]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-nat.c
* Makefile.in (GNULIB_H): Use GNULIB_STDINT_H.
[thirdparty/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "xcoffsolib.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
30 #include "bfd.h"
31 #include "exceptions.h"
32 #include "gdb-stabs.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "inf-ptrace.h"
36 #include "ppc-tdep.h"
37 #include "rs6000-tdep.h"
38 #include "exec.h"
39 #include "observer.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/param.h>
45 #include <sys/dir.h>
46 #include <sys/user.h>
47 #include <signal.h>
48 #include <sys/ioctl.h>
49 #include <fcntl.h>
50 #include <errno.h>
51
52 #include <a.out.h>
53 #include <sys/file.h>
54 #include "gdb_stat.h"
55 #include <sys/core.h>
56 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
57 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
58 #include <sys/ldr.h>
59 #include <sys/systemcfg.h>
60
61 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
62 debugging 32-bit and 64-bit processes. Define a typedef and macros for
63 accessing fields in the appropriate structures. */
64
65 /* In 32-bit compilation mode (which is the only mode from which ptrace()
66 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
67
68 #ifdef __ld_info32
69 # define ARCH3264
70 #endif
71
72 /* Return whether the current architecture is 64-bit. */
73
74 #ifndef ARCH3264
75 # define ARCH64() 0
76 #else
77 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
78 #endif
79
80 /* Union of 32-bit and 64-bit versions of ld_info. */
81
82 typedef union {
83 #ifndef ARCH3264
84 struct ld_info l32;
85 struct ld_info l64;
86 #else
87 struct __ld_info32 l32;
88 struct __ld_info64 l64;
89 #endif
90 } LdInfo;
91
92 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
93 declare and initialize a variable named VAR suitable for use as the arch64
94 parameter to the various LDI_*() macros. */
95
96 #ifndef ARCH3264
97 # define ARCH64_DECL(var)
98 #else
99 # define ARCH64_DECL(var) int var = ARCH64 ()
100 #endif
101
102 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
103 otherwise. This technique only works for FIELDs with the same data type in
104 32-bit and 64-bit versions of ld_info. */
105
106 #ifndef ARCH3264
107 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
108 #else
109 # define LDI_FIELD(ldi, arch64, field) \
110 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
111 #endif
112
113 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
114 process otherwise. */
115
116 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
117 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
118 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
119
120 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
121
122 static void vmap_exec (void);
123
124 static void vmap_ldinfo (LdInfo *);
125
126 static struct vmap *add_vmap (LdInfo *);
127
128 static int objfile_symbol_add (void *);
129
130 static void vmap_symtab (struct vmap *);
131
132 static void exec_one_dummy_insn (struct gdbarch *);
133
134 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
135
136 /* Given REGNO, a gdb register number, return the corresponding
137 number suitable for use as a ptrace() parameter. Return -1 if
138 there's no suitable mapping. Also, set the int pointed to by
139 ISFLOAT to indicate whether REGNO is a floating point register. */
140
141 static int
142 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 *isfloat = 0;
147 if (tdep->ppc_gp0_regnum <= regno
148 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
149 return regno;
150 else if (tdep->ppc_fp0_regnum >= 0
151 && tdep->ppc_fp0_regnum <= regno
152 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
153 {
154 *isfloat = 1;
155 return regno - tdep->ppc_fp0_regnum + FPR0;
156 }
157 else if (regno == gdbarch_pc_regnum (gdbarch))
158 return IAR;
159 else if (regno == tdep->ppc_ps_regnum)
160 return MSR;
161 else if (regno == tdep->ppc_cr_regnum)
162 return CR;
163 else if (regno == tdep->ppc_lr_regnum)
164 return LR;
165 else if (regno == tdep->ppc_ctr_regnum)
166 return CTR;
167 else if (regno == tdep->ppc_xer_regnum)
168 return XER;
169 else if (tdep->ppc_fpscr_regnum >= 0
170 && regno == tdep->ppc_fpscr_regnum)
171 return FPSCR;
172 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
173 return MQ;
174 else
175 return -1;
176 }
177
178 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
179
180 static int
181 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
182 {
183 int ret = ptrace (req, id, (int *)addr, data, buf);
184 #if 0
185 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
186 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
187 #endif
188 return ret;
189 }
190
191 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
192
193 static int
194 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
195 {
196 #ifdef ARCH3264
197 int ret = ptracex (req, id, addr, data, buf);
198 #else
199 int ret = 0;
200 #endif
201 #if 0
202 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
203 req, id, addr, data, (unsigned int)buf, ret);
204 #endif
205 return ret;
206 }
207
208 /* Fetch register REGNO from the inferior. */
209
210 static void
211 fetch_register (struct regcache *regcache, int regno)
212 {
213 struct gdbarch *gdbarch = get_regcache_arch (regcache);
214 int addr[MAX_REGISTER_SIZE];
215 int nr, isfloat;
216
217 /* Retrieved values may be -1, so infer errors from errno. */
218 errno = 0;
219
220 nr = regmap (gdbarch, regno, &isfloat);
221
222 /* Floating-point registers. */
223 if (isfloat)
224 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
225
226 /* Bogus register number. */
227 else if (nr < 0)
228 {
229 if (regno >= gdbarch_num_regs (gdbarch))
230 fprintf_unfiltered (gdb_stderr,
231 "gdb error: register no %d not implemented.\n",
232 regno);
233 return;
234 }
235
236 /* Fixed-point registers. */
237 else
238 {
239 if (!ARCH64 ())
240 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
241 else
242 {
243 /* PT_READ_GPR requires the buffer parameter to point to long long,
244 even if the register is really only 32 bits. */
245 long long buf;
246 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
247 if (register_size (gdbarch, regno) == 8)
248 memcpy (addr, &buf, 8);
249 else
250 *addr = buf;
251 }
252 }
253
254 if (!errno)
255 regcache_raw_supply (regcache, regno, (char *) addr);
256 else
257 {
258 #if 0
259 /* FIXME: this happens 3 times at the start of each 64-bit program. */
260 perror ("ptrace read");
261 #endif
262 errno = 0;
263 }
264 }
265
266 /* Store register REGNO back into the inferior. */
267
268 static void
269 store_register (const struct regcache *regcache, int regno)
270 {
271 struct gdbarch *gdbarch = get_regcache_arch (regcache);
272 int addr[MAX_REGISTER_SIZE];
273 int nr, isfloat;
274
275 /* Fetch the register's value from the register cache. */
276 regcache_raw_collect (regcache, regno, addr);
277
278 /* -1 can be a successful return value, so infer errors from errno. */
279 errno = 0;
280
281 nr = regmap (gdbarch, regno, &isfloat);
282
283 /* Floating-point registers. */
284 if (isfloat)
285 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
286
287 /* Bogus register number. */
288 else if (nr < 0)
289 {
290 if (regno >= gdbarch_num_regs (gdbarch))
291 fprintf_unfiltered (gdb_stderr,
292 "gdb error: register no %d not implemented.\n",
293 regno);
294 }
295
296 /* Fixed-point registers. */
297 else
298 {
299 if (regno == gdbarch_sp_regnum (gdbarch))
300 /* Execute one dummy instruction (which is a breakpoint) in inferior
301 process to give kernel a chance to do internal housekeeping.
302 Otherwise the following ptrace(2) calls will mess up user stack
303 since kernel will get confused about the bottom of the stack
304 (%sp). */
305 exec_one_dummy_insn (gdbarch);
306
307 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
308 the register's value is passed by value, but for 64-bit inferiors,
309 the address of a buffer containing the value is passed. */
310 if (!ARCH64 ())
311 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
312 else
313 {
314 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
315 area, even if the register is really only 32 bits. */
316 long long buf;
317 if (register_size (gdbarch, regno) == 8)
318 memcpy (&buf, addr, 8);
319 else
320 buf = *addr;
321 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
322 }
323 }
324
325 if (errno)
326 {
327 perror ("ptrace write");
328 errno = 0;
329 }
330 }
331
332 /* Read from the inferior all registers if REGNO == -1 and just register
333 REGNO otherwise. */
334
335 static void
336 rs6000_fetch_inferior_registers (struct regcache *regcache, int regno)
337 {
338 struct gdbarch *gdbarch = get_regcache_arch (regcache);
339 if (regno != -1)
340 fetch_register (regcache, regno);
341
342 else
343 {
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345
346 /* Read 32 general purpose registers. */
347 for (regno = tdep->ppc_gp0_regnum;
348 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
349 regno++)
350 {
351 fetch_register (regcache, regno);
352 }
353
354 /* Read general purpose floating point registers. */
355 if (tdep->ppc_fp0_regnum >= 0)
356 for (regno = 0; regno < ppc_num_fprs; regno++)
357 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
358
359 /* Read special registers. */
360 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
361 fetch_register (regcache, tdep->ppc_ps_regnum);
362 fetch_register (regcache, tdep->ppc_cr_regnum);
363 fetch_register (regcache, tdep->ppc_lr_regnum);
364 fetch_register (regcache, tdep->ppc_ctr_regnum);
365 fetch_register (regcache, tdep->ppc_xer_regnum);
366 if (tdep->ppc_fpscr_regnum >= 0)
367 fetch_register (regcache, tdep->ppc_fpscr_regnum);
368 if (tdep->ppc_mq_regnum >= 0)
369 fetch_register (regcache, tdep->ppc_mq_regnum);
370 }
371 }
372
373 /* Store our register values back into the inferior.
374 If REGNO is -1, do this for all registers.
375 Otherwise, REGNO specifies which register (so we can save time). */
376
377 static void
378 rs6000_store_inferior_registers (struct regcache *regcache, int regno)
379 {
380 struct gdbarch *gdbarch = get_regcache_arch (regcache);
381 if (regno != -1)
382 store_register (regcache, regno);
383
384 else
385 {
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387
388 /* Write general purpose registers first. */
389 for (regno = tdep->ppc_gp0_regnum;
390 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
391 regno++)
392 {
393 store_register (regcache, regno);
394 }
395
396 /* Write floating point registers. */
397 if (tdep->ppc_fp0_regnum >= 0)
398 for (regno = 0; regno < ppc_num_fprs; regno++)
399 store_register (regcache, tdep->ppc_fp0_regnum + regno);
400
401 /* Write special registers. */
402 store_register (regcache, gdbarch_pc_regnum (gdbarch));
403 store_register (regcache, tdep->ppc_ps_regnum);
404 store_register (regcache, tdep->ppc_cr_regnum);
405 store_register (regcache, tdep->ppc_lr_regnum);
406 store_register (regcache, tdep->ppc_ctr_regnum);
407 store_register (regcache, tdep->ppc_xer_regnum);
408 if (tdep->ppc_fpscr_regnum >= 0)
409 store_register (regcache, tdep->ppc_fpscr_regnum);
410 if (tdep->ppc_mq_regnum >= 0)
411 store_register (regcache, tdep->ppc_mq_regnum);
412 }
413 }
414
415
416 /* Attempt a transfer all LEN bytes starting at OFFSET between the
417 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
418 Return the number of bytes actually transferred. */
419
420 static LONGEST
421 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
422 const char *annex, gdb_byte *readbuf,
423 const gdb_byte *writebuf,
424 ULONGEST offset, LONGEST len)
425 {
426 pid_t pid = ptid_get_pid (inferior_ptid);
427 int arch64 = ARCH64 ();
428
429 switch (object)
430 {
431 case TARGET_OBJECT_MEMORY:
432 {
433 union
434 {
435 PTRACE_TYPE_RET word;
436 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
437 } buffer;
438 ULONGEST rounded_offset;
439 LONGEST partial_len;
440
441 /* Round the start offset down to the next long word
442 boundary. */
443 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
444
445 /* Since ptrace will transfer a single word starting at that
446 rounded_offset the partial_len needs to be adjusted down to
447 that (remember this function only does a single transfer).
448 Should the required length be even less, adjust it down
449 again. */
450 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
451 if (partial_len > len)
452 partial_len = len;
453
454 if (writebuf)
455 {
456 /* If OFFSET:PARTIAL_LEN is smaller than
457 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
458 be needed. Read in the entire word. */
459 if (rounded_offset < offset
460 || (offset + partial_len
461 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
462 {
463 /* Need part of initial word -- fetch it. */
464 if (arch64)
465 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
466 rounded_offset, 0, NULL);
467 else
468 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
469 (int *)(uintptr_t)rounded_offset,
470 0, NULL);
471 }
472
473 /* Copy data to be written over corresponding part of
474 buffer. */
475 memcpy (buffer.byte + (offset - rounded_offset),
476 writebuf, partial_len);
477
478 errno = 0;
479 if (arch64)
480 rs6000_ptrace64 (PT_WRITE_D, pid,
481 rounded_offset, buffer.word, NULL);
482 else
483 rs6000_ptrace32 (PT_WRITE_D, pid,
484 (int *)(uintptr_t)rounded_offset, buffer.word, NULL);
485 if (errno)
486 return 0;
487 }
488
489 if (readbuf)
490 {
491 errno = 0;
492 if (arch64)
493 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
494 rounded_offset, 0, NULL);
495 else
496 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
497 (int *)(uintptr_t)rounded_offset,
498 0, NULL);
499 if (errno)
500 return 0;
501
502 /* Copy appropriate bytes out of the buffer. */
503 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
504 partial_len);
505 }
506
507 return partial_len;
508 }
509
510 default:
511 return -1;
512 }
513 }
514
515 /* Wait for the child specified by PTID to do something. Return the
516 process ID of the child, or MINUS_ONE_PTID in case of error; store
517 the status in *OURSTATUS. */
518
519 static ptid_t
520 rs6000_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
521 {
522 pid_t pid;
523 int status, save_errno;
524
525 do
526 {
527 set_sigint_trap ();
528 set_sigio_trap ();
529
530 do
531 {
532 pid = waitpid (ptid_get_pid (ptid), &status, 0);
533 save_errno = errno;
534 }
535 while (pid == -1 && errno == EINTR);
536
537 clear_sigio_trap ();
538 clear_sigint_trap ();
539
540 if (pid == -1)
541 {
542 fprintf_unfiltered (gdb_stderr,
543 _("Child process unexpectedly missing: %s.\n"),
544 safe_strerror (save_errno));
545
546 /* Claim it exited with unknown signal. */
547 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
548 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
549 return minus_one_ptid;
550 }
551
552 /* Ignore terminated detached child processes. */
553 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
554 pid = -1;
555 }
556 while (pid == -1);
557
558 /* AIX has a couple of strange returns from wait(). */
559
560 /* stop after load" status. */
561 if (status == 0x57c)
562 ourstatus->kind = TARGET_WAITKIND_LOADED;
563 /* signal 0. I have no idea why wait(2) returns with this status word. */
564 else if (status == 0x7f)
565 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
566 /* A normal waitstatus. Let the usual macros deal with it. */
567 else
568 store_waitstatus (ourstatus, status);
569
570 return pid_to_ptid (pid);
571 }
572
573 /* Execute one dummy breakpoint instruction. This way we give the kernel
574 a chance to do some housekeeping and update inferior's internal data,
575 including u_area. */
576
577 static void
578 exec_one_dummy_insn (struct gdbarch *gdbarch)
579 {
580 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
581
582 int ret, status, pid;
583 CORE_ADDR prev_pc;
584 void *bp;
585
586 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
587 assume that this address will never be executed again by the real
588 code. */
589
590 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
591
592 /* You might think this could be done with a single ptrace call, and
593 you'd be correct for just about every platform I've ever worked
594 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
595 the inferior never hits the breakpoint (it's also worth noting
596 powerpc-ibm-aix4.1.3 works correctly). */
597 prev_pc = read_pc ();
598 write_pc (DUMMY_INSN_ADDR);
599 if (ARCH64 ())
600 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
601 else
602 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
603
604 if (ret != 0)
605 perror ("pt_continue");
606
607 do
608 {
609 pid = wait (&status);
610 }
611 while (pid != PIDGET (inferior_ptid));
612
613 write_pc (prev_pc);
614 deprecated_remove_raw_breakpoint (bp);
615 }
616 \f
617
618 /* Copy information about text and data sections from LDI to VP for a 64-bit
619 process if ARCH64 and for a 32-bit process otherwise. */
620
621 static void
622 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
623 {
624 if (arch64)
625 {
626 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
627 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
628 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
629 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
630 }
631 else
632 {
633 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
634 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
635 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
636 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
637 }
638
639 /* The run time loader maps the file header in addition to the text
640 section and returns a pointer to the header in ldinfo_textorg.
641 Adjust the text start address to point to the real start address
642 of the text section. */
643 vp->tstart += vp->toffs;
644 }
645
646 /* handle symbol translation on vmapping */
647
648 static void
649 vmap_symtab (struct vmap *vp)
650 {
651 struct objfile *objfile;
652 struct section_offsets *new_offsets;
653 int i;
654
655 objfile = vp->objfile;
656 if (objfile == NULL)
657 {
658 /* OK, it's not an objfile we opened ourselves.
659 Currently, that can only happen with the exec file, so
660 relocate the symbols for the symfile. */
661 if (symfile_objfile == NULL)
662 return;
663 objfile = symfile_objfile;
664 }
665 else if (!vp->loaded)
666 /* If symbols are not yet loaded, offsets are not yet valid. */
667 return;
668
669 new_offsets =
670 (struct section_offsets *)
671 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
672
673 for (i = 0; i < objfile->num_sections; ++i)
674 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
675
676 /* The symbols in the object file are linked to the VMA of the section,
677 relocate them VMA relative. */
678 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
679 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
680 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
681
682 objfile_relocate (objfile, new_offsets);
683 }
684 \f
685 /* Add symbols for an objfile. */
686
687 static int
688 objfile_symbol_add (void *arg)
689 {
690 struct objfile *obj = (struct objfile *) arg;
691
692 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
693 new_symfile_objfile (obj, 0, 0);
694 return 1;
695 }
696
697 /* Add symbols for a vmap. Return zero upon error. */
698
699 int
700 vmap_add_symbols (struct vmap *vp)
701 {
702 if (catch_errors (objfile_symbol_add, vp->objfile,
703 "Error while reading shared library symbols:\n",
704 RETURN_MASK_ALL))
705 {
706 /* Note this is only done if symbol reading was successful. */
707 vp->loaded = 1;
708 vmap_symtab (vp);
709 return 1;
710 }
711 return 0;
712 }
713
714 /* Add a new vmap entry based on ldinfo() information.
715
716 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
717 core file), the caller should set it to -1, and we will open the file.
718
719 Return the vmap new entry. */
720
721 static struct vmap *
722 add_vmap (LdInfo *ldi)
723 {
724 bfd *abfd, *last;
725 char *mem, *objname, *filename;
726 struct objfile *obj;
727 struct vmap *vp;
728 int fd;
729 ARCH64_DECL (arch64);
730
731 /* This ldi structure was allocated using alloca() in
732 xcoff_relocate_symtab(). Now we need to have persistent object
733 and member names, so we should save them. */
734
735 filename = LDI_FILENAME (ldi, arch64);
736 mem = filename + strlen (filename) + 1;
737 mem = savestring (mem, strlen (mem));
738 objname = savestring (filename, strlen (filename));
739
740 fd = LDI_FD (ldi, arch64);
741 if (fd < 0)
742 /* Note that this opens it once for every member; a possible
743 enhancement would be to only open it once for every object. */
744 abfd = bfd_openr (objname, gnutarget);
745 else
746 abfd = bfd_fdopenr (objname, gnutarget, fd);
747 if (!abfd)
748 {
749 warning (_("Could not open `%s' as an executable file: %s"),
750 objname, bfd_errmsg (bfd_get_error ()));
751 return NULL;
752 }
753
754 /* make sure we have an object file */
755
756 if (bfd_check_format (abfd, bfd_object))
757 vp = map_vmap (abfd, 0);
758
759 else if (bfd_check_format (abfd, bfd_archive))
760 {
761 last = 0;
762 /* FIXME??? am I tossing BFDs? bfd? */
763 while ((last = bfd_openr_next_archived_file (abfd, last)))
764 if (strcmp (mem, last->filename) == 0)
765 break;
766
767 if (!last)
768 {
769 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
770 bfd_close (abfd);
771 return NULL;
772 }
773
774 if (!bfd_check_format (last, bfd_object))
775 {
776 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
777 objname, mem, bfd_errmsg (bfd_get_error ()));
778 bfd_close (last);
779 bfd_close (abfd);
780 return NULL;
781 }
782
783 vp = map_vmap (last, abfd);
784 }
785 else
786 {
787 warning (_("\"%s\": not in executable format: %s."),
788 objname, bfd_errmsg (bfd_get_error ()));
789 bfd_close (abfd);
790 return NULL;
791 }
792 obj = allocate_objfile (vp->bfd, 0);
793 vp->objfile = obj;
794
795 /* Always add symbols for the main objfile. */
796 if (vp == vmap || auto_solib_add)
797 vmap_add_symbols (vp);
798 return vp;
799 }
800 \f
801 /* update VMAP info with ldinfo() information
802 Input is ptr to ldinfo() results. */
803
804 static void
805 vmap_ldinfo (LdInfo *ldi)
806 {
807 struct stat ii, vi;
808 struct vmap *vp;
809 int got_one, retried;
810 int got_exec_file = 0;
811 uint next;
812 int arch64 = ARCH64 ();
813
814 /* For each *ldi, see if we have a corresponding *vp.
815 If so, update the mapping, and symbol table.
816 If not, add an entry and symbol table. */
817
818 do
819 {
820 char *name = LDI_FILENAME (ldi, arch64);
821 char *memb = name + strlen (name) + 1;
822 int fd = LDI_FD (ldi, arch64);
823
824 retried = 0;
825
826 if (fstat (fd, &ii) < 0)
827 {
828 /* The kernel sets ld_info to -1, if the process is still using the
829 object, and the object is removed. Keep the symbol info for the
830 removed object and issue a warning. */
831 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
832 name, fd);
833 continue;
834 }
835 retry:
836 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
837 {
838 struct objfile *objfile;
839
840 /* First try to find a `vp', which is the same as in ldinfo.
841 If not the same, just continue and grep the next `vp'. If same,
842 relocate its tstart, tend, dstart, dend values. If no such `vp'
843 found, get out of this for loop, add this ldi entry as a new vmap
844 (add_vmap) and come back, find its `vp' and so on... */
845
846 /* The filenames are not always sufficient to match on. */
847
848 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
849 || (memb[0] && strcmp (memb, vp->member) != 0))
850 continue;
851
852 /* See if we are referring to the same file.
853 We have to check objfile->obfd, symfile.c:reread_symbols might
854 have updated the obfd after a change. */
855 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
856 if (objfile == NULL
857 || objfile->obfd == NULL
858 || bfd_stat (objfile->obfd, &vi) < 0)
859 {
860 warning (_("Unable to stat %s, keeping its symbols"), name);
861 continue;
862 }
863
864 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
865 continue;
866
867 if (!retried)
868 close (fd);
869
870 ++got_one;
871
872 /* Found a corresponding VMAP. Remap! */
873
874 vmap_secs (vp, ldi, arch64);
875
876 /* The objfile is only NULL for the exec file. */
877 if (vp->objfile == NULL)
878 got_exec_file = 1;
879
880 /* relocate symbol table(s). */
881 vmap_symtab (vp);
882
883 /* Announce new object files. Doing this after symbol relocation
884 makes aix-thread.c's job easier. */
885 if (vp->objfile)
886 observer_notify_new_objfile (vp->objfile);
887
888 /* There may be more, so we don't break out of the loop. */
889 }
890
891 /* if there was no matching *vp, we must perforce create the sucker(s) */
892 if (!got_one && !retried)
893 {
894 add_vmap (ldi);
895 ++retried;
896 goto retry;
897 }
898 }
899 while ((next = LDI_NEXT (ldi, arch64))
900 && (ldi = (void *) (next + (char *) ldi)));
901
902 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
903 is unlikely that the symbol file is relocated to the proper
904 address. And we might have attached to a process which is
905 running a different copy of the same executable. */
906 if (symfile_objfile != NULL && !got_exec_file)
907 {
908 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
909 If in fact that file has symbols which the mapped files listed by\n\
910 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
911 \"add-symbol-file\" commands (note that you must take care of relocating\n\
912 symbols to the proper address)."),
913 symfile_objfile->name);
914 free_objfile (symfile_objfile);
915 symfile_objfile = NULL;
916 }
917 breakpoint_re_set ();
918 }
919 \f
920 /* As well as symbol tables, exec_sections need relocation. After
921 the inferior process' termination, there will be a relocated symbol
922 table exist with no corresponding inferior process. At that time, we
923 need to use `exec' bfd, rather than the inferior process's memory space
924 to look up symbols.
925
926 `exec_sections' need to be relocated only once, as long as the exec
927 file remains unchanged.
928 */
929
930 static void
931 vmap_exec (void)
932 {
933 static bfd *execbfd;
934 int i;
935
936 if (execbfd == exec_bfd)
937 return;
938
939 execbfd = exec_bfd;
940
941 if (!vmap || !exec_ops.to_sections)
942 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
943
944 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
945 {
946 if (strcmp (".text", exec_ops.to_sections[i].the_bfd_section->name) == 0)
947 {
948 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
949 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
950 }
951 else if (strcmp (".data",
952 exec_ops.to_sections[i].the_bfd_section->name) == 0)
953 {
954 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
955 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
956 }
957 else if (strcmp (".bss",
958 exec_ops.to_sections[i].the_bfd_section->name) == 0)
959 {
960 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
961 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
962 }
963 }
964 }
965
966 /* Set the current architecture from the host running GDB. Called when
967 starting a child process. */
968
969 static void (*super_create_inferior) (char *exec_file, char *allargs,
970 char **env, int from_tty);
971 static void
972 rs6000_create_inferior (char *exec_file, char *allargs, char **env, int from_tty)
973 {
974 enum bfd_architecture arch;
975 unsigned long mach;
976 bfd abfd;
977 struct gdbarch_info info;
978
979 super_create_inferior (exec_file, allargs, env, from_tty);
980
981 if (__power_rs ())
982 {
983 arch = bfd_arch_rs6000;
984 mach = bfd_mach_rs6k;
985 }
986 else
987 {
988 arch = bfd_arch_powerpc;
989 mach = bfd_mach_ppc;
990 }
991
992 /* FIXME: schauer/2002-02-25:
993 We don't know if we are executing a 32 or 64 bit executable,
994 and have no way to pass the proper word size to rs6000_gdbarch_init.
995 So we have to avoid switching to a new architecture, if the architecture
996 matches already.
997 Blindly calling rs6000_gdbarch_init used to work in older versions of
998 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
999 determine the wordsize. */
1000 if (exec_bfd)
1001 {
1002 const struct bfd_arch_info *exec_bfd_arch_info;
1003
1004 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1005 if (arch == exec_bfd_arch_info->arch)
1006 return;
1007 }
1008
1009 bfd_default_set_arch_mach (&abfd, arch, mach);
1010
1011 gdbarch_info_init (&info);
1012 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1013 info.abfd = exec_bfd;
1014
1015 if (!gdbarch_update_p (info))
1016 internal_error (__FILE__, __LINE__,
1017 _("rs6000_create_inferior: failed to select architecture"));
1018 }
1019
1020 \f
1021 /* xcoff_relocate_symtab - hook for symbol table relocation.
1022
1023 This is only applicable to live processes, and is a no-op when
1024 debugging a core file. */
1025
1026 void
1027 xcoff_relocate_symtab (unsigned int pid)
1028 {
1029 int load_segs = 64; /* number of load segments */
1030 int rc;
1031 LdInfo *ldi = NULL;
1032 int arch64 = ARCH64 ();
1033 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1034 int size;
1035
1036 if (ptid_equal (inferior_ptid, null_ptid))
1037 return;
1038
1039 do
1040 {
1041 size = load_segs * ldisize;
1042 ldi = (void *) xrealloc (ldi, size);
1043
1044 #if 0
1045 /* According to my humble theory, AIX has some timing problems and
1046 when the user stack grows, kernel doesn't update stack info in time
1047 and ptrace calls step on user stack. That is why we sleep here a
1048 little, and give kernel to update its internals. */
1049 usleep (36000);
1050 #endif
1051
1052 if (arch64)
1053 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1054 else
1055 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1056
1057 if (rc == -1)
1058 {
1059 if (errno == ENOMEM)
1060 load_segs *= 2;
1061 else
1062 perror_with_name (_("ptrace ldinfo"));
1063 }
1064 else
1065 {
1066 vmap_ldinfo (ldi);
1067 vmap_exec (); /* relocate the exec and core sections as well. */
1068 }
1069 } while (rc == -1);
1070 if (ldi)
1071 xfree (ldi);
1072 }
1073 \f
1074 /* Core file stuff. */
1075
1076 /* Relocate symtabs and read in shared library info, based on symbols
1077 from the core file. */
1078
1079 void
1080 xcoff_relocate_core (struct target_ops *target)
1081 {
1082 struct bfd_section *ldinfo_sec;
1083 int offset = 0;
1084 LdInfo *ldi;
1085 struct vmap *vp;
1086 int arch64 = ARCH64 ();
1087
1088 /* Size of a struct ld_info except for the variable-length filename. */
1089 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1090
1091 /* Allocated size of buffer. */
1092 int buffer_size = nonfilesz;
1093 char *buffer = xmalloc (buffer_size);
1094 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1095
1096 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1097 if (ldinfo_sec == NULL)
1098 {
1099 bfd_err:
1100 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1101 bfd_errmsg (bfd_get_error ()));
1102 do_cleanups (old);
1103 return;
1104 }
1105 do
1106 {
1107 int i;
1108 int names_found = 0;
1109
1110 /* Read in everything but the name. */
1111 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1112 offset, nonfilesz) == 0)
1113 goto bfd_err;
1114
1115 /* Now the name. */
1116 i = nonfilesz;
1117 do
1118 {
1119 if (i == buffer_size)
1120 {
1121 buffer_size *= 2;
1122 buffer = xrealloc (buffer, buffer_size);
1123 }
1124 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1125 offset + i, 1) == 0)
1126 goto bfd_err;
1127 if (buffer[i++] == '\0')
1128 ++names_found;
1129 }
1130 while (names_found < 2);
1131
1132 ldi = (LdInfo *) buffer;
1133
1134 /* Can't use a file descriptor from the core file; need to open it. */
1135 if (arch64)
1136 ldi->l64.ldinfo_fd = -1;
1137 else
1138 ldi->l32.ldinfo_fd = -1;
1139
1140 /* The first ldinfo is for the exec file, allocated elsewhere. */
1141 if (offset == 0 && vmap != NULL)
1142 vp = vmap;
1143 else
1144 vp = add_vmap (ldi);
1145
1146 /* Process next shared library upon error. */
1147 offset += LDI_NEXT (ldi, arch64);
1148 if (vp == NULL)
1149 continue;
1150
1151 vmap_secs (vp, ldi, arch64);
1152
1153 /* Unless this is the exec file,
1154 add our sections to the section table for the core target. */
1155 if (vp != vmap)
1156 {
1157 struct section_table *stp;
1158
1159 target_resize_to_sections (target, 2);
1160 stp = target->to_sections_end - 2;
1161
1162 stp->bfd = vp->bfd;
1163 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1164 stp->addr = vp->tstart;
1165 stp->endaddr = vp->tend;
1166 stp++;
1167
1168 stp->bfd = vp->bfd;
1169 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1170 stp->addr = vp->dstart;
1171 stp->endaddr = vp->dend;
1172 }
1173
1174 vmap_symtab (vp);
1175
1176 if (vp != vmap && vp->objfile)
1177 observer_notify_new_objfile (vp->objfile);
1178 }
1179 while (LDI_NEXT (ldi, arch64) != 0);
1180 vmap_exec ();
1181 breakpoint_re_set ();
1182 do_cleanups (old);
1183 }
1184 \f
1185 /* Under AIX, we have to pass the correct TOC pointer to a function
1186 when calling functions in the inferior.
1187 We try to find the relative toc offset of the objfile containing PC
1188 and add the current load address of the data segment from the vmap. */
1189
1190 static CORE_ADDR
1191 find_toc_address (CORE_ADDR pc)
1192 {
1193 struct vmap *vp;
1194 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1195
1196 for (vp = vmap; vp; vp = vp->nxt)
1197 {
1198 if (pc >= vp->tstart && pc < vp->tend)
1199 {
1200 /* vp->objfile is only NULL for the exec file. */
1201 return vp->dstart + get_toc_offset (vp->objfile == NULL
1202 ? symfile_objfile
1203 : vp->objfile);
1204 }
1205 }
1206 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1207 }
1208 \f
1209
1210 void
1211 _initialize_rs6000_nat (void)
1212 {
1213 struct target_ops *t;
1214
1215 t = inf_ptrace_target ();
1216 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1217 t->to_store_registers = rs6000_store_inferior_registers;
1218 t->to_xfer_partial = rs6000_xfer_partial;
1219
1220 super_create_inferior = t->to_create_inferior;
1221 t->to_create_inferior = rs6000_create_inferior;
1222
1223 t->to_wait = rs6000_wait;
1224
1225 add_target (t);
1226
1227 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1228 when calling functions in the inferior. */
1229 rs6000_find_toc_address_hook = find_toc_address;
1230 }