]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rl78-tdep.c
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / gdb / rl78-tdep.c
1 /* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
2
3 Copyright (C) 2011-2023 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "prologue-value.h"
25 #include "target.h"
26 #include "regcache.h"
27 #include "opcode/rl78.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2/frame.h"
36 #include "reggroups.h"
37 #include "gdbarch.h"
38
39 #include "elf/rl78.h"
40 #include "elf-bfd.h"
41
42 /* Register Banks. */
43
44 enum
45 {
46 RL78_BANK0 = 0,
47 RL78_BANK1 = 1,
48 RL78_BANK2 = 2,
49 RL78_BANK3 = 3,
50 RL78_NUMBANKS = 4,
51 RL78_REGS_PER_BANK = 8
52 };
53
54 /* Register Numbers. */
55
56 enum
57 {
58 /* All general purpose registers are 8 bits wide. */
59 RL78_RAW_BANK0_R0_REGNUM = 0,
60 RL78_RAW_BANK0_R1_REGNUM,
61 RL78_RAW_BANK0_R2_REGNUM,
62 RL78_RAW_BANK0_R3_REGNUM,
63 RL78_RAW_BANK0_R4_REGNUM,
64 RL78_RAW_BANK0_R5_REGNUM,
65 RL78_RAW_BANK0_R6_REGNUM,
66 RL78_RAW_BANK0_R7_REGNUM,
67
68 RL78_RAW_BANK1_R0_REGNUM,
69 RL78_RAW_BANK1_R1_REGNUM,
70 RL78_RAW_BANK1_R2_REGNUM,
71 RL78_RAW_BANK1_R3_REGNUM,
72 RL78_RAW_BANK1_R4_REGNUM,
73 RL78_RAW_BANK1_R5_REGNUM,
74 RL78_RAW_BANK1_R6_REGNUM,
75 RL78_RAW_BANK1_R7_REGNUM,
76
77 RL78_RAW_BANK2_R0_REGNUM,
78 RL78_RAW_BANK2_R1_REGNUM,
79 RL78_RAW_BANK2_R2_REGNUM,
80 RL78_RAW_BANK2_R3_REGNUM,
81 RL78_RAW_BANK2_R4_REGNUM,
82 RL78_RAW_BANK2_R5_REGNUM,
83 RL78_RAW_BANK2_R6_REGNUM,
84 RL78_RAW_BANK2_R7_REGNUM,
85
86 RL78_RAW_BANK3_R0_REGNUM,
87 RL78_RAW_BANK3_R1_REGNUM,
88 RL78_RAW_BANK3_R2_REGNUM,
89 RL78_RAW_BANK3_R3_REGNUM,
90 RL78_RAW_BANK3_R4_REGNUM,
91 RL78_RAW_BANK3_R5_REGNUM,
92 RL78_RAW_BANK3_R6_REGNUM,
93 RL78_RAW_BANK3_R7_REGNUM,
94
95 RL78_PSW_REGNUM, /* 8 bits */
96 RL78_ES_REGNUM, /* 8 bits */
97 RL78_CS_REGNUM, /* 8 bits */
98 RL78_RAW_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
99
100 /* Fixed address SFRs (some of those above are SFRs too.) */
101 RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
102 RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
103 RL78_PMC_REGNUM, /* 8 bits */
104 RL78_MEM_REGNUM, /* 8 bits ?? */
105
106 RL78_NUM_REGS,
107
108 /* Pseudo registers. */
109 RL78_PC_REGNUM = RL78_NUM_REGS,
110 RL78_SP_REGNUM,
111
112 RL78_X_REGNUM,
113 RL78_A_REGNUM,
114 RL78_C_REGNUM,
115 RL78_B_REGNUM,
116 RL78_E_REGNUM,
117 RL78_D_REGNUM,
118 RL78_L_REGNUM,
119 RL78_H_REGNUM,
120
121 RL78_AX_REGNUM,
122 RL78_BC_REGNUM,
123 RL78_DE_REGNUM,
124 RL78_HL_REGNUM,
125
126 RL78_BANK0_R0_REGNUM,
127 RL78_BANK0_R1_REGNUM,
128 RL78_BANK0_R2_REGNUM,
129 RL78_BANK0_R3_REGNUM,
130 RL78_BANK0_R4_REGNUM,
131 RL78_BANK0_R5_REGNUM,
132 RL78_BANK0_R6_REGNUM,
133 RL78_BANK0_R7_REGNUM,
134
135 RL78_BANK1_R0_REGNUM,
136 RL78_BANK1_R1_REGNUM,
137 RL78_BANK1_R2_REGNUM,
138 RL78_BANK1_R3_REGNUM,
139 RL78_BANK1_R4_REGNUM,
140 RL78_BANK1_R5_REGNUM,
141 RL78_BANK1_R6_REGNUM,
142 RL78_BANK1_R7_REGNUM,
143
144 RL78_BANK2_R0_REGNUM,
145 RL78_BANK2_R1_REGNUM,
146 RL78_BANK2_R2_REGNUM,
147 RL78_BANK2_R3_REGNUM,
148 RL78_BANK2_R4_REGNUM,
149 RL78_BANK2_R5_REGNUM,
150 RL78_BANK2_R6_REGNUM,
151 RL78_BANK2_R7_REGNUM,
152
153 RL78_BANK3_R0_REGNUM,
154 RL78_BANK3_R1_REGNUM,
155 RL78_BANK3_R2_REGNUM,
156 RL78_BANK3_R3_REGNUM,
157 RL78_BANK3_R4_REGNUM,
158 RL78_BANK3_R5_REGNUM,
159 RL78_BANK3_R6_REGNUM,
160 RL78_BANK3_R7_REGNUM,
161
162 RL78_BANK0_RP0_REGNUM,
163 RL78_BANK0_RP1_REGNUM,
164 RL78_BANK0_RP2_REGNUM,
165 RL78_BANK0_RP3_REGNUM,
166
167 RL78_BANK1_RP0_REGNUM,
168 RL78_BANK1_RP1_REGNUM,
169 RL78_BANK1_RP2_REGNUM,
170 RL78_BANK1_RP3_REGNUM,
171
172 RL78_BANK2_RP0_REGNUM,
173 RL78_BANK2_RP1_REGNUM,
174 RL78_BANK2_RP2_REGNUM,
175 RL78_BANK2_RP3_REGNUM,
176
177 RL78_BANK3_RP0_REGNUM,
178 RL78_BANK3_RP1_REGNUM,
179 RL78_BANK3_RP2_REGNUM,
180 RL78_BANK3_RP3_REGNUM,
181
182 /* These are the same as the above 16 registers, but have
183 a pointer type for use as base registers in expression
184 evaluation. These are not user visible registers. */
185 RL78_BANK0_RP0_PTR_REGNUM,
186 RL78_BANK0_RP1_PTR_REGNUM,
187 RL78_BANK0_RP2_PTR_REGNUM,
188 RL78_BANK0_RP3_PTR_REGNUM,
189
190 RL78_BANK1_RP0_PTR_REGNUM,
191 RL78_BANK1_RP1_PTR_REGNUM,
192 RL78_BANK1_RP2_PTR_REGNUM,
193 RL78_BANK1_RP3_PTR_REGNUM,
194
195 RL78_BANK2_RP0_PTR_REGNUM,
196 RL78_BANK2_RP1_PTR_REGNUM,
197 RL78_BANK2_RP2_PTR_REGNUM,
198 RL78_BANK2_RP3_PTR_REGNUM,
199
200 RL78_BANK3_RP0_PTR_REGNUM,
201 RL78_BANK3_RP1_PTR_REGNUM,
202 RL78_BANK3_RP2_PTR_REGNUM,
203 RL78_BANK3_RP3_PTR_REGNUM,
204
205 RL78_NUM_TOTAL_REGS,
206 RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
207 };
208
209 #define RL78_SP_ADDR 0xffff8
210
211 /* Architecture specific data. */
212
213 struct rl78_gdbarch_tdep : gdbarch_tdep_base
214 {
215 /* The ELF header flags specify the multilib used. */
216 int elf_flags = 0;
217
218 struct type *rl78_void = nullptr,
219 *rl78_uint8 = nullptr,
220 *rl78_int8 = nullptr,
221 *rl78_uint16 = nullptr,
222 *rl78_int16 = nullptr,
223 *rl78_uint32 = nullptr,
224 *rl78_int32 = nullptr,
225 *rl78_data_pointer = nullptr,
226 *rl78_code_pointer = nullptr,
227 *rl78_psw_type = nullptr;
228 };
229
230 /* This structure holds the results of a prologue analysis. */
231
232 struct rl78_prologue
233 {
234 /* The offset from the frame base to the stack pointer --- always
235 zero or negative.
236
237 Calling this a "size" is a bit misleading, but given that the
238 stack grows downwards, using offsets for everything keeps one
239 from going completely sign-crazy: you never change anything's
240 sign for an ADD instruction; always change the second operand's
241 sign for a SUB instruction; and everything takes care of
242 itself. */
243 int frame_size;
244
245 /* Non-zero if this function has initialized the frame pointer from
246 the stack pointer, zero otherwise. */
247 int has_frame_ptr;
248
249 /* If has_frame_ptr is non-zero, this is the offset from the frame
250 base to where the frame pointer points. This is always zero or
251 negative. */
252 int frame_ptr_offset;
253
254 /* The address of the first instruction at which the frame has been
255 set up and the arguments are where the debug info says they are
256 --- as best as we can tell. */
257 CORE_ADDR prologue_end;
258
259 /* reg_offset[R] is the offset from the CFA at which register R is
260 saved, or 1 if register R has not been saved. (Real values are
261 always zero or negative.) */
262 int reg_offset[RL78_NUM_TOTAL_REGS];
263 };
264
265 /* Construct type for PSW register. */
266
267 static struct type *
268 rl78_psw_type (struct gdbarch *gdbarch)
269 {
270 rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
271
272 if (tdep->rl78_psw_type == NULL)
273 {
274 tdep->rl78_psw_type = arch_flags_type (gdbarch,
275 "builtin_type_rl78_psw", 8);
276 append_flags_type_flag (tdep->rl78_psw_type, 0, "CY");
277 append_flags_type_flag (tdep->rl78_psw_type, 1, "ISP0");
278 append_flags_type_flag (tdep->rl78_psw_type, 2, "ISP1");
279 append_flags_type_flag (tdep->rl78_psw_type, 3, "RBS0");
280 append_flags_type_flag (tdep->rl78_psw_type, 4, "AC");
281 append_flags_type_flag (tdep->rl78_psw_type, 5, "RBS1");
282 append_flags_type_flag (tdep->rl78_psw_type, 6, "Z");
283 append_flags_type_flag (tdep->rl78_psw_type, 7, "IE");
284 }
285
286 return tdep->rl78_psw_type;
287 }
288
289 /* Implement the "register_type" gdbarch method. */
290
291 static struct type *
292 rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
293 {
294 rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
295
296 if (reg_nr == RL78_PC_REGNUM)
297 return tdep->rl78_code_pointer;
298 else if (reg_nr == RL78_RAW_PC_REGNUM)
299 return tdep->rl78_uint32;
300 else if (reg_nr == RL78_PSW_REGNUM)
301 return rl78_psw_type (gdbarch);
302 else if (reg_nr <= RL78_MEM_REGNUM
303 || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
304 || (RL78_BANK0_R0_REGNUM <= reg_nr
305 && reg_nr <= RL78_BANK3_R7_REGNUM))
306 return tdep->rl78_int8;
307 else if (reg_nr == RL78_SP_REGNUM
308 || (RL78_BANK0_RP0_PTR_REGNUM <= reg_nr
309 && reg_nr <= RL78_BANK3_RP3_PTR_REGNUM))
310 return tdep->rl78_data_pointer;
311 else
312 return tdep->rl78_int16;
313 }
314
315 /* Implement the "register_name" gdbarch method. */
316
317 static const char *
318 rl78_register_name (struct gdbarch *gdbarch, int regnr)
319 {
320 static const char *const reg_names[] =
321 {
322 "", /* bank0_r0 */
323 "", /* bank0_r1 */
324 "", /* bank0_r2 */
325 "", /* bank0_r3 */
326 "", /* bank0_r4 */
327 "", /* bank0_r5 */
328 "", /* bank0_r6 */
329 "", /* bank0_r7 */
330
331 "", /* bank1_r0 */
332 "", /* bank1_r1 */
333 "", /* bank1_r2 */
334 "", /* bank1_r3 */
335 "", /* bank1_r4 */
336 "", /* bank1_r5 */
337 "", /* bank1_r6 */
338 "", /* bank1_r7 */
339
340 "", /* bank2_r0 */
341 "", /* bank2_r1 */
342 "", /* bank2_r2 */
343 "", /* bank2_r3 */
344 "", /* bank2_r4 */
345 "", /* bank2_r5 */
346 "", /* bank2_r6 */
347 "", /* bank2_r7 */
348
349 "", /* bank3_r0 */
350 "", /* bank3_r1 */
351 "", /* bank3_r2 */
352 "", /* bank3_r3 */
353 "", /* bank3_r4 */
354 "", /* bank3_r5 */
355 "", /* bank3_r6 */
356 "", /* bank3_r7 */
357
358 "psw",
359 "es",
360 "cs",
361 "",
362
363 "", /* spl */
364 "", /* sph */
365 "pmc",
366 "mem",
367
368 "pc",
369 "sp",
370
371 "x",
372 "a",
373 "c",
374 "b",
375 "e",
376 "d",
377 "l",
378 "h",
379
380 "ax",
381 "bc",
382 "de",
383 "hl",
384
385 "bank0_r0",
386 "bank0_r1",
387 "bank0_r2",
388 "bank0_r3",
389 "bank0_r4",
390 "bank0_r5",
391 "bank0_r6",
392 "bank0_r7",
393
394 "bank1_r0",
395 "bank1_r1",
396 "bank1_r2",
397 "bank1_r3",
398 "bank1_r4",
399 "bank1_r5",
400 "bank1_r6",
401 "bank1_r7",
402
403 "bank2_r0",
404 "bank2_r1",
405 "bank2_r2",
406 "bank2_r3",
407 "bank2_r4",
408 "bank2_r5",
409 "bank2_r6",
410 "bank2_r7",
411
412 "bank3_r0",
413 "bank3_r1",
414 "bank3_r2",
415 "bank3_r3",
416 "bank3_r4",
417 "bank3_r5",
418 "bank3_r6",
419 "bank3_r7",
420
421 "bank0_rp0",
422 "bank0_rp1",
423 "bank0_rp2",
424 "bank0_rp3",
425
426 "bank1_rp0",
427 "bank1_rp1",
428 "bank1_rp2",
429 "bank1_rp3",
430
431 "bank2_rp0",
432 "bank2_rp1",
433 "bank2_rp2",
434 "bank2_rp3",
435
436 "bank3_rp0",
437 "bank3_rp1",
438 "bank3_rp2",
439 "bank3_rp3",
440
441 /* The 16 register slots would be named
442 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
443 want these to be user visible registers. */
444 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
445 };
446
447 return reg_names[regnr];
448 }
449
450 /* Implement the "register_name" gdbarch method for the g10 variant. */
451
452 static const char *
453 rl78_g10_register_name (struct gdbarch *gdbarch, int regnr)
454 {
455 static const char *const reg_names[] =
456 {
457 "", /* bank0_r0 */
458 "", /* bank0_r1 */
459 "", /* bank0_r2 */
460 "", /* bank0_r3 */
461 "", /* bank0_r4 */
462 "", /* bank0_r5 */
463 "", /* bank0_r6 */
464 "", /* bank0_r7 */
465
466 "", /* bank1_r0 */
467 "", /* bank1_r1 */
468 "", /* bank1_r2 */
469 "", /* bank1_r3 */
470 "", /* bank1_r4 */
471 "", /* bank1_r5 */
472 "", /* bank1_r6 */
473 "", /* bank1_r7 */
474
475 "", /* bank2_r0 */
476 "", /* bank2_r1 */
477 "", /* bank2_r2 */
478 "", /* bank2_r3 */
479 "", /* bank2_r4 */
480 "", /* bank2_r5 */
481 "", /* bank2_r6 */
482 "", /* bank2_r7 */
483
484 "", /* bank3_r0 */
485 "", /* bank3_r1 */
486 "", /* bank3_r2 */
487 "", /* bank3_r3 */
488 "", /* bank3_r4 */
489 "", /* bank3_r5 */
490 "", /* bank3_r6 */
491 "", /* bank3_r7 */
492
493 "psw",
494 "es",
495 "cs",
496 "",
497
498 "", /* spl */
499 "", /* sph */
500 "pmc",
501 "mem",
502
503 "pc",
504 "sp",
505
506 "x",
507 "a",
508 "c",
509 "b",
510 "e",
511 "d",
512 "l",
513 "h",
514
515 "ax",
516 "bc",
517 "de",
518 "hl",
519
520 "bank0_r0",
521 "bank0_r1",
522 "bank0_r2",
523 "bank0_r3",
524 "bank0_r4",
525 "bank0_r5",
526 "bank0_r6",
527 "bank0_r7",
528
529 "",
530 "",
531 "",
532 "",
533 "",
534 "",
535 "",
536 "",
537
538 "",
539 "",
540 "",
541 "",
542 "",
543 "",
544 "",
545 "",
546
547 "",
548 "",
549 "",
550 "",
551 "",
552 "",
553 "",
554 "",
555
556 "bank0_rp0",
557 "bank0_rp1",
558 "bank0_rp2",
559 "bank0_rp3",
560
561 "",
562 "",
563 "",
564 "",
565
566 "",
567 "",
568 "",
569 "",
570
571 "",
572 "",
573 "",
574 "",
575
576 /* The 16 register slots would be named
577 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
578 want these to be user visible registers. */
579 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
580 };
581
582 return reg_names[regnr];
583 }
584
585 /* Implement the "register_reggroup_p" gdbarch method. */
586
587 static int
588 rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
589 const struct reggroup *group)
590 {
591 if (group == all_reggroup)
592 return 1;
593
594 /* All other registers are saved and restored. */
595 if (group == save_reggroup || group == restore_reggroup)
596 {
597 if ((regnum < RL78_NUM_REGS
598 && regnum != RL78_SPL_REGNUM
599 && regnum != RL78_SPH_REGNUM
600 && regnum != RL78_RAW_PC_REGNUM)
601 || regnum == RL78_SP_REGNUM
602 || regnum == RL78_PC_REGNUM)
603 return 1;
604 else
605 return 0;
606 }
607
608 if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
609 || regnum == RL78_ES_REGNUM
610 || regnum == RL78_CS_REGNUM
611 || regnum == RL78_SPL_REGNUM
612 || regnum == RL78_SPH_REGNUM
613 || regnum == RL78_PMC_REGNUM
614 || regnum == RL78_MEM_REGNUM
615 || regnum == RL78_RAW_PC_REGNUM
616 || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
617 return group == system_reggroup;
618
619 return group == general_reggroup;
620 }
621
622 /* Strip bits to form an instruction address. (When fetching a
623 32-bit address from the stack, the high eight bits are garbage.
624 This function strips off those unused bits.) */
625
626 static CORE_ADDR
627 rl78_make_instruction_address (CORE_ADDR addr)
628 {
629 return addr & 0xffffff;
630 }
631
632 /* Set / clear bits necessary to make a data address. */
633
634 static CORE_ADDR
635 rl78_make_data_address (CORE_ADDR addr)
636 {
637 return (addr & 0xffff) | 0xf0000;
638 }
639
640 /* Implement the "pseudo_register_read" gdbarch method. */
641
642 static enum register_status
643 rl78_pseudo_register_read (struct gdbarch *gdbarch,
644 readable_regcache *regcache,
645 int reg, gdb_byte *buffer)
646 {
647 enum register_status status;
648
649 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
650 {
651 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
652 + (reg - RL78_BANK0_R0_REGNUM);
653
654 status = regcache->raw_read (raw_regnum, buffer);
655 }
656 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
657 {
658 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
659 + RL78_RAW_BANK0_R0_REGNUM;
660
661 status = regcache->raw_read (raw_regnum, buffer);
662 if (status == REG_VALID)
663 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
664 }
665 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
666 {
667 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
668 + RL78_RAW_BANK0_R0_REGNUM;
669
670 status = regcache->raw_read (raw_regnum, buffer);
671 if (status == REG_VALID)
672 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
673 }
674 else if (reg == RL78_SP_REGNUM)
675 {
676 status = regcache->raw_read (RL78_SPL_REGNUM, buffer);
677 if (status == REG_VALID)
678 status = regcache->raw_read (RL78_SPH_REGNUM, buffer + 1);
679 }
680 else if (reg == RL78_PC_REGNUM)
681 {
682 gdb_byte rawbuf[4];
683
684 status = regcache->raw_read (RL78_RAW_PC_REGNUM, rawbuf);
685 memcpy (buffer, rawbuf, 3);
686 }
687 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
688 {
689 ULONGEST psw;
690
691 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
692 if (status == REG_VALID)
693 {
694 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
695 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
696 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
697 + (reg - RL78_X_REGNUM);
698 status = regcache->raw_read (raw_regnum, buffer);
699 }
700 }
701 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
702 {
703 ULONGEST psw;
704
705 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
706 if (status == REG_VALID)
707 {
708 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
709 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
710 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
711 + 2 * (reg - RL78_AX_REGNUM);
712 status = regcache->raw_read (raw_regnum, buffer);
713 if (status == REG_VALID)
714 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
715 }
716 }
717 else
718 gdb_assert_not_reached ("invalid pseudo register number");
719 return status;
720 }
721
722 /* Implement the "pseudo_register_write" gdbarch method. */
723
724 static void
725 rl78_pseudo_register_write (struct gdbarch *gdbarch,
726 struct regcache *regcache,
727 int reg, const gdb_byte *buffer)
728 {
729 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
730 {
731 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
732 + (reg - RL78_BANK0_R0_REGNUM);
733
734 regcache->raw_write (raw_regnum, buffer);
735 }
736 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
737 {
738 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
739 + RL78_RAW_BANK0_R0_REGNUM;
740
741 regcache->raw_write (raw_regnum, buffer);
742 regcache->raw_write (raw_regnum + 1, buffer + 1);
743 }
744 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
745 {
746 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
747 + RL78_RAW_BANK0_R0_REGNUM;
748
749 regcache->raw_write (raw_regnum, buffer);
750 regcache->raw_write (raw_regnum + 1, buffer + 1);
751 }
752 else if (reg == RL78_SP_REGNUM)
753 {
754 regcache->raw_write (RL78_SPL_REGNUM, buffer);
755 regcache->raw_write (RL78_SPH_REGNUM, buffer + 1);
756 }
757 else if (reg == RL78_PC_REGNUM)
758 {
759 gdb_byte rawbuf[4];
760
761 memcpy (rawbuf, buffer, 3);
762 rawbuf[3] = 0;
763 regcache->raw_write (RL78_RAW_PC_REGNUM, rawbuf);
764 }
765 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
766 {
767 ULONGEST psw;
768 int bank;
769 int raw_regnum;
770
771 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
772 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
773 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
774 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
775 + (reg - RL78_X_REGNUM);
776 regcache->raw_write (raw_regnum, buffer);
777 }
778 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
779 {
780 ULONGEST psw;
781 int bank, raw_regnum;
782
783 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
784 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
785 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
786 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
787 + 2 * (reg - RL78_AX_REGNUM);
788 regcache->raw_write (raw_regnum, buffer);
789 regcache->raw_write (raw_regnum + 1, buffer + 1);
790 }
791 else
792 gdb_assert_not_reached ("invalid pseudo register number");
793 }
794
795 /* The documented BRK instruction is actually a two byte sequence,
796 {0x61, 0xcc}, but instructions may be as short as one byte.
797 Correspondence with Renesas revealed that the one byte sequence
798 0xff is used when a one byte breakpoint instruction is required. */
799 constexpr gdb_byte rl78_break_insn[] = { 0xff };
800
801 typedef BP_MANIPULATION (rl78_break_insn) rl78_breakpoint;
802
803 /* Define a "handle" struct for fetching the next opcode. */
804
805 struct rl78_get_opcode_byte_handle
806 {
807 CORE_ADDR pc;
808 };
809
810 static int
811 opc_reg_to_gdb_regnum (int opcreg)
812 {
813 switch (opcreg)
814 {
815 case RL78_Reg_X:
816 return RL78_X_REGNUM;
817 case RL78_Reg_A:
818 return RL78_A_REGNUM;
819 case RL78_Reg_C:
820 return RL78_C_REGNUM;
821 case RL78_Reg_B:
822 return RL78_B_REGNUM;
823 case RL78_Reg_E:
824 return RL78_E_REGNUM;
825 case RL78_Reg_D:
826 return RL78_D_REGNUM;
827 case RL78_Reg_L:
828 return RL78_L_REGNUM;
829 case RL78_Reg_H:
830 return RL78_H_REGNUM;
831 case RL78_Reg_AX:
832 return RL78_AX_REGNUM;
833 case RL78_Reg_BC:
834 return RL78_BC_REGNUM;
835 case RL78_Reg_DE:
836 return RL78_DE_REGNUM;
837 case RL78_Reg_HL:
838 return RL78_HL_REGNUM;
839 case RL78_Reg_SP:
840 return RL78_SP_REGNUM;
841 case RL78_Reg_PSW:
842 return RL78_PSW_REGNUM;
843 case RL78_Reg_CS:
844 return RL78_CS_REGNUM;
845 case RL78_Reg_ES:
846 return RL78_ES_REGNUM;
847 case RL78_Reg_PMC:
848 return RL78_PMC_REGNUM;
849 case RL78_Reg_MEM:
850 return RL78_MEM_REGNUM;
851 default:
852 internal_error (_("Undefined mapping for opc reg %d"),
853 opcreg);
854 }
855
856 /* Not reached. */
857 return 0;
858 }
859
860 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
861 the memory address of the next byte to fetch. If successful,
862 the address in the handle is updated and the byte fetched is
863 returned as the value of the function. If not successful, -1
864 is returned. */
865
866 static int
867 rl78_get_opcode_byte (void *handle)
868 {
869 struct rl78_get_opcode_byte_handle *opcdata
870 = (struct rl78_get_opcode_byte_handle *) handle;
871 int status;
872 gdb_byte byte;
873
874 status = target_read_memory (opcdata->pc, &byte, 1);
875 if (status == 0)
876 {
877 opcdata->pc += 1;
878 return byte;
879 }
880 else
881 return -1;
882 }
883
884 /* Function for finding saved registers in a 'struct pv_area'; this
885 function is passed to pv_area::scan.
886
887 If VALUE is a saved register, ADDR says it was saved at a constant
888 offset from the frame base, and SIZE indicates that the whole
889 register was saved, record its offset. */
890
891 static void
892 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
893 pv_t value)
894 {
895 struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
896
897 if (value.kind == pvk_register
898 && value.k == 0
899 && pv_is_register (addr, RL78_SP_REGNUM)
900 && size == register_size (target_gdbarch (), value.reg))
901 result->reg_offset[value.reg] = addr.k;
902 }
903
904 /* Analyze a prologue starting at START_PC, going no further than
905 LIMIT_PC. Fill in RESULT as appropriate. */
906
907 static void
908 rl78_analyze_prologue (CORE_ADDR start_pc,
909 CORE_ADDR limit_pc, struct rl78_prologue *result)
910 {
911 CORE_ADDR pc, next_pc;
912 int rn;
913 pv_t reg[RL78_NUM_TOTAL_REGS];
914 CORE_ADDR after_last_frame_setup_insn = start_pc;
915 int bank = 0;
916
917 memset (result, 0, sizeof (*result));
918
919 for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
920 {
921 reg[rn] = pv_register (rn, 0);
922 result->reg_offset[rn] = 1;
923 }
924
925 pv_area stack (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
926
927 /* The call instruction has saved the return address on the stack. */
928 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
929 stack.store (reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
930
931 pc = start_pc;
932 while (pc < limit_pc)
933 {
934 int bytes_read;
935 struct rl78_get_opcode_byte_handle opcode_handle;
936 RL78_Opcode_Decoded opc;
937
938 opcode_handle.pc = pc;
939 bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
940 &opcode_handle, RL78_ISA_DEFAULT);
941 next_pc = pc + bytes_read;
942
943 if (opc.id == RLO_sel)
944 {
945 bank = opc.op[1].addend;
946 }
947 else if (opc.id == RLO_mov
948 && opc.op[0].type == RL78_Operand_PreDec
949 && opc.op[0].reg == RL78_Reg_SP
950 && opc.op[1].type == RL78_Operand_Register)
951 {
952 int rsrc = (bank * RL78_REGS_PER_BANK)
953 + 2 * (opc.op[1].reg - RL78_Reg_AX);
954
955 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
956 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc]);
957 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
958 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
959 after_last_frame_setup_insn = next_pc;
960 }
961 else if (opc.id == RLO_sub
962 && opc.op[0].type == RL78_Operand_Register
963 && opc.op[0].reg == RL78_Reg_SP
964 && opc.op[1].type == RL78_Operand_Immediate)
965 {
966 int addend = opc.op[1].addend;
967
968 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
969 -addend);
970 after_last_frame_setup_insn = next_pc;
971 }
972 else if (opc.id == RLO_mov
973 && opc.size == RL78_Word
974 && opc.op[0].type == RL78_Operand_Register
975 && opc.op[1].type == RL78_Operand_Indirect
976 && opc.op[1].addend == RL78_SP_ADDR)
977 {
978 reg[opc_reg_to_gdb_regnum (opc.op[0].reg)]
979 = reg[RL78_SP_REGNUM];
980 }
981 else if (opc.id == RLO_sub
982 && opc.size == RL78_Word
983 && opc.op[0].type == RL78_Operand_Register
984 && opc.op[1].type == RL78_Operand_Immediate)
985 {
986 int addend = opc.op[1].addend;
987 int regnum = opc_reg_to_gdb_regnum (opc.op[0].reg);
988
989 reg[regnum] = pv_add_constant (reg[regnum], -addend);
990 }
991 else if (opc.id == RLO_mov
992 && opc.size == RL78_Word
993 && opc.op[0].type == RL78_Operand_Indirect
994 && opc.op[0].addend == RL78_SP_ADDR
995 && opc.op[1].type == RL78_Operand_Register)
996 {
997 reg[RL78_SP_REGNUM]
998 = reg[opc_reg_to_gdb_regnum (opc.op[1].reg)];
999 after_last_frame_setup_insn = next_pc;
1000 }
1001 else
1002 {
1003 /* Terminate the prologue scan. */
1004 break;
1005 }
1006
1007 pc = next_pc;
1008 }
1009
1010 /* Is the frame size (offset, really) a known constant? */
1011 if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
1012 result->frame_size = reg[RL78_SP_REGNUM].k;
1013
1014 /* Record where all the registers were saved. */
1015 stack.scan (check_for_saved, (void *) result);
1016
1017 result->prologue_end = after_last_frame_setup_insn;
1018 }
1019
1020 /* Implement the "addr_bits_remove" gdbarch method. */
1021
1022 static CORE_ADDR
1023 rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1024 {
1025 return addr & 0xffffff;
1026 }
1027
1028 /* Implement the "address_to_pointer" gdbarch method. */
1029
1030 static void
1031 rl78_address_to_pointer (struct gdbarch *gdbarch,
1032 struct type *type, gdb_byte *buf, CORE_ADDR addr)
1033 {
1034 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1035
1036 store_unsigned_integer (buf, type->length (), byte_order,
1037 addr & 0xffffff);
1038 }
1039
1040 /* Implement the "pointer_to_address" gdbarch method. */
1041
1042 static CORE_ADDR
1043 rl78_pointer_to_address (struct gdbarch *gdbarch,
1044 struct type *type, const gdb_byte *buf)
1045 {
1046 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1047 CORE_ADDR addr
1048 = extract_unsigned_integer (buf, type->length (), byte_order);
1049
1050 /* Is it a code address? */
1051 if (type->target_type ()->code () == TYPE_CODE_FUNC
1052 || type->target_type ()->code () == TYPE_CODE_METHOD
1053 || TYPE_CODE_SPACE (type->target_type ())
1054 || type->length () == 4)
1055 return rl78_make_instruction_address (addr);
1056 else
1057 return rl78_make_data_address (addr);
1058 }
1059
1060 /* Implement the "skip_prologue" gdbarch method. */
1061
1062 static CORE_ADDR
1063 rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1064 {
1065 const char *name;
1066 CORE_ADDR func_addr, func_end;
1067 struct rl78_prologue p;
1068
1069 /* Try to find the extent of the function that contains PC. */
1070 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
1071 return pc;
1072
1073 rl78_analyze_prologue (pc, func_end, &p);
1074 return p.prologue_end;
1075 }
1076
1077 /* Implement the "unwind_pc" gdbarch method. */
1078
1079 static CORE_ADDR
1080 rl78_unwind_pc (struct gdbarch *arch, frame_info_ptr next_frame)
1081 {
1082 return rl78_addr_bits_remove
1083 (arch, frame_unwind_register_unsigned (next_frame,
1084 RL78_PC_REGNUM));
1085 }
1086
1087 /* Given a frame described by THIS_FRAME, decode the prologue of its
1088 associated function if there is not cache entry as specified by
1089 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
1090 return that struct as the value of this function. */
1091
1092 static struct rl78_prologue *
1093 rl78_analyze_frame_prologue (frame_info_ptr this_frame,
1094 void **this_prologue_cache)
1095 {
1096 if (!*this_prologue_cache)
1097 {
1098 CORE_ADDR func_start, stop_addr;
1099
1100 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
1101
1102 func_start = get_frame_func (this_frame);
1103 stop_addr = get_frame_pc (this_frame);
1104
1105 /* If we couldn't find any function containing the PC, then
1106 just initialize the prologue cache, but don't do anything. */
1107 if (!func_start)
1108 stop_addr = func_start;
1109
1110 rl78_analyze_prologue (func_start, stop_addr,
1111 (struct rl78_prologue *) *this_prologue_cache);
1112 }
1113
1114 return (struct rl78_prologue *) *this_prologue_cache;
1115 }
1116
1117 /* Given a frame and a prologue cache, return this frame's base. */
1118
1119 static CORE_ADDR
1120 rl78_frame_base (frame_info_ptr this_frame, void **this_prologue_cache)
1121 {
1122 struct rl78_prologue *p
1123 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1124 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
1125
1126 return rl78_make_data_address (sp - p->frame_size);
1127 }
1128
1129 /* Implement the "frame_this_id" method for unwinding frames. */
1130
1131 static void
1132 rl78_this_id (frame_info_ptr this_frame,
1133 void **this_prologue_cache, struct frame_id *this_id)
1134 {
1135 *this_id = frame_id_build (rl78_frame_base (this_frame,
1136 this_prologue_cache),
1137 get_frame_func (this_frame));
1138 }
1139
1140 /* Implement the "frame_prev_register" method for unwinding frames. */
1141
1142 static struct value *
1143 rl78_prev_register (frame_info_ptr this_frame,
1144 void **this_prologue_cache, int regnum)
1145 {
1146 struct rl78_prologue *p
1147 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1148 CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
1149
1150 if (regnum == RL78_SP_REGNUM)
1151 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1152
1153 else if (regnum == RL78_SPL_REGNUM)
1154 return frame_unwind_got_constant (this_frame, regnum,
1155 (frame_base & 0xff));
1156
1157 else if (regnum == RL78_SPH_REGNUM)
1158 return frame_unwind_got_constant (this_frame, regnum,
1159 ((frame_base >> 8) & 0xff));
1160
1161 /* If prologue analysis says we saved this register somewhere,
1162 return a description of the stack slot holding it. */
1163 else if (p->reg_offset[regnum] != 1)
1164 {
1165 struct value *rv =
1166 frame_unwind_got_memory (this_frame, regnum,
1167 frame_base + p->reg_offset[regnum]);
1168
1169 if (regnum == RL78_PC_REGNUM)
1170 {
1171 ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
1172
1173 return frame_unwind_got_constant (this_frame, regnum, pc);
1174 }
1175 return rv;
1176 }
1177
1178 /* Otherwise, presume we haven't changed the value of this
1179 register, and get it from the next frame. */
1180 else
1181 return frame_unwind_got_register (this_frame, regnum, regnum);
1182 }
1183
1184 static const struct frame_unwind rl78_unwind =
1185 {
1186 "rl78 prologue",
1187 NORMAL_FRAME,
1188 default_frame_unwind_stop_reason,
1189 rl78_this_id,
1190 rl78_prev_register,
1191 NULL,
1192 default_frame_sniffer
1193 };
1194
1195 /* Implement the "dwarf_reg_to_regnum" gdbarch method. */
1196
1197 static int
1198 rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1199 {
1200 if (0 <= reg && reg <= 31)
1201 {
1202 if ((reg & 1) == 0)
1203 /* Map even registers to their 16-bit counterparts which have a
1204 pointer type. This is usually what is required from the DWARF
1205 info. */
1206 return (reg >> 1) + RL78_BANK0_RP0_PTR_REGNUM;
1207 else
1208 return reg;
1209 }
1210 else if (reg == 32)
1211 return RL78_SP_REGNUM;
1212 else if (reg == 33)
1213 return -1; /* ap */
1214 else if (reg == 34)
1215 return RL78_PSW_REGNUM;
1216 else if (reg == 35)
1217 return RL78_ES_REGNUM;
1218 else if (reg == 36)
1219 return RL78_CS_REGNUM;
1220 else if (reg == 37)
1221 return RL78_PC_REGNUM;
1222 else
1223 return -1;
1224 }
1225
1226 /* Implement the `register_sim_regno' gdbarch method. */
1227
1228 static int
1229 rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1230 {
1231 gdb_assert (regnum < RL78_NUM_REGS);
1232
1233 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
1234 just want to override the default here which disallows register
1235 numbers which have no names. */
1236 return regnum;
1237 }
1238
1239 /* Implement the "return_value" gdbarch method. */
1240
1241 static enum return_value_convention
1242 rl78_return_value (struct gdbarch *gdbarch,
1243 struct value *function,
1244 struct type *valtype,
1245 struct regcache *regcache,
1246 gdb_byte *readbuf, const gdb_byte *writebuf)
1247 {
1248 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1249 ULONGEST valtype_len = valtype->length ();
1250 rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
1251 int is_g10 = tdep->elf_flags & E_FLAG_RL78_G10;
1252
1253 if (valtype_len > 8)
1254 return RETURN_VALUE_STRUCT_CONVENTION;
1255
1256 if (readbuf)
1257 {
1258 ULONGEST u;
1259 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1260 CORE_ADDR g10_raddr = 0xffec8;
1261 int offset = 0;
1262
1263 while (valtype_len > 0)
1264 {
1265 if (is_g10)
1266 u = read_memory_integer (g10_raddr, 1,
1267 gdbarch_byte_order (gdbarch));
1268 else
1269 regcache_cooked_read_unsigned (regcache, argreg, &u);
1270 store_unsigned_integer (readbuf + offset, 1, byte_order, u);
1271 valtype_len -= 1;
1272 offset += 1;
1273 argreg++;
1274 g10_raddr++;
1275 }
1276 }
1277
1278 if (writebuf)
1279 {
1280 ULONGEST u;
1281 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1282 CORE_ADDR g10_raddr = 0xffec8;
1283 int offset = 0;
1284
1285 while (valtype_len > 0)
1286 {
1287 u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
1288 if (is_g10) {
1289 gdb_byte b = u & 0xff;
1290 write_memory (g10_raddr, &b, 1);
1291 }
1292 else
1293 regcache_cooked_write_unsigned (regcache, argreg, u);
1294 valtype_len -= 1;
1295 offset += 1;
1296 argreg++;
1297 g10_raddr++;
1298 }
1299 }
1300
1301 return RETURN_VALUE_REGISTER_CONVENTION;
1302 }
1303
1304
1305 /* Implement the "frame_align" gdbarch method. */
1306
1307 static CORE_ADDR
1308 rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1309 {
1310 return rl78_make_data_address (align_down (sp, 2));
1311 }
1312
1313
1314 /* Implement the "dummy_id" gdbarch method. */
1315
1316 static struct frame_id
1317 rl78_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame)
1318 {
1319 return
1320 frame_id_build (rl78_make_data_address
1321 (get_frame_register_unsigned
1322 (this_frame, RL78_SP_REGNUM)),
1323 get_frame_pc (this_frame));
1324 }
1325
1326
1327 /* Implement the "push_dummy_call" gdbarch method. */
1328
1329 static CORE_ADDR
1330 rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1331 struct regcache *regcache, CORE_ADDR bp_addr,
1332 int nargs, struct value **args, CORE_ADDR sp,
1333 function_call_return_method return_method,
1334 CORE_ADDR struct_addr)
1335 {
1336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1337 gdb_byte buf[4];
1338 int i;
1339
1340 /* Push arguments in reverse order. */
1341 for (i = nargs - 1; i >= 0; i--)
1342 {
1343 struct type *value_type = value_enclosing_type (args[i]);
1344 int len = value_type->length ();
1345 int container_len = (len + 1) & ~1;
1346
1347 sp -= container_len;
1348 write_memory (rl78_make_data_address (sp),
1349 value_contents_all (args[i]).data (), len);
1350 }
1351
1352 /* Store struct value address. */
1353 if (return_method == return_method_struct)
1354 {
1355 store_unsigned_integer (buf, 2, byte_order, struct_addr);
1356 sp -= 2;
1357 write_memory (rl78_make_data_address (sp), buf, 2);
1358 }
1359
1360 /* Store return address. */
1361 sp -= 4;
1362 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1363 write_memory (rl78_make_data_address (sp), buf, 4);
1364
1365 /* Finally, update the stack pointer... */
1366 regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
1367
1368 /* DWARF2/GCC uses the stack address *before* the function call as a
1369 frame's CFA. */
1370 return rl78_make_data_address (sp + 4);
1371 }
1372
1373 /* Allocate and initialize a gdbarch object. */
1374
1375 static struct gdbarch *
1376 rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1377 {
1378 struct gdbarch *gdbarch;
1379 int elf_flags;
1380
1381 /* Extract the elf_flags if available. */
1382 if (info.abfd != NULL
1383 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1384 elf_flags = elf_elfheader (info.abfd)->e_flags;
1385 else
1386 elf_flags = 0;
1387
1388
1389 /* Try to find the architecture in the list of already defined
1390 architectures. */
1391 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1392 arches != NULL;
1393 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1394 {
1395 rl78_gdbarch_tdep *tdep
1396 = gdbarch_tdep<rl78_gdbarch_tdep> (arches->gdbarch);
1397
1398 if (tdep->elf_flags != elf_flags)
1399 continue;
1400
1401 return arches->gdbarch;
1402 }
1403
1404 /* None found, create a new architecture from the information
1405 provided. */
1406 rl78_gdbarch_tdep * tdep = new rl78_gdbarch_tdep;
1407 gdbarch = gdbarch_alloc (&info, tdep);
1408 tdep->elf_flags = elf_flags;
1409
1410 /* Initialize types. */
1411 tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1412 "void");
1413 tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
1414 tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t");
1415 tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
1416 tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t");
1417 tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
1418 tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t");
1419
1420 tdep->rl78_data_pointer
1421 = arch_pointer_type (gdbarch, 16, "rl78_data_addr_t", tdep->rl78_void);
1422 tdep->rl78_code_pointer
1423 = arch_pointer_type (gdbarch, 32, "rl78_code_addr_t", tdep->rl78_void);
1424
1425 /* Registers. */
1426 set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
1427 set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
1428 if (tdep->elf_flags & E_FLAG_RL78_G10)
1429 set_gdbarch_register_name (gdbarch, rl78_g10_register_name);
1430 else
1431 set_gdbarch_register_name (gdbarch, rl78_register_name);
1432 set_gdbarch_register_type (gdbarch, rl78_register_type);
1433 set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
1434 set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
1435 set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
1436 set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write);
1437 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
1438 set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
1439 set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
1440
1441 /* Data types. */
1442 set_gdbarch_char_signed (gdbarch, 0);
1443 set_gdbarch_short_bit (gdbarch, 16);
1444 set_gdbarch_int_bit (gdbarch, 16);
1445 set_gdbarch_long_bit (gdbarch, 32);
1446 set_gdbarch_long_long_bit (gdbarch, 64);
1447 set_gdbarch_ptr_bit (gdbarch, 16);
1448 set_gdbarch_addr_bit (gdbarch, 32);
1449 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
1450 set_gdbarch_float_bit (gdbarch, 32);
1451 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1452 set_gdbarch_double_bit (gdbarch, 32);
1453 set_gdbarch_long_double_bit (gdbarch, 64);
1454 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1455 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1456 set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
1457 set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
1458 set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
1459
1460 /* Breakpoints. */
1461 set_gdbarch_breakpoint_kind_from_pc (gdbarch, rl78_breakpoint::kind_from_pc);
1462 set_gdbarch_sw_breakpoint_from_kind (gdbarch, rl78_breakpoint::bp_from_kind);
1463 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1464
1465 /* Frames, prologues, etc. */
1466 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1467 set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
1468 set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
1469 set_gdbarch_frame_align (gdbarch, rl78_frame_align);
1470
1471 dwarf2_append_unwinders (gdbarch);
1472 frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
1473
1474 /* Dummy frames, return values. */
1475 set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
1476 set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
1477 set_gdbarch_return_value (gdbarch, rl78_return_value);
1478
1479 /* Virtual tables. */
1480 set_gdbarch_vbit_in_delta (gdbarch, 1);
1481
1482 return gdbarch;
1483 }
1484
1485 /* Register the above initialization routine. */
1486
1487 void _initialize_rl78_tdep ();
1488 void
1489 _initialize_rl78_tdep ()
1490 {
1491 gdbarch_register (bfd_arch_rl78, rl78_gdbarch_init);
1492 }