]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
This commit was generated by cvs2svn to track changes on a CVS vendor
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2 Copyright 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* Remote communication protocol.
21
22 A debug packet whose contents are <data>
23 is encapsulated for transmission in the form:
24
25 $ <data> # CSUM1 CSUM2
26
27 <data> must be ASCII alphanumeric and cannot include characters
28 '$' or '#'. If <data> starts with two characters followed by
29 ':', then the existing stubs interpret this as a sequence number.
30
31 CSUM1 and CSUM2 are ascii hex representation of an 8-bit
32 checksum of <data>, the most significant nibble is sent first.
33 the hex digits 0-9,a-f are used.
34
35 Receiver responds with:
36
37 + - if CSUM is correct and ready for next packet
38 - - if CSUM is incorrect
39
40 <data> is as follows:
41 Most values are encoded in ascii hex digits. Signal numbers are according
42 to the numbering in target.h.
43
44 Request Packet
45
46 set thread Hct... Set thread for subsequent operations.
47 c = 'c' for thread used in step and
48 continue; t... can be -1 for all
49 threads.
50 c = 'g' for thread used in other
51 operations. If zero, pick a thread,
52 any thread.
53 reply OK for success
54 ENN for an error.
55
56 read registers g
57 reply XX....X Each byte of register data
58 is described by two hex digits.
59 Registers are in the internal order
60 for GDB, and the bytes in a register
61 are in the same order the machine uses.
62 or ENN for an error.
63
64 write regs GXX..XX Each byte of register data
65 is described by two hex digits.
66 reply OK for success
67 ENN for an error
68
69 write reg Pn...=r... Write register n... with value r...,
70 which contains two hex digits for each
71 byte in the register (target byte
72 order).
73 reply OK for success
74 ENN for an error
75 (not supported by all stubs).
76
77 read mem mAA..AA,LLLL AA..AA is address, LLLL is length.
78 reply XX..XX XX..XX is mem contents
79 Can be fewer bytes than requested
80 if able to read only part of the data.
81 or ENN NN is errno
82
83 write mem MAA..AA,LLLL:XX..XX
84 AA..AA is address,
85 LLLL is number of bytes,
86 XX..XX is data
87 reply OK for success
88 ENN for an error (this includes the case
89 where only part of the data was
90 written).
91
92 continue cAA..AA AA..AA is address to resume
93 If AA..AA is omitted,
94 resume at same address.
95
96 step sAA..AA AA..AA is address to resume
97 If AA..AA is omitted,
98 resume at same address.
99
100 continue with Csig;AA..AA Continue with signal sig (hex signal
101 signal number). If ;AA..AA is omitted, resume
102 at same address.
103
104 step with Ssig;AA..AA Like 'C' but step not continue.
105 signal
106
107 last signal ? Reply the current reason for stopping.
108 This is the same reply as is generated
109 for step or cont : SAA where AA is the
110 signal number.
111
112 detach D Reply OK.
113
114 There is no immediate reply to step or cont.
115 The reply comes when the machine stops.
116 It is SAA AA is the signal number.
117
118 or... TAAn...:r...;n...:r...;n...:r...;
119 AA = signal number
120 n... = register number (hex)
121 r... = register contents
122 n... = `thread'
123 r... = thread process ID. This is
124 a hex integer.
125 n... = other string not starting
126 with valid hex digit.
127 gdb should ignore this n,r pair
128 and go on to the next. This way
129 we can extend the protocol.
130 or... WAA The process exited, and AA is
131 the exit status. This is only
132 applicable for certains sorts of
133 targets.
134 or... XAA The process terminated with signal
135 AA.
136 or... OXX..XX XX..XX is hex encoding of ASCII data. This
137 can happen at any time while the program is
138 running and the debugger should
139 continue to wait for 'W', 'T', etc.
140
141 thread alive TXX Find out if the thread XX is alive.
142 reply OK thread is still alive
143 ENN thread is dead
144
145 remote restart RXX Restart the remote server
146
147 extended ops ! Use the extended remote protocol.
148 Sticky -- only needs to be set once.
149
150 kill request k
151
152 toggle debug d toggle debug flag (see 386 & 68k stubs)
153 reset r reset -- see sparc stub.
154 reserved <other> On other requests, the stub should
155 ignore the request and send an empty
156 response ($#<checksum>). This way
157 we can extend the protocol and GDB
158 can tell whether the stub it is
159 talking to uses the old or the new.
160 search tAA:PP,MM Search backwards starting at address
161 AA for a match with pattern PP and
162 mask MM. PP and MM are 4 bytes.
163 Not supported by all stubs.
164
165 general query qXXXX Request info about XXXX.
166 general set QXXXX=yyyy Set value of XXXX to yyyy.
167 query sect offs qOffsets Get section offsets. Reply is
168 Text=xxx;Data=yyy;Bss=zzz
169
170 Responses can be run-length encoded to save space. A '*' means that
171 the next character is an ASCII encoding giving a repeat count which
172 stands for that many repititions of the character preceding the '*'.
173 The encoding is n+29, yielding a printable character where n >=3
174 (which is where rle starts to win). Don't use an n > 126.
175
176 So
177 "0* " means the same as "0000". */
178
179 #include "defs.h"
180 #include "gdb_string.h"
181 #include <fcntl.h>
182 #include "frame.h"
183 #include "inferior.h"
184 #include "bfd.h"
185 #include "symfile.h"
186 #include "target.h"
187 #include "wait.h"
188 /*#include "terminal.h"*/
189 #include "gdbcmd.h"
190 #include "objfiles.h"
191 #include "gdb-stabs.h"
192 #include "gdbthread.h"
193
194 #include "dcache.h"
195
196 #ifdef USG
197 #include <sys/types.h>
198 #endif
199
200 #include <signal.h>
201 #include "serial.h"
202
203 /* Prototypes for local functions */
204
205 static int remote_write_bytes PARAMS ((CORE_ADDR memaddr,
206 char *myaddr, int len));
207
208 static int remote_read_bytes PARAMS ((CORE_ADDR memaddr,
209 char *myaddr, int len));
210
211 static void remote_files_info PARAMS ((struct target_ops *ignore));
212
213 static int remote_xfer_memory PARAMS ((CORE_ADDR memaddr, char *myaddr,
214 int len, int should_write,
215 struct target_ops *target));
216
217 static void remote_prepare_to_store PARAMS ((void));
218
219 static void remote_fetch_registers PARAMS ((int regno));
220
221 static void remote_resume PARAMS ((int pid, int step,
222 enum target_signal siggnal));
223
224 static int remote_start_remote PARAMS ((char *dummy));
225
226 static void remote_open PARAMS ((char *name, int from_tty));
227
228 static void extended_remote_open PARAMS ((char *name, int from_tty));
229
230 static void remote_open_1 PARAMS ((char *, int, struct target_ops *, int extended_p));
231
232 static void remote_close PARAMS ((int quitting));
233
234 static void remote_store_registers PARAMS ((int regno));
235
236 static void remote_mourn PARAMS ((void));
237
238 static void extended_remote_restart PARAMS ((void));
239
240 static void extended_remote_mourn PARAMS ((void));
241
242 static void extended_remote_create_inferior PARAMS ((char *, char *, char **));
243
244 static void remote_mourn_1 PARAMS ((struct target_ops *));
245
246 static void remote_send PARAMS ((char *buf));
247
248 static int readchar PARAMS ((int timeout));
249
250 static int remote_wait PARAMS ((int pid, struct target_waitstatus *status));
251
252 static void remote_kill PARAMS ((void));
253
254 static int tohex PARAMS ((int nib));
255
256 static void remote_detach PARAMS ((char *args, int from_tty));
257
258 static void remote_interrupt PARAMS ((int signo));
259
260 static void remote_interrupt_twice PARAMS ((int signo));
261
262 static void interrupt_query PARAMS ((void));
263
264 static void set_thread PARAMS ((int, int));
265
266 static int remote_thread_alive PARAMS ((int));
267
268 static void get_offsets PARAMS ((void));
269
270 static int read_frame PARAMS ((char *));
271
272 static int remote_insert_breakpoint PARAMS ((CORE_ADDR, char *));
273
274 static int remote_remove_breakpoint PARAMS ((CORE_ADDR, char *));
275
276 static int hexnumlen PARAMS ((ULONGEST num));
277
278 static struct target_ops remote_ops; /* Forward decl */
279 static struct target_ops extended_remote_ops; /* Forward decl */
280
281 /* exported functions */
282
283 extern int fromhex PARAMS ((int a));
284 extern void getpkt PARAMS ((char *buf, int forever));
285 extern int putpkt PARAMS ((char *buf));
286
287
288 /* This was 5 seconds, which is a long time to sit and wait.
289 Unless this is going though some terminal server or multiplexer or
290 other form of hairy serial connection, I would think 2 seconds would
291 be plenty. */
292
293 /* Changed to allow option to set timeout value.
294 was static int remote_timeout = 2; */
295 extern int remote_timeout;
296
297 /* This variable chooses whether to send a ^C or a break when the user
298 requests program interruption. Although ^C is usually what remote
299 systems expect, and that is the default here, sometimes a break is
300 preferable instead. */
301
302 static int remote_break;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 static serial_t remote_desc = NULL;
308
309 /* Having this larger than 400 causes us to be incompatible with m68k-stub.c
310 and i386-stub.c. Normally, no one would notice because it only matters
311 for writing large chunks of memory (e.g. in downloads). Also, this needs
312 to be more than 400 if required to hold the registers (see below, where
313 we round it up based on REGISTER_BYTES). */
314 #define PBUFSIZ 400
315
316 /* Maximum number of bytes to read/write at once. The value here
317 is chosen to fill up a packet (the headers account for the 32). */
318 #define MAXBUFBYTES ((PBUFSIZ-32)/2)
319
320 /* Round up PBUFSIZ to hold all the registers, at least. */
321 /* The blank line after the #if seems to be required to work around a
322 bug in HP's PA compiler. */
323 #if REGISTER_BYTES > MAXBUFBYTES
324
325 #undef PBUFSIZ
326 #define PBUFSIZ (REGISTER_BYTES * 2 + 32)
327 #endif
328
329 /* This variable sets the number of bytes to be written to the target
330 in a single packet. Normally PBUFSIZ is satisfactory, but some
331 targets need smaller values (perhaps because the receiving end
332 is slow). */
333
334 static int remote_write_size = PBUFSIZ;
335
336 /* This is the size (in chars) of the first response to the `g' command. This
337 is used to limit the size of the memory read and write commands to prevent
338 stub buffers from overflowing. The size does not include headers and
339 trailers, it is only the payload size. */
340
341 static int remote_register_buf_size = 0;
342
343 /* Should we try the 'P' request? If this is set to one when the stub
344 doesn't support 'P', the only consequence is some unnecessary traffic. */
345 static int stub_supports_P = 1;
346
347 /* These are pointers to hook functions that may be set in order to
348 modify resume/wait behavior for a particular architecture. */
349
350 void (*target_resume_hook) PARAMS ((void));
351 void (*target_wait_loop_hook) PARAMS ((void));
352
353 \f
354 /* These are the threads which we last sent to the remote system. -1 for all
355 or -2 for not sent yet. */
356 int general_thread;
357 int cont_thread;
358
359 static void
360 set_thread (th, gen)
361 int th;
362 int gen;
363 {
364 char buf[PBUFSIZ];
365 int state = gen ? general_thread : cont_thread;
366 if (state == th)
367 return;
368 buf[0] = 'H';
369 buf[1] = gen ? 'g' : 'c';
370 if (th == 42000)
371 {
372 buf[2] = '0';
373 buf[3] = '\0';
374 }
375 else if (th < 0)
376 sprintf (&buf[2], "-%x", -th);
377 else
378 sprintf (&buf[2], "%x", th);
379 putpkt (buf);
380 getpkt (buf, 0);
381 if (gen)
382 general_thread = th;
383 else
384 cont_thread = th;
385 }
386 \f
387 /* Return nonzero if the thread TH is still alive on the remote system. */
388
389 static int
390 remote_thread_alive (th)
391 int th;
392 {
393 char buf[PBUFSIZ];
394
395 buf[0] = 'T';
396 if (th < 0)
397 sprintf (&buf[1], "-%x", -th);
398 else
399 sprintf (&buf[1], "%x", th);
400 putpkt (buf);
401 getpkt (buf, 0);
402 return (buf[0] == 'O' && buf[1] == 'K');
403 }
404
405 /* Restart the remote side; this is an extended protocol operation. */
406
407 static void
408 extended_remote_restart ()
409 {
410 char buf[PBUFSIZ];
411
412 /* Send the restart command; for reasons I don't understand the
413 remote side really expects a number after the "R". */
414 buf[0] = 'R';
415 sprintf (&buf[1], "%x", 0);
416 putpkt (buf);
417
418 /* Now query for status so this looks just like we restarted
419 gdbserver from scratch. */
420 putpkt ("?");
421 getpkt (buf, 0);
422 }
423 \f
424 /* Clean up connection to a remote debugger. */
425
426 /* ARGSUSED */
427 static void
428 remote_close (quitting)
429 int quitting;
430 {
431 if (remote_desc)
432 SERIAL_CLOSE (remote_desc);
433 remote_desc = NULL;
434 }
435
436 /* Query the remote side for the text, data and bss offsets. */
437
438 static void
439 get_offsets ()
440 {
441 char buf[PBUFSIZ], *ptr;
442 int lose;
443 CORE_ADDR text_addr, data_addr, bss_addr;
444 struct section_offsets *offs;
445
446 putpkt ("qOffsets");
447
448 getpkt (buf, 0);
449
450 if (buf[0] == '\000')
451 return; /* Return silently. Stub doesn't support this
452 command. */
453 if (buf[0] == 'E')
454 {
455 warning ("Remote failure reply: %s", buf);
456 return;
457 }
458
459 /* Pick up each field in turn. This used to be done with scanf, but
460 scanf will make trouble if CORE_ADDR size doesn't match
461 conversion directives correctly. The following code will work
462 with any size of CORE_ADDR. */
463 text_addr = data_addr = bss_addr = 0;
464 ptr = buf;
465 lose = 0;
466
467 if (strncmp (ptr, "Text=", 5) == 0)
468 {
469 ptr += 5;
470 /* Don't use strtol, could lose on big values. */
471 while (*ptr && *ptr != ';')
472 text_addr = (text_addr << 4) + fromhex (*ptr++);
473 }
474 else
475 lose = 1;
476
477 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
478 {
479 ptr += 6;
480 while (*ptr && *ptr != ';')
481 data_addr = (data_addr << 4) + fromhex (*ptr++);
482 }
483 else
484 lose = 1;
485
486 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
487 {
488 ptr += 5;
489 while (*ptr && *ptr != ';')
490 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
491 }
492 else
493 lose = 1;
494
495 if (lose)
496 error ("Malformed response to offset query, %s", buf);
497
498 if (symfile_objfile == NULL)
499 return;
500
501 offs = (struct section_offsets *) alloca (sizeof (struct section_offsets)
502 + symfile_objfile->num_sections
503 * sizeof (offs->offsets));
504 memcpy (offs, symfile_objfile->section_offsets,
505 sizeof (struct section_offsets)
506 + symfile_objfile->num_sections
507 * sizeof (offs->offsets));
508
509 ANOFFSET (offs, SECT_OFF_TEXT) = text_addr;
510
511 /* This is a temporary kludge to force data and bss to use the same offsets
512 because that's what nlmconv does now. The real solution requires changes
513 to the stub and remote.c that I don't have time to do right now. */
514
515 ANOFFSET (offs, SECT_OFF_DATA) = data_addr;
516 ANOFFSET (offs, SECT_OFF_BSS) = data_addr;
517
518 objfile_relocate (symfile_objfile, offs);
519 }
520
521 /* Stub for catch_errors. */
522
523 static int
524 remote_start_remote (dummy)
525 char *dummy;
526 {
527 immediate_quit = 1; /* Allow user to interrupt it */
528
529 /* Ack any packet which the remote side has already sent. */
530 SERIAL_WRITE (remote_desc, "+", 1);
531
532 /* Let the stub know that we want it to return the thread. */
533 set_thread (-1, 0);
534
535 get_offsets (); /* Get text, data & bss offsets */
536
537 putpkt ("?"); /* initiate a query from remote machine */
538 immediate_quit = 0;
539
540 start_remote (); /* Initialize gdb process mechanisms */
541 return 1;
542 }
543
544 /* Open a connection to a remote debugger.
545 NAME is the filename used for communication. */
546
547 static void
548 remote_open (name, from_tty)
549 char *name;
550 int from_tty;
551 {
552 remote_open_1 (name, from_tty, &remote_ops, 0);
553 }
554
555 /* Open a connection to a remote debugger using the extended
556 remote gdb protocol. NAME is the filename used for communication. */
557
558 static void
559 extended_remote_open (name, from_tty)
560 char *name;
561 int from_tty;
562 {
563 remote_open_1 (name, from_tty, &extended_remote_ops, 1/*extended_p*/);
564 }
565
566 /* Generic code for opening a connection to a remote target. */
567 static DCACHE *remote_dcache;
568
569 static void
570 remote_open_1 (name, from_tty, target, extended_p)
571 char *name;
572 int from_tty;
573 struct target_ops *target;
574 int extended_p;
575 {
576 if (name == 0)
577 error ("To open a remote debug connection, you need to specify what serial\n\
578 device is attached to the remote system (e.g. /dev/ttya).");
579
580 target_preopen (from_tty);
581
582 unpush_target (target);
583
584 remote_dcache = dcache_init (remote_read_bytes, remote_write_bytes);
585
586 remote_desc = SERIAL_OPEN (name);
587 if (!remote_desc)
588 perror_with_name (name);
589
590 if (baud_rate != -1)
591 {
592 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
593 {
594 SERIAL_CLOSE (remote_desc);
595 perror_with_name (name);
596 }
597 }
598
599
600 SERIAL_RAW (remote_desc);
601
602 /* If there is something sitting in the buffer we might take it as a
603 response to a command, which would be bad. */
604 SERIAL_FLUSH_INPUT (remote_desc);
605
606 if (from_tty)
607 {
608 puts_filtered ("Remote debugging using ");
609 puts_filtered (name);
610 puts_filtered ("\n");
611 }
612 push_target (target); /* Switch to using remote target now */
613
614 /* Start out by trying the 'P' request to set registers. We set this each
615 time that we open a new target so that if the user switches from one
616 stub to another, we can (if the target is closed and reopened) cope. */
617 stub_supports_P = 1;
618
619 general_thread = -2;
620 cont_thread = -2;
621
622 /* Without this, some commands which require an active target (such as kill)
623 won't work. This variable serves (at least) double duty as both the pid
624 of the target process (if it has such), and as a flag indicating that a
625 target is active. These functions should be split out into seperate
626 variables, especially since GDB will someday have a notion of debugging
627 several processes. */
628
629 inferior_pid = 42000;
630 /* Start the remote connection; if error (0), discard this target.
631 In particular, if the user quits, be sure to discard it
632 (we'd be in an inconsistent state otherwise). */
633 if (!catch_errors (remote_start_remote, (char *)0,
634 "Couldn't establish connection to remote target\n", RETURN_MASK_ALL))
635 pop_target();
636
637
638 if (extended_p)
639 {
640 /* tell the remote that we're using the extended protocol. */
641 char buf[PBUFSIZ];
642 putpkt ("!");
643 getpkt (buf, 0);
644 }
645 }
646
647 /* This takes a program previously attached to and detaches it. After
648 this is done, GDB can be used to debug some other program. We
649 better not have left any breakpoints in the target program or it'll
650 die when it hits one. */
651
652 static void
653 remote_detach (args, from_tty)
654 char *args;
655 int from_tty;
656 {
657 char buf[PBUFSIZ];
658
659 if (args)
660 error ("Argument given to \"detach\" when remotely debugging.");
661
662 /* Tell the remote target to detach. */
663 strcpy (buf, "D");
664 remote_send (buf);
665
666 pop_target ();
667 if (from_tty)
668 puts_filtered ("Ending remote debugging.\n");
669 }
670
671 /* Convert hex digit A to a number. */
672
673 int
674 fromhex (a)
675 int a;
676 {
677 if (a >= '0' && a <= '9')
678 return a - '0';
679 else if (a >= 'a' && a <= 'f')
680 return a - 'a' + 10;
681 else if (a >= 'A' && a <= 'F')
682 return a - 'A' + 10;
683 else
684 error ("Reply contains invalid hex digit %d", a);
685 }
686
687 /* Convert number NIB to a hex digit. */
688
689 static int
690 tohex (nib)
691 int nib;
692 {
693 if (nib < 10)
694 return '0'+nib;
695 else
696 return 'a'+nib-10;
697 }
698 \f
699 /* Tell the remote machine to resume. */
700
701 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
702 int last_sent_step;
703
704 static void
705 remote_resume (pid, step, siggnal)
706 int pid, step;
707 enum target_signal siggnal;
708 {
709 char buf[PBUFSIZ];
710
711 if (pid == -1)
712 set_thread (inferior_pid, 0);
713 else
714 set_thread (pid, 0);
715
716 dcache_flush (remote_dcache);
717
718 last_sent_signal = siggnal;
719 last_sent_step = step;
720
721 /* A hook for when we need to do something at the last moment before
722 resumption. */
723 if (target_resume_hook)
724 (*target_resume_hook) ();
725
726 if (siggnal != TARGET_SIGNAL_0)
727 {
728 buf[0] = step ? 'S' : 'C';
729 buf[1] = tohex (((int)siggnal >> 4) & 0xf);
730 buf[2] = tohex ((int)siggnal & 0xf);
731 buf[3] = '\0';
732 }
733 else
734 strcpy (buf, step ? "s": "c");
735
736 putpkt (buf);
737 }
738 \f
739 /* Send ^C to target to halt it. Target will respond, and send us a
740 packet. */
741
742 static void
743 remote_interrupt (signo)
744 int signo;
745 {
746 /* If this doesn't work, try more severe steps. */
747 signal (signo, remote_interrupt_twice);
748
749 if (remote_debug)
750 printf_unfiltered ("remote_interrupt called\n");
751
752 /* Send a break or a ^C, depending on user preference. */
753 if (remote_break)
754 SERIAL_SEND_BREAK (remote_desc);
755 else
756 SERIAL_WRITE (remote_desc, "\003", 1);
757 }
758
759 static void (*ofunc)();
760
761 /* The user typed ^C twice. */
762 static void
763 remote_interrupt_twice (signo)
764 int signo;
765 {
766 signal (signo, ofunc);
767
768 interrupt_query ();
769
770 signal (signo, remote_interrupt);
771 }
772
773 /* Ask the user what to do when an interrupt is received. */
774
775 static void
776 interrupt_query ()
777 {
778 target_terminal_ours ();
779
780 if (query ("Interrupted while waiting for the program.\n\
781 Give up (and stop debugging it)? "))
782 {
783 target_mourn_inferior ();
784 return_to_top_level (RETURN_QUIT);
785 }
786
787 target_terminal_inferior ();
788 }
789
790 /* If nonzero, ignore the next kill. */
791 int kill_kludge;
792
793 void
794 remote_console_output (msg)
795 char *msg;
796 {
797 char *p;
798
799 for (p = msg; *p; p +=2)
800 {
801 char tb[2];
802 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
803 tb[0] = c;
804 tb[1] = 0;
805 if (target_output_hook)
806 target_output_hook (tb);
807 else
808 fputs_filtered (tb, gdb_stdout);
809 }
810 }
811
812 /* Wait until the remote machine stops, then return,
813 storing status in STATUS just as `wait' would.
814 Returns "pid" (though it's not clear what, if anything, that
815 means in the case of this target). */
816
817 static int
818 remote_wait (pid, status)
819 int pid;
820 struct target_waitstatus *status;
821 {
822 unsigned char buf[PBUFSIZ];
823 int thread_num = -1;
824
825 status->kind = TARGET_WAITKIND_EXITED;
826 status->value.integer = 0;
827
828 while (1)
829 {
830 unsigned char *p;
831
832 ofunc = (void (*)()) signal (SIGINT, remote_interrupt);
833 getpkt ((char *) buf, 1);
834 signal (SIGINT, ofunc);
835
836 /* This is a hook for when we need to do something (perhaps the
837 collection of trace data) every time the target stops. */
838 if (target_wait_loop_hook)
839 (*target_wait_loop_hook) ();
840
841 switch (buf[0])
842 {
843 case 'E': /* Error of some sort */
844 warning ("Remote failure reply: %s", buf);
845 continue;
846 case 'T': /* Status with PC, SP, FP, ... */
847 {
848 int i;
849 long regno;
850 char regs[MAX_REGISTER_RAW_SIZE];
851
852 /* Expedited reply, containing Signal, {regno, reg} repeat */
853 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
854 ss = signal number
855 n... = register number
856 r... = register contents
857 */
858 p = &buf[3]; /* after Txx */
859
860 while (*p)
861 {
862 unsigned char *p1;
863 char *p_temp;
864
865 regno = strtol ((const char *) p, &p_temp, 16); /* Read the register number */
866 p1 = (unsigned char *)p_temp;
867
868 if (p1 == p)
869 {
870 p1 = (unsigned char *) strchr ((const char *) p, ':');
871 if (p1 == NULL)
872 warning ("Malformed packet (missing colon): %s\n\
873 Packet: '%s'\n",
874 p, buf);
875 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
876 {
877 thread_num = strtol ((const char *) ++p1, &p_temp, 16);
878 p = (unsigned char *)p_temp;
879 }
880 }
881 else
882 {
883 p = p1;
884
885 if (*p++ != ':')
886 warning ("Malformed packet (missing colon): %s\n\
887 Packet: '%s'\n",
888 p, buf);
889
890 if (regno >= NUM_REGS)
891 warning ("Remote sent bad register number %ld: %s\n\
892 Packet: '%s'\n",
893 regno, p, buf);
894
895 for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
896 {
897 if (p[0] == 0 || p[1] == 0)
898 warning ("Remote reply is too short: %s", buf);
899 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
900 p += 2;
901 }
902 supply_register (regno, regs);
903 }
904
905 if (*p++ != ';')
906 warning ("Remote register badly formatted: %s", buf);
907 }
908 }
909 /* fall through */
910 case 'S': /* Old style status, just signal only */
911 status->kind = TARGET_WAITKIND_STOPPED;
912 status->value.sig = (enum target_signal)
913 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
914
915 goto got_status;
916 case 'W': /* Target exited */
917 {
918 /* The remote process exited. */
919 status->kind = TARGET_WAITKIND_EXITED;
920 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
921 goto got_status;
922 }
923 case 'X':
924 status->kind = TARGET_WAITKIND_SIGNALLED;
925 status->value.sig = (enum target_signal)
926 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
927 kill_kludge = 1;
928
929 goto got_status;
930 case 'O': /* Console output */
931 remote_console_output (buf + 1);
932 continue;
933 case '\0':
934 if (last_sent_signal != TARGET_SIGNAL_0)
935 {
936 /* Zero length reply means that we tried 'S' or 'C' and
937 the remote system doesn't support it. */
938 target_terminal_ours_for_output ();
939 printf_filtered
940 ("Can't send signals to this remote system. %s not sent.\n",
941 target_signal_to_name (last_sent_signal));
942 last_sent_signal = TARGET_SIGNAL_0;
943 target_terminal_inferior ();
944
945 strcpy ((char *) buf, last_sent_step ? "s" : "c");
946 putpkt ((char *) buf);
947 continue;
948 }
949 /* else fallthrough */
950 default:
951 warning ("Invalid remote reply: %s", buf);
952 continue;
953 }
954 }
955 got_status:
956 if (thread_num != -1)
957 {
958 /* Initial thread value can only be acquired via wait, so deal with
959 this marker which is used before the first thread value is
960 acquired. */
961 if (inferior_pid == 42000)
962 {
963 inferior_pid = thread_num;
964 add_thread (inferior_pid);
965 }
966 return thread_num;
967 }
968 return inferior_pid;
969 }
970
971 /* Number of bytes of registers this stub implements. */
972 static int register_bytes_found;
973
974 /* Read the remote registers into the block REGS. */
975 /* Currently we just read all the registers, so we don't use regno. */
976 /* ARGSUSED */
977 static void
978 remote_fetch_registers (regno)
979 int regno;
980 {
981 char buf[PBUFSIZ];
982 int i;
983 char *p;
984 char regs[REGISTER_BYTES];
985
986 set_thread (inferior_pid, 1);
987
988 sprintf (buf, "g");
989 remote_send (buf);
990
991 if (remote_register_buf_size == 0)
992 remote_register_buf_size = strlen (buf);
993
994 /* Unimplemented registers read as all bits zero. */
995 memset (regs, 0, REGISTER_BYTES);
996
997 /* We can get out of synch in various cases. If the first character
998 in the buffer is not a hex character, assume that has happened
999 and try to fetch another packet to read. */
1000 while ((buf[0] < '0' || buf[0] > '9')
1001 && (buf[0] < 'a' || buf[0] > 'f'))
1002 {
1003 if (remote_debug)
1004 printf_unfiltered ("Bad register packet; fetching a new packet\n");
1005 getpkt (buf, 0);
1006 }
1007
1008 /* Reply describes registers byte by byte, each byte encoded as two
1009 hex characters. Suck them all up, then supply them to the
1010 register cacheing/storage mechanism. */
1011
1012 p = buf;
1013 for (i = 0; i < REGISTER_BYTES; i++)
1014 {
1015 if (p[0] == 0)
1016 break;
1017 if (p[1] == 0)
1018 {
1019 warning ("Remote reply is of odd length: %s", buf);
1020 /* Don't change register_bytes_found in this case, and don't
1021 print a second warning. */
1022 goto supply_them;
1023 }
1024 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
1025 p += 2;
1026 }
1027
1028 if (i != register_bytes_found)
1029 {
1030 register_bytes_found = i;
1031 #ifdef REGISTER_BYTES_OK
1032 if (!REGISTER_BYTES_OK (i))
1033 warning ("Remote reply is too short: %s", buf);
1034 #endif
1035 }
1036
1037 supply_them:
1038 for (i = 0; i < NUM_REGS; i++)
1039 supply_register (i, &regs[REGISTER_BYTE(i)]);
1040 }
1041
1042 /* Prepare to store registers. Since we may send them all (using a
1043 'G' request), we have to read out the ones we don't want to change
1044 first. */
1045
1046 static void
1047 remote_prepare_to_store ()
1048 {
1049 /* Make sure the entire registers array is valid. */
1050 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
1051 }
1052
1053 /* Store register REGNO, or all registers if REGNO == -1, from the contents
1054 of REGISTERS. FIXME: ignores errors. */
1055
1056 static void
1057 remote_store_registers (regno)
1058 int regno;
1059 {
1060 char buf[PBUFSIZ];
1061 int i;
1062 char *p;
1063
1064 set_thread (inferior_pid, 1);
1065
1066 if (regno >= 0 && stub_supports_P)
1067 {
1068 /* Try storing a single register. */
1069 char *regp;
1070
1071 sprintf (buf, "P%x=", regno);
1072 p = buf + strlen (buf);
1073 regp = &registers[REGISTER_BYTE (regno)];
1074 for (i = 0; i < REGISTER_RAW_SIZE (regno); ++i)
1075 {
1076 *p++ = tohex ((regp[i] >> 4) & 0xf);
1077 *p++ = tohex (regp[i] & 0xf);
1078 }
1079 *p = '\0';
1080 remote_send (buf);
1081 if (buf[0] != '\0')
1082 {
1083 /* The stub understands the 'P' request. We are done. */
1084 return;
1085 }
1086
1087 /* The stub does not support the 'P' request. Use 'G' instead,
1088 and don't try using 'P' in the future (it will just waste our
1089 time). */
1090 stub_supports_P = 0;
1091 }
1092
1093 buf[0] = 'G';
1094
1095 /* Command describes registers byte by byte,
1096 each byte encoded as two hex characters. */
1097
1098 p = buf + 1;
1099 /* remote_prepare_to_store insures that register_bytes_found gets set. */
1100 for (i = 0; i < register_bytes_found; i++)
1101 {
1102 *p++ = tohex ((registers[i] >> 4) & 0xf);
1103 *p++ = tohex (registers[i] & 0xf);
1104 }
1105 *p = '\0';
1106
1107 remote_send (buf);
1108 }
1109
1110 /*
1111 Use of the data cache *used* to be disabled because it loses for looking at
1112 and changing hardware I/O ports and the like. Accepting `volatile'
1113 would perhaps be one way to fix it. Another idea would be to use the
1114 executable file for the text segment (for all SEC_CODE sections?
1115 For all SEC_READONLY sections?). This has problems if you want to
1116 actually see what the memory contains (e.g. self-modifying code,
1117 clobbered memory, user downloaded the wrong thing).
1118
1119 Because it speeds so much up, it's now enabled, if you're playing
1120 with registers you turn it of (set remotecache 0)
1121 */
1122
1123 /* Read a word from remote address ADDR and return it.
1124 This goes through the data cache. */
1125
1126 #if 0 /* unused? */
1127 static int
1128 remote_fetch_word (addr)
1129 CORE_ADDR addr;
1130 {
1131 return dcache_fetch (remote_dcache, addr);
1132 }
1133
1134 /* Write a word WORD into remote address ADDR.
1135 This goes through the data cache. */
1136
1137 static void
1138 remote_store_word (addr, word)
1139 CORE_ADDR addr;
1140 int word;
1141 {
1142 dcache_poke (remote_dcache, addr, word);
1143 }
1144 #endif /* 0 (unused?) */
1145
1146 \f
1147
1148 /* Return the number of hex digits in num. */
1149
1150 static int
1151 hexnumlen (num)
1152 ULONGEST num;
1153 {
1154 int i;
1155
1156 for (i = 0; num != 0; i++)
1157 num >>= 4;
1158
1159 return max (i, 1);
1160 }
1161
1162 /* Write memory data directly to the remote machine.
1163 This does not inform the data cache; the data cache uses this.
1164 MEMADDR is the address in the remote memory space.
1165 MYADDR is the address of the buffer in our space.
1166 LEN is the number of bytes.
1167
1168 Returns number of bytes transferred, or 0 for error. */
1169
1170 static int
1171 remote_write_bytes (memaddr, myaddr, len)
1172 CORE_ADDR memaddr;
1173 char *myaddr;
1174 int len;
1175 {
1176 int max_buf_size; /* Max size of packet output buffer */
1177 int origlen;
1178
1179 /* Chop the transfer down if necessary */
1180
1181 max_buf_size = min (remote_write_size, PBUFSIZ);
1182 if (remote_register_buf_size != 0)
1183 max_buf_size = min (max_buf_size, remote_register_buf_size);
1184
1185 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
1186 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
1187
1188 origlen = len;
1189 while (len > 0)
1190 {
1191 char buf[PBUFSIZ];
1192 char *p;
1193 int todo;
1194 int i;
1195
1196 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
1197
1198 /* FIXME-32x64: Need a version of print_address_numeric which puts the
1199 result in a buffer like sprintf. */
1200 sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo);
1201
1202 /* We send target system values byte by byte, in increasing byte addresses,
1203 each byte encoded as two hex characters. */
1204
1205 p = buf + strlen (buf);
1206 for (i = 0; i < todo; i++)
1207 {
1208 *p++ = tohex ((myaddr[i] >> 4) & 0xf);
1209 *p++ = tohex (myaddr[i] & 0xf);
1210 }
1211 *p = '\0';
1212
1213 putpkt (buf);
1214 getpkt (buf, 0);
1215
1216 if (buf[0] == 'E')
1217 {
1218 /* There is no correspondance between what the remote protocol uses
1219 for errors and errno codes. We would like a cleaner way of
1220 representing errors (big enough to include errno codes, bfd_error
1221 codes, and others). But for now just return EIO. */
1222 errno = EIO;
1223 return 0;
1224 }
1225 myaddr += todo;
1226 memaddr += todo;
1227 len -= todo;
1228 }
1229 return origlen;
1230 }
1231
1232 /* Read memory data directly from the remote machine.
1233 This does not use the data cache; the data cache uses this.
1234 MEMADDR is the address in the remote memory space.
1235 MYADDR is the address of the buffer in our space.
1236 LEN is the number of bytes.
1237
1238 Returns number of bytes transferred, or 0 for error. */
1239
1240 static int
1241 remote_read_bytes (memaddr, myaddr, len)
1242 CORE_ADDR memaddr;
1243 char *myaddr;
1244 int len;
1245 {
1246 int max_buf_size; /* Max size of packet output buffer */
1247 int origlen;
1248
1249 /* Chop the transfer down if necessary */
1250
1251 max_buf_size = min (remote_write_size, PBUFSIZ);
1252 if (remote_register_buf_size != 0)
1253 max_buf_size = min (max_buf_size, remote_register_buf_size);
1254
1255 origlen = len;
1256 while (len > 0)
1257 {
1258 char buf[PBUFSIZ];
1259 char *p;
1260 int todo;
1261 int i;
1262
1263 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
1264
1265 /* FIXME-32x64: Need a version of print_address_numeric which puts the
1266 result in a buffer like sprintf. */
1267 sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo);
1268 putpkt (buf);
1269 getpkt (buf, 0);
1270
1271 if (buf[0] == 'E')
1272 {
1273 /* There is no correspondance between what the remote protocol uses
1274 for errors and errno codes. We would like a cleaner way of
1275 representing errors (big enough to include errno codes, bfd_error
1276 codes, and others). But for now just return EIO. */
1277 errno = EIO;
1278 return 0;
1279 }
1280
1281 /* Reply describes memory byte by byte,
1282 each byte encoded as two hex characters. */
1283
1284 p = buf;
1285 for (i = 0; i < todo; i++)
1286 {
1287 if (p[0] == 0 || p[1] == 0)
1288 /* Reply is short. This means that we were able to read only part
1289 of what we wanted to. */
1290 return i + (origlen - len);
1291 myaddr[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
1292 p += 2;
1293 }
1294 myaddr += todo;
1295 memaddr += todo;
1296 len -= todo;
1297 }
1298 return origlen;
1299 }
1300 \f
1301 /* Read or write LEN bytes from inferior memory at MEMADDR, transferring
1302 to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is
1303 nonzero. Returns length of data written or read; 0 for error. */
1304
1305 /* ARGSUSED */
1306 static int
1307 remote_xfer_memory(memaddr, myaddr, len, should_write, target)
1308 CORE_ADDR memaddr;
1309 char *myaddr;
1310 int len;
1311 int should_write;
1312 struct target_ops *target; /* ignored */
1313 {
1314 return dcache_xfer_memory (remote_dcache, memaddr, myaddr, len, should_write);
1315 }
1316
1317
1318 #if 0
1319 /* Enable after 4.12. */
1320
1321 void
1322 remote_search (len, data, mask, startaddr, increment, lorange, hirange
1323 addr_found, data_found)
1324 int len;
1325 char *data;
1326 char *mask;
1327 CORE_ADDR startaddr;
1328 int increment;
1329 CORE_ADDR lorange;
1330 CORE_ADDR hirange;
1331 CORE_ADDR *addr_found;
1332 char *data_found;
1333 {
1334 if (increment == -4 && len == 4)
1335 {
1336 long mask_long, data_long;
1337 long data_found_long;
1338 CORE_ADDR addr_we_found;
1339 char buf[PBUFSIZ];
1340 long returned_long[2];
1341 char *p;
1342
1343 mask_long = extract_unsigned_integer (mask, len);
1344 data_long = extract_unsigned_integer (data, len);
1345 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
1346 putpkt (buf);
1347 getpkt (buf, 0);
1348 if (buf[0] == '\0')
1349 {
1350 /* The stub doesn't support the 't' request. We might want to
1351 remember this fact, but on the other hand the stub could be
1352 switched on us. Maybe we should remember it only until
1353 the next "target remote". */
1354 generic_search (len, data, mask, startaddr, increment, lorange,
1355 hirange, addr_found, data_found);
1356 return;
1357 }
1358
1359 if (buf[0] == 'E')
1360 /* There is no correspondance between what the remote protocol uses
1361 for errors and errno codes. We would like a cleaner way of
1362 representing errors (big enough to include errno codes, bfd_error
1363 codes, and others). But for now just use EIO. */
1364 memory_error (EIO, startaddr);
1365 p = buf;
1366 addr_we_found = 0;
1367 while (*p != '\0' && *p != ',')
1368 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
1369 if (*p == '\0')
1370 error ("Protocol error: short return for search");
1371
1372 data_found_long = 0;
1373 while (*p != '\0' && *p != ',')
1374 data_found_long = (data_found_long << 4) + fromhex (*p++);
1375 /* Ignore anything after this comma, for future extensions. */
1376
1377 if (addr_we_found < lorange || addr_we_found >= hirange)
1378 {
1379 *addr_found = 0;
1380 return;
1381 }
1382
1383 *addr_found = addr_we_found;
1384 *data_found = store_unsigned_integer (data_we_found, len);
1385 return;
1386 }
1387 generic_search (len, data, mask, startaddr, increment, lorange,
1388 hirange, addr_found, data_found);
1389 }
1390 #endif /* 0 */
1391 \f
1392 static void
1393 remote_files_info (ignore)
1394 struct target_ops *ignore;
1395 {
1396 puts_filtered ("Debugging a target over a serial line.\n");
1397 }
1398 \f
1399 /* Stuff for dealing with the packets which are part of this protocol.
1400 See comment at top of file for details. */
1401
1402 /* Read a single character from the remote end, masking it down to 7 bits. */
1403
1404 static int
1405 readchar (timeout)
1406 int timeout;
1407 {
1408 int ch;
1409
1410 ch = SERIAL_READCHAR (remote_desc, timeout);
1411
1412 switch (ch)
1413 {
1414 case SERIAL_EOF:
1415 error ("Remote connection closed");
1416 case SERIAL_ERROR:
1417 perror_with_name ("Remote communication error");
1418 case SERIAL_TIMEOUT:
1419 return ch;
1420 default:
1421 return ch & 0x7f;
1422 }
1423 }
1424
1425 /* Send the command in BUF to the remote machine,
1426 and read the reply into BUF.
1427 Report an error if we get an error reply. */
1428
1429 static void
1430 remote_send (buf)
1431 char *buf;
1432 {
1433 putpkt (buf);
1434 getpkt (buf, 0);
1435
1436 if (buf[0] == 'E')
1437 error ("Remote failure reply: %s", buf);
1438 }
1439
1440 /* Send a packet to the remote machine, with error checking.
1441 The data of the packet is in BUF. */
1442
1443 int
1444 putpkt (buf)
1445 char *buf;
1446 {
1447 int i;
1448 unsigned char csum = 0;
1449 char buf2[PBUFSIZ];
1450 int cnt = strlen (buf);
1451 int ch;
1452 int tcount = 0;
1453 char *p;
1454
1455 /* Copy the packet into buffer BUF2, encapsulating it
1456 and giving it a checksum. */
1457
1458 if (cnt > (int) sizeof (buf2) - 5) /* Prosanity check */
1459 abort();
1460
1461 p = buf2;
1462 *p++ = '$';
1463
1464 for (i = 0; i < cnt; i++)
1465 {
1466 csum += buf[i];
1467 *p++ = buf[i];
1468 }
1469 *p++ = '#';
1470 *p++ = tohex ((csum >> 4) & 0xf);
1471 *p++ = tohex (csum & 0xf);
1472
1473 /* Send it over and over until we get a positive ack. */
1474
1475 while (1)
1476 {
1477 int started_error_output = 0;
1478
1479 if (remote_debug)
1480 {
1481 *p = '\0';
1482 printf_unfiltered ("Sending packet: %s...", buf2);
1483 gdb_flush(gdb_stdout);
1484 }
1485 if (SERIAL_WRITE (remote_desc, buf2, p - buf2))
1486 perror_with_name ("putpkt: write failed");
1487
1488 /* read until either a timeout occurs (-2) or '+' is read */
1489 while (1)
1490 {
1491 ch = readchar (remote_timeout);
1492
1493 if (remote_debug)
1494 {
1495 switch (ch)
1496 {
1497 case '+':
1498 case SERIAL_TIMEOUT:
1499 case '$':
1500 if (started_error_output)
1501 {
1502 putchar_unfiltered ('\n');
1503 started_error_output = 0;
1504 }
1505 }
1506 }
1507
1508 switch (ch)
1509 {
1510 case '+':
1511 if (remote_debug)
1512 printf_unfiltered("Ack\n");
1513 return 1;
1514 case SERIAL_TIMEOUT:
1515 tcount ++;
1516 if (tcount > 3)
1517 return 0;
1518 break; /* Retransmit buffer */
1519 case '$':
1520 {
1521 char junkbuf[PBUFSIZ];
1522
1523 /* It's probably an old response, and we're out of sync. Just
1524 gobble up the packet and ignore it. */
1525 getpkt (junkbuf, 0);
1526 continue; /* Now, go look for + */
1527 }
1528 default:
1529 if (remote_debug)
1530 {
1531 if (!started_error_output)
1532 {
1533 started_error_output = 1;
1534 printf_unfiltered ("putpkt: Junk: ");
1535 }
1536 putchar_unfiltered (ch & 0177);
1537 }
1538 continue;
1539 }
1540 break; /* Here to retransmit */
1541 }
1542
1543 #if 0
1544 /* This is wrong. If doing a long backtrace, the user should be
1545 able to get out next time we call QUIT, without anything as violent
1546 as interrupt_query. If we want to provide a way out of here
1547 without getting to the next QUIT, it should be based on hitting
1548 ^C twice as in remote_wait. */
1549 if (quit_flag)
1550 {
1551 quit_flag = 0;
1552 interrupt_query ();
1553 }
1554 #endif
1555 }
1556 }
1557
1558 /* Come here after finding the start of the frame. Collect the rest into BUF,
1559 verifying the checksum, length, and handling run-length compression.
1560 Returns 0 on any error, 1 on success. */
1561
1562 static int
1563 read_frame (buf)
1564 char *buf;
1565 {
1566 unsigned char csum;
1567 char *bp;
1568 int c;
1569
1570 csum = 0;
1571 bp = buf;
1572
1573 while (1)
1574 {
1575 c = readchar (remote_timeout);
1576
1577 switch (c)
1578 {
1579 case SERIAL_TIMEOUT:
1580 if (remote_debug)
1581 puts_filtered ("Timeout in mid-packet, retrying\n");
1582 return 0;
1583 case '$':
1584 if (remote_debug)
1585 puts_filtered ("Saw new packet start in middle of old one\n");
1586 return 0; /* Start a new packet, count retries */
1587 case '#':
1588 {
1589 unsigned char pktcsum;
1590
1591 *bp = '\000';
1592
1593 pktcsum = fromhex (readchar (remote_timeout)) << 4;
1594 pktcsum |= fromhex (readchar (remote_timeout));
1595
1596 if (csum == pktcsum)
1597 return 1;
1598
1599 if (remote_debug)
1600 {
1601 printf_filtered ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
1602 pktcsum, csum);
1603 puts_filtered (buf);
1604 puts_filtered ("\n");
1605 }
1606 return 0;
1607 }
1608 case '*': /* Run length encoding */
1609 csum += c;
1610 c = readchar (remote_timeout);
1611 csum += c;
1612 c = c - ' ' + 3; /* Compute repeat count */
1613
1614
1615 if (c > 0 && c < 255 && bp + c - 1 < buf + PBUFSIZ - 1)
1616 {
1617 memset (bp, *(bp - 1), c);
1618 bp += c;
1619 continue;
1620 }
1621
1622 *bp = '\0';
1623 printf_filtered ("Repeat count %d too large for buffer: ", c);
1624 puts_filtered (buf);
1625 puts_filtered ("\n");
1626 return 0;
1627
1628 default:
1629 if (bp < buf + PBUFSIZ - 1)
1630 {
1631 *bp++ = c;
1632 csum += c;
1633 continue;
1634 }
1635
1636 *bp = '\0';
1637 puts_filtered ("Remote packet too long: ");
1638 puts_filtered (buf);
1639 puts_filtered ("\n");
1640
1641 return 0;
1642 }
1643 }
1644 }
1645
1646 /* Read a packet from the remote machine, with error checking,
1647 and store it in BUF. BUF is expected to be of size PBUFSIZ.
1648 If FOREVER, wait forever rather than timing out; this is used
1649 while the target is executing user code. */
1650
1651 void
1652 getpkt (buf, forever)
1653 char *buf;
1654 int forever;
1655 {
1656 int c;
1657 int tries;
1658 int timeout;
1659 int val;
1660
1661 strcpy (buf,"timeout");
1662
1663 if (forever)
1664 {
1665 #ifdef MAINTENANCE_CMDS
1666 timeout = watchdog > 0 ? watchdog : -1;
1667 #else
1668 timeout = -1;
1669 #endif
1670 }
1671
1672 else
1673 timeout = remote_timeout;
1674
1675 #define MAX_TRIES 3
1676
1677 for (tries = 1; tries <= MAX_TRIES; tries++)
1678 {
1679 /* This can loop forever if the remote side sends us characters
1680 continuously, but if it pauses, we'll get a zero from readchar
1681 because of timeout. Then we'll count that as a retry. */
1682
1683 /* Note that we will only wait forever prior to the start of a packet.
1684 After that, we expect characters to arrive at a brisk pace. They
1685 should show up within remote_timeout intervals. */
1686
1687 do
1688 {
1689 c = readchar (timeout);
1690
1691 if (c == SERIAL_TIMEOUT)
1692 {
1693 #ifdef MAINTENANCE_CMDS
1694 if (forever) /* Watchdog went off. Kill the target. */
1695 {
1696 target_mourn_inferior ();
1697 error ("Watchdog has expired. Target detached.\n");
1698 }
1699 #endif
1700 if (remote_debug)
1701 puts_filtered ("Timed out.\n");
1702 goto retry;
1703 }
1704 }
1705 while (c != '$');
1706
1707 /* We've found the start of a packet, now collect the data. */
1708
1709 val = read_frame (buf);
1710
1711 if (val == 1)
1712 {
1713 if (remote_debug)
1714 fprintf_unfiltered (gdb_stdout, "Packet received: %s\n", buf);
1715 SERIAL_WRITE (remote_desc, "+", 1);
1716 return;
1717 }
1718
1719 /* Try the whole thing again. */
1720 retry:
1721 SERIAL_WRITE (remote_desc, "-", 1);
1722 }
1723
1724 /* We have tried hard enough, and just can't receive the packet. Give up. */
1725
1726 printf_unfiltered ("Ignoring packet error, continuing...\n");
1727 SERIAL_WRITE (remote_desc, "+", 1);
1728 }
1729 \f
1730 static void
1731 remote_kill ()
1732 {
1733 /* For some mysterious reason, wait_for_inferior calls kill instead of
1734 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
1735 if (kill_kludge)
1736 {
1737 kill_kludge = 0;
1738 target_mourn_inferior ();
1739 return;
1740 }
1741
1742 /* Use catch_errors so the user can quit from gdb even when we aren't on
1743 speaking terms with the remote system. */
1744 catch_errors (putpkt, "k", "", RETURN_MASK_ERROR);
1745
1746 /* Don't wait for it to die. I'm not really sure it matters whether
1747 we do or not. For the existing stubs, kill is a noop. */
1748 target_mourn_inferior ();
1749 }
1750
1751 static void
1752 remote_mourn ()
1753 {
1754 remote_mourn_1 (&remote_ops);
1755 }
1756
1757 static void
1758 extended_remote_mourn ()
1759 {
1760 /* We do _not_ want to mourn the target like this; this will
1761 remove the extended remote target from the target stack,
1762 and the next time the user says "run" it'll fail.
1763
1764 FIXME: What is the right thing to do here? */
1765 #if 0
1766 remote_mourn_1 (&extended_remote_ops);
1767 #endif
1768 }
1769
1770 /* Worker function for remote_mourn. */
1771 static void
1772 remote_mourn_1 (target)
1773 struct target_ops *target;
1774 {
1775 unpush_target (target);
1776 generic_mourn_inferior ();
1777 }
1778
1779 /* In the extended protocol we want to be able to do things like
1780 "run" and have them basically work as expected. So we need
1781 a special create_inferior function.
1782
1783 FIXME: One day add support for changing the exec file
1784 we're debugging, arguments and an environment. */
1785
1786 static void
1787 extended_remote_create_inferior (exec_file, args, env)
1788 char *exec_file;
1789 char *args;
1790 char **env;
1791 {
1792 /* Rip out the breakpoints; we'll reinsert them after restarting
1793 the remote server. */
1794 remove_breakpoints ();
1795
1796 /* Now restart the remote server. */
1797 extended_remote_restart ();
1798
1799 /* Now put the breakpoints back in. This way we're safe if the
1800 restart function works via a unix fork on the remote side. */
1801 insert_breakpoints ();
1802
1803 /* Clean up from the last time we were running. */
1804 clear_proceed_status ();
1805
1806 /* Let the remote process run. */
1807 proceed (-1, TARGET_SIGNAL_0, 0);
1808 }
1809
1810 \f
1811 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
1812 than other targets; in those use REMOTE_BREAKPOINT instead of just
1813 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
1814 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
1815 the standard routines that are in mem-break.c. */
1816
1817 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
1818 the choice of breakpoint instruction affects target program design and
1819 vice versa, and by making it user-tweakable, the special code here
1820 goes away and we need fewer special GDB configurations. */
1821
1822 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
1823 #define REMOTE_BREAKPOINT
1824 #endif
1825
1826 #ifdef REMOTE_BREAKPOINT
1827
1828 /* If the target isn't bi-endian, just pretend it is. */
1829 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
1830 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
1831 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
1832 #endif
1833
1834 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
1835 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
1836
1837 #endif /* REMOTE_BREAKPOINT */
1838
1839 /* Insert a breakpoint on targets that don't have any better breakpoint
1840 support. We read the contents of the target location and stash it,
1841 then overwrite it with a breakpoint instruction. ADDR is the target
1842 location in the target machine. CONTENTS_CACHE is a pointer to
1843 memory allocated for saving the target contents. It is guaranteed
1844 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
1845 is accomplished via BREAKPOINT_MAX). */
1846
1847 static int
1848 remote_insert_breakpoint (addr, contents_cache)
1849 CORE_ADDR addr;
1850 char *contents_cache;
1851 {
1852 #ifdef REMOTE_BREAKPOINT
1853 int val;
1854
1855 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
1856
1857 if (val == 0)
1858 {
1859 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1860 val = target_write_memory (addr, (char *) big_break_insn,
1861 sizeof big_break_insn);
1862 else
1863 val = target_write_memory (addr, (char *) little_break_insn,
1864 sizeof little_break_insn);
1865 }
1866
1867 return val;
1868 #else
1869 return memory_insert_breakpoint (addr, contents_cache);
1870 #endif /* REMOTE_BREAKPOINT */
1871 }
1872
1873 static int
1874 remote_remove_breakpoint (addr, contents_cache)
1875 CORE_ADDR addr;
1876 char *contents_cache;
1877 {
1878 #ifdef REMOTE_BREAKPOINT
1879 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
1880 #else
1881 return memory_remove_breakpoint (addr, contents_cache);
1882 #endif /* REMOTE_BREAKPOINT */
1883 }
1884 \f
1885 /* Define the target subroutine names */
1886
1887 static struct target_ops remote_ops =
1888 {
1889 "remote", /* to_shortname */
1890 "Remote serial target in gdb-specific protocol", /* to_longname */
1891 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
1892 Specify the serial device it is connected to (e.g. /dev/ttya).", /* to_doc */
1893 remote_open, /* to_open */
1894 remote_close, /* to_close */
1895 NULL, /* to_attach */
1896 remote_detach, /* to_detach */
1897 remote_resume, /* to_resume */
1898 remote_wait, /* to_wait */
1899 remote_fetch_registers, /* to_fetch_registers */
1900 remote_store_registers, /* to_store_registers */
1901 remote_prepare_to_store, /* to_prepare_to_store */
1902 remote_xfer_memory, /* to_xfer_memory */
1903 remote_files_info, /* to_files_info */
1904 remote_insert_breakpoint, /* to_insert_breakpoint */
1905 remote_remove_breakpoint, /* to_remove_breakpoint */
1906 NULL, /* to_terminal_init */
1907 NULL, /* to_terminal_inferior */
1908 NULL, /* to_terminal_ours_for_output */
1909 NULL, /* to_terminal_ours */
1910 NULL, /* to_terminal_info */
1911 remote_kill, /* to_kill */
1912 generic_load, /* to_load */
1913 NULL, /* to_lookup_symbol */
1914 NULL, /* to_create_inferior */
1915 remote_mourn, /* to_mourn_inferior */
1916 0, /* to_can_run */
1917 0, /* to_notice_signals */
1918 remote_thread_alive, /* to_thread_alive */
1919 0, /* to_stop */
1920 process_stratum, /* to_stratum */
1921 NULL, /* to_next */
1922 1, /* to_has_all_memory */
1923 1, /* to_has_memory */
1924 1, /* to_has_stack */
1925 1, /* to_has_registers */
1926 1, /* to_has_execution */
1927 NULL, /* sections */
1928 NULL, /* sections_end */
1929 OPS_MAGIC /* to_magic */
1930 };
1931
1932 static struct target_ops extended_remote_ops =
1933 {
1934 "extended-remote", /* to_shortname */
1935 "Extended remote serial target in gdb-specific protocol",/* to_longname */
1936 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
1937 Specify the serial device it is connected to (e.g. /dev/ttya).", /* to_doc */
1938 extended_remote_open, /* to_open */
1939 remote_close, /* to_close */
1940 NULL, /* to_attach */
1941 remote_detach, /* to_detach */
1942 remote_resume, /* to_resume */
1943 remote_wait, /* to_wait */
1944 remote_fetch_registers, /* to_fetch_registers */
1945 remote_store_registers, /* to_store_registers */
1946 remote_prepare_to_store, /* to_prepare_to_store */
1947 remote_xfer_memory, /* to_xfer_memory */
1948 remote_files_info, /* to_files_info */
1949
1950 remote_insert_breakpoint, /* to_insert_breakpoint */
1951 remote_remove_breakpoint, /* to_remove_breakpoint */
1952
1953 NULL, /* to_terminal_init */
1954 NULL, /* to_terminal_inferior */
1955 NULL, /* to_terminal_ours_for_output */
1956 NULL, /* to_terminal_ours */
1957 NULL, /* to_terminal_info */
1958 remote_kill, /* to_kill */
1959 generic_load, /* to_load */
1960 NULL, /* to_lookup_symbol */
1961 extended_remote_create_inferior,/* to_create_inferior */
1962 extended_remote_mourn, /* to_mourn_inferior */
1963 0, /* to_can_run */
1964 0, /* to_notice_signals */
1965 remote_thread_alive, /* to_thread_alive */
1966 0, /* to_stop */
1967 process_stratum, /* to_stratum */
1968 NULL, /* to_next */
1969 1, /* to_has_all_memory */
1970 1, /* to_has_memory */
1971 1, /* to_has_stack */
1972 1, /* to_has_registers */
1973 1, /* to_has_execution */
1974 NULL, /* sections */
1975 NULL, /* sections_end */
1976 OPS_MAGIC /* to_magic */
1977 };
1978
1979 /* Some targets are only capable of doing downloads, and afterwards they switch
1980 to the remote serial protocol. This function provides a clean way to get
1981 from the download target to the remote target. It's basically just a
1982 wrapper so that we don't have to expose any of the internal workings of
1983 remote.c.
1984
1985 Prior to calling this routine, you should shutdown the current target code,
1986 else you will get the "A program is being debugged already..." message.
1987 Usually a call to pop_target() suffices.
1988 */
1989
1990 void
1991 push_remote_target (name, from_tty)
1992 char *name;
1993 int from_tty;
1994 {
1995 printf_filtered ("Switching to remote protocol\n");
1996 remote_open (name, from_tty);
1997 }
1998
1999 /* Other targets want to use the entire remote serial module but with
2000 certain remote_ops overridden. */
2001
2002 void
2003 open_remote_target (name, from_tty, target, extended_p)
2004 char *name;
2005 int from_tty;
2006 struct target_ops *target;
2007 int extended_p;
2008 {
2009 printf_filtered ("Selecting the %sremote protocol\n",
2010 (extended_p ? "extended-" : ""));
2011 remote_open_1 (name, from_tty, target, extended_p);
2012 }
2013
2014 void
2015 _initialize_remote ()
2016 {
2017 add_target (&remote_ops);
2018 add_target (&extended_remote_ops);
2019
2020 add_show_from_set (add_set_cmd ("remotetimeout", no_class,
2021 var_integer, (char *)&remote_timeout,
2022 "Set timeout value for remote read.\n", &setlist),
2023 &showlist);
2024
2025 add_show_from_set (add_set_cmd ("remotebreak", no_class,
2026 var_integer, (char *)&remote_break,
2027 "Set whether to send break if interrupted.\n", &setlist),
2028 &showlist);
2029
2030 add_show_from_set (add_set_cmd ("remotewritesize", no_class,
2031 var_integer, (char *)&remote_write_size,
2032 "Set the maximum number of bytes in each memory write packet.\n", &setlist),
2033 &showlist);
2034 }