0');
7948
7949 i = putpkt (rs->buf);
7950 if (i < 0)
7951 return i;
7952
7953 getpkt (&rs->buf, &rs->buf_size, 0);
7954 strcpy ((char *) readbuf, rs->buf);
7955
7956 return strlen ((char *) readbuf);
7957 }
7958
7959 static int
7960 remote_search_memory (struct target_ops* ops,
7961 CORE_ADDR start_addr, ULONGEST search_space_len,
7962 const gdb_byte *pattern, ULONGEST pattern_len,
7963 CORE_ADDR *found_addrp)
7964 {
7965 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
7966 struct remote_state *rs = get_remote_state ();
7967 int max_size = get_memory_write_packet_size ();
7968 struct packet_config *packet =
7969 &remote_protocol_packets[PACKET_qSearch_memory];
7970 /* number of packet bytes used to encode the pattern,
7971 this could be more than PATTERN_LEN due to escape characters */
7972 int escaped_pattern_len;
7973 /* amount of pattern that was encodable in the packet */
7974 int used_pattern_len;
7975 int i;
7976 int found;
7977 ULONGEST found_addr;
7978
7979 /* Don't go to the target if we don't have to.
7980 This is done before checking packet->support to avoid the possibility that
7981 a success for this edge case means the facility works in general. */
7982 if (pattern_len > search_space_len)
7983 return 0;
7984 if (pattern_len == 0)
7985 {
7986 *found_addrp = start_addr;
7987 return 1;
7988 }
7989
7990 /* If we already know the packet isn't supported, fall back to the simple
7991 way of searching memory. */
7992
7993 if (packet->support == PACKET_DISABLE)
7994 {
7995 /* Target doesn't provided special support, fall back and use the
7996 standard support (copy memory and do the search here). */
7997 return simple_search_memory (ops, start_addr, search_space_len,
7998 pattern, pattern_len, found_addrp);
7999 }
8000
8001 /* Insert header. */
8002 i = snprintf (rs->buf, max_size,
8003 "qSearch:memory:%s;%s;",
8004 phex_nz (start_addr, addr_size),
8005 phex_nz (search_space_len, sizeof (search_space_len)));
8006 max_size -= (i + 1);
8007
8008 /* Escape as much data as fits into rs->buf. */
8009 escaped_pattern_len =
8010 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8011 &used_pattern_len, max_size);
8012
8013 /* Bail if the pattern is too large. */
8014 if (used_pattern_len != pattern_len)
8015 error ("Pattern is too large to transmit to remote target.");
8016
8017 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8018 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8019 || packet_ok (rs->buf, packet) != PACKET_OK)
8020 {
8021 /* The request may not have worked because the command is not
8022 supported. If so, fall back to the simple way. */
8023 if (packet->support == PACKET_DISABLE)
8024 {
8025 return simple_search_memory (ops, start_addr, search_space_len,
8026 pattern, pattern_len, found_addrp);
8027 }
8028 return -1;
8029 }
8030
8031 if (rs->buf[0] == '0')
8032 found = 0;
8033 else if (rs->buf[0] == '1')
8034 {
8035 found = 1;
8036 if (rs->buf[1] != ',')
8037 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8038 unpack_varlen_hex (rs->buf + 2, &found_addr);
8039 *found_addrp = found_addr;
8040 }
8041 else
8042 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8043
8044 return found;
8045 }
8046
8047 static void
8048 remote_rcmd (char *command,
8049 struct ui_file *outbuf)
8050 {
8051 struct remote_state *rs = get_remote_state ();
8052 char *p = rs->buf;
8053
8054 if (!remote_desc)
8055 error (_("remote rcmd is only available after target open"));
8056
8057 /* Send a NULL command across as an empty command. */
8058 if (command == NULL)
8059 command = "";
8060
8061 /* The query prefix. */
8062 strcpy (rs->buf, "qRcmd,");
8063 p = strchr (rs->buf, '\0');
8064
8065 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
8066 error (_("\"monitor\" command ``%s'' is too long."), command);
8067
8068 /* Encode the actual command. */
8069 bin2hex ((gdb_byte *) command, p, 0);
8070
8071 if (putpkt (rs->buf) < 0)
8072 error (_("Communication problem with target."));
8073
8074 /* get/display the response */
8075 while (1)
8076 {
8077 char *buf;
8078
8079 /* XXX - see also remote_get_noisy_reply(). */
8080 rs->buf[0] = '\0';
8081 getpkt (&rs->buf, &rs->buf_size, 0);
8082 buf = rs->buf;
8083 if (buf[0] == '\0')
8084 error (_("Target does not support this command."));
8085 if (buf[0] == 'O' && buf[1] != 'K')
8086 {
8087 remote_console_output (buf + 1); /* 'O' message from stub. */
8088 continue;
8089 }
8090 if (strcmp (buf, "OK") == 0)
8091 break;
8092 if (strlen (buf) == 3 && buf[0] == 'E'
8093 && isdigit (buf[1]) && isdigit (buf[2]))
8094 {
8095 error (_("Protocol error with Rcmd"));
8096 }
8097 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8098 {
8099 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8100 fputc_unfiltered (c, outbuf);
8101 }
8102 break;
8103 }
8104 }
8105
8106 static VEC(mem_region_s) *
8107 remote_memory_map (struct target_ops *ops)
8108 {
8109 VEC(mem_region_s) *result = NULL;
8110 char *text = target_read_stralloc (&current_target,
8111 TARGET_OBJECT_MEMORY_MAP, NULL);
8112
8113 if (text)
8114 {
8115 struct cleanup *back_to = make_cleanup (xfree, text);
8116 result = parse_memory_map (text);
8117 do_cleanups (back_to);
8118 }
8119
8120 return result;
8121 }
8122
8123 static void
8124 packet_command (char *args, int from_tty)
8125 {
8126 struct remote_state *rs = get_remote_state ();
8127
8128 if (!remote_desc)
8129 error (_("command can only be used with remote target"));
8130
8131 if (!args)
8132 error (_("remote-packet command requires packet text as argument"));
8133
8134 puts_filtered ("sending: ");
8135 print_packet (args);
8136 puts_filtered ("\n");
8137 putpkt (args);
8138
8139 getpkt (&rs->buf, &rs->buf_size, 0);
8140 puts_filtered ("received: ");
8141 print_packet (rs->buf);
8142 puts_filtered ("\n");
8143 }
8144
8145 #if 0
8146 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8147
8148 static void display_thread_info (struct gdb_ext_thread_info *info);
8149
8150 static void threadset_test_cmd (char *cmd, int tty);
8151
8152 static void threadalive_test (char *cmd, int tty);
8153
8154 static void threadlist_test_cmd (char *cmd, int tty);
8155
8156 int get_and_display_threadinfo (threadref *ref);
8157
8158 static void threadinfo_test_cmd (char *cmd, int tty);
8159
8160 static int thread_display_step (threadref *ref, void *context);
8161
8162 static void threadlist_update_test_cmd (char *cmd, int tty);
8163
8164 static void init_remote_threadtests (void);
8165
8166 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8167
8168 static void
8169 threadset_test_cmd (char *cmd, int tty)
8170 {
8171 int sample_thread = SAMPLE_THREAD;
8172
8173 printf_filtered (_("Remote threadset test\n"));
8174 set_general_thread (sample_thread);
8175 }
8176
8177
8178 static void
8179 threadalive_test (char *cmd, int tty)
8180 {
8181 int sample_thread = SAMPLE_THREAD;
8182 int pid = ptid_get_pid (inferior_ptid);
8183 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8184
8185 if (remote_thread_alive (ptid))
8186 printf_filtered ("PASS: Thread alive test\n");
8187 else
8188 printf_filtered ("FAIL: Thread alive test\n");
8189 }
8190
8191 void output_threadid (char *title, threadref *ref);
8192
8193 void
8194 output_threadid (char *title, threadref *ref)
8195 {
8196 char hexid[20];
8197
8198 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8199 hexid[16] = 0;
8200 printf_filtered ("%s %s\n", title, (&hexid[0]));
8201 }
8202
8203 static void
8204 threadlist_test_cmd (char *cmd, int tty)
8205 {
8206 int startflag = 1;
8207 threadref nextthread;
8208 int done, result_count;
8209 threadref threadlist[3];
8210
8211 printf_filtered ("Remote Threadlist test\n");
8212 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8213 &result_count, &threadlist[0]))
8214 printf_filtered ("FAIL: threadlist test\n");
8215 else
8216 {
8217 threadref *scan = threadlist;
8218 threadref *limit = scan + result_count;
8219
8220 while (scan < limit)
8221 output_threadid (" thread ", scan++);
8222 }
8223 }
8224
8225 void
8226 display_thread_info (struct gdb_ext_thread_info *info)
8227 {
8228 output_threadid ("Threadid: ", &info->threadid);
8229 printf_filtered ("Name: %s\n ", info->shortname);
8230 printf_filtered ("State: %s\n", info->display);
8231 printf_filtered ("other: %s\n\n", info->more_display);
8232 }
8233
8234 int
8235 get_and_display_threadinfo (threadref *ref)
8236 {
8237 int result;
8238 int set;
8239 struct gdb_ext_thread_info threadinfo;
8240
8241 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8242 | TAG_MOREDISPLAY | TAG_DISPLAY;
8243 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8244 display_thread_info (&threadinfo);
8245 return result;
8246 }
8247
8248 static void
8249 threadinfo_test_cmd (char *cmd, int tty)
8250 {
8251 int athread = SAMPLE_THREAD;
8252 threadref thread;
8253 int set;
8254
8255 int_to_threadref (&thread, athread);
8256 printf_filtered ("Remote Threadinfo test\n");
8257 if (!get_and_display_threadinfo (&thread))
8258 printf_filtered ("FAIL cannot get thread info\n");
8259 }
8260
8261 static int
8262 thread_display_step (threadref *ref, void *context)
8263 {
8264 /* output_threadid(" threadstep ",ref); *//* simple test */
8265 return get_and_display_threadinfo (ref);
8266 }
8267
8268 static void
8269 threadlist_update_test_cmd (char *cmd, int tty)
8270 {
8271 printf_filtered ("Remote Threadlist update test\n");
8272 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8273 }
8274
8275 static void
8276 init_remote_threadtests (void)
8277 {
8278 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
8279 Fetch and print the remote list of thread identifiers, one pkt only"));
8280 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8281 _("Fetch and display info about one thread"));
8282 add_com ("tset", class_obscure, threadset_test_cmd,
8283 _("Test setting to a different thread"));
8284 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8285 _("Iterate through updating all remote thread info"));
8286 add_com ("talive", class_obscure, threadalive_test,
8287 _(" Remote thread alive test "));
8288 }
8289
8290 #endif /* 0 */
8291
8292 /* Convert a thread ID to a string. Returns the string in a static
8293 buffer. */
8294
8295 static char *
8296 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8297 {
8298 static char buf[64];
8299 struct remote_state *rs = get_remote_state ();
8300
8301 if (ptid_is_pid (ptid))
8302 {
8303 /* Printing an inferior target id. */
8304
8305 /* When multi-process extensions are off, there's no way in the
8306 remote protocol to know the remote process id, if there's any
8307 at all. There's one exception --- when we're connected with
8308 target extended-remote, and we manually attached to a process
8309 with "attach PID". We don't record anywhere a flag that
8310 allows us to distinguish that case from the case of
8311 connecting with extended-remote and the stub already being
8312 attached to a process, and reporting yes to qAttached, hence
8313 no smart special casing here. */
8314 if (!remote_multi_process_p (rs))
8315 {
8316 xsnprintf (buf, sizeof buf, "Remote target");
8317 return buf;
8318 }
8319
8320 return normal_pid_to_str (ptid);
8321 }
8322 else
8323 {
8324 if (ptid_equal (magic_null_ptid, ptid))
8325 xsnprintf (buf, sizeof buf, "Thread <main>");
8326 else if (remote_multi_process_p (rs))
8327 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8328 ptid_get_pid (ptid), ptid_get_tid (ptid));
8329 else
8330 xsnprintf (buf, sizeof buf, "Thread %ld",
8331 ptid_get_tid (ptid));
8332 return buf;
8333 }
8334 }
8335
8336 /* Get the address of the thread local variable in OBJFILE which is
8337 stored at OFFSET within the thread local storage for thread PTID. */
8338
8339 static CORE_ADDR
8340 remote_get_thread_local_address (struct target_ops *ops,
8341 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8342 {
8343 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8344 {
8345 struct remote_state *rs = get_remote_state ();
8346 char *p = rs->buf;
8347 char *endp = rs->buf + get_remote_packet_size ();
8348 enum packet_result result;
8349
8350 strcpy (p, "qGetTLSAddr:");
8351 p += strlen (p);
8352 p = write_ptid (p, endp, ptid);
8353 *p++ = ',';
8354 p += hexnumstr (p, offset);
8355 *p++ = ',';
8356 p += hexnumstr (p, lm);
8357 *p++ = '\0';
8358
8359 putpkt (rs->buf);
8360 getpkt (&rs->buf, &rs->buf_size, 0);
8361 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
8362 if (result == PACKET_OK)
8363 {
8364 ULONGEST result;
8365
8366 unpack_varlen_hex (rs->buf, &result);
8367 return result;
8368 }
8369 else if (result == PACKET_UNKNOWN)
8370 throw_error (TLS_GENERIC_ERROR,
8371 _("Remote target doesn't support qGetTLSAddr packet"));
8372 else
8373 throw_error (TLS_GENERIC_ERROR,
8374 _("Remote target failed to process qGetTLSAddr request"));
8375 }
8376 else
8377 throw_error (TLS_GENERIC_ERROR,
8378 _("TLS not supported or disabled on this target"));
8379 /* Not reached. */
8380 return 0;
8381 }
8382
8383 /* Support for inferring a target description based on the current
8384 architecture and the size of a 'g' packet. While the 'g' packet
8385 can have any size (since optional registers can be left off the
8386 end), some sizes are easily recognizable given knowledge of the
8387 approximate architecture. */
8388
8389 struct remote_g_packet_guess
8390 {
8391 int bytes;
8392 const struct target_desc *tdesc;
8393 };
8394 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8395 DEF_VEC_O(remote_g_packet_guess_s);
8396
8397 struct remote_g_packet_data
8398 {
8399 VEC(remote_g_packet_guess_s) *guesses;
8400 };
8401
8402 static struct gdbarch_data *remote_g_packet_data_handle;
8403
8404 static void *
8405 remote_g_packet_data_init (struct obstack *obstack)
8406 {
8407 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8408 }
8409
8410 void
8411 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8412 const struct target_desc *tdesc)
8413 {
8414 struct remote_g_packet_data *data
8415 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8416 struct remote_g_packet_guess new_guess, *guess;
8417 int ix;
8418
8419 gdb_assert (tdesc != NULL);
8420
8421 for (ix = 0;
8422 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8423 ix++)
8424 if (guess->bytes == bytes)
8425 internal_error (__FILE__, __LINE__,
8426 "Duplicate g packet description added for size %d",
8427 bytes);
8428
8429 new_guess.bytes = bytes;
8430 new_guess.tdesc = tdesc;
8431 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8432 }
8433
8434 /* Return 1 if remote_read_description would do anything on this target
8435 and architecture, 0 otherwise. */
8436
8437 static int
8438 remote_read_description_p (struct target_ops *target)
8439 {
8440 struct remote_g_packet_data *data
8441 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8442
8443 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8444 return 1;
8445
8446 return 0;
8447 }
8448
8449 static const struct target_desc *
8450 remote_read_description (struct target_ops *target)
8451 {
8452 struct remote_g_packet_data *data
8453 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8454
8455 /* Do not try this during initial connection, when we do not know
8456 whether there is a running but stopped thread. */
8457 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8458 return NULL;
8459
8460 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8461 {
8462 struct remote_g_packet_guess *guess;
8463 int ix;
8464 int bytes = send_g_packet ();
8465
8466 for (ix = 0;
8467 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8468 ix++)
8469 if (guess->bytes == bytes)
8470 return guess->tdesc;
8471
8472 /* We discard the g packet. A minor optimization would be to
8473 hold on to it, and fill the register cache once we have selected
8474 an architecture, but it's too tricky to do safely. */
8475 }
8476
8477 return NULL;
8478 }
8479
8480 /* Remote file transfer support. This is host-initiated I/O, not
8481 target-initiated; for target-initiated, see remote-fileio.c. */
8482
8483 /* If *LEFT is at least the length of STRING, copy STRING to
8484 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8485 decrease *LEFT. Otherwise raise an error. */
8486
8487 static void
8488 remote_buffer_add_string (char **buffer, int *left, char *string)
8489 {
8490 int len = strlen (string);
8491
8492 if (len > *left)
8493 error (_("Packet too long for target."));
8494
8495 memcpy (*buffer, string, len);
8496 *buffer += len;
8497 *left -= len;
8498
8499 /* NUL-terminate the buffer as a convenience, if there is
8500 room. */
8501 if (*left)
8502 **buffer = '\0';
8503 }
8504
8505 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8506 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8507 decrease *LEFT. Otherwise raise an error. */
8508
8509 static void
8510 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8511 int len)
8512 {
8513 if (2 * len > *left)
8514 error (_("Packet too long for target."));
8515
8516 bin2hex (bytes, *buffer, len);
8517 *buffer += 2 * len;
8518 *left -= 2 * len;
8519
8520 /* NUL-terminate the buffer as a convenience, if there is
8521 room. */
8522 if (*left)
8523 **buffer = '\0';
8524 }
8525
8526 /* If *LEFT is large enough, convert VALUE to hex and add it to
8527 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8528 decrease *LEFT. Otherwise raise an error. */
8529
8530 static void
8531 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8532 {
8533 int len = hexnumlen (value);
8534
8535 if (len > *left)
8536 error (_("Packet too long for target."));
8537
8538 hexnumstr (*buffer, value);
8539 *buffer += len;
8540 *left -= len;
8541
8542 /* NUL-terminate the buffer as a convenience, if there is
8543 room. */
8544 if (*left)
8545 **buffer = '\0';
8546 }
8547
8548 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8549 value, *REMOTE_ERRNO to the remote error number or zero if none
8550 was included, and *ATTACHMENT to point to the start of the annex
8551 if any. The length of the packet isn't needed here; there may
8552 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8553
8554 Return 0 if the packet could be parsed, -1 if it could not. If
8555 -1 is returned, the other variables may not be initialized. */
8556
8557 static int
8558 remote_hostio_parse_result (char *buffer, int *retcode,
8559 int *remote_errno, char **attachment)
8560 {
8561 char *p, *p2;
8562
8563 *remote_errno = 0;
8564 *attachment = NULL;
8565
8566 if (buffer[0] != 'F')
8567 return -1;
8568
8569 errno = 0;
8570 *retcode = strtol (&buffer[1], &p, 16);
8571 if (errno != 0 || p == &buffer[1])
8572 return -1;
8573
8574 /* Check for ",errno". */
8575 if (*p == ',')
8576 {
8577 errno = 0;
8578 *remote_errno = strtol (p + 1, &p2, 16);
8579 if (errno != 0 || p + 1 == p2)
8580 return -1;
8581 p = p2;
8582 }
8583
8584 /* Check for ";attachment". If there is no attachment, the
8585 packet should end here. */
8586 if (*p == ';')
8587 {
8588 *attachment = p + 1;
8589 return 0;
8590 }
8591 else if (*p == '\0')
8592 return 0;
8593 else
8594 return -1;
8595 }
8596
8597 /* Send a prepared I/O packet to the target and read its response.
8598 The prepared packet is in the global RS->BUF before this function
8599 is called, and the answer is there when we return.
8600
8601 COMMAND_BYTES is the length of the request to send, which may include
8602 binary data. WHICH_PACKET is the packet configuration to check
8603 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8604 is set to the error number and -1 is returned. Otherwise the value
8605 returned by the function is returned.
8606
8607 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8608 attachment is expected; an error will be reported if there's a
8609 mismatch. If one is found, *ATTACHMENT will be set to point into
8610 the packet buffer and *ATTACHMENT_LEN will be set to the
8611 attachment's length. */
8612
8613 static int
8614 remote_hostio_send_command (int command_bytes, int which_packet,
8615 int *remote_errno, char **attachment,
8616 int *attachment_len)
8617 {
8618 struct remote_state *rs = get_remote_state ();
8619 int ret, bytes_read;
8620 char *attachment_tmp;
8621
8622 if (!remote_desc
8623 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8624 {
8625 *remote_errno = FILEIO_ENOSYS;
8626 return -1;
8627 }
8628
8629 putpkt_binary (rs->buf, command_bytes);
8630 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8631
8632 /* If it timed out, something is wrong. Don't try to parse the
8633 buffer. */
8634 if (bytes_read < 0)
8635 {
8636 *remote_errno = FILEIO_EINVAL;
8637 return -1;
8638 }
8639
8640 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8641 {
8642 case PACKET_ERROR:
8643 *remote_errno = FILEIO_EINVAL;
8644 return -1;
8645 case PACKET_UNKNOWN:
8646 *remote_errno = FILEIO_ENOSYS;
8647 return -1;
8648 case PACKET_OK:
8649 break;
8650 }
8651
8652 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8653 &attachment_tmp))
8654 {
8655 *remote_errno = FILEIO_EINVAL;
8656 return -1;
8657 }
8658
8659 /* Make sure we saw an attachment if and only if we expected one. */
8660 if ((attachment_tmp == NULL && attachment != NULL)
8661 || (attachment_tmp != NULL && attachment == NULL))
8662 {
8663 *remote_errno = FILEIO_EINVAL;
8664 return -1;
8665 }
8666
8667 /* If an attachment was found, it must point into the packet buffer;
8668 work out how many bytes there were. */
8669 if (attachment_tmp != NULL)
8670 {
8671 *attachment = attachment_tmp;
8672 *attachment_len = bytes_read - (*attachment - rs->buf);
8673 }
8674
8675 return ret;
8676 }
8677
8678 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8679 remote file descriptor, or -1 if an error occurs (and set
8680 *REMOTE_ERRNO). */
8681
8682 static int
8683 remote_hostio_open (const char *filename, int flags, int mode,
8684 int *remote_errno)
8685 {
8686 struct remote_state *rs = get_remote_state ();
8687 char *p = rs->buf;
8688 int left = get_remote_packet_size () - 1;
8689
8690 remote_buffer_add_string (&p, &left, "vFile:open:");
8691
8692 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8693 strlen (filename));
8694 remote_buffer_add_string (&p, &left, ",");
8695
8696 remote_buffer_add_int (&p, &left, flags);
8697 remote_buffer_add_string (&p, &left, ",");
8698
8699 remote_buffer_add_int (&p, &left, mode);
8700
8701 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8702 remote_errno, NULL, NULL);
8703 }
8704
8705 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8706 Return the number of bytes written, or -1 if an error occurs (and
8707 set *REMOTE_ERRNO). */
8708
8709 static int
8710 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8711 ULONGEST offset, int *remote_errno)
8712 {
8713 struct remote_state *rs = get_remote_state ();
8714 char *p = rs->buf;
8715 int left = get_remote_packet_size ();
8716 int out_len;
8717
8718 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8719
8720 remote_buffer_add_int (&p, &left, fd);
8721 remote_buffer_add_string (&p, &left, ",");
8722
8723 remote_buffer_add_int (&p, &left, offset);
8724 remote_buffer_add_string (&p, &left, ",");
8725
8726 p += remote_escape_output (write_buf, len, p, &out_len,
8727 get_remote_packet_size () - (p - rs->buf));
8728
8729 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8730 remote_errno, NULL, NULL);
8731 }
8732
8733 /* Read up to LEN bytes FD on the remote target into READ_BUF
8734 Return the number of bytes read, or -1 if an error occurs (and
8735 set *REMOTE_ERRNO). */
8736
8737 static int
8738 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8739 ULONGEST offset, int *remote_errno)
8740 {
8741 struct remote_state *rs = get_remote_state ();
8742 char *p = rs->buf;
8743 char *attachment;
8744 int left = get_remote_packet_size ();
8745 int ret, attachment_len;
8746 int read_len;
8747
8748 remote_buffer_add_string (&p, &left, "vFile:pread:");
8749
8750 remote_buffer_add_int (&p, &left, fd);
8751 remote_buffer_add_string (&p, &left, ",");
8752
8753 remote_buffer_add_int (&p, &left, len);
8754 remote_buffer_add_string (&p, &left, ",");
8755
8756 remote_buffer_add_int (&p, &left, offset);
8757
8758 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8759 remote_errno, &attachment,
8760 &attachment_len);
8761
8762 if (ret < 0)
8763 return ret;
8764
8765 read_len = remote_unescape_input (attachment, attachment_len,
8766 read_buf, len);
8767 if (read_len != ret)
8768 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8769
8770 return ret;
8771 }
8772
8773 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8774 (and set *REMOTE_ERRNO). */
8775
8776 static int
8777 remote_hostio_close (int fd, int *remote_errno)
8778 {
8779 struct remote_state *rs = get_remote_state ();
8780 char *p = rs->buf;
8781 int left = get_remote_packet_size () - 1;
8782
8783 remote_buffer_add_string (&p, &left, "vFile:close:");
8784
8785 remote_buffer_add_int (&p, &left, fd);
8786
8787 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8788 remote_errno, NULL, NULL);
8789 }
8790
8791 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8792 occurs (and set *REMOTE_ERRNO). */
8793
8794 static int
8795 remote_hostio_unlink (const char *filename, int *remote_errno)
8796 {
8797 struct remote_state *rs = get_remote_state ();
8798 char *p = rs->buf;
8799 int left = get_remote_packet_size () - 1;
8800
8801 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8802
8803 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8804 strlen (filename));
8805
8806 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8807 remote_errno, NULL, NULL);
8808 }
8809
8810 static int
8811 remote_fileio_errno_to_host (int errnum)
8812 {
8813 switch (errnum)
8814 {
8815 case FILEIO_EPERM:
8816 return EPERM;
8817 case FILEIO_ENOENT:
8818 return ENOENT;
8819 case FILEIO_EINTR:
8820 return EINTR;
8821 case FILEIO_EIO:
8822 return EIO;
8823 case FILEIO_EBADF:
8824 return EBADF;
8825 case FILEIO_EACCES:
8826 return EACCES;
8827 case FILEIO_EFAULT:
8828 return EFAULT;
8829 case FILEIO_EBUSY:
8830 return EBUSY;
8831 case FILEIO_EEXIST:
8832 return EEXIST;
8833 case FILEIO_ENODEV:
8834 return ENODEV;
8835 case FILEIO_ENOTDIR:
8836 return ENOTDIR;
8837 case FILEIO_EISDIR:
8838 return EISDIR;
8839 case FILEIO_EINVAL:
8840 return EINVAL;
8841 case FILEIO_ENFILE:
8842 return ENFILE;
8843 case FILEIO_EMFILE:
8844 return EMFILE;
8845 case FILEIO_EFBIG:
8846 return EFBIG;
8847 case FILEIO_ENOSPC:
8848 return ENOSPC;
8849 case FILEIO_ESPIPE:
8850 return ESPIPE;
8851 case FILEIO_EROFS:
8852 return EROFS;
8853 case FILEIO_ENOSYS:
8854 return ENOSYS;
8855 case FILEIO_ENAMETOOLONG:
8856 return ENAMETOOLONG;
8857 }
8858 return -1;
8859 }
8860
8861 static char *
8862 remote_hostio_error (int errnum)
8863 {
8864 int host_error = remote_fileio_errno_to_host (errnum);
8865
8866 if (host_error == -1)
8867 error (_("Unknown remote I/O error %d"), errnum);
8868 else
8869 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8870 }
8871
8872 static void
8873 remote_hostio_close_cleanup (void *opaque)
8874 {
8875 int fd = *(int *) opaque;
8876 int remote_errno;
8877
8878 remote_hostio_close (fd, &remote_errno);
8879 }
8880
8881
8882 static void *
8883 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8884 {
8885 const char *filename = bfd_get_filename (abfd);
8886 int fd, remote_errno;
8887 int *stream;
8888
8889 gdb_assert (remote_filename_p (filename));
8890
8891 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8892 if (fd == -1)
8893 {
8894 errno = remote_fileio_errno_to_host (remote_errno);
8895 bfd_set_error (bfd_error_system_call);
8896 return NULL;
8897 }
8898
8899 stream = xmalloc (sizeof (int));
8900 *stream = fd;
8901 return stream;
8902 }
8903
8904 static int
8905 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8906 {
8907 int fd = *(int *)stream;
8908 int remote_errno;
8909
8910 xfree (stream);
8911
8912 /* Ignore errors on close; these may happen if the remote
8913 connection was already torn down. */
8914 remote_hostio_close (fd, &remote_errno);
8915
8916 return 1;
8917 }
8918
8919 static file_ptr
8920 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8921 file_ptr nbytes, file_ptr offset)
8922 {
8923 int fd = *(int *)stream;
8924 int remote_errno;
8925 file_ptr pos, bytes;
8926
8927 pos = 0;
8928 while (nbytes > pos)
8929 {
8930 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8931 offset + pos, &remote_errno);
8932 if (bytes == 0)
8933 /* Success, but no bytes, means end-of-file. */
8934 break;
8935 if (bytes == -1)
8936 {
8937 errno = remote_fileio_errno_to_host (remote_errno);
8938 bfd_set_error (bfd_error_system_call);
8939 return -1;
8940 }
8941
8942 pos += bytes;
8943 }
8944
8945 return pos;
8946 }
8947
8948 static int
8949 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8950 {
8951 /* FIXME: We should probably implement remote_hostio_stat. */
8952 sb->st_size = INT_MAX;
8953 return 0;
8954 }
8955
8956 int
8957 remote_filename_p (const char *filename)
8958 {
8959 return strncmp (filename, "remote:", 7) == 0;
8960 }
8961
8962 bfd *
8963 remote_bfd_open (const char *remote_file, const char *target)
8964 {
8965 return bfd_openr_iovec (remote_file, target,
8966 remote_bfd_iovec_open, NULL,
8967 remote_bfd_iovec_pread,
8968 remote_bfd_iovec_close,
8969 remote_bfd_iovec_stat);
8970 }
8971
8972 void
8973 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8974 {
8975 struct cleanup *back_to, *close_cleanup;
8976 int retcode, fd, remote_errno, bytes, io_size;
8977 FILE *file;
8978 gdb_byte *buffer;
8979 int bytes_in_buffer;
8980 int saw_eof;
8981 ULONGEST offset;
8982
8983 if (!remote_desc)
8984 error (_("command can only be used with remote target"));
8985
8986 file = fopen (local_file, "rb");
8987 if (file == NULL)
8988 perror_with_name (local_file);
8989 back_to = make_cleanup_fclose (file);
8990
8991 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8992 | FILEIO_O_TRUNC),
8993 0700, &remote_errno);
8994 if (fd == -1)
8995 remote_hostio_error (remote_errno);
8996
8997 /* Send up to this many bytes at once. They won't all fit in the
8998 remote packet limit, so we'll transfer slightly fewer. */
8999 io_size = get_remote_packet_size ();
9000 buffer = xmalloc (io_size);
9001 make_cleanup (xfree, buffer);
9002
9003 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9004
9005 bytes_in_buffer = 0;
9006 saw_eof = 0;
9007 offset = 0;
9008 while (bytes_in_buffer || !saw_eof)
9009 {
9010 if (!saw_eof)
9011 {
9012 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
9013 file);
9014 if (bytes == 0)
9015 {
9016 if (ferror (file))
9017 error (_("Error reading %s."), local_file);
9018 else
9019 {
9020 /* EOF. Unless there is something still in the
9021 buffer from the last iteration, we are done. */
9022 saw_eof = 1;
9023 if (bytes_in_buffer == 0)
9024 break;
9025 }
9026 }
9027 }
9028 else
9029 bytes = 0;
9030
9031 bytes += bytes_in_buffer;
9032 bytes_in_buffer = 0;
9033
9034 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
9035
9036 if (retcode < 0)
9037 remote_hostio_error (remote_errno);
9038 else if (retcode == 0)
9039 error (_("Remote write of %d bytes returned 0!"), bytes);
9040 else if (retcode < bytes)
9041 {
9042 /* Short write. Save the rest of the read data for the next
9043 write. */
9044 bytes_in_buffer = bytes - retcode;
9045 memmove (buffer, buffer + retcode, bytes_in_buffer);
9046 }
9047
9048 offset += retcode;
9049 }
9050
9051 discard_cleanups (close_cleanup);
9052 if (remote_hostio_close (fd, &remote_errno))
9053 remote_hostio_error (remote_errno);
9054
9055 if (from_tty)
9056 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9057 do_cleanups (back_to);
9058 }
9059
9060 void
9061 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9062 {
9063 struct cleanup *back_to, *close_cleanup;
9064 int fd, remote_errno, bytes, io_size;
9065 FILE *file;
9066 gdb_byte *buffer;
9067 ULONGEST offset;
9068
9069 if (!remote_desc)
9070 error (_("command can only be used with remote target"));
9071
9072 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9073 if (fd == -1)
9074 remote_hostio_error (remote_errno);
9075
9076 file = fopen (local_file, "wb");
9077 if (file == NULL)
9078 perror_with_name (local_file);
9079 back_to = make_cleanup_fclose (file);
9080
9081 /* Send up to this many bytes at once. They won't all fit in the
9082 remote packet limit, so we'll transfer slightly fewer. */
9083 io_size = get_remote_packet_size ();
9084 buffer = xmalloc (io_size);
9085 make_cleanup (xfree, buffer);
9086
9087 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9088
9089 offset = 0;
9090 while (1)
9091 {
9092 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9093 if (bytes == 0)
9094 /* Success, but no bytes, means end-of-file. */
9095 break;
9096 if (bytes == -1)
9097 remote_hostio_error (remote_errno);
9098
9099 offset += bytes;
9100
9101 bytes = fwrite (buffer, 1, bytes, file);
9102 if (bytes == 0)
9103 perror_with_name (local_file);
9104 }
9105
9106 discard_cleanups (close_cleanup);
9107 if (remote_hostio_close (fd, &remote_errno))
9108 remote_hostio_error (remote_errno);
9109
9110 if (from_tty)
9111 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9112 do_cleanups (back_to);
9113 }
9114
9115 void
9116 remote_file_delete (const char *remote_file, int from_tty)
9117 {
9118 int retcode, remote_errno;
9119
9120 if (!remote_desc)
9121 error (_("command can only be used with remote target"));
9122
9123 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9124 if (retcode == -1)
9125 remote_hostio_error (remote_errno);
9126
9127 if (from_tty)
9128 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9129 }
9130
9131 static void
9132 remote_put_command (char *args, int from_tty)
9133 {
9134 struct cleanup *back_to;
9135 char **argv;
9136
9137 if (args == NULL)
9138 error_no_arg (_("file to put"));
9139
9140 argv = gdb_buildargv (args);
9141 back_to = make_cleanup_freeargv (argv);
9142 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9143 error (_("Invalid parameters to remote put"));
9144
9145 remote_file_put (argv[0], argv[1], from_tty);
9146
9147 do_cleanups (back_to);
9148 }
9149
9150 static void
9151 remote_get_command (char *args, int from_tty)
9152 {
9153 struct cleanup *back_to;
9154 char **argv;
9155
9156 if (args == NULL)
9157 error_no_arg (_("file to get"));
9158
9159 argv = gdb_buildargv (args);
9160 back_to = make_cleanup_freeargv (argv);
9161 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9162 error (_("Invalid parameters to remote get"));
9163
9164 remote_file_get (argv[0], argv[1], from_tty);
9165
9166 do_cleanups (back_to);
9167 }
9168
9169 static void
9170 remote_delete_command (char *args, int from_tty)
9171 {
9172 struct cleanup *back_to;
9173 char **argv;
9174
9175 if (args == NULL)
9176 error_no_arg (_("file to delete"));
9177
9178 argv = gdb_buildargv (args);
9179 back_to = make_cleanup_freeargv (argv);
9180 if (argv[0] == NULL || argv[1] != NULL)
9181 error (_("Invalid parameters to remote delete"));
9182
9183 remote_file_delete (argv[0], from_tty);
9184
9185 do_cleanups (back_to);
9186 }
9187
9188 static void
9189 remote_command (char *args, int from_tty)
9190 {
9191 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9192 }
9193
9194 static int
9195 remote_can_execute_reverse (void)
9196 {
9197 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9198 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9199 return 1;
9200 else
9201 return 0;
9202 }
9203
9204 static int
9205 remote_supports_non_stop (void)
9206 {
9207 return 1;
9208 }
9209
9210 static int
9211 remote_supports_multi_process (void)
9212 {
9213 struct remote_state *rs = get_remote_state ();
9214 return remote_multi_process_p (rs);
9215 }
9216
9217 int
9218 remote_supports_cond_tracepoints (void)
9219 {
9220 struct remote_state *rs = get_remote_state ();
9221 return rs->cond_tracepoints;
9222 }
9223
9224 int
9225 remote_supports_fast_tracepoints (void)
9226 {
9227 struct remote_state *rs = get_remote_state ();
9228 return rs->fast_tracepoints;
9229 }
9230
9231 static void
9232 remote_trace_init ()
9233 {
9234 putpkt ("QTinit");
9235 remote_get_noisy_reply (&target_buf, &target_buf_size);
9236 if (strcmp (target_buf, "OK"))
9237 error (_("Target does not support this command."));
9238 }
9239
9240 static void free_actions_list (char **actions_list);
9241 static void free_actions_list_cleanup_wrapper (void *);
9242 static void
9243 free_actions_list_cleanup_wrapper (void *al)
9244 {
9245 free_actions_list (al);
9246 }
9247
9248 static void
9249 free_actions_list (char **actions_list)
9250 {
9251 int ndx;
9252
9253 if (actions_list == 0)
9254 return;
9255
9256 for (ndx = 0; actions_list[ndx]; ndx++)
9257 xfree (actions_list[ndx]);
9258
9259 xfree (actions_list);
9260 }
9261
9262 static void
9263 remote_download_tracepoint (struct breakpoint *t)
9264 {
9265 struct bp_location *loc;
9266 CORE_ADDR tpaddr;
9267 char tmp[40];
9268 char buf[2048];
9269 char **tdp_actions;
9270 char **stepping_actions;
9271 int ndx;
9272 struct cleanup *old_chain = NULL;
9273 struct agent_expr *aexpr;
9274 struct cleanup *aexpr_chain = NULL;
9275 char *pkt;
9276
9277 /* Iterate over all the tracepoint locations. It's up to the target to
9278 notice multiple tracepoint packets with the same number but different
9279 addresses, and treat them as multiple locations. */
9280 for (loc = t->loc; loc; loc = loc->next)
9281 {
9282 encode_actions (t, loc, &tdp_actions, &stepping_actions);
9283 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9284 tdp_actions);
9285 (void) make_cleanup (free_actions_list_cleanup_wrapper, stepping_actions);
9286
9287 tpaddr = loc->address;
9288 sprintf_vma (tmp, (loc ? tpaddr : 0));
9289 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9290 tmp, /* address */
9291 (t->enable_state == bp_enabled ? 'E' : 'D'),
9292 t->step_count, t->pass_count);
9293 /* Fast tracepoints are mostly handled by the target, but we can
9294 tell the target how big of an instruction block should be moved
9295 around. */
9296 if (t->type == bp_fast_tracepoint)
9297 {
9298 /* Only test for support at download time; we may not know
9299 target capabilities at definition time. */
9300 if (remote_supports_fast_tracepoints ())
9301 {
9302 int isize;
9303
9304 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9305 tpaddr, &isize, NULL))
9306 sprintf (buf + strlen (buf), ":F%x", isize);
9307 else
9308 /* If it passed validation at definition but fails now,
9309 something is very wrong. */
9310 internal_error (__FILE__, __LINE__,
9311 "Fast tracepoint not valid during download");
9312 }
9313 else
9314 /* Fast tracepoints are functionally identical to regular
9315 tracepoints, so don't take lack of support as a reason to
9316 give up on the trace run. */
9317 warning (_("Target does not support fast tracepoints, downloading %d as regular tracepoint"), t->number);
9318 }
9319 /* If the tracepoint has a conditional, make it into an agent
9320 expression and append to the definition. */
9321 if (loc->cond)
9322 {
9323 /* Only test support at download time, we may not know target
9324 capabilities at definition time. */
9325 if (remote_supports_cond_tracepoints ())
9326 {
9327 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9328 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9329 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9330 pkt = buf + strlen (buf);
9331 for (ndx = 0; ndx < aexpr->len; ++ndx)
9332 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9333 *pkt = '\0';
9334 do_cleanups (aexpr_chain);
9335 }
9336 else
9337 warning (_("Target does not support conditional tracepoints, ignoring tp %d cond"), t->number);
9338 }
9339
9340 if (t->commands || *default_collect)
9341 strcat (buf, "-");
9342 putpkt (buf);
9343 remote_get_noisy_reply (&target_buf, &target_buf_size);
9344 if (strcmp (target_buf, "OK"))
9345 error (_("Target does not support tracepoints."));
9346
9347 if (!t->commands && !*default_collect)
9348 continue;
9349
9350 /* do_single_steps (t); */
9351 if (tdp_actions)
9352 {
9353 for (ndx = 0; tdp_actions[ndx]; ndx++)
9354 {
9355 QUIT; /* allow user to bail out with ^C */
9356 sprintf (buf, "QTDP:-%x:%s:%s%c",
9357 t->number, tmp, /* address */
9358 tdp_actions[ndx],
9359 ((tdp_actions[ndx + 1] || stepping_actions)
9360 ? '-' : 0));
9361 putpkt (buf);
9362 remote_get_noisy_reply (&target_buf,
9363 &target_buf_size);
9364 if (strcmp (target_buf, "OK"))
9365 error (_("Error on target while setting tracepoints."));
9366 }
9367 }
9368 if (stepping_actions)
9369 {
9370 for (ndx = 0; stepping_actions[ndx]; ndx++)
9371 {
9372 QUIT; /* allow user to bail out with ^C */
9373 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9374 t->number, tmp, /* address */
9375 ((ndx == 0) ? "S" : ""),
9376 stepping_actions[ndx],
9377 (stepping_actions[ndx + 1] ? "-" : ""));
9378 putpkt (buf);
9379 remote_get_noisy_reply (&target_buf,
9380 &target_buf_size);
9381 if (strcmp (target_buf, "OK"))
9382 error (_("Error on target while setting tracepoints."));
9383 }
9384 }
9385 do_cleanups (old_chain);
9386 }
9387 }
9388
9389 static void
9390 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9391 {
9392 struct remote_state *rs = get_remote_state ();
9393 char *p;
9394
9395 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9396 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9397 p = rs->buf + strlen (rs->buf);
9398 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9399 error (_("Trace state variable name too long for tsv definition packet"));
9400 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9401 *p++ = '\0';
9402 putpkt (rs->buf);
9403 remote_get_noisy_reply (&target_buf, &target_buf_size);
9404 }
9405
9406 static void
9407 remote_trace_set_readonly_regions ()
9408 {
9409 asection *s;
9410 bfd_size_type size;
9411 bfd_vma lma;
9412 int anysecs = 0;
9413
9414 if (!exec_bfd)
9415 return; /* No information to give. */
9416
9417 strcpy (target_buf, "QTro");
9418 for (s = exec_bfd->sections; s; s = s->next)
9419 {
9420 char tmp1[40], tmp2[40];
9421
9422 if ((s->flags & SEC_LOAD) == 0 ||
9423 /* (s->flags & SEC_CODE) == 0 || */
9424 (s->flags & SEC_READONLY) == 0)
9425 continue;
9426
9427 anysecs = 1;
9428 lma = s->lma;
9429 size = bfd_get_section_size (s);
9430 sprintf_vma (tmp1, lma);
9431 sprintf_vma (tmp2, lma + size);
9432 sprintf (target_buf + strlen (target_buf),
9433 ":%s,%s", tmp1, tmp2);
9434 }
9435 if (anysecs)
9436 {
9437 putpkt (target_buf);
9438 getpkt (&target_buf, &target_buf_size, 0);
9439 }
9440 }
9441
9442 static void
9443 remote_trace_start ()
9444 {
9445 putpkt ("QTStart");
9446 remote_get_noisy_reply (&target_buf, &target_buf_size);
9447 if (strcmp (target_buf, "OK"))
9448 error (_("Bogus reply from target: %s"), target_buf);
9449 }
9450
9451 static int
9452 remote_get_trace_status (struct trace_status *ts)
9453 {
9454 char *p, *p1, *p_temp;
9455 ULONGEST val;
9456 /* FIXME we need to get register block size some other way */
9457 extern int trace_regblock_size;
9458 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9459
9460 putpkt ("qTStatus");
9461 getpkt (&target_buf, &target_buf_size, 0);
9462 /* FIXME should handle more variety of replies */
9463
9464 p = target_buf;
9465
9466 /* If the remote target doesn't do tracing, flag it. */
9467 if (*p == '\0')
9468 return -1;
9469
9470 /* We're working with a live target. */
9471 ts->from_file = 0;
9472
9473 /* Set some defaults. */
9474 ts->running_known = 0;
9475 ts->stop_reason = trace_stop_reason_unknown;
9476 ts->traceframe_count = -1;
9477 ts->buffer_free = 0;
9478
9479 if (*p++ != 'T')
9480 error (_("Bogus trace status reply from target: %s"), target_buf);
9481
9482 parse_trace_status (p, ts);
9483
9484 return ts->running;
9485 }
9486
9487 static void
9488 remote_trace_stop ()
9489 {
9490 putpkt ("QTStop");
9491 remote_get_noisy_reply (&target_buf, &target_buf_size);
9492 if (strcmp (target_buf, "OK"))
9493 error (_("Bogus reply from target: %s"), target_buf);
9494 }
9495
9496 static int
9497 remote_trace_find (enum trace_find_type type, int num,
9498 ULONGEST addr1, ULONGEST addr2,
9499 int *tpp)
9500 {
9501 struct remote_state *rs = get_remote_state ();
9502 char *p, *reply;
9503 int target_frameno = -1, target_tracept = -1;
9504
9505 p = rs->buf;
9506 strcpy (p, "QTFrame:");
9507 p = strchr (p, '\0');
9508 switch (type)
9509 {
9510 case tfind_number:
9511 sprintf (p, "%x", num);
9512 break;
9513 case tfind_pc:
9514 sprintf (p, "pc:%s", phex_nz (addr1, 0));
9515 break;
9516 case tfind_tp:
9517 sprintf (p, "tdp:%x", num);
9518 break;
9519 case tfind_range:
9520 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9521 break;
9522 case tfind_outside:
9523 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9524 break;
9525 default:
9526 error ("Unknown trace find type %d", type);
9527 }
9528
9529 putpkt (rs->buf);
9530 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
9531
9532 while (reply && *reply)
9533 switch (*reply)
9534 {
9535 case 'F':
9536 p = ++reply;
9537 target_frameno = (int) strtol (p, &reply, 16);
9538 if (reply == p)
9539 error (_("Unable to parse trace frame number"));
9540 if (target_frameno == -1)
9541 return -1;
9542 break;
9543 case 'T':
9544 p = ++reply;
9545 target_tracept = (int) strtol (p, &reply, 16);
9546 if (reply == p)
9547 error (_("Unable to parse tracepoint number"));
9548 break;
9549 case 'O': /* "OK"? */
9550 if (reply[1] == 'K' && reply[2] == '\0')
9551 reply += 2;
9552 else
9553 error (_("Bogus reply from target: %s"), reply);
9554 break;
9555 default:
9556 error (_("Bogus reply from target: %s"), reply);
9557 }
9558 if (tpp)
9559 *tpp = target_tracept;
9560 return target_frameno;
9561 }
9562
9563 static int
9564 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
9565 {
9566 struct remote_state *rs = get_remote_state ();
9567 char *reply;
9568 ULONGEST uval;
9569
9570 sprintf (rs->buf, "qTV:%x", tsvnum);
9571 putpkt (rs->buf);
9572 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9573 if (reply && *reply)
9574 {
9575 if (*reply == 'V')
9576 {
9577 unpack_varlen_hex (reply + 1, &uval);
9578 *val = (LONGEST) uval;
9579 return 1;
9580 }
9581 }
9582 return 0;
9583 }
9584
9585 static int
9586 remote_save_trace_data (char *filename)
9587 {
9588 struct remote_state *rs = get_remote_state ();
9589 char *p, *reply;
9590
9591 p = rs->buf;
9592 strcpy (p, "QTSave:");
9593 p += strlen (p);
9594 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
9595 error (_("Remote file name too long for trace save packet"));
9596 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
9597 *p++ = '\0';
9598 putpkt (rs->buf);
9599 remote_get_noisy_reply (&target_buf, &target_buf_size);
9600 return 0;
9601 }
9602
9603 /* This is basically a memory transfer, but needs to be its own packet
9604 because we don't know how the target actually organizes its trace
9605 memory, plus we want to be able to ask for as much as possible, but
9606 not be unhappy if we don't get as much as we ask for. */
9607
9608 static LONGEST
9609 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
9610 {
9611 struct remote_state *rs = get_remote_state ();
9612 char *reply;
9613 char *p;
9614 int rslt;
9615
9616 p = rs->buf;
9617 strcpy (p, "qTBuffer:");
9618 p += strlen (p);
9619 p += hexnumstr (p, offset);
9620 *p++ = ',';
9621 p += hexnumstr (p, len);
9622 *p++ = '\0';
9623
9624 putpkt (rs->buf);
9625 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9626 if (reply && *reply)
9627 {
9628 /* 'l' by itself means we're at the end of the buffer and
9629 there is nothing more to get. */
9630 if (*reply == 'l')
9631 return 0;
9632
9633 /* Convert the reply into binary. Limit the number of bytes to
9634 convert according to our passed-in buffer size, rather than
9635 what was returned in the packet; if the target is
9636 unexpectedly generous and gives us a bigger reply than we
9637 asked for, we don't want to crash. */
9638 rslt = hex2bin (target_buf, buf, len);
9639 return rslt;
9640 }
9641
9642 /* Something went wrong, flag as an error. */
9643 return -1;
9644 }
9645
9646 static void
9647 remote_set_disconnected_tracing (int val)
9648 {
9649 struct remote_state *rs = get_remote_state ();
9650
9651 sprintf (rs->buf, "QTDisconnected:%x", val);
9652 putpkt (rs->buf);
9653 remote_get_noisy_reply (&target_buf, &target_buf_size);
9654 if (strcmp (target_buf, "OK"))
9655 error (_("Target does not support this command."));
9656 }
9657
9658 static int
9659 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
9660 {
9661 struct thread_info *info = find_thread_ptid (ptid);
9662 if (info && info->private)
9663 return info->private->core;
9664 return -1;
9665 }
9666
9667 static void
9668 remote_set_circular_trace_buffer (int val)
9669 {
9670 struct remote_state *rs = get_remote_state ();
9671
9672 sprintf (rs->buf, "QTBuffer:circular:%x", val);
9673 putpkt (rs->buf);
9674 remote_get_noisy_reply (&target_buf, &target_buf_size);
9675 if (strcmp (target_buf, "OK"))
9676 error (_("Target does not support this command."));
9677 }
9678
9679 static void
9680 init_remote_ops (void)
9681 {
9682 remote_ops.to_shortname = "remote";
9683 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
9684 remote_ops.to_doc =
9685 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
9686 Specify the serial device it is connected to\n\
9687 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
9688 remote_ops.to_open = remote_open;
9689 remote_ops.to_close = remote_close;
9690 remote_ops.to_detach = remote_detach;
9691 remote_ops.to_disconnect = remote_disconnect;
9692 remote_ops.to_resume = remote_resume;
9693 remote_ops.to_wait = remote_wait;
9694 remote_ops.to_fetch_registers = remote_fetch_registers;
9695 remote_ops.to_store_registers = remote_store_registers;
9696 remote_ops.to_prepare_to_store = remote_prepare_to_store;
9697 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
9698 remote_ops.to_files_info = remote_files_info;
9699 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
9700 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
9701 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
9702 remote_ops.to_stopped_data_address = remote_stopped_data_address;
9703 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
9704 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
9705 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
9706 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
9707 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
9708 remote_ops.to_kill = remote_kill;
9709 remote_ops.to_load = generic_load;
9710 remote_ops.to_mourn_inferior = remote_mourn;
9711 remote_ops.to_thread_alive = remote_thread_alive;
9712 remote_ops.to_find_new_threads = remote_threads_info;
9713 remote_ops.to_pid_to_str = remote_pid_to_str;
9714 remote_ops.to_extra_thread_info = remote_threads_extra_info;
9715 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
9716 remote_ops.to_stop = remote_stop;
9717 remote_ops.to_xfer_partial = remote_xfer_partial;
9718 remote_ops.to_rcmd = remote_rcmd;
9719 remote_ops.to_log_command = serial_log_command;
9720 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
9721 remote_ops.to_stratum = process_stratum;
9722 remote_ops.to_has_all_memory = default_child_has_all_memory;
9723 remote_ops.to_has_memory = default_child_has_memory;
9724 remote_ops.to_has_stack = default_child_has_stack;
9725 remote_ops.to_has_registers = default_child_has_registers;
9726 remote_ops.to_has_execution = default_child_has_execution;
9727 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
9728 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
9729 remote_ops.to_magic = OPS_MAGIC;
9730 remote_ops.to_memory_map = remote_memory_map;
9731 remote_ops.to_flash_erase = remote_flash_erase;
9732 remote_ops.to_flash_done = remote_flash_done;
9733 remote_ops.to_read_description = remote_read_description;
9734 remote_ops.to_search_memory = remote_search_memory;
9735 remote_ops.to_can_async_p = remote_can_async_p;
9736 remote_ops.to_is_async_p = remote_is_async_p;
9737 remote_ops.to_async = remote_async;
9738 remote_ops.to_async_mask = remote_async_mask;
9739 remote_ops.to_terminal_inferior = remote_terminal_inferior;
9740 remote_ops.to_terminal_ours = remote_terminal_ours;
9741 remote_ops.to_supports_non_stop = remote_supports_non_stop;
9742 remote_ops.to_supports_multi_process = remote_supports_multi_process;
9743 remote_ops.to_trace_init = remote_trace_init;
9744 remote_ops.to_download_tracepoint = remote_download_tracepoint;
9745 remote_ops.to_download_trace_state_variable = remote_download_trace_state_variable;
9746 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
9747 remote_ops.to_trace_start = remote_trace_start;
9748 remote_ops.to_get_trace_status = remote_get_trace_status;
9749 remote_ops.to_trace_stop = remote_trace_stop;
9750 remote_ops.to_trace_find = remote_trace_find;
9751 remote_ops.to_get_trace_state_variable_value = remote_get_trace_state_variable_value;
9752 remote_ops.to_save_trace_data = remote_save_trace_data;
9753 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
9754 remote_ops.to_upload_trace_state_variables = remote_upload_trace_state_variables;
9755 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
9756 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
9757 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
9758 remote_ops.to_core_of_thread = remote_core_of_thread;
9759 }
9760
9761 /* Set up the extended remote vector by making a copy of the standard
9762 remote vector and adding to it. */
9763
9764 static void
9765 init_extended_remote_ops (void)
9766 {
9767 extended_remote_ops = remote_ops;
9768
9769 extended_remote_ops.to_shortname = "extended-remote";
9770 extended_remote_ops.to_longname =
9771 "Extended remote serial target in gdb-specific protocol";
9772 extended_remote_ops.to_doc =
9773 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
9774 Specify the serial device it is connected to (e.g. /dev/ttya).";
9775 extended_remote_ops.to_open = extended_remote_open;
9776 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
9777 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
9778 extended_remote_ops.to_detach = extended_remote_detach;
9779 extended_remote_ops.to_attach = extended_remote_attach;
9780 extended_remote_ops.to_kill = extended_remote_kill;
9781 }
9782
9783 static int
9784 remote_can_async_p (void)
9785 {
9786 if (!target_async_permitted)
9787 /* We only enable async when the user specifically asks for it. */
9788 return 0;
9789
9790 /* We're async whenever the serial device is. */
9791 return remote_async_mask_value && serial_can_async_p (remote_desc);
9792 }
9793
9794 static int
9795 remote_is_async_p (void)
9796 {
9797 if (!target_async_permitted)
9798 /* We only enable async when the user specifically asks for it. */
9799 return 0;
9800
9801 /* We're async whenever the serial device is. */
9802 return remote_async_mask_value && serial_is_async_p (remote_desc);
9803 }
9804
9805 /* Pass the SERIAL event on and up to the client. One day this code
9806 will be able to delay notifying the client of an event until the
9807 point where an entire packet has been received. */
9808
9809 static void (*async_client_callback) (enum inferior_event_type event_type,
9810 void *context);
9811 static void *async_client_context;
9812 static serial_event_ftype remote_async_serial_handler;
9813
9814 static void
9815 remote_async_serial_handler (struct serial *scb, void *context)
9816 {
9817 /* Don't propogate error information up to the client. Instead let
9818 the client find out about the error by querying the target. */
9819 async_client_callback (INF_REG_EVENT, async_client_context);
9820 }
9821
9822 static void
9823 remote_async_inferior_event_handler (gdb_client_data data)
9824 {
9825 inferior_event_handler (INF_REG_EVENT, NULL);
9826 }
9827
9828 static void
9829 remote_async_get_pending_events_handler (gdb_client_data data)
9830 {
9831 remote_get_pending_stop_replies ();
9832 }
9833
9834 static void
9835 remote_async (void (*callback) (enum inferior_event_type event_type,
9836 void *context), void *context)
9837 {
9838 if (remote_async_mask_value == 0)
9839 internal_error (__FILE__, __LINE__,
9840 _("Calling remote_async when async is masked"));
9841
9842 if (callback != NULL)
9843 {
9844 serial_async (remote_desc, remote_async_serial_handler, NULL);
9845 async_client_callback = callback;
9846 async_client_context = context;
9847 }
9848 else
9849 serial_async (remote_desc, NULL, NULL);
9850 }
9851
9852 static int
9853 remote_async_mask (int new_mask)
9854 {
9855 int curr_mask = remote_async_mask_value;
9856 remote_async_mask_value = new_mask;
9857 return curr_mask;
9858 }
9859
9860 static void
9861 set_remote_cmd (char *args, int from_tty)
9862 {
9863 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
9864 }
9865
9866 static void
9867 show_remote_cmd (char *args, int from_tty)
9868 {
9869 /* We can't just use cmd_show_list here, because we want to skip
9870 the redundant "show remote Z-packet" and the legacy aliases. */
9871 struct cleanup *showlist_chain;
9872 struct cmd_list_element *list = remote_show_cmdlist;
9873
9874 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
9875 for (; list != NULL; list = list->next)
9876 if (strcmp (list->name, "Z-packet") == 0)
9877 continue;
9878 else if (list->type == not_set_cmd)
9879 /* Alias commands are exactly like the original, except they
9880 don't have the normal type. */
9881 continue;
9882 else
9883 {
9884 struct cleanup *option_chain
9885 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
9886 ui_out_field_string (uiout, "name", list->name);
9887 ui_out_text (uiout, ": ");
9888 if (list->type == show_cmd)
9889 do_setshow_command ((char *) NULL, from_tty, list);
9890 else
9891 cmd_func (list, NULL, from_tty);
9892 /* Close the tuple. */
9893 do_cleanups (option_chain);
9894 }
9895
9896 /* Close the tuple. */
9897 do_cleanups (showlist_chain);
9898 }
9899
9900
9901 /* Function to be called whenever a new objfile (shlib) is detected. */
9902 static void
9903 remote_new_objfile (struct objfile *objfile)
9904 {
9905 if (remote_desc != 0) /* Have a remote connection. */
9906 remote_check_symbols (objfile);
9907 }
9908
9909 /* Pull all the tracepoints defined on the target and create local
9910 data structures representing them. We don't want to create real
9911 tracepoints yet, we don't want to mess up the user's existing
9912 collection. */
9913
9914 static int
9915 remote_upload_tracepoints (struct uploaded_tp **utpp)
9916 {
9917 struct remote_state *rs = get_remote_state ();
9918 char *p;
9919
9920 /* Ask for a first packet of tracepoint definition. */
9921 putpkt ("qTfP");
9922 getpkt (&rs->buf, &rs->buf_size, 0);
9923 p = rs->buf;
9924 while (*p && *p != 'l')
9925 {
9926 parse_tracepoint_definition (p, utpp);
9927 /* Ask for another packet of tracepoint definition. */
9928 putpkt ("qTsP");
9929 getpkt (&rs->buf, &rs->buf_size, 0);
9930 p = rs->buf;
9931 }
9932 return 0;
9933 }
9934
9935 static int
9936 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
9937 {
9938 struct remote_state *rs = get_remote_state ();
9939 char *p;
9940
9941 /* Ask for a first packet of variable definition. */
9942 putpkt ("qTfV");
9943 getpkt (&rs->buf, &rs->buf_size, 0);
9944 p = rs->buf;
9945 while (*p && *p != 'l')
9946 {
9947 parse_tsv_definition (p, utsvp);
9948 /* Ask for another packet of variable definition. */
9949 putpkt ("qTsV");
9950 getpkt (&rs->buf, &rs->buf_size, 0);
9951 p = rs->buf;
9952 }
9953 return 0;
9954 }
9955
9956 void
9957 _initialize_remote (void)
9958 {
9959 struct remote_state *rs;
9960 struct cmd_list_element *cmd;
9961 char *cmd_name;
9962
9963 /* architecture specific data */
9964 remote_gdbarch_data_handle =
9965 gdbarch_data_register_post_init (init_remote_state);
9966 remote_g_packet_data_handle =
9967 gdbarch_data_register_pre_init (remote_g_packet_data_init);
9968
9969 /* Initialize the per-target state. At the moment there is only one
9970 of these, not one per target. Only one target is active at a
9971 time. The default buffer size is unimportant; it will be expanded
9972 whenever a larger buffer is needed. */
9973 rs = get_remote_state_raw ();
9974 rs->buf_size = 400;
9975 rs->buf = xmalloc (rs->buf_size);
9976
9977 init_remote_ops ();
9978 add_target (&remote_ops);
9979
9980 init_extended_remote_ops ();
9981 add_target (&extended_remote_ops);
9982
9983 /* Hook into new objfile notification. */
9984 observer_attach_new_objfile (remote_new_objfile);
9985
9986 /* Set up signal handlers. */
9987 sigint_remote_token =
9988 create_async_signal_handler (async_remote_interrupt, NULL);
9989 sigint_remote_twice_token =
9990 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
9991
9992 #if 0
9993 init_remote_threadtests ();
9994 #endif
9995
9996 /* set/show remote ... */
9997
9998 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9999 Remote protocol specific variables\n\
10000 Configure various remote-protocol specific variables such as\n\
10001 the packets being used"),
10002 &remote_set_cmdlist, "set remote ",
10003 0 /* allow-unknown */, &setlist);
10004 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10005 Remote protocol specific variables\n\
10006 Configure various remote-protocol specific variables such as\n\
10007 the packets being used"),
10008 &remote_show_cmdlist, "show remote ",
10009 0 /* allow-unknown */, &showlist);
10010
10011 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10012 Compare section data on target to the exec file.\n\
10013 Argument is a single section name (default: all loaded sections)."),
10014 &cmdlist);
10015
10016 add_cmd ("packet", class_maintenance, packet_command, _("\
10017 Send an arbitrary packet to a remote target.\n\
10018 maintenance packet TEXT\n\
10019 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10020 this command sends the string TEXT to the inferior, and displays the\n\
10021 response packet. GDB supplies the initial `$' character, and the\n\
10022 terminating `#' character and checksum."),
10023 &maintenancelist);
10024
10025 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10026 Set whether to send break if interrupted."), _("\
10027 Show whether to send break if interrupted."), _("\
10028 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10029 set_remotebreak, show_remotebreak,
10030 &setlist, &showlist);
10031 cmd_name = "remotebreak";
10032 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10033 deprecate_cmd (cmd, "set remote interrupt-sequence");
10034 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10035 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10036 deprecate_cmd (cmd, "show remote interrupt-sequence");
10037
10038 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10039 interrupt_sequence_modes, &interrupt_sequence_mode, _("\
10040 Set interrupt sequence to remote target."), _("\
10041 Show interrupt sequence to remote target."), _("\
10042 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10043 NULL, show_interrupt_sequence,
10044 &remote_set_cmdlist,
10045 &remote_show_cmdlist);
10046
10047 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10048 &interrupt_on_connect, _("\
10049 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10050 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10051 If set, interrupt sequence is sent to remote target."),
10052 NULL, NULL,
10053 &remote_set_cmdlist, &remote_show_cmdlist);
10054
10055 /* Install commands for configuring memory read/write packets. */
10056
10057 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10058 Set the maximum number of bytes per memory write packet (deprecated)."),
10059 &setlist);
10060 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10061 Show the maximum number of bytes per memory write packet (deprecated)."),
10062 &showlist);
10063 add_cmd ("memory-write-packet-size", no_class,
10064 set_memory_write_packet_size, _("\
10065 Set the maximum number of bytes per memory-write packet.\n\
10066 Specify the number of bytes in a packet or 0 (zero) for the\n\
10067 default packet size. The actual limit is further reduced\n\
10068 dependent on the target. Specify ``fixed'' to disable the\n\
10069 further restriction and ``limit'' to enable that restriction."),
10070 &remote_set_cmdlist);
10071 add_cmd ("memory-read-packet-size", no_class,
10072 set_memory_read_packet_size, _("\
10073 Set the maximum number of bytes per memory-read packet.\n\
10074 Specify the number of bytes in a packet or 0 (zero) for the\n\
10075 default packet size. The actual limit is further reduced\n\
10076 dependent on the target. Specify ``fixed'' to disable the\n\
10077 further restriction and ``limit'' to enable that restriction."),
10078 &remote_set_cmdlist);
10079 add_cmd ("memory-write-packet-size", no_class,
10080 show_memory_write_packet_size,
10081 _("Show the maximum number of bytes per memory-write packet."),
10082 &remote_show_cmdlist);
10083 add_cmd ("memory-read-packet-size", no_class,
10084 show_memory_read_packet_size,
10085 _("Show the maximum number of bytes per memory-read packet."),
10086 &remote_show_cmdlist);
10087
10088 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10089 &remote_hw_watchpoint_limit, _("\
10090 Set the maximum number of target hardware watchpoints."), _("\
10091 Show the maximum number of target hardware watchpoints."), _("\
10092 Specify a negative limit for unlimited."),
10093 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
10094 &remote_set_cmdlist, &remote_show_cmdlist);
10095 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10096 &remote_hw_breakpoint_limit, _("\
10097 Set the maximum number of target hardware breakpoints."), _("\
10098 Show the maximum number of target hardware breakpoints."), _("\
10099 Specify a negative limit for unlimited."),
10100 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
10101 &remote_set_cmdlist, &remote_show_cmdlist);
10102
10103 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10104 &remote_address_size, _("\
10105 Set the maximum size of the address (in bits) in a memory packet."), _("\
10106 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10107 NULL,
10108 NULL, /* FIXME: i18n: */
10109 &setlist, &showlist);
10110
10111 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10112 "X", "binary-download", 1);
10113
10114 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10115 "vCont", "verbose-resume", 0);
10116
10117 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10118 "QPassSignals", "pass-signals", 0);
10119
10120 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10121 "qSymbol", "symbol-lookup", 0);
10122
10123 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10124 "P", "set-register", 1);
10125
10126 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10127 "p", "fetch-register", 1);
10128
10129 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10130 "Z0", "software-breakpoint", 0);
10131
10132 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10133 "Z1", "hardware-breakpoint", 0);
10134
10135 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10136 "Z2", "write-watchpoint", 0);
10137
10138 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10139 "Z3", "read-watchpoint", 0);
10140
10141 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10142 "Z4", "access-watchpoint", 0);
10143
10144 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10145 "qXfer:auxv:read", "read-aux-vector", 0);
10146
10147 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10148 "qXfer:features:read", "target-features", 0);
10149
10150 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10151 "qXfer:libraries:read", "library-info", 0);
10152
10153 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10154 "qXfer:memory-map:read", "memory-map", 0);
10155
10156 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10157 "qXfer:spu:read", "read-spu-object", 0);
10158
10159 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10160 "qXfer:spu:write", "write-spu-object", 0);
10161
10162 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10163 "qXfer:osdata:read", "osdata", 0);
10164
10165 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10166 "qXfer:threads:read", "threads", 0);
10167
10168 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10169 "qXfer:siginfo:read", "read-siginfo-object", 0);
10170
10171 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10172 "qXfer:siginfo:write", "write-siginfo-object", 0);
10173
10174 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10175 "qGetTLSAddr", "get-thread-local-storage-address",
10176 0);
10177
10178 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10179 "bc", "reverse-continue", 0);
10180
10181 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10182 "bs", "reverse-step", 0);
10183
10184 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10185 "qSupported", "supported-packets", 0);
10186
10187 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10188 "qSearch:memory", "search-memory", 0);
10189
10190 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10191 "vFile:open", "hostio-open", 0);
10192
10193 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10194 "vFile:pread", "hostio-pread", 0);
10195
10196 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10197 "vFile:pwrite", "hostio-pwrite", 0);
10198
10199 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10200 "vFile:close", "hostio-close", 0);
10201
10202 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10203 "vFile:unlink", "hostio-unlink", 0);
10204
10205 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10206 "vAttach", "attach", 0);
10207
10208 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10209 "vRun", "run", 0);
10210
10211 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10212 "QStartNoAckMode", "noack", 0);
10213
10214 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10215 "vKill", "kill", 0);
10216
10217 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10218 "qAttached", "query-attached", 0);
10219
10220 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10221 "ConditionalTracepoints", "conditional-tracepoints", 0);
10222 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10223 "FastTracepoints", "fast-tracepoints", 0);
10224
10225 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10226 Z sub-packet has its own set and show commands, but users may
10227 have sets to this variable in their .gdbinit files (or in their
10228 documentation). */
10229 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10230 &remote_Z_packet_detect, _("\
10231 Set use of remote protocol `Z' packets"), _("\
10232 Show use of remote protocol `Z' packets "), _("\
10233 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10234 packets."),
10235 set_remote_protocol_Z_packet_cmd,
10236 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
10237 &remote_set_cmdlist, &remote_show_cmdlist);
10238
10239 add_prefix_cmd ("remote", class_files, remote_command, _("\
10240 Manipulate files on the remote system\n\
10241 Transfer files to and from the remote target system."),
10242 &remote_cmdlist, "remote ",
10243 0 /* allow-unknown */, &cmdlist);
10244
10245 add_cmd ("put", class_files, remote_put_command,
10246 _("Copy a local file to the remote system."),
10247 &remote_cmdlist);
10248
10249 add_cmd ("get", class_files, remote_get_command,
10250 _("Copy a remote file to the local system."),
10251 &remote_cmdlist);
10252
10253 add_cmd ("delete", class_files, remote_delete_command,
10254 _("Delete a remote file."),
10255 &remote_cmdlist);
10256
10257 remote_exec_file = xstrdup ("");
10258 add_setshow_string_noescape_cmd ("exec-file", class_files,
10259 &remote_exec_file, _("\
10260 Set the remote pathname for \"run\""), _("\
10261 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10262 &remote_set_cmdlist, &remote_show_cmdlist);
10263
10264 /* Eventually initialize fileio. See fileio.c */
10265 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10266
10267 /* Take advantage of the fact that the LWP field is not used, to tag
10268 special ptids with it set to != 0. */
10269 magic_null_ptid = ptid_build (42000, 1, -1);
10270 not_sent_ptid = ptid_build (42000, 1, -2);
10271 any_thread_ptid = ptid_build (42000, 1, 0);
10272
10273 target_buf_size = 2048;
10274 target_buf = xmalloc (target_buf_size);
10275 }
10276