]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-nat.c
* config/powerpc/linux.mt (DEPRECATED_TM_FILE): Set to tm-ppc-eabi.h.
[thirdparty/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "xcoffsolib.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
32 #include "bfd.h"
33 #include "exceptions.h"
34 #include "gdb-stabs.h"
35 #include "regcache.h"
36 #include "arch-utils.h"
37 #include "ppc-tdep.h"
38 #include "rs6000-tdep.h"
39 #include "exec.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/param.h>
45 #include <sys/dir.h>
46 #include <sys/user.h>
47 #include <signal.h>
48 #include <sys/ioctl.h>
49 #include <fcntl.h>
50 #include <errno.h>
51
52 #include <a.out.h>
53 #include <sys/file.h>
54 #include "gdb_stat.h"
55 #include <sys/core.h>
56 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
57 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
58 #include <sys/ldr.h>
59 #include <sys/systemcfg.h>
60
61 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
62 debugging 32-bit and 64-bit processes. Define a typedef and macros for
63 accessing fields in the appropriate structures. */
64
65 /* In 32-bit compilation mode (which is the only mode from which ptrace()
66 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
67
68 #ifdef __ld_info32
69 # define ARCH3264
70 #endif
71
72 /* Return whether the current architecture is 64-bit. */
73
74 #ifndef ARCH3264
75 # define ARCH64() 0
76 #else
77 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
78 #endif
79
80 /* Union of 32-bit and 64-bit ".reg" core file sections. */
81
82 typedef union {
83 #ifdef ARCH3264
84 struct __context64 r64;
85 #else
86 struct mstsave r64;
87 #endif
88 struct mstsave r32;
89 } CoreRegs;
90
91 /* Union of 32-bit and 64-bit versions of ld_info. */
92
93 typedef union {
94 #ifndef ARCH3264
95 struct ld_info l32;
96 struct ld_info l64;
97 #else
98 struct __ld_info32 l32;
99 struct __ld_info64 l64;
100 #endif
101 } LdInfo;
102
103 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
104 declare and initialize a variable named VAR suitable for use as the arch64
105 parameter to the various LDI_*() macros. */
106
107 #ifndef ARCH3264
108 # define ARCH64_DECL(var)
109 #else
110 # define ARCH64_DECL(var) int var = ARCH64 ()
111 #endif
112
113 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
114 otherwise. This technique only works for FIELDs with the same data type in
115 32-bit and 64-bit versions of ld_info. */
116
117 #ifndef ARCH3264
118 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
119 #else
120 # define LDI_FIELD(ldi, arch64, field) \
121 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
122 #endif
123
124 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
125 process otherwise. */
126
127 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
128 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
129 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
130
131 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
132
133 static void vmap_exec (void);
134
135 static void vmap_ldinfo (LdInfo *);
136
137 static struct vmap *add_vmap (LdInfo *);
138
139 static int objfile_symbol_add (void *);
140
141 static void vmap_symtab (struct vmap *);
142
143 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
144
145 static void exec_one_dummy_insn (void);
146
147 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
148
149 /* Given REGNO, a gdb register number, return the corresponding
150 number suitable for use as a ptrace() parameter. Return -1 if
151 there's no suitable mapping. Also, set the int pointed to by
152 ISFLOAT to indicate whether REGNO is a floating point register. */
153
154 static int
155 regmap (int regno, int *isfloat)
156 {
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
158
159 *isfloat = 0;
160 if (tdep->ppc_gp0_regnum <= regno
161 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
162 return regno;
163 else if (tdep->ppc_fp0_regnum >= 0
164 && tdep->ppc_fp0_regnum <= regno
165 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
166 {
167 *isfloat = 1;
168 return regno - tdep->ppc_fp0_regnum + FPR0;
169 }
170 else if (regno == PC_REGNUM)
171 return IAR;
172 else if (regno == tdep->ppc_ps_regnum)
173 return MSR;
174 else if (regno == tdep->ppc_cr_regnum)
175 return CR;
176 else if (regno == tdep->ppc_lr_regnum)
177 return LR;
178 else if (regno == tdep->ppc_ctr_regnum)
179 return CTR;
180 else if (regno == tdep->ppc_xer_regnum)
181 return XER;
182 else if (tdep->ppc_fpscr_regnum >= 0
183 && regno == tdep->ppc_fpscr_regnum)
184 return FPSCR;
185 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
186 return MQ;
187 else
188 return -1;
189 }
190
191 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
192
193 static int
194 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
195 {
196 int ret = ptrace (req, id, (int *)addr, data, buf);
197 #if 0
198 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
199 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
200 #endif
201 return ret;
202 }
203
204 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
205
206 static int
207 rs6000_ptrace64 (int req, int id, long long addr, int data, int *buf)
208 {
209 #ifdef ARCH3264
210 int ret = ptracex (req, id, addr, data, buf);
211 #else
212 int ret = 0;
213 #endif
214 #if 0
215 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
216 req, id, addr, data, (unsigned int)buf, ret);
217 #endif
218 return ret;
219 }
220
221 /* Fetch register REGNO from the inferior. */
222
223 static void
224 fetch_register (int regno)
225 {
226 int addr[MAX_REGISTER_SIZE];
227 int nr, isfloat;
228
229 /* Retrieved values may be -1, so infer errors from errno. */
230 errno = 0;
231
232 nr = regmap (regno, &isfloat);
233
234 /* Floating-point registers. */
235 if (isfloat)
236 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
237
238 /* Bogus register number. */
239 else if (nr < 0)
240 {
241 if (regno >= NUM_REGS)
242 fprintf_unfiltered (gdb_stderr,
243 "gdb error: register no %d not implemented.\n",
244 regno);
245 return;
246 }
247
248 /* Fixed-point registers. */
249 else
250 {
251 if (!ARCH64 ())
252 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
253 else
254 {
255 /* PT_READ_GPR requires the buffer parameter to point to long long,
256 even if the register is really only 32 bits. */
257 long long buf;
258 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
259 if (register_size (current_gdbarch, regno) == 8)
260 memcpy (addr, &buf, 8);
261 else
262 *addr = buf;
263 }
264 }
265
266 if (!errno)
267 regcache_raw_supply (current_regcache, regno, (char *) addr);
268 else
269 {
270 #if 0
271 /* FIXME: this happens 3 times at the start of each 64-bit program. */
272 perror ("ptrace read");
273 #endif
274 errno = 0;
275 }
276 }
277
278 /* Store register REGNO back into the inferior. */
279
280 static void
281 store_register (int regno)
282 {
283 int addr[MAX_REGISTER_SIZE];
284 int nr, isfloat;
285
286 /* Fetch the register's value from the register cache. */
287 regcache_raw_collect (current_regcache, regno, addr);
288
289 /* -1 can be a successful return value, so infer errors from errno. */
290 errno = 0;
291
292 nr = regmap (regno, &isfloat);
293
294 /* Floating-point registers. */
295 if (isfloat)
296 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
297
298 /* Bogus register number. */
299 else if (nr < 0)
300 {
301 if (regno >= NUM_REGS)
302 fprintf_unfiltered (gdb_stderr,
303 "gdb error: register no %d not implemented.\n",
304 regno);
305 }
306
307 /* Fixed-point registers. */
308 else
309 {
310 if (regno == SP_REGNUM)
311 /* Execute one dummy instruction (which is a breakpoint) in inferior
312 process to give kernel a chance to do internal housekeeping.
313 Otherwise the following ptrace(2) calls will mess up user stack
314 since kernel will get confused about the bottom of the stack
315 (%sp). */
316 exec_one_dummy_insn ();
317
318 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
319 the register's value is passed by value, but for 64-bit inferiors,
320 the address of a buffer containing the value is passed. */
321 if (!ARCH64 ())
322 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
323 else
324 {
325 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
326 area, even if the register is really only 32 bits. */
327 long long buf;
328 if (register_size (current_gdbarch, regno) == 8)
329 memcpy (&buf, addr, 8);
330 else
331 buf = *addr;
332 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
333 }
334 }
335
336 if (errno)
337 {
338 perror ("ptrace write");
339 errno = 0;
340 }
341 }
342
343 /* Read from the inferior all registers if REGNO == -1 and just register
344 REGNO otherwise. */
345
346 void
347 fetch_inferior_registers (int regno)
348 {
349 if (regno != -1)
350 fetch_register (regno);
351
352 else
353 {
354 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
355
356 /* Read 32 general purpose registers. */
357 for (regno = tdep->ppc_gp0_regnum;
358 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
359 regno++)
360 {
361 fetch_register (regno);
362 }
363
364 /* Read general purpose floating point registers. */
365 if (tdep->ppc_fp0_regnum >= 0)
366 for (regno = 0; regno < ppc_num_fprs; regno++)
367 fetch_register (tdep->ppc_fp0_regnum + regno);
368
369 /* Read special registers. */
370 fetch_register (PC_REGNUM);
371 fetch_register (tdep->ppc_ps_regnum);
372 fetch_register (tdep->ppc_cr_regnum);
373 fetch_register (tdep->ppc_lr_regnum);
374 fetch_register (tdep->ppc_ctr_regnum);
375 fetch_register (tdep->ppc_xer_regnum);
376 if (tdep->ppc_fpscr_regnum >= 0)
377 fetch_register (tdep->ppc_fpscr_regnum);
378 if (tdep->ppc_mq_regnum >= 0)
379 fetch_register (tdep->ppc_mq_regnum);
380 }
381 }
382
383 /* Store our register values back into the inferior.
384 If REGNO is -1, do this for all registers.
385 Otherwise, REGNO specifies which register (so we can save time). */
386
387 void
388 store_inferior_registers (int regno)
389 {
390 if (regno != -1)
391 store_register (regno);
392
393 else
394 {
395 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
396
397 /* Write general purpose registers first. */
398 for (regno = tdep->ppc_gp0_regnum;
399 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
400 regno++)
401 {
402 store_register (regno);
403 }
404
405 /* Write floating point registers. */
406 if (tdep->ppc_fp0_regnum >= 0)
407 for (regno = 0; regno < ppc_num_fprs; regno++)
408 store_register (tdep->ppc_fp0_regnum + regno);
409
410 /* Write special registers. */
411 store_register (PC_REGNUM);
412 store_register (tdep->ppc_ps_regnum);
413 store_register (tdep->ppc_cr_regnum);
414 store_register (tdep->ppc_lr_regnum);
415 store_register (tdep->ppc_ctr_regnum);
416 store_register (tdep->ppc_xer_regnum);
417 if (tdep->ppc_fpscr_regnum >= 0)
418 store_register (tdep->ppc_fpscr_regnum);
419 if (tdep->ppc_mq_regnum >= 0)
420 store_register (tdep->ppc_mq_regnum);
421 }
422 }
423
424 /* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
425 process, which is 64-bit if ARCH64 and 32-bit otherwise. Return
426 success. */
427
428 static int
429 read_word (CORE_ADDR from, int *to, int arch64)
430 {
431 /* Retrieved values may be -1, so infer errors from errno. */
432 errno = 0;
433
434 if (arch64)
435 *to = rs6000_ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
436 else
437 *to = rs6000_ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
438 0, NULL);
439
440 return !errno;
441 }
442
443 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
444 to debugger memory starting at MYADDR. Copy to inferior if
445 WRITE is nonzero.
446
447 Returns the length copied, which is either the LEN argument or
448 zero. This xfer function does not do partial moves, since
449 deprecated_child_ops doesn't allow memory operations to cross below
450 us in the target stack anyway. */
451
452 int
453 child_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
454 int write, struct mem_attrib *attrib,
455 struct target_ops *target)
456 {
457 /* Round starting address down to 32-bit word boundary. */
458 int mask = sizeof (int) - 1;
459 CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
460
461 /* Round ending address up to 32-bit word boundary. */
462 int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
463 / sizeof (int);
464
465 /* Allocate word transfer buffer. */
466 /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
467 because it uses alloca to allocate a buffer of arbitrary size.
468 For very large xfers, this could crash GDB's stack. */
469 int *buf = (int *) alloca (count * sizeof (int));
470
471 int arch64 = ARCH64 ();
472 int i;
473
474 if (!write)
475 {
476 /* Retrieve memory a word at a time. */
477 for (i = 0; i < count; i++, addr += sizeof (int))
478 {
479 if (!read_word (addr, buf + i, arch64))
480 return 0;
481 QUIT;
482 }
483
484 /* Copy memory to supplied buffer. */
485 addr -= count * sizeof (int);
486 memcpy (myaddr, (char *)buf + (memaddr - addr), len);
487 }
488 else
489 {
490 /* Fetch leading memory needed for alignment. */
491 if (addr < memaddr)
492 if (!read_word (addr, buf, arch64))
493 return 0;
494
495 /* Fetch trailing memory needed for alignment. */
496 if (addr + count * sizeof (int) > memaddr + len)
497 if (!read_word (addr + (count - 1) * sizeof (int),
498 buf + count - 1, arch64))
499 return 0;
500
501 /* Copy supplied data into memory buffer. */
502 memcpy ((char *)buf + (memaddr - addr), myaddr, len);
503
504 /* Store memory one word at a time. */
505 for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
506 {
507 if (arch64)
508 rs6000_ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
509 else
510 rs6000_ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
511 buf[i], NULL);
512
513 if (errno)
514 return 0;
515 QUIT;
516 }
517 }
518
519 return len;
520 }
521
522 /* Execute one dummy breakpoint instruction. This way we give the kernel
523 a chance to do some housekeeping and update inferior's internal data,
524 including u_area. */
525
526 static void
527 exec_one_dummy_insn (void)
528 {
529 #define DUMMY_INSN_ADDR gdbarch_tdep (current_gdbarch)->text_segment_base+0x200
530
531 int ret, status, pid;
532 CORE_ADDR prev_pc;
533 void *bp;
534
535 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
536 assume that this address will never be executed again by the real
537 code. */
538
539 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
540
541 /* You might think this could be done with a single ptrace call, and
542 you'd be correct for just about every platform I've ever worked
543 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
544 the inferior never hits the breakpoint (it's also worth noting
545 powerpc-ibm-aix4.1.3 works correctly). */
546 prev_pc = read_pc ();
547 write_pc (DUMMY_INSN_ADDR);
548 if (ARCH64 ())
549 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
550 else
551 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
552
553 if (ret != 0)
554 perror ("pt_continue");
555
556 do
557 {
558 pid = wait (&status);
559 }
560 while (pid != PIDGET (inferior_ptid));
561
562 write_pc (prev_pc);
563 deprecated_remove_raw_breakpoint (bp);
564 }
565
566 /* Fetch registers from the register section in core bfd. */
567
568 static void
569 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
570 int which, CORE_ADDR reg_addr)
571 {
572 CoreRegs *regs;
573 int regi;
574 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
575
576 if (which != 0)
577 {
578 fprintf_unfiltered
579 (gdb_stderr,
580 "Gdb error: unknown parameter to fetch_core_registers().\n");
581 return;
582 }
583
584 regs = (CoreRegs *) core_reg_sect;
585
586 /* Put the register values from the core file section in the regcache. */
587
588 if (ARCH64 ())
589 {
590 for (regi = 0; regi < ppc_num_gprs; regi++)
591 regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
592 (char *) &regs->r64.gpr[regi]);
593
594 if (tdep->ppc_fp0_regnum >= 0)
595 for (regi = 0; regi < ppc_num_fprs; regi++)
596 regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
597 (char *) &regs->r64.fpr[regi]);
598
599 regcache_raw_supply (current_regcache, PC_REGNUM,
600 (char *) &regs->r64.iar);
601 regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
602 (char *) &regs->r64.msr);
603 regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
604 (char *) &regs->r64.cr);
605 regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
606 (char *) &regs->r64.lr);
607 regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
608 (char *) &regs->r64.ctr);
609 regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
610 (char *) &regs->r64.xer);
611 if (tdep->ppc_fpscr_regnum >= 0)
612 regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
613 (char *) &regs->r64.fpscr);
614 }
615 else
616 {
617 for (regi = 0; regi < ppc_num_gprs; regi++)
618 regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
619 (char *) &regs->r32.gpr[regi]);
620
621 if (tdep->ppc_fp0_regnum >= 0)
622 for (regi = 0; regi < ppc_num_fprs; regi++)
623 regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
624 (char *) &regs->r32.fpr[regi]);
625
626 regcache_raw_supply (current_regcache, PC_REGNUM,
627 (char *) &regs->r32.iar);
628 regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
629 (char *) &regs->r32.msr);
630 regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
631 (char *) &regs->r32.cr);
632 regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
633 (char *) &regs->r32.lr);
634 regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
635 (char *) &regs->r32.ctr);
636 regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
637 (char *) &regs->r32.xer);
638 if (tdep->ppc_fpscr_regnum >= 0)
639 regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
640 (char *) &regs->r32.fpscr);
641 if (tdep->ppc_mq_regnum >= 0)
642 regcache_raw_supply (current_regcache, tdep->ppc_mq_regnum,
643 (char *) &regs->r32.mq);
644 }
645 }
646 \f
647
648 /* Copy information about text and data sections from LDI to VP for a 64-bit
649 process if ARCH64 and for a 32-bit process otherwise. */
650
651 static void
652 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
653 {
654 if (arch64)
655 {
656 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
657 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
658 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
659 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
660 }
661 else
662 {
663 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
664 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
665 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
666 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
667 }
668
669 /* The run time loader maps the file header in addition to the text
670 section and returns a pointer to the header in ldinfo_textorg.
671 Adjust the text start address to point to the real start address
672 of the text section. */
673 vp->tstart += vp->toffs;
674 }
675
676 /* handle symbol translation on vmapping */
677
678 static void
679 vmap_symtab (struct vmap *vp)
680 {
681 struct objfile *objfile;
682 struct section_offsets *new_offsets;
683 int i;
684
685 objfile = vp->objfile;
686 if (objfile == NULL)
687 {
688 /* OK, it's not an objfile we opened ourselves.
689 Currently, that can only happen with the exec file, so
690 relocate the symbols for the symfile. */
691 if (symfile_objfile == NULL)
692 return;
693 objfile = symfile_objfile;
694 }
695 else if (!vp->loaded)
696 /* If symbols are not yet loaded, offsets are not yet valid. */
697 return;
698
699 new_offsets =
700 (struct section_offsets *)
701 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702
703 for (i = 0; i < objfile->num_sections; ++i)
704 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
705
706 /* The symbols in the object file are linked to the VMA of the section,
707 relocate them VMA relative. */
708 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
709 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
710 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
711
712 objfile_relocate (objfile, new_offsets);
713 }
714 \f
715 /* Add symbols for an objfile. */
716
717 static int
718 objfile_symbol_add (void *arg)
719 {
720 struct objfile *obj = (struct objfile *) arg;
721
722 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
723 new_symfile_objfile (obj, 0, 0);
724 return 1;
725 }
726
727 /* Add symbols for a vmap. Return zero upon error. */
728
729 int
730 vmap_add_symbols (struct vmap *vp)
731 {
732 if (catch_errors (objfile_symbol_add, vp->objfile,
733 "Error while reading shared library symbols:\n",
734 RETURN_MASK_ALL))
735 {
736 /* Note this is only done if symbol reading was successful. */
737 vp->loaded = 1;
738 vmap_symtab (vp);
739 return 1;
740 }
741 return 0;
742 }
743
744 /* Add a new vmap entry based on ldinfo() information.
745
746 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
747 core file), the caller should set it to -1, and we will open the file.
748
749 Return the vmap new entry. */
750
751 static struct vmap *
752 add_vmap (LdInfo *ldi)
753 {
754 bfd *abfd, *last;
755 char *mem, *objname, *filename;
756 struct objfile *obj;
757 struct vmap *vp;
758 int fd;
759 ARCH64_DECL (arch64);
760
761 /* This ldi structure was allocated using alloca() in
762 xcoff_relocate_symtab(). Now we need to have persistent object
763 and member names, so we should save them. */
764
765 filename = LDI_FILENAME (ldi, arch64);
766 mem = filename + strlen (filename) + 1;
767 mem = savestring (mem, strlen (mem));
768 objname = savestring (filename, strlen (filename));
769
770 fd = LDI_FD (ldi, arch64);
771 if (fd < 0)
772 /* Note that this opens it once for every member; a possible
773 enhancement would be to only open it once for every object. */
774 abfd = bfd_openr (objname, gnutarget);
775 else
776 abfd = bfd_fdopenr (objname, gnutarget, fd);
777 if (!abfd)
778 {
779 warning (_("Could not open `%s' as an executable file: %s"),
780 objname, bfd_errmsg (bfd_get_error ()));
781 return NULL;
782 }
783
784 /* make sure we have an object file */
785
786 if (bfd_check_format (abfd, bfd_object))
787 vp = map_vmap (abfd, 0);
788
789 else if (bfd_check_format (abfd, bfd_archive))
790 {
791 last = 0;
792 /* FIXME??? am I tossing BFDs? bfd? */
793 while ((last = bfd_openr_next_archived_file (abfd, last)))
794 if (DEPRECATED_STREQ (mem, last->filename))
795 break;
796
797 if (!last)
798 {
799 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
800 bfd_close (abfd);
801 return NULL;
802 }
803
804 if (!bfd_check_format (last, bfd_object))
805 {
806 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
807 objname, mem, bfd_errmsg (bfd_get_error ()));
808 bfd_close (last);
809 bfd_close (abfd);
810 return NULL;
811 }
812
813 vp = map_vmap (last, abfd);
814 }
815 else
816 {
817 warning (_("\"%s\": not in executable format: %s."),
818 objname, bfd_errmsg (bfd_get_error ()));
819 bfd_close (abfd);
820 return NULL;
821 }
822 obj = allocate_objfile (vp->bfd, 0);
823 vp->objfile = obj;
824
825 /* Always add symbols for the main objfile. */
826 if (vp == vmap || auto_solib_add)
827 vmap_add_symbols (vp);
828 return vp;
829 }
830 \f
831 /* update VMAP info with ldinfo() information
832 Input is ptr to ldinfo() results. */
833
834 static void
835 vmap_ldinfo (LdInfo *ldi)
836 {
837 struct stat ii, vi;
838 struct vmap *vp;
839 int got_one, retried;
840 int got_exec_file = 0;
841 uint next;
842 int arch64 = ARCH64 ();
843
844 /* For each *ldi, see if we have a corresponding *vp.
845 If so, update the mapping, and symbol table.
846 If not, add an entry and symbol table. */
847
848 do
849 {
850 char *name = LDI_FILENAME (ldi, arch64);
851 char *memb = name + strlen (name) + 1;
852 int fd = LDI_FD (ldi, arch64);
853
854 retried = 0;
855
856 if (fstat (fd, &ii) < 0)
857 {
858 /* The kernel sets ld_info to -1, if the process is still using the
859 object, and the object is removed. Keep the symbol info for the
860 removed object and issue a warning. */
861 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
862 name, fd);
863 continue;
864 }
865 retry:
866 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
867 {
868 struct objfile *objfile;
869
870 /* First try to find a `vp', which is the same as in ldinfo.
871 If not the same, just continue and grep the next `vp'. If same,
872 relocate its tstart, tend, dstart, dend values. If no such `vp'
873 found, get out of this for loop, add this ldi entry as a new vmap
874 (add_vmap) and come back, find its `vp' and so on... */
875
876 /* The filenames are not always sufficient to match on. */
877
878 if ((name[0] == '/' && !DEPRECATED_STREQ (name, vp->name))
879 || (memb[0] && !DEPRECATED_STREQ (memb, vp->member)))
880 continue;
881
882 /* See if we are referring to the same file.
883 We have to check objfile->obfd, symfile.c:reread_symbols might
884 have updated the obfd after a change. */
885 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
886 if (objfile == NULL
887 || objfile->obfd == NULL
888 || bfd_stat (objfile->obfd, &vi) < 0)
889 {
890 warning (_("Unable to stat %s, keeping its symbols"), name);
891 continue;
892 }
893
894 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
895 continue;
896
897 if (!retried)
898 close (fd);
899
900 ++got_one;
901
902 /* Found a corresponding VMAP. Remap! */
903
904 vmap_secs (vp, ldi, arch64);
905
906 /* The objfile is only NULL for the exec file. */
907 if (vp->objfile == NULL)
908 got_exec_file = 1;
909
910 /* relocate symbol table(s). */
911 vmap_symtab (vp);
912
913 /* Announce new object files. Doing this after symbol relocation
914 makes aix-thread.c's job easier. */
915 if (deprecated_target_new_objfile_hook && vp->objfile)
916 deprecated_target_new_objfile_hook (vp->objfile);
917
918 /* There may be more, so we don't break out of the loop. */
919 }
920
921 /* if there was no matching *vp, we must perforce create the sucker(s) */
922 if (!got_one && !retried)
923 {
924 add_vmap (ldi);
925 ++retried;
926 goto retry;
927 }
928 }
929 while ((next = LDI_NEXT (ldi, arch64))
930 && (ldi = (void *) (next + (char *) ldi)));
931
932 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
933 is unlikely that the symbol file is relocated to the proper
934 address. And we might have attached to a process which is
935 running a different copy of the same executable. */
936 if (symfile_objfile != NULL && !got_exec_file)
937 {
938 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
939 If in fact that file has symbols which the mapped files listed by\n\
940 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
941 \"add-symbol-file\" commands (note that you must take care of relocating\n\
942 symbols to the proper address)."),
943 symfile_objfile->name);
944 free_objfile (symfile_objfile);
945 symfile_objfile = NULL;
946 }
947 breakpoint_re_set ();
948 }
949 \f
950 /* As well as symbol tables, exec_sections need relocation. After
951 the inferior process' termination, there will be a relocated symbol
952 table exist with no corresponding inferior process. At that time, we
953 need to use `exec' bfd, rather than the inferior process's memory space
954 to look up symbols.
955
956 `exec_sections' need to be relocated only once, as long as the exec
957 file remains unchanged.
958 */
959
960 static void
961 vmap_exec (void)
962 {
963 static bfd *execbfd;
964 int i;
965
966 if (execbfd == exec_bfd)
967 return;
968
969 execbfd = exec_bfd;
970
971 if (!vmap || !exec_ops.to_sections)
972 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
973
974 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
975 {
976 if (DEPRECATED_STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
977 {
978 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
979 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
980 }
981 else if (DEPRECATED_STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
982 {
983 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
984 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
985 }
986 else if (DEPRECATED_STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
987 {
988 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
989 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
990 }
991 }
992 }
993
994 /* Set the current architecture from the host running GDB. Called when
995 starting a child process. */
996
997 void
998 rs6000_create_inferior (int pid)
999 {
1000 enum bfd_architecture arch;
1001 unsigned long mach;
1002 bfd abfd;
1003 struct gdbarch_info info;
1004
1005 if (__power_rs ())
1006 {
1007 arch = bfd_arch_rs6000;
1008 mach = bfd_mach_rs6k;
1009 }
1010 else
1011 {
1012 arch = bfd_arch_powerpc;
1013 mach = bfd_mach_ppc;
1014 }
1015
1016 /* FIXME: schauer/2002-02-25:
1017 We don't know if we are executing a 32 or 64 bit executable,
1018 and have no way to pass the proper word size to rs6000_gdbarch_init.
1019 So we have to avoid switching to a new architecture, if the architecture
1020 matches already.
1021 Blindly calling rs6000_gdbarch_init used to work in older versions of
1022 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1023 determine the wordsize. */
1024 if (exec_bfd)
1025 {
1026 const struct bfd_arch_info *exec_bfd_arch_info;
1027
1028 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1029 if (arch == exec_bfd_arch_info->arch)
1030 return;
1031 }
1032
1033 bfd_default_set_arch_mach (&abfd, arch, mach);
1034
1035 gdbarch_info_init (&info);
1036 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1037 info.abfd = exec_bfd;
1038
1039 if (!gdbarch_update_p (info))
1040 internal_error (__FILE__, __LINE__,
1041 _("rs6000_create_inferior: failed to select architecture"));
1042 }
1043
1044 \f
1045 /* xcoff_relocate_symtab - hook for symbol table relocation.
1046 also reads shared libraries. */
1047
1048 void
1049 xcoff_relocate_symtab (unsigned int pid)
1050 {
1051 int load_segs = 64; /* number of load segments */
1052 int rc;
1053 LdInfo *ldi = NULL;
1054 int arch64 = ARCH64 ();
1055 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1056 int size;
1057
1058 do
1059 {
1060 size = load_segs * ldisize;
1061 ldi = (void *) xrealloc (ldi, size);
1062
1063 #if 0
1064 /* According to my humble theory, AIX has some timing problems and
1065 when the user stack grows, kernel doesn't update stack info in time
1066 and ptrace calls step on user stack. That is why we sleep here a
1067 little, and give kernel to update its internals. */
1068 usleep (36000);
1069 #endif
1070
1071 if (arch64)
1072 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1073 else
1074 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1075
1076 if (rc == -1)
1077 {
1078 if (errno == ENOMEM)
1079 load_segs *= 2;
1080 else
1081 perror_with_name (_("ptrace ldinfo"));
1082 }
1083 else
1084 {
1085 vmap_ldinfo (ldi);
1086 vmap_exec (); /* relocate the exec and core sections as well. */
1087 }
1088 } while (rc == -1);
1089 if (ldi)
1090 xfree (ldi);
1091 }
1092 \f
1093 /* Core file stuff. */
1094
1095 /* Relocate symtabs and read in shared library info, based on symbols
1096 from the core file. */
1097
1098 void
1099 xcoff_relocate_core (struct target_ops *target)
1100 {
1101 struct bfd_section *ldinfo_sec;
1102 int offset = 0;
1103 LdInfo *ldi;
1104 struct vmap *vp;
1105 int arch64 = ARCH64 ();
1106
1107 /* Size of a struct ld_info except for the variable-length filename. */
1108 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1109
1110 /* Allocated size of buffer. */
1111 int buffer_size = nonfilesz;
1112 char *buffer = xmalloc (buffer_size);
1113 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1114
1115 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1116 if (ldinfo_sec == NULL)
1117 {
1118 bfd_err:
1119 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1120 bfd_errmsg (bfd_get_error ()));
1121 do_cleanups (old);
1122 return;
1123 }
1124 do
1125 {
1126 int i;
1127 int names_found = 0;
1128
1129 /* Read in everything but the name. */
1130 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1131 offset, nonfilesz) == 0)
1132 goto bfd_err;
1133
1134 /* Now the name. */
1135 i = nonfilesz;
1136 do
1137 {
1138 if (i == buffer_size)
1139 {
1140 buffer_size *= 2;
1141 buffer = xrealloc (buffer, buffer_size);
1142 }
1143 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1144 offset + i, 1) == 0)
1145 goto bfd_err;
1146 if (buffer[i++] == '\0')
1147 ++names_found;
1148 }
1149 while (names_found < 2);
1150
1151 ldi = (LdInfo *) buffer;
1152
1153 /* Can't use a file descriptor from the core file; need to open it. */
1154 if (arch64)
1155 ldi->l64.ldinfo_fd = -1;
1156 else
1157 ldi->l32.ldinfo_fd = -1;
1158
1159 /* The first ldinfo is for the exec file, allocated elsewhere. */
1160 if (offset == 0 && vmap != NULL)
1161 vp = vmap;
1162 else
1163 vp = add_vmap (ldi);
1164
1165 /* Process next shared library upon error. */
1166 offset += LDI_NEXT (ldi, arch64);
1167 if (vp == NULL)
1168 continue;
1169
1170 vmap_secs (vp, ldi, arch64);
1171
1172 /* Unless this is the exec file,
1173 add our sections to the section table for the core target. */
1174 if (vp != vmap)
1175 {
1176 struct section_table *stp;
1177
1178 target_resize_to_sections (target, 2);
1179 stp = target->to_sections_end - 2;
1180
1181 stp->bfd = vp->bfd;
1182 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1183 stp->addr = vp->tstart;
1184 stp->endaddr = vp->tend;
1185 stp++;
1186
1187 stp->bfd = vp->bfd;
1188 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1189 stp->addr = vp->dstart;
1190 stp->endaddr = vp->dend;
1191 }
1192
1193 vmap_symtab (vp);
1194
1195 if (deprecated_target_new_objfile_hook && vp != vmap && vp->objfile)
1196 deprecated_target_new_objfile_hook (vp->objfile);
1197 }
1198 while (LDI_NEXT (ldi, arch64) != 0);
1199 vmap_exec ();
1200 breakpoint_re_set ();
1201 do_cleanups (old);
1202 }
1203
1204 int
1205 kernel_u_size (void)
1206 {
1207 return (sizeof (struct user));
1208 }
1209 \f
1210 /* Under AIX, we have to pass the correct TOC pointer to a function
1211 when calling functions in the inferior.
1212 We try to find the relative toc offset of the objfile containing PC
1213 and add the current load address of the data segment from the vmap. */
1214
1215 static CORE_ADDR
1216 find_toc_address (CORE_ADDR pc)
1217 {
1218 struct vmap *vp;
1219 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1220
1221 for (vp = vmap; vp; vp = vp->nxt)
1222 {
1223 if (pc >= vp->tstart && pc < vp->tend)
1224 {
1225 /* vp->objfile is only NULL for the exec file. */
1226 return vp->dstart + get_toc_offset (vp->objfile == NULL
1227 ? symfile_objfile
1228 : vp->objfile);
1229 }
1230 }
1231 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1232 }
1233 \f
1234 /* Register that we are able to handle rs6000 core file formats. */
1235
1236 static struct core_fns rs6000_core_fns =
1237 {
1238 bfd_target_xcoff_flavour, /* core_flavour */
1239 default_check_format, /* check_format */
1240 default_core_sniffer, /* core_sniffer */
1241 fetch_core_registers, /* core_read_registers */
1242 NULL /* next */
1243 };
1244
1245 void
1246 _initialize_core_rs6000 (void)
1247 {
1248 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1249 when calling functions in the inferior. */
1250 rs6000_find_toc_address_hook = find_toc_address;
1251
1252 deprecated_add_core_fns (&rs6000_core_fns);
1253 }