]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-nat.c
* target.h (struct regcache): Add forward declaration.
[thirdparty/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "xcoffsolib.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
32 #include "bfd.h"
33 #include "exceptions.h"
34 #include "gdb-stabs.h"
35 #include "regcache.h"
36 #include "arch-utils.h"
37 #include "inf-ptrace.h"
38 #include "ppc-tdep.h"
39 #include "rs6000-tdep.h"
40 #include "exec.h"
41 #include "gdb_stdint.h"
42
43 #include <sys/ptrace.h>
44 #include <sys/reg.h>
45
46 #include <sys/param.h>
47 #include <sys/dir.h>
48 #include <sys/user.h>
49 #include <signal.h>
50 #include <sys/ioctl.h>
51 #include <fcntl.h>
52 #include <errno.h>
53
54 #include <a.out.h>
55 #include <sys/file.h>
56 #include "gdb_stat.h"
57 #include <sys/core.h>
58 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
59 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
60 #include <sys/ldr.h>
61 #include <sys/systemcfg.h>
62
63 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
64 debugging 32-bit and 64-bit processes. Define a typedef and macros for
65 accessing fields in the appropriate structures. */
66
67 /* In 32-bit compilation mode (which is the only mode from which ptrace()
68 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
69
70 #ifdef __ld_info32
71 # define ARCH3264
72 #endif
73
74 /* Return whether the current architecture is 64-bit. */
75
76 #ifndef ARCH3264
77 # define ARCH64() 0
78 #else
79 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
80 #endif
81
82 /* Union of 32-bit and 64-bit versions of ld_info. */
83
84 typedef union {
85 #ifndef ARCH3264
86 struct ld_info l32;
87 struct ld_info l64;
88 #else
89 struct __ld_info32 l32;
90 struct __ld_info64 l64;
91 #endif
92 } LdInfo;
93
94 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
95 declare and initialize a variable named VAR suitable for use as the arch64
96 parameter to the various LDI_*() macros. */
97
98 #ifndef ARCH3264
99 # define ARCH64_DECL(var)
100 #else
101 # define ARCH64_DECL(var) int var = ARCH64 ()
102 #endif
103
104 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
105 otherwise. This technique only works for FIELDs with the same data type in
106 32-bit and 64-bit versions of ld_info. */
107
108 #ifndef ARCH3264
109 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
110 #else
111 # define LDI_FIELD(ldi, arch64, field) \
112 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
113 #endif
114
115 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
116 process otherwise. */
117
118 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
119 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
120 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
121
122 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
123
124 static void vmap_exec (void);
125
126 static void vmap_ldinfo (LdInfo *);
127
128 static struct vmap *add_vmap (LdInfo *);
129
130 static int objfile_symbol_add (void *);
131
132 static void vmap_symtab (struct vmap *);
133
134 static void exec_one_dummy_insn (void);
135
136 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
137
138 /* Given REGNO, a gdb register number, return the corresponding
139 number suitable for use as a ptrace() parameter. Return -1 if
140 there's no suitable mapping. Also, set the int pointed to by
141 ISFLOAT to indicate whether REGNO is a floating point register. */
142
143 static int
144 regmap (int regno, int *isfloat)
145 {
146 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
147
148 *isfloat = 0;
149 if (tdep->ppc_gp0_regnum <= regno
150 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
151 return regno;
152 else if (tdep->ppc_fp0_regnum >= 0
153 && tdep->ppc_fp0_regnum <= regno
154 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
155 {
156 *isfloat = 1;
157 return regno - tdep->ppc_fp0_regnum + FPR0;
158 }
159 else if (regno == PC_REGNUM)
160 return IAR;
161 else if (regno == tdep->ppc_ps_regnum)
162 return MSR;
163 else if (regno == tdep->ppc_cr_regnum)
164 return CR;
165 else if (regno == tdep->ppc_lr_regnum)
166 return LR;
167 else if (regno == tdep->ppc_ctr_regnum)
168 return CTR;
169 else if (regno == tdep->ppc_xer_regnum)
170 return XER;
171 else if (tdep->ppc_fpscr_regnum >= 0
172 && regno == tdep->ppc_fpscr_regnum)
173 return FPSCR;
174 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
175 return MQ;
176 else
177 return -1;
178 }
179
180 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
181
182 static int
183 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
184 {
185 int ret = ptrace (req, id, (int *)addr, data, buf);
186 #if 0
187 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
188 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
189 #endif
190 return ret;
191 }
192
193 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
194
195 static int
196 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
197 {
198 #ifdef ARCH3264
199 int ret = ptracex (req, id, addr, data, buf);
200 #else
201 int ret = 0;
202 #endif
203 #if 0
204 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
205 req, id, addr, data, (unsigned int)buf, ret);
206 #endif
207 return ret;
208 }
209
210 /* Fetch register REGNO from the inferior. */
211
212 static void
213 fetch_register (struct regcache *regcache, int regno)
214 {
215 int addr[MAX_REGISTER_SIZE];
216 int nr, isfloat;
217
218 /* Retrieved values may be -1, so infer errors from errno. */
219 errno = 0;
220
221 nr = regmap (regno, &isfloat);
222
223 /* Floating-point registers. */
224 if (isfloat)
225 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
226
227 /* Bogus register number. */
228 else if (nr < 0)
229 {
230 if (regno >= NUM_REGS)
231 fprintf_unfiltered (gdb_stderr,
232 "gdb error: register no %d not implemented.\n",
233 regno);
234 return;
235 }
236
237 /* Fixed-point registers. */
238 else
239 {
240 if (!ARCH64 ())
241 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
242 else
243 {
244 /* PT_READ_GPR requires the buffer parameter to point to long long,
245 even if the register is really only 32 bits. */
246 long long buf;
247 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
248 if (register_size (current_gdbarch, regno) == 8)
249 memcpy (addr, &buf, 8);
250 else
251 *addr = buf;
252 }
253 }
254
255 if (!errno)
256 regcache_raw_supply (regcache, regno, (char *) addr);
257 else
258 {
259 #if 0
260 /* FIXME: this happens 3 times at the start of each 64-bit program. */
261 perror ("ptrace read");
262 #endif
263 errno = 0;
264 }
265 }
266
267 /* Store register REGNO back into the inferior. */
268
269 static void
270 store_register (const struct regcache *regcache, int regno)
271 {
272 int addr[MAX_REGISTER_SIZE];
273 int nr, isfloat;
274
275 /* Fetch the register's value from the register cache. */
276 regcache_raw_collect (regcache, regno, addr);
277
278 /* -1 can be a successful return value, so infer errors from errno. */
279 errno = 0;
280
281 nr = regmap (regno, &isfloat);
282
283 /* Floating-point registers. */
284 if (isfloat)
285 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
286
287 /* Bogus register number. */
288 else if (nr < 0)
289 {
290 if (regno >= NUM_REGS)
291 fprintf_unfiltered (gdb_stderr,
292 "gdb error: register no %d not implemented.\n",
293 regno);
294 }
295
296 /* Fixed-point registers. */
297 else
298 {
299 if (regno == SP_REGNUM)
300 /* Execute one dummy instruction (which is a breakpoint) in inferior
301 process to give kernel a chance to do internal housekeeping.
302 Otherwise the following ptrace(2) calls will mess up user stack
303 since kernel will get confused about the bottom of the stack
304 (%sp). */
305 exec_one_dummy_insn ();
306
307 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
308 the register's value is passed by value, but for 64-bit inferiors,
309 the address of a buffer containing the value is passed. */
310 if (!ARCH64 ())
311 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
312 else
313 {
314 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
315 area, even if the register is really only 32 bits. */
316 long long buf;
317 if (register_size (current_gdbarch, regno) == 8)
318 memcpy (&buf, addr, 8);
319 else
320 buf = *addr;
321 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
322 }
323 }
324
325 if (errno)
326 {
327 perror ("ptrace write");
328 errno = 0;
329 }
330 }
331
332 /* Read from the inferior all registers if REGNO == -1 and just register
333 REGNO otherwise. */
334
335 static void
336 rs6000_fetch_inferior_registers (struct regcache *regcache, int regno)
337 {
338 if (regno != -1)
339 fetch_register (regcache, regno);
340
341 else
342 {
343 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
344
345 /* Read 32 general purpose registers. */
346 for (regno = tdep->ppc_gp0_regnum;
347 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
348 regno++)
349 {
350 fetch_register (regcache, regno);
351 }
352
353 /* Read general purpose floating point registers. */
354 if (tdep->ppc_fp0_regnum >= 0)
355 for (regno = 0; regno < ppc_num_fprs; regno++)
356 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
357
358 /* Read special registers. */
359 fetch_register (regcache, PC_REGNUM);
360 fetch_register (regcache, tdep->ppc_ps_regnum);
361 fetch_register (regcache, tdep->ppc_cr_regnum);
362 fetch_register (regcache, tdep->ppc_lr_regnum);
363 fetch_register (regcache, tdep->ppc_ctr_regnum);
364 fetch_register (regcache, tdep->ppc_xer_regnum);
365 if (tdep->ppc_fpscr_regnum >= 0)
366 fetch_register (regcache, tdep->ppc_fpscr_regnum);
367 if (tdep->ppc_mq_regnum >= 0)
368 fetch_register (regcache, tdep->ppc_mq_regnum);
369 }
370 }
371
372 /* Store our register values back into the inferior.
373 If REGNO is -1, do this for all registers.
374 Otherwise, REGNO specifies which register (so we can save time). */
375
376 static void
377 rs6000_store_inferior_registers (struct regcache *regcache, int regno)
378 {
379 if (regno != -1)
380 store_register (regcache, regno);
381
382 else
383 {
384 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
385
386 /* Write general purpose registers first. */
387 for (regno = tdep->ppc_gp0_regnum;
388 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
389 regno++)
390 {
391 store_register (regcache, regno);
392 }
393
394 /* Write floating point registers. */
395 if (tdep->ppc_fp0_regnum >= 0)
396 for (regno = 0; regno < ppc_num_fprs; regno++)
397 store_register (regcache, tdep->ppc_fp0_regnum + regno);
398
399 /* Write special registers. */
400 store_register (regcache, PC_REGNUM);
401 store_register (regcache, tdep->ppc_ps_regnum);
402 store_register (regcache, tdep->ppc_cr_regnum);
403 store_register (regcache, tdep->ppc_lr_regnum);
404 store_register (regcache, tdep->ppc_ctr_regnum);
405 store_register (regcache, tdep->ppc_xer_regnum);
406 if (tdep->ppc_fpscr_regnum >= 0)
407 store_register (regcache, tdep->ppc_fpscr_regnum);
408 if (tdep->ppc_mq_regnum >= 0)
409 store_register (regcache, tdep->ppc_mq_regnum);
410 }
411 }
412
413
414 /* Attempt a transfer all LEN bytes starting at OFFSET between the
415 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
416 Return the number of bytes actually transferred. */
417
418 static LONGEST
419 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
420 const char *annex, gdb_byte *readbuf,
421 const gdb_byte *writebuf,
422 ULONGEST offset, LONGEST len)
423 {
424 pid_t pid = ptid_get_pid (inferior_ptid);
425 int arch64 = ARCH64 ();
426
427 switch (object)
428 {
429 case TARGET_OBJECT_MEMORY:
430 {
431 union
432 {
433 PTRACE_TYPE_RET word;
434 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
435 } buffer;
436 ULONGEST rounded_offset;
437 LONGEST partial_len;
438
439 /* Round the start offset down to the next long word
440 boundary. */
441 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
442
443 /* Since ptrace will transfer a single word starting at that
444 rounded_offset the partial_len needs to be adjusted down to
445 that (remember this function only does a single transfer).
446 Should the required length be even less, adjust it down
447 again. */
448 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
449 if (partial_len > len)
450 partial_len = len;
451
452 if (writebuf)
453 {
454 /* If OFFSET:PARTIAL_LEN is smaller than
455 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
456 be needed. Read in the entire word. */
457 if (rounded_offset < offset
458 || (offset + partial_len
459 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
460 {
461 /* Need part of initial word -- fetch it. */
462 if (arch64)
463 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
464 rounded_offset, 0, NULL);
465 else
466 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
467 (int *)(uintptr_t)rounded_offset,
468 0, NULL);
469 }
470
471 /* Copy data to be written over corresponding part of
472 buffer. */
473 memcpy (buffer.byte + (offset - rounded_offset),
474 writebuf, partial_len);
475
476 errno = 0;
477 if (arch64)
478 rs6000_ptrace64 (PT_WRITE_D, pid,
479 rounded_offset, buffer.word, NULL);
480 else
481 rs6000_ptrace32 (PT_WRITE_D, pid,
482 (int *)(uintptr_t)rounded_offset, buffer.word, NULL);
483 if (errno)
484 return 0;
485 }
486
487 if (readbuf)
488 {
489 errno = 0;
490 if (arch64)
491 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
492 rounded_offset, 0, NULL);
493 else
494 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
495 (int *)(uintptr_t)rounded_offset,
496 0, NULL);
497 if (errno)
498 return 0;
499
500 /* Copy appropriate bytes out of the buffer. */
501 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
502 partial_len);
503 }
504
505 return partial_len;
506 }
507
508 default:
509 return -1;
510 }
511 }
512
513 /* Wait for the child specified by PTID to do something. Return the
514 process ID of the child, or MINUS_ONE_PTID in case of error; store
515 the status in *OURSTATUS. */
516
517 static ptid_t
518 rs6000_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
519 {
520 pid_t pid;
521 int status, save_errno;
522
523 do
524 {
525 set_sigint_trap ();
526 set_sigio_trap ();
527
528 do
529 {
530 pid = waitpid (ptid_get_pid (ptid), &status, 0);
531 save_errno = errno;
532 }
533 while (pid == -1 && errno == EINTR);
534
535 clear_sigio_trap ();
536 clear_sigint_trap ();
537
538 if (pid == -1)
539 {
540 fprintf_unfiltered (gdb_stderr,
541 _("Child process unexpectedly missing: %s.\n"),
542 safe_strerror (save_errno));
543
544 /* Claim it exited with unknown signal. */
545 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
546 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
547 return minus_one_ptid;
548 }
549
550 /* Ignore terminated detached child processes. */
551 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
552 pid = -1;
553 }
554 while (pid == -1);
555
556 /* AIX has a couple of strange returns from wait(). */
557
558 /* stop after load" status. */
559 if (status == 0x57c)
560 ourstatus->kind = TARGET_WAITKIND_LOADED;
561 /* signal 0. I have no idea why wait(2) returns with this status word. */
562 else if (status == 0x7f)
563 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
564 /* A normal waitstatus. Let the usual macros deal with it. */
565 else
566 store_waitstatus (ourstatus, status);
567
568 return pid_to_ptid (pid);
569 }
570
571 /* Execute one dummy breakpoint instruction. This way we give the kernel
572 a chance to do some housekeeping and update inferior's internal data,
573 including u_area. */
574
575 static void
576 exec_one_dummy_insn (void)
577 {
578 #define DUMMY_INSN_ADDR gdbarch_tdep (current_gdbarch)->text_segment_base+0x200
579
580 int ret, status, pid;
581 CORE_ADDR prev_pc;
582 void *bp;
583
584 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
585 assume that this address will never be executed again by the real
586 code. */
587
588 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
589
590 /* You might think this could be done with a single ptrace call, and
591 you'd be correct for just about every platform I've ever worked
592 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
593 the inferior never hits the breakpoint (it's also worth noting
594 powerpc-ibm-aix4.1.3 works correctly). */
595 prev_pc = read_pc ();
596 write_pc (DUMMY_INSN_ADDR);
597 if (ARCH64 ())
598 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
599 else
600 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
601
602 if (ret != 0)
603 perror ("pt_continue");
604
605 do
606 {
607 pid = wait (&status);
608 }
609 while (pid != PIDGET (inferior_ptid));
610
611 write_pc (prev_pc);
612 deprecated_remove_raw_breakpoint (bp);
613 }
614 \f
615
616 /* Copy information about text and data sections from LDI to VP for a 64-bit
617 process if ARCH64 and for a 32-bit process otherwise. */
618
619 static void
620 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
621 {
622 if (arch64)
623 {
624 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
625 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
626 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
627 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
628 }
629 else
630 {
631 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
632 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
633 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
634 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
635 }
636
637 /* The run time loader maps the file header in addition to the text
638 section and returns a pointer to the header in ldinfo_textorg.
639 Adjust the text start address to point to the real start address
640 of the text section. */
641 vp->tstart += vp->toffs;
642 }
643
644 /* handle symbol translation on vmapping */
645
646 static void
647 vmap_symtab (struct vmap *vp)
648 {
649 struct objfile *objfile;
650 struct section_offsets *new_offsets;
651 int i;
652
653 objfile = vp->objfile;
654 if (objfile == NULL)
655 {
656 /* OK, it's not an objfile we opened ourselves.
657 Currently, that can only happen with the exec file, so
658 relocate the symbols for the symfile. */
659 if (symfile_objfile == NULL)
660 return;
661 objfile = symfile_objfile;
662 }
663 else if (!vp->loaded)
664 /* If symbols are not yet loaded, offsets are not yet valid. */
665 return;
666
667 new_offsets =
668 (struct section_offsets *)
669 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
670
671 for (i = 0; i < objfile->num_sections; ++i)
672 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
673
674 /* The symbols in the object file are linked to the VMA of the section,
675 relocate them VMA relative. */
676 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
677 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
678 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
679
680 objfile_relocate (objfile, new_offsets);
681 }
682 \f
683 /* Add symbols for an objfile. */
684
685 static int
686 objfile_symbol_add (void *arg)
687 {
688 struct objfile *obj = (struct objfile *) arg;
689
690 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
691 new_symfile_objfile (obj, 0, 0);
692 return 1;
693 }
694
695 /* Add symbols for a vmap. Return zero upon error. */
696
697 int
698 vmap_add_symbols (struct vmap *vp)
699 {
700 if (catch_errors (objfile_symbol_add, vp->objfile,
701 "Error while reading shared library symbols:\n",
702 RETURN_MASK_ALL))
703 {
704 /* Note this is only done if symbol reading was successful. */
705 vp->loaded = 1;
706 vmap_symtab (vp);
707 return 1;
708 }
709 return 0;
710 }
711
712 /* Add a new vmap entry based on ldinfo() information.
713
714 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
715 core file), the caller should set it to -1, and we will open the file.
716
717 Return the vmap new entry. */
718
719 static struct vmap *
720 add_vmap (LdInfo *ldi)
721 {
722 bfd *abfd, *last;
723 char *mem, *objname, *filename;
724 struct objfile *obj;
725 struct vmap *vp;
726 int fd;
727 ARCH64_DECL (arch64);
728
729 /* This ldi structure was allocated using alloca() in
730 xcoff_relocate_symtab(). Now we need to have persistent object
731 and member names, so we should save them. */
732
733 filename = LDI_FILENAME (ldi, arch64);
734 mem = filename + strlen (filename) + 1;
735 mem = savestring (mem, strlen (mem));
736 objname = savestring (filename, strlen (filename));
737
738 fd = LDI_FD (ldi, arch64);
739 if (fd < 0)
740 /* Note that this opens it once for every member; a possible
741 enhancement would be to only open it once for every object. */
742 abfd = bfd_openr (objname, gnutarget);
743 else
744 abfd = bfd_fdopenr (objname, gnutarget, fd);
745 if (!abfd)
746 {
747 warning (_("Could not open `%s' as an executable file: %s"),
748 objname, bfd_errmsg (bfd_get_error ()));
749 return NULL;
750 }
751
752 /* make sure we have an object file */
753
754 if (bfd_check_format (abfd, bfd_object))
755 vp = map_vmap (abfd, 0);
756
757 else if (bfd_check_format (abfd, bfd_archive))
758 {
759 last = 0;
760 /* FIXME??? am I tossing BFDs? bfd? */
761 while ((last = bfd_openr_next_archived_file (abfd, last)))
762 if (DEPRECATED_STREQ (mem, last->filename))
763 break;
764
765 if (!last)
766 {
767 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
768 bfd_close (abfd);
769 return NULL;
770 }
771
772 if (!bfd_check_format (last, bfd_object))
773 {
774 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
775 objname, mem, bfd_errmsg (bfd_get_error ()));
776 bfd_close (last);
777 bfd_close (abfd);
778 return NULL;
779 }
780
781 vp = map_vmap (last, abfd);
782 }
783 else
784 {
785 warning (_("\"%s\": not in executable format: %s."),
786 objname, bfd_errmsg (bfd_get_error ()));
787 bfd_close (abfd);
788 return NULL;
789 }
790 obj = allocate_objfile (vp->bfd, 0);
791 vp->objfile = obj;
792
793 /* Always add symbols for the main objfile. */
794 if (vp == vmap || auto_solib_add)
795 vmap_add_symbols (vp);
796 return vp;
797 }
798 \f
799 /* update VMAP info with ldinfo() information
800 Input is ptr to ldinfo() results. */
801
802 static void
803 vmap_ldinfo (LdInfo *ldi)
804 {
805 struct stat ii, vi;
806 struct vmap *vp;
807 int got_one, retried;
808 int got_exec_file = 0;
809 uint next;
810 int arch64 = ARCH64 ();
811
812 /* For each *ldi, see if we have a corresponding *vp.
813 If so, update the mapping, and symbol table.
814 If not, add an entry and symbol table. */
815
816 do
817 {
818 char *name = LDI_FILENAME (ldi, arch64);
819 char *memb = name + strlen (name) + 1;
820 int fd = LDI_FD (ldi, arch64);
821
822 retried = 0;
823
824 if (fstat (fd, &ii) < 0)
825 {
826 /* The kernel sets ld_info to -1, if the process is still using the
827 object, and the object is removed. Keep the symbol info for the
828 removed object and issue a warning. */
829 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
830 name, fd);
831 continue;
832 }
833 retry:
834 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
835 {
836 struct objfile *objfile;
837
838 /* First try to find a `vp', which is the same as in ldinfo.
839 If not the same, just continue and grep the next `vp'. If same,
840 relocate its tstart, tend, dstart, dend values. If no such `vp'
841 found, get out of this for loop, add this ldi entry as a new vmap
842 (add_vmap) and come back, find its `vp' and so on... */
843
844 /* The filenames are not always sufficient to match on. */
845
846 if ((name[0] == '/' && !DEPRECATED_STREQ (name, vp->name))
847 || (memb[0] && !DEPRECATED_STREQ (memb, vp->member)))
848 continue;
849
850 /* See if we are referring to the same file.
851 We have to check objfile->obfd, symfile.c:reread_symbols might
852 have updated the obfd after a change. */
853 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
854 if (objfile == NULL
855 || objfile->obfd == NULL
856 || bfd_stat (objfile->obfd, &vi) < 0)
857 {
858 warning (_("Unable to stat %s, keeping its symbols"), name);
859 continue;
860 }
861
862 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
863 continue;
864
865 if (!retried)
866 close (fd);
867
868 ++got_one;
869
870 /* Found a corresponding VMAP. Remap! */
871
872 vmap_secs (vp, ldi, arch64);
873
874 /* The objfile is only NULL for the exec file. */
875 if (vp->objfile == NULL)
876 got_exec_file = 1;
877
878 /* relocate symbol table(s). */
879 vmap_symtab (vp);
880
881 /* Announce new object files. Doing this after symbol relocation
882 makes aix-thread.c's job easier. */
883 if (deprecated_target_new_objfile_hook && vp->objfile)
884 deprecated_target_new_objfile_hook (vp->objfile);
885
886 /* There may be more, so we don't break out of the loop. */
887 }
888
889 /* if there was no matching *vp, we must perforce create the sucker(s) */
890 if (!got_one && !retried)
891 {
892 add_vmap (ldi);
893 ++retried;
894 goto retry;
895 }
896 }
897 while ((next = LDI_NEXT (ldi, arch64))
898 && (ldi = (void *) (next + (char *) ldi)));
899
900 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
901 is unlikely that the symbol file is relocated to the proper
902 address. And we might have attached to a process which is
903 running a different copy of the same executable. */
904 if (symfile_objfile != NULL && !got_exec_file)
905 {
906 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
907 If in fact that file has symbols which the mapped files listed by\n\
908 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
909 \"add-symbol-file\" commands (note that you must take care of relocating\n\
910 symbols to the proper address)."),
911 symfile_objfile->name);
912 free_objfile (symfile_objfile);
913 symfile_objfile = NULL;
914 }
915 breakpoint_re_set ();
916 }
917 \f
918 /* As well as symbol tables, exec_sections need relocation. After
919 the inferior process' termination, there will be a relocated symbol
920 table exist with no corresponding inferior process. At that time, we
921 need to use `exec' bfd, rather than the inferior process's memory space
922 to look up symbols.
923
924 `exec_sections' need to be relocated only once, as long as the exec
925 file remains unchanged.
926 */
927
928 static void
929 vmap_exec (void)
930 {
931 static bfd *execbfd;
932 int i;
933
934 if (execbfd == exec_bfd)
935 return;
936
937 execbfd = exec_bfd;
938
939 if (!vmap || !exec_ops.to_sections)
940 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
941
942 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
943 {
944 if (DEPRECATED_STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
945 {
946 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
947 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
948 }
949 else if (DEPRECATED_STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
950 {
951 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
952 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
953 }
954 else if (DEPRECATED_STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
955 {
956 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
957 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
958 }
959 }
960 }
961
962 /* Set the current architecture from the host running GDB. Called when
963 starting a child process. */
964
965 static void (*super_create_inferior) (char *exec_file, char *allargs,
966 char **env, int from_tty);
967 static void
968 rs6000_create_inferior (char *exec_file, char *allargs, char **env, int from_tty)
969 {
970 enum bfd_architecture arch;
971 unsigned long mach;
972 bfd abfd;
973 struct gdbarch_info info;
974
975 super_create_inferior (exec_file, allargs, env, from_tty);
976
977 if (__power_rs ())
978 {
979 arch = bfd_arch_rs6000;
980 mach = bfd_mach_rs6k;
981 }
982 else
983 {
984 arch = bfd_arch_powerpc;
985 mach = bfd_mach_ppc;
986 }
987
988 /* FIXME: schauer/2002-02-25:
989 We don't know if we are executing a 32 or 64 bit executable,
990 and have no way to pass the proper word size to rs6000_gdbarch_init.
991 So we have to avoid switching to a new architecture, if the architecture
992 matches already.
993 Blindly calling rs6000_gdbarch_init used to work in older versions of
994 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
995 determine the wordsize. */
996 if (exec_bfd)
997 {
998 const struct bfd_arch_info *exec_bfd_arch_info;
999
1000 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1001 if (arch == exec_bfd_arch_info->arch)
1002 return;
1003 }
1004
1005 bfd_default_set_arch_mach (&abfd, arch, mach);
1006
1007 gdbarch_info_init (&info);
1008 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1009 info.abfd = exec_bfd;
1010
1011 if (!gdbarch_update_p (info))
1012 internal_error (__FILE__, __LINE__,
1013 _("rs6000_create_inferior: failed to select architecture"));
1014 }
1015
1016 \f
1017 /* xcoff_relocate_symtab - hook for symbol table relocation.
1018 also reads shared libraries. */
1019
1020 void
1021 xcoff_relocate_symtab (unsigned int pid)
1022 {
1023 int load_segs = 64; /* number of load segments */
1024 int rc;
1025 LdInfo *ldi = NULL;
1026 int arch64 = ARCH64 ();
1027 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1028 int size;
1029
1030 do
1031 {
1032 size = load_segs * ldisize;
1033 ldi = (void *) xrealloc (ldi, size);
1034
1035 #if 0
1036 /* According to my humble theory, AIX has some timing problems and
1037 when the user stack grows, kernel doesn't update stack info in time
1038 and ptrace calls step on user stack. That is why we sleep here a
1039 little, and give kernel to update its internals. */
1040 usleep (36000);
1041 #endif
1042
1043 if (arch64)
1044 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1045 else
1046 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1047
1048 if (rc == -1)
1049 {
1050 if (errno == ENOMEM)
1051 load_segs *= 2;
1052 else
1053 perror_with_name (_("ptrace ldinfo"));
1054 }
1055 else
1056 {
1057 vmap_ldinfo (ldi);
1058 vmap_exec (); /* relocate the exec and core sections as well. */
1059 }
1060 } while (rc == -1);
1061 if (ldi)
1062 xfree (ldi);
1063 }
1064 \f
1065 /* Core file stuff. */
1066
1067 /* Relocate symtabs and read in shared library info, based on symbols
1068 from the core file. */
1069
1070 void
1071 xcoff_relocate_core (struct target_ops *target)
1072 {
1073 struct bfd_section *ldinfo_sec;
1074 int offset = 0;
1075 LdInfo *ldi;
1076 struct vmap *vp;
1077 int arch64 = ARCH64 ();
1078
1079 /* Size of a struct ld_info except for the variable-length filename. */
1080 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1081
1082 /* Allocated size of buffer. */
1083 int buffer_size = nonfilesz;
1084 char *buffer = xmalloc (buffer_size);
1085 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1086
1087 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1088 if (ldinfo_sec == NULL)
1089 {
1090 bfd_err:
1091 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1092 bfd_errmsg (bfd_get_error ()));
1093 do_cleanups (old);
1094 return;
1095 }
1096 do
1097 {
1098 int i;
1099 int names_found = 0;
1100
1101 /* Read in everything but the name. */
1102 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1103 offset, nonfilesz) == 0)
1104 goto bfd_err;
1105
1106 /* Now the name. */
1107 i = nonfilesz;
1108 do
1109 {
1110 if (i == buffer_size)
1111 {
1112 buffer_size *= 2;
1113 buffer = xrealloc (buffer, buffer_size);
1114 }
1115 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1116 offset + i, 1) == 0)
1117 goto bfd_err;
1118 if (buffer[i++] == '\0')
1119 ++names_found;
1120 }
1121 while (names_found < 2);
1122
1123 ldi = (LdInfo *) buffer;
1124
1125 /* Can't use a file descriptor from the core file; need to open it. */
1126 if (arch64)
1127 ldi->l64.ldinfo_fd = -1;
1128 else
1129 ldi->l32.ldinfo_fd = -1;
1130
1131 /* The first ldinfo is for the exec file, allocated elsewhere. */
1132 if (offset == 0 && vmap != NULL)
1133 vp = vmap;
1134 else
1135 vp = add_vmap (ldi);
1136
1137 /* Process next shared library upon error. */
1138 offset += LDI_NEXT (ldi, arch64);
1139 if (vp == NULL)
1140 continue;
1141
1142 vmap_secs (vp, ldi, arch64);
1143
1144 /* Unless this is the exec file,
1145 add our sections to the section table for the core target. */
1146 if (vp != vmap)
1147 {
1148 struct section_table *stp;
1149
1150 target_resize_to_sections (target, 2);
1151 stp = target->to_sections_end - 2;
1152
1153 stp->bfd = vp->bfd;
1154 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1155 stp->addr = vp->tstart;
1156 stp->endaddr = vp->tend;
1157 stp++;
1158
1159 stp->bfd = vp->bfd;
1160 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1161 stp->addr = vp->dstart;
1162 stp->endaddr = vp->dend;
1163 }
1164
1165 vmap_symtab (vp);
1166
1167 if (deprecated_target_new_objfile_hook && vp != vmap && vp->objfile)
1168 deprecated_target_new_objfile_hook (vp->objfile);
1169 }
1170 while (LDI_NEXT (ldi, arch64) != 0);
1171 vmap_exec ();
1172 breakpoint_re_set ();
1173 do_cleanups (old);
1174 }
1175 \f
1176 /* Under AIX, we have to pass the correct TOC pointer to a function
1177 when calling functions in the inferior.
1178 We try to find the relative toc offset of the objfile containing PC
1179 and add the current load address of the data segment from the vmap. */
1180
1181 static CORE_ADDR
1182 find_toc_address (CORE_ADDR pc)
1183 {
1184 struct vmap *vp;
1185 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1186
1187 for (vp = vmap; vp; vp = vp->nxt)
1188 {
1189 if (pc >= vp->tstart && pc < vp->tend)
1190 {
1191 /* vp->objfile is only NULL for the exec file. */
1192 return vp->dstart + get_toc_offset (vp->objfile == NULL
1193 ? symfile_objfile
1194 : vp->objfile);
1195 }
1196 }
1197 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1198 }
1199 \f
1200
1201 void
1202 _initialize_rs6000_nat (void)
1203 {
1204 struct target_ops *t;
1205
1206 t = inf_ptrace_target ();
1207 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1208 t->to_store_registers = rs6000_store_inferior_registers;
1209 t->to_xfer_partial = rs6000_xfer_partial;
1210
1211 super_create_inferior = t->to_create_inferior;
1212 t->to_create_inferior = rs6000_create_inferior;
1213
1214 t->to_wait = rs6000_wait;
1215
1216 add_target (t);
1217
1218 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1219 when calling functions in the inferior. */
1220 rs6000_find_toc_address_hook = find_toc_address;
1221 }