]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-nat.c
* symfile.c (symfile_bfd_open): Don't copy name. Call
[thirdparty/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-1987, 1989, 1991-2004, 2007-2012 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbcore.h"
25 #include "xcoffsolib.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
29 #include "bfd.h"
30 #include "exceptions.h"
31 #include "gdb-stabs.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "inf-child.h"
35 #include "inf-ptrace.h"
36 #include "ppc-tdep.h"
37 #include "rs6000-tdep.h"
38 #include "exec.h"
39 #include "observer.h"
40 #include "xcoffread.h"
41
42 #include <sys/ptrace.h>
43 #include <sys/reg.h>
44
45 #include <sys/param.h>
46 #include <sys/dir.h>
47 #include <sys/user.h>
48 #include <signal.h>
49 #include <sys/ioctl.h>
50 #include <fcntl.h>
51 #include <errno.h>
52
53 #include <a.out.h>
54 #include <sys/file.h>
55 #include "gdb_stat.h"
56 #include <sys/core.h>
57 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
58 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
59 #include <sys/ldr.h>
60 #include <sys/systemcfg.h>
61
62 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
63 debugging 32-bit and 64-bit processes. Define a typedef and macros for
64 accessing fields in the appropriate structures. */
65
66 /* In 32-bit compilation mode (which is the only mode from which ptrace()
67 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
68
69 #ifdef __ld_info32
70 # define ARCH3264
71 #endif
72
73 /* Return whether the current architecture is 64-bit. */
74
75 #ifndef ARCH3264
76 # define ARCH64() 0
77 #else
78 # define ARCH64() (register_size (target_gdbarch, 0) == 8)
79 #endif
80
81 /* Union of 32-bit and 64-bit versions of ld_info. */
82
83 typedef union {
84 #ifndef ARCH3264
85 struct ld_info l32;
86 struct ld_info l64;
87 #else
88 struct __ld_info32 l32;
89 struct __ld_info64 l64;
90 #endif
91 } LdInfo;
92
93 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
94 declare and initialize a variable named VAR suitable for use as the arch64
95 parameter to the various LDI_*() macros. */
96
97 #ifndef ARCH3264
98 # define ARCH64_DECL(var)
99 #else
100 # define ARCH64_DECL(var) int var = ARCH64 ()
101 #endif
102
103 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
104 otherwise. This technique only works for FIELDs with the same data type in
105 32-bit and 64-bit versions of ld_info. */
106
107 #ifndef ARCH3264
108 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
109 #else
110 # define LDI_FIELD(ldi, arch64, field) \
111 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
112 #endif
113
114 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
115 process otherwise. */
116
117 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
118 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
119 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
120
121 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
122
123 static void vmap_exec (void);
124
125 static void vmap_ldinfo (LdInfo *);
126
127 static struct vmap *add_vmap (LdInfo *);
128
129 static int objfile_symbol_add (void *);
130
131 static void vmap_symtab (struct vmap *);
132
133 static void exec_one_dummy_insn (struct regcache *);
134
135 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
136
137 /* Given REGNO, a gdb register number, return the corresponding
138 number suitable for use as a ptrace() parameter. Return -1 if
139 there's no suitable mapping. Also, set the int pointed to by
140 ISFLOAT to indicate whether REGNO is a floating point register. */
141
142 static int
143 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
146
147 *isfloat = 0;
148 if (tdep->ppc_gp0_regnum <= regno
149 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
150 return regno;
151 else if (tdep->ppc_fp0_regnum >= 0
152 && tdep->ppc_fp0_regnum <= regno
153 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
154 {
155 *isfloat = 1;
156 return regno - tdep->ppc_fp0_regnum + FPR0;
157 }
158 else if (regno == gdbarch_pc_regnum (gdbarch))
159 return IAR;
160 else if (regno == tdep->ppc_ps_regnum)
161 return MSR;
162 else if (regno == tdep->ppc_cr_regnum)
163 return CR;
164 else if (regno == tdep->ppc_lr_regnum)
165 return LR;
166 else if (regno == tdep->ppc_ctr_regnum)
167 return CTR;
168 else if (regno == tdep->ppc_xer_regnum)
169 return XER;
170 else if (tdep->ppc_fpscr_regnum >= 0
171 && regno == tdep->ppc_fpscr_regnum)
172 return FPSCR;
173 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
174 return MQ;
175 else
176 return -1;
177 }
178
179 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
180
181 static int
182 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
183 {
184 int ret = ptrace (req, id, (int *)addr, data, buf);
185 #if 0
186 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
187 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
188 #endif
189 return ret;
190 }
191
192 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
193
194 static int
195 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
196 {
197 #ifdef ARCH3264
198 int ret = ptracex (req, id, addr, data, buf);
199 #else
200 int ret = 0;
201 #endif
202 #if 0
203 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
204 req, id, hex_string (addr), data, (unsigned int)buf, ret);
205 #endif
206 return ret;
207 }
208
209 /* Fetch register REGNO from the inferior. */
210
211 static void
212 fetch_register (struct regcache *regcache, int regno)
213 {
214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
215 int addr[MAX_REGISTER_SIZE];
216 int nr, isfloat;
217
218 /* Retrieved values may be -1, so infer errors from errno. */
219 errno = 0;
220
221 nr = regmap (gdbarch, regno, &isfloat);
222
223 /* Floating-point registers. */
224 if (isfloat)
225 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
226
227 /* Bogus register number. */
228 else if (nr < 0)
229 {
230 if (regno >= gdbarch_num_regs (gdbarch))
231 fprintf_unfiltered (gdb_stderr,
232 "gdb error: register no %d not implemented.\n",
233 regno);
234 return;
235 }
236
237 /* Fixed-point registers. */
238 else
239 {
240 if (!ARCH64 ())
241 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid),
242 (int *) nr, 0, 0);
243 else
244 {
245 /* PT_READ_GPR requires the buffer parameter to point to long long,
246 even if the register is really only 32 bits. */
247 long long buf;
248 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
249 if (register_size (gdbarch, regno) == 8)
250 memcpy (addr, &buf, 8);
251 else
252 *addr = buf;
253 }
254 }
255
256 if (!errno)
257 regcache_raw_supply (regcache, regno, (char *) addr);
258 else
259 {
260 #if 0
261 /* FIXME: this happens 3 times at the start of each 64-bit program. */
262 perror (_("ptrace read"));
263 #endif
264 errno = 0;
265 }
266 }
267
268 /* Store register REGNO back into the inferior. */
269
270 static void
271 store_register (struct regcache *regcache, int regno)
272 {
273 struct gdbarch *gdbarch = get_regcache_arch (regcache);
274 int addr[MAX_REGISTER_SIZE];
275 int nr, isfloat;
276
277 /* Fetch the register's value from the register cache. */
278 regcache_raw_collect (regcache, regno, addr);
279
280 /* -1 can be a successful return value, so infer errors from errno. */
281 errno = 0;
282
283 nr = regmap (gdbarch, regno, &isfloat);
284
285 /* Floating-point registers. */
286 if (isfloat)
287 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
288
289 /* Bogus register number. */
290 else if (nr < 0)
291 {
292 if (regno >= gdbarch_num_regs (gdbarch))
293 fprintf_unfiltered (gdb_stderr,
294 "gdb error: register no %d not implemented.\n",
295 regno);
296 }
297
298 /* Fixed-point registers. */
299 else
300 {
301 if (regno == gdbarch_sp_regnum (gdbarch))
302 /* Execute one dummy instruction (which is a breakpoint) in inferior
303 process to give kernel a chance to do internal housekeeping.
304 Otherwise the following ptrace(2) calls will mess up user stack
305 since kernel will get confused about the bottom of the stack
306 (%sp). */
307 exec_one_dummy_insn (regcache);
308
309 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
310 the register's value is passed by value, but for 64-bit inferiors,
311 the address of a buffer containing the value is passed. */
312 if (!ARCH64 ())
313 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid),
314 (int *) nr, *addr, 0);
315 else
316 {
317 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
318 area, even if the register is really only 32 bits. */
319 long long buf;
320 if (register_size (gdbarch, regno) == 8)
321 memcpy (&buf, addr, 8);
322 else
323 buf = *addr;
324 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
325 }
326 }
327
328 if (errno)
329 {
330 perror (_("ptrace write"));
331 errno = 0;
332 }
333 }
334
335 /* Read from the inferior all registers if REGNO == -1 and just register
336 REGNO otherwise. */
337
338 static void
339 rs6000_fetch_inferior_registers (struct target_ops *ops,
340 struct regcache *regcache, int regno)
341 {
342 struct gdbarch *gdbarch = get_regcache_arch (regcache);
343 if (regno != -1)
344 fetch_register (regcache, regno);
345
346 else
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349
350 /* Read 32 general purpose registers. */
351 for (regno = tdep->ppc_gp0_regnum;
352 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
353 regno++)
354 {
355 fetch_register (regcache, regno);
356 }
357
358 /* Read general purpose floating point registers. */
359 if (tdep->ppc_fp0_regnum >= 0)
360 for (regno = 0; regno < ppc_num_fprs; regno++)
361 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
362
363 /* Read special registers. */
364 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
365 fetch_register (regcache, tdep->ppc_ps_regnum);
366 fetch_register (regcache, tdep->ppc_cr_regnum);
367 fetch_register (regcache, tdep->ppc_lr_regnum);
368 fetch_register (regcache, tdep->ppc_ctr_regnum);
369 fetch_register (regcache, tdep->ppc_xer_regnum);
370 if (tdep->ppc_fpscr_regnum >= 0)
371 fetch_register (regcache, tdep->ppc_fpscr_regnum);
372 if (tdep->ppc_mq_regnum >= 0)
373 fetch_register (regcache, tdep->ppc_mq_regnum);
374 }
375 }
376
377 /* Store our register values back into the inferior.
378 If REGNO is -1, do this for all registers.
379 Otherwise, REGNO specifies which register (so we can save time). */
380
381 static void
382 rs6000_store_inferior_registers (struct target_ops *ops,
383 struct regcache *regcache, int regno)
384 {
385 struct gdbarch *gdbarch = get_regcache_arch (regcache);
386 if (regno != -1)
387 store_register (regcache, regno);
388
389 else
390 {
391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
392
393 /* Write general purpose registers first. */
394 for (regno = tdep->ppc_gp0_regnum;
395 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
396 regno++)
397 {
398 store_register (regcache, regno);
399 }
400
401 /* Write floating point registers. */
402 if (tdep->ppc_fp0_regnum >= 0)
403 for (regno = 0; regno < ppc_num_fprs; regno++)
404 store_register (regcache, tdep->ppc_fp0_regnum + regno);
405
406 /* Write special registers. */
407 store_register (regcache, gdbarch_pc_regnum (gdbarch));
408 store_register (regcache, tdep->ppc_ps_regnum);
409 store_register (regcache, tdep->ppc_cr_regnum);
410 store_register (regcache, tdep->ppc_lr_regnum);
411 store_register (regcache, tdep->ppc_ctr_regnum);
412 store_register (regcache, tdep->ppc_xer_regnum);
413 if (tdep->ppc_fpscr_regnum >= 0)
414 store_register (regcache, tdep->ppc_fpscr_regnum);
415 if (tdep->ppc_mq_regnum >= 0)
416 store_register (regcache, tdep->ppc_mq_regnum);
417 }
418 }
419
420
421 /* Attempt a transfer all LEN bytes starting at OFFSET between the
422 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
423 Return the number of bytes actually transferred. */
424
425 static LONGEST
426 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
427 const char *annex, gdb_byte *readbuf,
428 const gdb_byte *writebuf,
429 ULONGEST offset, LONGEST len)
430 {
431 pid_t pid = ptid_get_pid (inferior_ptid);
432 int arch64 = ARCH64 ();
433
434 switch (object)
435 {
436 case TARGET_OBJECT_MEMORY:
437 {
438 union
439 {
440 PTRACE_TYPE_RET word;
441 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
442 } buffer;
443 ULONGEST rounded_offset;
444 LONGEST partial_len;
445
446 /* Round the start offset down to the next long word
447 boundary. */
448 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
449
450 /* Since ptrace will transfer a single word starting at that
451 rounded_offset the partial_len needs to be adjusted down to
452 that (remember this function only does a single transfer).
453 Should the required length be even less, adjust it down
454 again. */
455 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
456 if (partial_len > len)
457 partial_len = len;
458
459 if (writebuf)
460 {
461 /* If OFFSET:PARTIAL_LEN is smaller than
462 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
463 be needed. Read in the entire word. */
464 if (rounded_offset < offset
465 || (offset + partial_len
466 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
467 {
468 /* Need part of initial word -- fetch it. */
469 if (arch64)
470 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
471 rounded_offset, 0, NULL);
472 else
473 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
474 (int *) (uintptr_t)
475 rounded_offset,
476 0, NULL);
477 }
478
479 /* Copy data to be written over corresponding part of
480 buffer. */
481 memcpy (buffer.byte + (offset - rounded_offset),
482 writebuf, partial_len);
483
484 errno = 0;
485 if (arch64)
486 rs6000_ptrace64 (PT_WRITE_D, pid,
487 rounded_offset, buffer.word, NULL);
488 else
489 rs6000_ptrace32 (PT_WRITE_D, pid,
490 (int *) (uintptr_t) rounded_offset,
491 buffer.word, NULL);
492 if (errno)
493 return 0;
494 }
495
496 if (readbuf)
497 {
498 errno = 0;
499 if (arch64)
500 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
501 rounded_offset, 0, NULL);
502 else
503 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
504 (int *)(uintptr_t)rounded_offset,
505 0, NULL);
506 if (errno)
507 return 0;
508
509 /* Copy appropriate bytes out of the buffer. */
510 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
511 partial_len);
512 }
513
514 return partial_len;
515 }
516
517 default:
518 return -1;
519 }
520 }
521
522 /* Wait for the child specified by PTID to do something. Return the
523 process ID of the child, or MINUS_ONE_PTID in case of error; store
524 the status in *OURSTATUS. */
525
526 static ptid_t
527 rs6000_wait (struct target_ops *ops,
528 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
529 {
530 pid_t pid;
531 int status, save_errno;
532
533 do
534 {
535 set_sigint_trap ();
536
537 do
538 {
539 pid = waitpid (ptid_get_pid (ptid), &status, 0);
540 save_errno = errno;
541 }
542 while (pid == -1 && errno == EINTR);
543
544 clear_sigint_trap ();
545
546 if (pid == -1)
547 {
548 fprintf_unfiltered (gdb_stderr,
549 _("Child process unexpectedly missing: %s.\n"),
550 safe_strerror (save_errno));
551
552 /* Claim it exited with unknown signal. */
553 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
554 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
555 return inferior_ptid;
556 }
557
558 /* Ignore terminated detached child processes. */
559 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
560 pid = -1;
561 }
562 while (pid == -1);
563
564 /* AIX has a couple of strange returns from wait(). */
565
566 /* stop after load" status. */
567 if (status == 0x57c)
568 ourstatus->kind = TARGET_WAITKIND_LOADED;
569 /* signal 0. I have no idea why wait(2) returns with this status word. */
570 else if (status == 0x7f)
571 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
572 /* A normal waitstatus. Let the usual macros deal with it. */
573 else
574 store_waitstatus (ourstatus, status);
575
576 return pid_to_ptid (pid);
577 }
578
579 /* Execute one dummy breakpoint instruction. This way we give the kernel
580 a chance to do some housekeeping and update inferior's internal data,
581 including u_area. */
582
583 static void
584 exec_one_dummy_insn (struct regcache *regcache)
585 {
586 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
587
588 struct gdbarch *gdbarch = get_regcache_arch (regcache);
589 int ret, status, pid;
590 CORE_ADDR prev_pc;
591 void *bp;
592
593 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
594 assume that this address will never be executed again by the real
595 code. */
596
597 bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);
598
599 /* You might think this could be done with a single ptrace call, and
600 you'd be correct for just about every platform I've ever worked
601 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
602 the inferior never hits the breakpoint (it's also worth noting
603 powerpc-ibm-aix4.1.3 works correctly). */
604 prev_pc = regcache_read_pc (regcache);
605 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
606 if (ARCH64 ())
607 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
608 else
609 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid),
610 (int *) 1, 0, NULL);
611
612 if (ret != 0)
613 perror (_("pt_continue"));
614
615 do
616 {
617 pid = waitpid (PIDGET (inferior_ptid), &status, 0);
618 }
619 while (pid != PIDGET (inferior_ptid));
620
621 regcache_write_pc (regcache, prev_pc);
622 deprecated_remove_raw_breakpoint (gdbarch, bp);
623 }
624 \f
625
626 /* Copy information about text and data sections from LDI to VP for a 64-bit
627 process if ARCH64 and for a 32-bit process otherwise. */
628
629 static void
630 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
631 {
632 if (arch64)
633 {
634 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
635 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
636 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
637 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
638 }
639 else
640 {
641 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
642 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
643 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
644 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
645 }
646
647 /* The run time loader maps the file header in addition to the text
648 section and returns a pointer to the header in ldinfo_textorg.
649 Adjust the text start address to point to the real start address
650 of the text section. */
651 vp->tstart += vp->toffs;
652 }
653
654 /* Handle symbol translation on vmapping. */
655
656 static void
657 vmap_symtab (struct vmap *vp)
658 {
659 struct objfile *objfile;
660 struct section_offsets *new_offsets;
661 int i;
662
663 objfile = vp->objfile;
664 if (objfile == NULL)
665 {
666 /* OK, it's not an objfile we opened ourselves.
667 Currently, that can only happen with the exec file, so
668 relocate the symbols for the symfile. */
669 if (symfile_objfile == NULL)
670 return;
671 objfile = symfile_objfile;
672 }
673 else if (!vp->loaded)
674 /* If symbols are not yet loaded, offsets are not yet valid. */
675 return;
676
677 new_offsets =
678 (struct section_offsets *)
679 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
680
681 for (i = 0; i < objfile->num_sections; ++i)
682 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
683
684 /* The symbols in the object file are linked to the VMA of the section,
685 relocate them VMA relative. */
686 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
687 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
688 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
689
690 objfile_relocate (objfile, new_offsets);
691 }
692 \f
693 /* Add symbols for an objfile. */
694
695 static int
696 objfile_symbol_add (void *arg)
697 {
698 struct objfile *obj = (struct objfile *) arg;
699
700 syms_from_objfile (obj, NULL, 0, 0, 0);
701 new_symfile_objfile (obj, 0);
702 return 1;
703 }
704
705 /* Add symbols for a vmap. Return zero upon error. */
706
707 int
708 vmap_add_symbols (struct vmap *vp)
709 {
710 if (catch_errors (objfile_symbol_add, vp->objfile,
711 "Error while reading shared library symbols:\n",
712 RETURN_MASK_ALL))
713 {
714 /* Note this is only done if symbol reading was successful. */
715 vp->loaded = 1;
716 vmap_symtab (vp);
717 return 1;
718 }
719 return 0;
720 }
721
722 /* Add a new vmap entry based on ldinfo() information.
723
724 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
725 core file), the caller should set it to -1, and we will open the file.
726
727 Return the vmap new entry. */
728
729 static struct vmap *
730 add_vmap (LdInfo *ldi)
731 {
732 bfd *abfd, *last;
733 char *mem, *filename;
734 struct objfile *obj;
735 struct vmap *vp;
736 int fd;
737 ARCH64_DECL (arch64);
738
739 /* This ldi structure was allocated using alloca() in
740 xcoff_relocate_symtab(). Now we need to have persistent object
741 and member names, so we should save them. */
742
743 filename = LDI_FILENAME (ldi, arch64);
744 mem = filename + strlen (filename) + 1;
745 mem = xstrdup (mem);
746
747 fd = LDI_FD (ldi, arch64);
748 if (fd < 0)
749 /* Note that this opens it once for every member; a possible
750 enhancement would be to only open it once for every object. */
751 abfd = bfd_openr (filename, gnutarget);
752 else
753 abfd = bfd_fdopenr (filename, gnutarget, fd);
754 abfd = gdb_bfd_ref (abfd);
755 if (!abfd)
756 {
757 warning (_("Could not open `%s' as an executable file: %s"),
758 filename, bfd_errmsg (bfd_get_error ()));
759 return NULL;
760 }
761 gdb_bfd_stash_filename (abfd);
762
763 /* Make sure we have an object file. */
764
765 if (bfd_check_format (abfd, bfd_object))
766 vp = map_vmap (abfd, 0);
767
768 else if (bfd_check_format (abfd, bfd_archive))
769 {
770 last = 0;
771 /* FIXME??? am I tossing BFDs? bfd? */
772 while ((last = gdb_bfd_ref (bfd_openr_next_archived_file (abfd, last))))
773 if (strcmp (mem, last->filename) == 0)
774 break;
775
776 if (!last)
777 {
778 warning (_("\"%s\": member \"%s\" missing."), filename, mem);
779 gdb_bfd_unref (abfd);
780 return NULL;
781 }
782
783 if (!bfd_check_format (last, bfd_object))
784 {
785 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
786 filename, mem, bfd_errmsg (bfd_get_error ()));
787 gdb_bfd_unref (last);
788 gdb_bfd_unref (abfd);
789 return NULL;
790 }
791
792 vp = map_vmap (last, abfd);
793 }
794 else
795 {
796 warning (_("\"%s\": not in executable format: %s."),
797 filename, bfd_errmsg (bfd_get_error ()));
798 gdb_bfd_unref (abfd);
799 return NULL;
800 }
801 obj = allocate_objfile (gdb_bfd_ref (vp->bfd), 0);
802 vp->objfile = obj;
803
804 /* Always add symbols for the main objfile. */
805 if (vp == vmap || auto_solib_add)
806 vmap_add_symbols (vp);
807 return vp;
808 }
809 \f
810 /* update VMAP info with ldinfo() information
811 Input is ptr to ldinfo() results. */
812
813 static void
814 vmap_ldinfo (LdInfo *ldi)
815 {
816 struct stat ii, vi;
817 struct vmap *vp;
818 int got_one, retried;
819 int got_exec_file = 0;
820 uint next;
821 int arch64 = ARCH64 ();
822
823 /* For each *ldi, see if we have a corresponding *vp.
824 If so, update the mapping, and symbol table.
825 If not, add an entry and symbol table. */
826
827 do
828 {
829 char *name = LDI_FILENAME (ldi, arch64);
830 char *memb = name + strlen (name) + 1;
831 int fd = LDI_FD (ldi, arch64);
832
833 retried = 0;
834
835 if (fstat (fd, &ii) < 0)
836 {
837 /* The kernel sets ld_info to -1, if the process is still using the
838 object, and the object is removed. Keep the symbol info for the
839 removed object and issue a warning. */
840 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
841 name, fd);
842 continue;
843 }
844 retry:
845 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
846 {
847 struct objfile *objfile;
848
849 /* First try to find a `vp', which is the same as in ldinfo.
850 If not the same, just continue and grep the next `vp'. If same,
851 relocate its tstart, tend, dstart, dend values. If no such `vp'
852 found, get out of this for loop, add this ldi entry as a new vmap
853 (add_vmap) and come back, find its `vp' and so on... */
854
855 /* The filenames are not always sufficient to match on. */
856
857 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
858 || (memb[0] && strcmp (memb, vp->member) != 0))
859 continue;
860
861 /* See if we are referring to the same file.
862 We have to check objfile->obfd, symfile.c:reread_symbols might
863 have updated the obfd after a change. */
864 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
865 if (objfile == NULL
866 || objfile->obfd == NULL
867 || bfd_stat (objfile->obfd, &vi) < 0)
868 {
869 warning (_("Unable to stat %s, keeping its symbols"), name);
870 continue;
871 }
872
873 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
874 continue;
875
876 if (!retried)
877 close (fd);
878
879 ++got_one;
880
881 /* Found a corresponding VMAP. Remap! */
882
883 vmap_secs (vp, ldi, arch64);
884
885 /* The objfile is only NULL for the exec file. */
886 if (vp->objfile == NULL)
887 got_exec_file = 1;
888
889 /* relocate symbol table(s). */
890 vmap_symtab (vp);
891
892 /* Announce new object files. Doing this after symbol relocation
893 makes aix-thread.c's job easier. */
894 if (vp->objfile)
895 observer_notify_new_objfile (vp->objfile);
896
897 /* There may be more, so we don't break out of the loop. */
898 }
899
900 /* If there was no matching *vp, we must perforce create the
901 sucker(s). */
902 if (!got_one && !retried)
903 {
904 add_vmap (ldi);
905 ++retried;
906 goto retry;
907 }
908 }
909 while ((next = LDI_NEXT (ldi, arch64))
910 && (ldi = (void *) (next + (char *) ldi)));
911
912 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
913 is unlikely that the symbol file is relocated to the proper
914 address. And we might have attached to a process which is
915 running a different copy of the same executable. */
916 if (symfile_objfile != NULL && !got_exec_file)
917 {
918 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
919 If in fact that file has symbols which the mapped files listed by\n\
920 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
921 \"add-symbol-file\" commands (note that you must take care of relocating\n\
922 symbols to the proper address)."),
923 symfile_objfile->name);
924 free_objfile (symfile_objfile);
925 gdb_assert (symfile_objfile == NULL);
926 }
927 breakpoint_re_set ();
928 }
929 \f
930 /* As well as symbol tables, exec_sections need relocation. After
931 the inferior process' termination, there will be a relocated symbol
932 table exist with no corresponding inferior process. At that time, we
933 need to use `exec' bfd, rather than the inferior process's memory space
934 to look up symbols.
935
936 `exec_sections' need to be relocated only once, as long as the exec
937 file remains unchanged. */
938
939 static void
940 vmap_exec (void)
941 {
942 static bfd *execbfd;
943 int i;
944 struct target_section_table *table = target_get_section_table (&exec_ops);
945
946 if (execbfd == exec_bfd)
947 return;
948
949 execbfd = exec_bfd;
950
951 if (!vmap || !table->sections)
952 error (_("vmap_exec: vmap or table->sections == 0."));
953
954 for (i = 0; &table->sections[i] < table->sections_end; i++)
955 {
956 if (strcmp (".text", table->sections[i].the_bfd_section->name) == 0)
957 {
958 table->sections[i].addr += vmap->tstart - vmap->tvma;
959 table->sections[i].endaddr += vmap->tstart - vmap->tvma;
960 }
961 else if (strcmp (".data", table->sections[i].the_bfd_section->name) == 0)
962 {
963 table->sections[i].addr += vmap->dstart - vmap->dvma;
964 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
965 }
966 else if (strcmp (".bss", table->sections[i].the_bfd_section->name) == 0)
967 {
968 table->sections[i].addr += vmap->dstart - vmap->dvma;
969 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
970 }
971 }
972 }
973
974 /* Set the current architecture from the host running GDB. Called when
975 starting a child process. */
976
977 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
978 char *allargs, char **env, int from_tty);
979 static void
980 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
981 char *allargs, char **env, int from_tty)
982 {
983 enum bfd_architecture arch;
984 unsigned long mach;
985 bfd abfd;
986 struct gdbarch_info info;
987
988 super_create_inferior (ops, exec_file, allargs, env, from_tty);
989
990 if (__power_rs ())
991 {
992 arch = bfd_arch_rs6000;
993 mach = bfd_mach_rs6k;
994 }
995 else
996 {
997 arch = bfd_arch_powerpc;
998 mach = bfd_mach_ppc;
999 }
1000
1001 /* FIXME: schauer/2002-02-25:
1002 We don't know if we are executing a 32 or 64 bit executable,
1003 and have no way to pass the proper word size to rs6000_gdbarch_init.
1004 So we have to avoid switching to a new architecture, if the architecture
1005 matches already.
1006 Blindly calling rs6000_gdbarch_init used to work in older versions of
1007 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1008 determine the wordsize. */
1009 if (exec_bfd)
1010 {
1011 const struct bfd_arch_info *exec_bfd_arch_info;
1012
1013 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1014 if (arch == exec_bfd_arch_info->arch)
1015 return;
1016 }
1017
1018 bfd_default_set_arch_mach (&abfd, arch, mach);
1019
1020 gdbarch_info_init (&info);
1021 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1022 info.abfd = exec_bfd;
1023
1024 if (!gdbarch_update_p (info))
1025 internal_error (__FILE__, __LINE__,
1026 _("rs6000_create_inferior: failed "
1027 "to select architecture"));
1028 }
1029
1030 \f
1031 /* xcoff_relocate_symtab - hook for symbol table relocation.
1032
1033 This is only applicable to live processes, and is a no-op when
1034 debugging a core file. */
1035
1036 void
1037 xcoff_relocate_symtab (unsigned int pid)
1038 {
1039 int load_segs = 64; /* number of load segments */
1040 int rc;
1041 LdInfo *ldi = NULL;
1042 int arch64 = ARCH64 ();
1043 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1044 int size;
1045
1046 /* Nothing to do if we are debugging a core file. */
1047 if (!target_has_execution)
1048 return;
1049
1050 do
1051 {
1052 size = load_segs * ldisize;
1053 ldi = (void *) xrealloc (ldi, size);
1054
1055 #if 0
1056 /* According to my humble theory, AIX has some timing problems and
1057 when the user stack grows, kernel doesn't update stack info in time
1058 and ptrace calls step on user stack. That is why we sleep here a
1059 little, and give kernel to update its internals. */
1060 usleep (36000);
1061 #endif
1062
1063 if (arch64)
1064 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1065 else
1066 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1067
1068 if (rc == -1)
1069 {
1070 if (errno == ENOMEM)
1071 load_segs *= 2;
1072 else
1073 perror_with_name (_("ptrace ldinfo"));
1074 }
1075 else
1076 {
1077 vmap_ldinfo (ldi);
1078 vmap_exec (); /* relocate the exec and core sections as well. */
1079 }
1080 } while (rc == -1);
1081 if (ldi)
1082 xfree (ldi);
1083 }
1084 \f
1085 /* Core file stuff. */
1086
1087 /* Relocate symtabs and read in shared library info, based on symbols
1088 from the core file. */
1089
1090 void
1091 xcoff_relocate_core (struct target_ops *target)
1092 {
1093 struct bfd_section *ldinfo_sec;
1094 int offset = 0;
1095 LdInfo *ldi;
1096 struct vmap *vp;
1097 int arch64 = ARCH64 ();
1098
1099 /* Size of a struct ld_info except for the variable-length filename. */
1100 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1101
1102 /* Allocated size of buffer. */
1103 int buffer_size = nonfilesz;
1104 char *buffer = xmalloc (buffer_size);
1105 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1106
1107 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1108 if (ldinfo_sec == NULL)
1109 {
1110 bfd_err:
1111 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1112 bfd_errmsg (bfd_get_error ()));
1113 do_cleanups (old);
1114 return;
1115 }
1116 do
1117 {
1118 int i;
1119 int names_found = 0;
1120
1121 /* Read in everything but the name. */
1122 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1123 offset, nonfilesz) == 0)
1124 goto bfd_err;
1125
1126 /* Now the name. */
1127 i = nonfilesz;
1128 do
1129 {
1130 if (i == buffer_size)
1131 {
1132 buffer_size *= 2;
1133 buffer = xrealloc (buffer, buffer_size);
1134 }
1135 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1136 offset + i, 1) == 0)
1137 goto bfd_err;
1138 if (buffer[i++] == '\0')
1139 ++names_found;
1140 }
1141 while (names_found < 2);
1142
1143 ldi = (LdInfo *) buffer;
1144
1145 /* Can't use a file descriptor from the core file; need to open it. */
1146 if (arch64)
1147 ldi->l64.ldinfo_fd = -1;
1148 else
1149 ldi->l32.ldinfo_fd = -1;
1150
1151 /* The first ldinfo is for the exec file, allocated elsewhere. */
1152 if (offset == 0 && vmap != NULL)
1153 vp = vmap;
1154 else
1155 vp = add_vmap (ldi);
1156
1157 /* Process next shared library upon error. */
1158 offset += LDI_NEXT (ldi, arch64);
1159 if (vp == NULL)
1160 continue;
1161
1162 vmap_secs (vp, ldi, arch64);
1163
1164 /* Unless this is the exec file,
1165 add our sections to the section table for the core target. */
1166 if (vp != vmap)
1167 {
1168 struct target_section *stp;
1169
1170 stp = deprecated_core_resize_section_table (2);
1171
1172 stp->bfd = vp->bfd;
1173 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1174 stp->addr = vp->tstart;
1175 stp->endaddr = vp->tend;
1176 stp++;
1177
1178 stp->bfd = vp->bfd;
1179 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1180 stp->addr = vp->dstart;
1181 stp->endaddr = vp->dend;
1182 }
1183
1184 vmap_symtab (vp);
1185
1186 if (vp != vmap && vp->objfile)
1187 observer_notify_new_objfile (vp->objfile);
1188 }
1189 while (LDI_NEXT (ldi, arch64) != 0);
1190 vmap_exec ();
1191 breakpoint_re_set ();
1192 do_cleanups (old);
1193 }
1194 \f
1195 /* Under AIX, we have to pass the correct TOC pointer to a function
1196 when calling functions in the inferior.
1197 We try to find the relative toc offset of the objfile containing PC
1198 and add the current load address of the data segment from the vmap. */
1199
1200 static CORE_ADDR
1201 find_toc_address (CORE_ADDR pc)
1202 {
1203 struct vmap *vp;
1204
1205 for (vp = vmap; vp; vp = vp->nxt)
1206 {
1207 if (pc >= vp->tstart && pc < vp->tend)
1208 {
1209 /* vp->objfile is only NULL for the exec file. */
1210 return vp->dstart + xcoff_get_toc_offset (vp->objfile == NULL
1211 ? symfile_objfile
1212 : vp->objfile);
1213 }
1214 }
1215 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1216 }
1217 \f
1218
1219 void _initialize_rs6000_nat (void);
1220
1221 void
1222 _initialize_rs6000_nat (void)
1223 {
1224 struct target_ops *t;
1225
1226 t = inf_ptrace_target ();
1227 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1228 t->to_store_registers = rs6000_store_inferior_registers;
1229 t->to_xfer_partial = rs6000_xfer_partial;
1230
1231 super_create_inferior = t->to_create_inferior;
1232 t->to_create_inferior = rs6000_create_inferior;
1233
1234 t->to_wait = rs6000_wait;
1235
1236 add_target (t);
1237
1238 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1239 when calling functions in the inferior. */
1240 rs6000_find_toc_address_hook = find_toc_address;
1241 }