]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-nat.c
AIX: Remove exec_one_dummy_insn hack
[thirdparty/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
27 #include "bfd.h"
28 #include "exceptions.h"
29 #include "gdb-stabs.h"
30 #include "regcache.h"
31 #include "arch-utils.h"
32 #include "inf-child.h"
33 #include "inf-ptrace.h"
34 #include "ppc-tdep.h"
35 #include "rs6000-tdep.h"
36 #include "rs6000-aix-tdep.h"
37 #include "exec.h"
38 #include "observer.h"
39 #include "xcoffread.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/dir.h>
45 #include <sys/user.h>
46 #include <signal.h>
47 #include <sys/ioctl.h>
48 #include <fcntl.h>
49
50 #include <a.out.h>
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include "gdb_bfd.h"
54 #include <sys/core.h>
55 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
56 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
57 #include <sys/ldr.h>
58 #include <sys/systemcfg.h>
59
60 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
61 debugging 32-bit and 64-bit processes. Define a typedef and macros for
62 accessing fields in the appropriate structures. */
63
64 /* In 32-bit compilation mode (which is the only mode from which ptrace()
65 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
66
67 #if defined (__ld_info32) || defined (__ld_info64)
68 # define ARCH3264
69 #endif
70
71 /* Return whether the current architecture is 64-bit. */
72
73 #ifndef ARCH3264
74 # define ARCH64() 0
75 #else
76 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
77 #endif
78
79 static target_xfer_partial_ftype rs6000_xfer_shared_libraries;
80
81 /* Given REGNO, a gdb register number, return the corresponding
82 number suitable for use as a ptrace() parameter. Return -1 if
83 there's no suitable mapping. Also, set the int pointed to by
84 ISFLOAT to indicate whether REGNO is a floating point register. */
85
86 static int
87 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
88 {
89 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90
91 *isfloat = 0;
92 if (tdep->ppc_gp0_regnum <= regno
93 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
94 return regno;
95 else if (tdep->ppc_fp0_regnum >= 0
96 && tdep->ppc_fp0_regnum <= regno
97 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
98 {
99 *isfloat = 1;
100 return regno - tdep->ppc_fp0_regnum + FPR0;
101 }
102 else if (regno == gdbarch_pc_regnum (gdbarch))
103 return IAR;
104 else if (regno == tdep->ppc_ps_regnum)
105 return MSR;
106 else if (regno == tdep->ppc_cr_regnum)
107 return CR;
108 else if (regno == tdep->ppc_lr_regnum)
109 return LR;
110 else if (regno == tdep->ppc_ctr_regnum)
111 return CTR;
112 else if (regno == tdep->ppc_xer_regnum)
113 return XER;
114 else if (tdep->ppc_fpscr_regnum >= 0
115 && regno == tdep->ppc_fpscr_regnum)
116 return FPSCR;
117 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
118 return MQ;
119 else
120 return -1;
121 }
122
123 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
124
125 static int
126 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
127 {
128 #ifdef HAVE_PTRACE64
129 int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf);
130 #else
131 int ret = ptrace (req, id, (int *)addr, data, buf);
132 #endif
133 #if 0
134 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
135 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
136 #endif
137 return ret;
138 }
139
140 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
141
142 static int
143 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
144 {
145 #ifdef ARCH3264
146 # ifdef HAVE_PTRACE64
147 int ret = ptrace64 (req, id, addr, data, buf);
148 # else
149 int ret = ptracex (req, id, addr, data, buf);
150 # endif
151 #else
152 int ret = 0;
153 #endif
154 #if 0
155 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
156 req, id, hex_string (addr), data, (unsigned int)buf, ret);
157 #endif
158 return ret;
159 }
160
161 /* Fetch register REGNO from the inferior. */
162
163 static void
164 fetch_register (struct regcache *regcache, int regno)
165 {
166 struct gdbarch *gdbarch = get_regcache_arch (regcache);
167 int addr[MAX_REGISTER_SIZE];
168 int nr, isfloat;
169
170 /* Retrieved values may be -1, so infer errors from errno. */
171 errno = 0;
172
173 nr = regmap (gdbarch, regno, &isfloat);
174
175 /* Floating-point registers. */
176 if (isfloat)
177 rs6000_ptrace32 (PT_READ_FPR, ptid_get_pid (inferior_ptid), addr, nr, 0);
178
179 /* Bogus register number. */
180 else if (nr < 0)
181 {
182 if (regno >= gdbarch_num_regs (gdbarch))
183 fprintf_unfiltered (gdb_stderr,
184 "gdb error: register no %d not implemented.\n",
185 regno);
186 return;
187 }
188
189 /* Fixed-point registers. */
190 else
191 {
192 if (!ARCH64 ())
193 *addr = rs6000_ptrace32 (PT_READ_GPR, ptid_get_pid (inferior_ptid),
194 (int *) nr, 0, 0);
195 else
196 {
197 /* PT_READ_GPR requires the buffer parameter to point to long long,
198 even if the register is really only 32 bits. */
199 long long buf;
200 rs6000_ptrace64 (PT_READ_GPR, ptid_get_pid (inferior_ptid),
201 nr, 0, &buf);
202 if (register_size (gdbarch, regno) == 8)
203 memcpy (addr, &buf, 8);
204 else
205 *addr = buf;
206 }
207 }
208
209 if (!errno)
210 regcache_raw_supply (regcache, regno, (char *) addr);
211 else
212 {
213 #if 0
214 /* FIXME: this happens 3 times at the start of each 64-bit program. */
215 perror (_("ptrace read"));
216 #endif
217 errno = 0;
218 }
219 }
220
221 /* Store register REGNO back into the inferior. */
222
223 static void
224 store_register (struct regcache *regcache, int regno)
225 {
226 struct gdbarch *gdbarch = get_regcache_arch (regcache);
227 int addr[MAX_REGISTER_SIZE];
228 int nr, isfloat;
229
230 /* Fetch the register's value from the register cache. */
231 regcache_raw_collect (regcache, regno, addr);
232
233 /* -1 can be a successful return value, so infer errors from errno. */
234 errno = 0;
235
236 nr = regmap (gdbarch, regno, &isfloat);
237
238 /* Floating-point registers. */
239 if (isfloat)
240 rs6000_ptrace32 (PT_WRITE_FPR, ptid_get_pid (inferior_ptid), addr, nr, 0);
241
242 /* Bogus register number. */
243 else if (nr < 0)
244 {
245 if (regno >= gdbarch_num_regs (gdbarch))
246 fprintf_unfiltered (gdb_stderr,
247 "gdb error: register no %d not implemented.\n",
248 regno);
249 }
250
251 /* Fixed-point registers. */
252 else
253 {
254 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
255 the register's value is passed by value, but for 64-bit inferiors,
256 the address of a buffer containing the value is passed. */
257 if (!ARCH64 ())
258 rs6000_ptrace32 (PT_WRITE_GPR, ptid_get_pid (inferior_ptid),
259 (int *) nr, *addr, 0);
260 else
261 {
262 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
263 area, even if the register is really only 32 bits. */
264 long long buf;
265 if (register_size (gdbarch, regno) == 8)
266 memcpy (&buf, addr, 8);
267 else
268 buf = *addr;
269 rs6000_ptrace64 (PT_WRITE_GPR, ptid_get_pid (inferior_ptid),
270 nr, 0, &buf);
271 }
272 }
273
274 if (errno)
275 {
276 perror (_("ptrace write"));
277 errno = 0;
278 }
279 }
280
281 /* Read from the inferior all registers if REGNO == -1 and just register
282 REGNO otherwise. */
283
284 static void
285 rs6000_fetch_inferior_registers (struct target_ops *ops,
286 struct regcache *regcache, int regno)
287 {
288 struct gdbarch *gdbarch = get_regcache_arch (regcache);
289 if (regno != -1)
290 fetch_register (regcache, regno);
291
292 else
293 {
294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
295
296 /* Read 32 general purpose registers. */
297 for (regno = tdep->ppc_gp0_regnum;
298 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
299 regno++)
300 {
301 fetch_register (regcache, regno);
302 }
303
304 /* Read general purpose floating point registers. */
305 if (tdep->ppc_fp0_regnum >= 0)
306 for (regno = 0; regno < ppc_num_fprs; regno++)
307 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
308
309 /* Read special registers. */
310 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
311 fetch_register (regcache, tdep->ppc_ps_regnum);
312 fetch_register (regcache, tdep->ppc_cr_regnum);
313 fetch_register (regcache, tdep->ppc_lr_regnum);
314 fetch_register (regcache, tdep->ppc_ctr_regnum);
315 fetch_register (regcache, tdep->ppc_xer_regnum);
316 if (tdep->ppc_fpscr_regnum >= 0)
317 fetch_register (regcache, tdep->ppc_fpscr_regnum);
318 if (tdep->ppc_mq_regnum >= 0)
319 fetch_register (regcache, tdep->ppc_mq_regnum);
320 }
321 }
322
323 /* Store our register values back into the inferior.
324 If REGNO is -1, do this for all registers.
325 Otherwise, REGNO specifies which register (so we can save time). */
326
327 static void
328 rs6000_store_inferior_registers (struct target_ops *ops,
329 struct regcache *regcache, int regno)
330 {
331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
332 if (regno != -1)
333 store_register (regcache, regno);
334
335 else
336 {
337 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
338
339 /* Write general purpose registers first. */
340 for (regno = tdep->ppc_gp0_regnum;
341 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
342 regno++)
343 {
344 store_register (regcache, regno);
345 }
346
347 /* Write floating point registers. */
348 if (tdep->ppc_fp0_regnum >= 0)
349 for (regno = 0; regno < ppc_num_fprs; regno++)
350 store_register (regcache, tdep->ppc_fp0_regnum + regno);
351
352 /* Write special registers. */
353 store_register (regcache, gdbarch_pc_regnum (gdbarch));
354 store_register (regcache, tdep->ppc_ps_regnum);
355 store_register (regcache, tdep->ppc_cr_regnum);
356 store_register (regcache, tdep->ppc_lr_regnum);
357 store_register (regcache, tdep->ppc_ctr_regnum);
358 store_register (regcache, tdep->ppc_xer_regnum);
359 if (tdep->ppc_fpscr_regnum >= 0)
360 store_register (regcache, tdep->ppc_fpscr_regnum);
361 if (tdep->ppc_mq_regnum >= 0)
362 store_register (regcache, tdep->ppc_mq_regnum);
363 }
364 }
365
366 /* Implement the to_xfer_partial target_ops method. */
367
368 static enum target_xfer_status
369 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
370 const char *annex, gdb_byte *readbuf,
371 const gdb_byte *writebuf,
372 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
373 {
374 pid_t pid = ptid_get_pid (inferior_ptid);
375 int arch64 = ARCH64 ();
376
377 switch (object)
378 {
379 case TARGET_OBJECT_LIBRARIES_AIX:
380 return rs6000_xfer_shared_libraries (ops, object, annex,
381 readbuf, writebuf,
382 offset, len, xfered_len);
383 case TARGET_OBJECT_MEMORY:
384 {
385 union
386 {
387 PTRACE_TYPE_RET word;
388 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
389 } buffer;
390 ULONGEST rounded_offset;
391 LONGEST partial_len;
392
393 /* Round the start offset down to the next long word
394 boundary. */
395 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
396
397 /* Since ptrace will transfer a single word starting at that
398 rounded_offset the partial_len needs to be adjusted down to
399 that (remember this function only does a single transfer).
400 Should the required length be even less, adjust it down
401 again. */
402 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
403 if (partial_len > len)
404 partial_len = len;
405
406 if (writebuf)
407 {
408 /* If OFFSET:PARTIAL_LEN is smaller than
409 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
410 be needed. Read in the entire word. */
411 if (rounded_offset < offset
412 || (offset + partial_len
413 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
414 {
415 /* Need part of initial word -- fetch it. */
416 if (arch64)
417 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
418 rounded_offset, 0, NULL);
419 else
420 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
421 (int *) (uintptr_t)
422 rounded_offset,
423 0, NULL);
424 }
425
426 /* Copy data to be written over corresponding part of
427 buffer. */
428 memcpy (buffer.byte + (offset - rounded_offset),
429 writebuf, partial_len);
430
431 errno = 0;
432 if (arch64)
433 rs6000_ptrace64 (PT_WRITE_D, pid,
434 rounded_offset, buffer.word, NULL);
435 else
436 rs6000_ptrace32 (PT_WRITE_D, pid,
437 (int *) (uintptr_t) rounded_offset,
438 buffer.word, NULL);
439 if (errno)
440 return TARGET_XFER_EOF;
441 }
442
443 if (readbuf)
444 {
445 errno = 0;
446 if (arch64)
447 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
448 rounded_offset, 0, NULL);
449 else
450 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
451 (int *)(uintptr_t)rounded_offset,
452 0, NULL);
453 if (errno)
454 return TARGET_XFER_EOF;
455
456 /* Copy appropriate bytes out of the buffer. */
457 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
458 partial_len);
459 }
460
461 *xfered_len = (ULONGEST) partial_len;
462 return TARGET_XFER_OK;
463 }
464
465 default:
466 return TARGET_XFER_E_IO;
467 }
468 }
469
470 /* Wait for the child specified by PTID to do something. Return the
471 process ID of the child, or MINUS_ONE_PTID in case of error; store
472 the status in *OURSTATUS. */
473
474 static ptid_t
475 rs6000_wait (struct target_ops *ops,
476 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
477 {
478 pid_t pid;
479 int status, save_errno;
480
481 do
482 {
483 set_sigint_trap ();
484
485 do
486 {
487 pid = waitpid (ptid_get_pid (ptid), &status, 0);
488 save_errno = errno;
489 }
490 while (pid == -1 && errno == EINTR);
491
492 clear_sigint_trap ();
493
494 if (pid == -1)
495 {
496 fprintf_unfiltered (gdb_stderr,
497 _("Child process unexpectedly missing: %s.\n"),
498 safe_strerror (save_errno));
499
500 /* Claim it exited with unknown signal. */
501 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
502 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
503 return inferior_ptid;
504 }
505
506 /* Ignore terminated detached child processes. */
507 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
508 pid = -1;
509 }
510 while (pid == -1);
511
512 /* AIX has a couple of strange returns from wait(). */
513
514 /* stop after load" status. */
515 if (status == 0x57c)
516 ourstatus->kind = TARGET_WAITKIND_LOADED;
517 /* signal 0. I have no idea why wait(2) returns with this status word. */
518 else if (status == 0x7f)
519 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
520 /* A normal waitstatus. Let the usual macros deal with it. */
521 else
522 store_waitstatus (ourstatus, status);
523
524 return pid_to_ptid (pid);
525 }
526 \f
527
528 /* Set the current architecture from the host running GDB. Called when
529 starting a child process. */
530
531 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
532 char *allargs, char **env, int from_tty);
533 static void
534 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
535 char *allargs, char **env, int from_tty)
536 {
537 enum bfd_architecture arch;
538 unsigned long mach;
539 bfd abfd;
540 struct gdbarch_info info;
541
542 super_create_inferior (ops, exec_file, allargs, env, from_tty);
543
544 if (__power_rs ())
545 {
546 arch = bfd_arch_rs6000;
547 mach = bfd_mach_rs6k;
548 }
549 else
550 {
551 arch = bfd_arch_powerpc;
552 mach = bfd_mach_ppc;
553 }
554
555 /* FIXME: schauer/2002-02-25:
556 We don't know if we are executing a 32 or 64 bit executable,
557 and have no way to pass the proper word size to rs6000_gdbarch_init.
558 So we have to avoid switching to a new architecture, if the architecture
559 matches already.
560 Blindly calling rs6000_gdbarch_init used to work in older versions of
561 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
562 determine the wordsize. */
563 if (exec_bfd)
564 {
565 const struct bfd_arch_info *exec_bfd_arch_info;
566
567 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
568 if (arch == exec_bfd_arch_info->arch)
569 return;
570 }
571
572 bfd_default_set_arch_mach (&abfd, arch, mach);
573
574 gdbarch_info_init (&info);
575 info.bfd_arch_info = bfd_get_arch_info (&abfd);
576 info.abfd = exec_bfd;
577
578 if (!gdbarch_update_p (info))
579 internal_error (__FILE__, __LINE__,
580 _("rs6000_create_inferior: failed "
581 "to select architecture"));
582 }
583 \f
584
585 /* Shared Object support. */
586
587 /* Return the LdInfo data for the given process. Raises an error
588 if the data could not be obtained.
589
590 The returned value must be deallocated after use. */
591
592 static gdb_byte *
593 rs6000_ptrace_ldinfo (ptid_t ptid)
594 {
595 const int pid = ptid_get_pid (ptid);
596 int ldi_size = 1024;
597 gdb_byte *ldi = xmalloc (ldi_size);
598 int rc = -1;
599
600 while (1)
601 {
602 if (ARCH64 ())
603 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, ldi_size,
604 NULL);
605 else
606 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, ldi_size, NULL);
607
608 if (rc != -1)
609 break; /* Success, we got the entire ld_info data. */
610
611 if (errno != ENOMEM)
612 perror_with_name (_("ptrace ldinfo"));
613
614 /* ldi is not big enough. Double it and try again. */
615 ldi_size *= 2;
616 ldi = xrealloc (ldi, ldi_size);
617 }
618
619 return ldi;
620 }
621
622 /* Implement the to_xfer_partial target_ops method for
623 TARGET_OBJECT_LIBRARIES_AIX objects. */
624
625 static enum target_xfer_status
626 rs6000_xfer_shared_libraries
627 (struct target_ops *ops, enum target_object object,
628 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
629 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
630 {
631 gdb_byte *ldi_buf;
632 ULONGEST result;
633 struct cleanup *cleanup;
634
635 /* This function assumes that it is being run with a live process.
636 Core files are handled via gdbarch. */
637 gdb_assert (target_has_execution);
638
639 if (writebuf)
640 return TARGET_XFER_E_IO;
641
642 ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid);
643 gdb_assert (ldi_buf != NULL);
644 cleanup = make_cleanup (xfree, ldi_buf);
645 result = rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf,
646 readbuf, offset, len, 1);
647 xfree (ldi_buf);
648
649 do_cleanups (cleanup);
650
651 if (result == 0)
652 return TARGET_XFER_EOF;
653 else
654 {
655 *xfered_len = result;
656 return TARGET_XFER_OK;
657 }
658 }
659
660 void _initialize_rs6000_nat (void);
661
662 void
663 _initialize_rs6000_nat (void)
664 {
665 struct target_ops *t;
666
667 t = inf_ptrace_target ();
668 t->to_fetch_registers = rs6000_fetch_inferior_registers;
669 t->to_store_registers = rs6000_store_inferior_registers;
670 t->to_xfer_partial = rs6000_xfer_partial;
671
672 super_create_inferior = t->to_create_inferior;
673 t->to_create_inferior = rs6000_create_inferior;
674
675 t->to_wait = rs6000_wait;
676
677 add_target (t);
678 }