]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
2003-01-21 Andrew Cagney <ac131313@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 /* If the kernel has to deliver a signal, it pushes a sigcontext
51 structure on the stack and then calls the signal handler, passing
52 the address of the sigcontext in an argument register. Usually
53 the signal handler doesn't save this register, so we have to
54 access the sigcontext structure via an offset from the signal handler
55 frame.
56 The following constants were determined by experimentation on AIX 3.2. */
57 #define SIG_FRAME_PC_OFFSET 96
58 #define SIG_FRAME_LR_OFFSET 108
59 #define SIG_FRAME_FP_OFFSET 284
60
61 /* To be used by skip_prologue. */
62
63 struct rs6000_framedata
64 {
65 int offset; /* total size of frame --- the distance
66 by which we decrement sp to allocate
67 the frame */
68 int saved_gpr; /* smallest # of saved gpr */
69 int saved_fpr; /* smallest # of saved fpr */
70 int saved_vr; /* smallest # of saved vr */
71 int saved_ev; /* smallest # of saved ev */
72 int alloca_reg; /* alloca register number (frame ptr) */
73 char frameless; /* true if frameless functions. */
74 char nosavedpc; /* true if pc not saved. */
75 int gpr_offset; /* offset of saved gprs from prev sp */
76 int fpr_offset; /* offset of saved fprs from prev sp */
77 int vr_offset; /* offset of saved vrs from prev sp */
78 int ev_offset; /* offset of saved evs from prev sp */
79 int lr_offset; /* offset of saved lr */
80 int cr_offset; /* offset of saved cr */
81 int vrsave_offset; /* offset of saved vrsave register */
82 };
83
84 /* Description of a single register. */
85
86 struct reg
87 {
88 char *name; /* name of register */
89 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
90 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
91 unsigned char fpr; /* whether register is floating-point */
92 unsigned char pseudo; /* whether register is pseudo */
93 };
94
95 /* Breakpoint shadows for the single step instructions will be kept here. */
96
97 static struct sstep_breaks
98 {
99 /* Address, or 0 if this is not in use. */
100 CORE_ADDR address;
101 /* Shadow contents. */
102 char data[4];
103 }
104 stepBreaks[2];
105
106 /* Hook for determining the TOC address when calling functions in the
107 inferior under AIX. The initialization code in rs6000-nat.c sets
108 this hook to point to find_toc_address. */
109
110 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
111
112 /* Hook to set the current architecture when starting a child process.
113 rs6000-nat.c sets this. */
114
115 void (*rs6000_set_host_arch_hook) (int) = NULL;
116
117 /* Static function prototypes */
118
119 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
120 CORE_ADDR safety);
121 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
122 struct rs6000_framedata *);
123 static void frame_get_saved_regs (struct frame_info * fi,
124 struct rs6000_framedata * fdatap);
125 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
126
127 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
128 int
129 altivec_register_p (int regno)
130 {
131 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
132 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
133 return 0;
134 else
135 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
136 }
137
138 /* Read a LEN-byte address from debugged memory address MEMADDR. */
139
140 static CORE_ADDR
141 read_memory_addr (CORE_ADDR memaddr, int len)
142 {
143 return read_memory_unsigned_integer (memaddr, len);
144 }
145
146 static CORE_ADDR
147 rs6000_skip_prologue (CORE_ADDR pc)
148 {
149 struct rs6000_framedata frame;
150 pc = skip_prologue (pc, 0, &frame);
151 return pc;
152 }
153
154
155 /* Fill in fi->saved_regs */
156
157 struct frame_extra_info
158 {
159 /* Functions calling alloca() change the value of the stack
160 pointer. We need to use initial stack pointer (which is saved in
161 r31 by gcc) in such cases. If a compiler emits traceback table,
162 then we should use the alloca register specified in traceback
163 table. FIXME. */
164 CORE_ADDR initial_sp; /* initial stack pointer. */
165 };
166
167 void
168 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
169 {
170 struct frame_extra_info *extra_info =
171 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
172 extra_info->initial_sp = 0;
173 if (get_next_frame (fi) != NULL
174 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
175 /* We're in get_prev_frame */
176 /* and this is a special signal frame. */
177 /* (fi->pc will be some low address in the kernel, */
178 /* to which the signal handler returns). */
179 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
180 }
181
182 /* Put here the code to store, into a struct frame_saved_regs,
183 the addresses of the saved registers of frame described by FRAME_INFO.
184 This includes special registers such as pc and fp saved in special
185 ways in the stack frame. sp is even more special:
186 the address we return for it IS the sp for the next frame. */
187
188 /* In this implementation for RS/6000, we do *not* save sp. I am
189 not sure if it will be needed. The following function takes care of gpr's
190 and fpr's only. */
191
192 void
193 rs6000_frame_init_saved_regs (struct frame_info *fi)
194 {
195 frame_get_saved_regs (fi, NULL);
196 }
197
198 static CORE_ADDR
199 rs6000_frame_args_address (struct frame_info *fi)
200 {
201 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
202 if (extra_info->initial_sp != 0)
203 return extra_info->initial_sp;
204 else
205 return frame_initial_stack_address (fi);
206 }
207
208 /* Immediately after a function call, return the saved pc.
209 Can't go through the frames for this because on some machines
210 the new frame is not set up until the new function executes
211 some instructions. */
212
213 static CORE_ADDR
214 rs6000_saved_pc_after_call (struct frame_info *fi)
215 {
216 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
217 }
218
219 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
220
221 static CORE_ADDR
222 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
223 {
224 CORE_ADDR dest;
225 int immediate;
226 int absolute;
227 int ext_op;
228
229 absolute = (int) ((instr >> 1) & 1);
230
231 switch (opcode)
232 {
233 case 18:
234 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
235 if (absolute)
236 dest = immediate;
237 else
238 dest = pc + immediate;
239 break;
240
241 case 16:
242 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
243 if (absolute)
244 dest = immediate;
245 else
246 dest = pc + immediate;
247 break;
248
249 case 19:
250 ext_op = (instr >> 1) & 0x3ff;
251
252 if (ext_op == 16) /* br conditional register */
253 {
254 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
255
256 /* If we are about to return from a signal handler, dest is
257 something like 0x3c90. The current frame is a signal handler
258 caller frame, upon completion of the sigreturn system call
259 execution will return to the saved PC in the frame. */
260 if (dest < TEXT_SEGMENT_BASE)
261 {
262 struct frame_info *fi;
263
264 fi = get_current_frame ();
265 if (fi != NULL)
266 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
267 gdbarch_tdep (current_gdbarch)->wordsize);
268 }
269 }
270
271 else if (ext_op == 528) /* br cond to count reg */
272 {
273 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
274
275 /* If we are about to execute a system call, dest is something
276 like 0x22fc or 0x3b00. Upon completion the system call
277 will return to the address in the link register. */
278 if (dest < TEXT_SEGMENT_BASE)
279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280 }
281 else
282 return -1;
283 break;
284
285 default:
286 return -1;
287 }
288 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
289 }
290
291
292 /* Sequence of bytes for breakpoint instruction. */
293
294 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
295 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
296
297 const static unsigned char *
298 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
299 {
300 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
301 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
302 *bp_size = 4;
303 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
304 return big_breakpoint;
305 else
306 return little_breakpoint;
307 }
308
309
310 /* AIX does not support PT_STEP. Simulate it. */
311
312 void
313 rs6000_software_single_step (enum target_signal signal,
314 int insert_breakpoints_p)
315 {
316 CORE_ADDR dummy;
317 int breakp_sz;
318 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
319 int ii, insn;
320 CORE_ADDR loc;
321 CORE_ADDR breaks[2];
322 int opcode;
323
324 if (insert_breakpoints_p)
325 {
326
327 loc = read_pc ();
328
329 insn = read_memory_integer (loc, 4);
330
331 breaks[0] = loc + breakp_sz;
332 opcode = insn >> 26;
333 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
334
335 /* Don't put two breakpoints on the same address. */
336 if (breaks[1] == breaks[0])
337 breaks[1] = -1;
338
339 stepBreaks[1].address = 0;
340
341 for (ii = 0; ii < 2; ++ii)
342 {
343
344 /* ignore invalid breakpoint. */
345 if (breaks[ii] == -1)
346 continue;
347 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
348 stepBreaks[ii].address = breaks[ii];
349 }
350
351 }
352 else
353 {
354
355 /* remove step breakpoints. */
356 for (ii = 0; ii < 2; ++ii)
357 if (stepBreaks[ii].address != 0)
358 target_remove_breakpoint (stepBreaks[ii].address,
359 stepBreaks[ii].data);
360 }
361 errno = 0; /* FIXME, don't ignore errors! */
362 /* What errors? {read,write}_memory call error(). */
363 }
364
365
366 /* return pc value after skipping a function prologue and also return
367 information about a function frame.
368
369 in struct rs6000_framedata fdata:
370 - frameless is TRUE, if function does not have a frame.
371 - nosavedpc is TRUE, if function does not save %pc value in its frame.
372 - offset is the initial size of this stack frame --- the amount by
373 which we decrement the sp to allocate the frame.
374 - saved_gpr is the number of the first saved gpr.
375 - saved_fpr is the number of the first saved fpr.
376 - saved_vr is the number of the first saved vr.
377 - saved_ev is the number of the first saved ev.
378 - alloca_reg is the number of the register used for alloca() handling.
379 Otherwise -1.
380 - gpr_offset is the offset of the first saved gpr from the previous frame.
381 - fpr_offset is the offset of the first saved fpr from the previous frame.
382 - vr_offset is the offset of the first saved vr from the previous frame.
383 - ev_offset is the offset of the first saved ev from the previous frame.
384 - lr_offset is the offset of the saved lr
385 - cr_offset is the offset of the saved cr
386 - vrsave_offset is the offset of the saved vrsave register
387 */
388
389 #define SIGNED_SHORT(x) \
390 ((sizeof (short) == 2) \
391 ? ((int)(short)(x)) \
392 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
393
394 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
395
396 /* Limit the number of skipped non-prologue instructions, as the examining
397 of the prologue is expensive. */
398 static int max_skip_non_prologue_insns = 10;
399
400 /* Given PC representing the starting address of a function, and
401 LIM_PC which is the (sloppy) limit to which to scan when looking
402 for a prologue, attempt to further refine this limit by using
403 the line data in the symbol table. If successful, a better guess
404 on where the prologue ends is returned, otherwise the previous
405 value of lim_pc is returned. */
406 static CORE_ADDR
407 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
408 {
409 struct symtab_and_line prologue_sal;
410
411 prologue_sal = find_pc_line (pc, 0);
412 if (prologue_sal.line != 0)
413 {
414 int i;
415 CORE_ADDR addr = prologue_sal.end;
416
417 /* Handle the case in which compiler's optimizer/scheduler
418 has moved instructions into the prologue. We scan ahead
419 in the function looking for address ranges whose corresponding
420 line number is less than or equal to the first one that we
421 found for the function. (It can be less than when the
422 scheduler puts a body instruction before the first prologue
423 instruction.) */
424 for (i = 2 * max_skip_non_prologue_insns;
425 i > 0 && (lim_pc == 0 || addr < lim_pc);
426 i--)
427 {
428 struct symtab_and_line sal;
429
430 sal = find_pc_line (addr, 0);
431 if (sal.line == 0)
432 break;
433 if (sal.line <= prologue_sal.line
434 && sal.symtab == prologue_sal.symtab)
435 {
436 prologue_sal = sal;
437 }
438 addr = sal.end;
439 }
440
441 if (lim_pc == 0 || prologue_sal.end < lim_pc)
442 lim_pc = prologue_sal.end;
443 }
444 return lim_pc;
445 }
446
447
448 static CORE_ADDR
449 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
450 {
451 CORE_ADDR orig_pc = pc;
452 CORE_ADDR last_prologue_pc = pc;
453 CORE_ADDR li_found_pc = 0;
454 char buf[4];
455 unsigned long op;
456 long offset = 0;
457 long vr_saved_offset = 0;
458 int lr_reg = -1;
459 int cr_reg = -1;
460 int vr_reg = -1;
461 int ev_reg = -1;
462 long ev_offset = 0;
463 int vrsave_reg = -1;
464 int reg;
465 int framep = 0;
466 int minimal_toc_loaded = 0;
467 int prev_insn_was_prologue_insn = 1;
468 int num_skip_non_prologue_insns = 0;
469 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
470 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
471
472 /* Attempt to find the end of the prologue when no limit is specified.
473 Note that refine_prologue_limit() has been written so that it may
474 be used to "refine" the limits of non-zero PC values too, but this
475 is only safe if we 1) trust the line information provided by the
476 compiler and 2) iterate enough to actually find the end of the
477 prologue.
478
479 It may become a good idea at some point (for both performance and
480 accuracy) to unconditionally call refine_prologue_limit(). But,
481 until we can make a clear determination that this is beneficial,
482 we'll play it safe and only use it to obtain a limit when none
483 has been specified. */
484 if (lim_pc == 0)
485 lim_pc = refine_prologue_limit (pc, lim_pc);
486
487 memset (fdata, 0, sizeof (struct rs6000_framedata));
488 fdata->saved_gpr = -1;
489 fdata->saved_fpr = -1;
490 fdata->saved_vr = -1;
491 fdata->saved_ev = -1;
492 fdata->alloca_reg = -1;
493 fdata->frameless = 1;
494 fdata->nosavedpc = 1;
495
496 for (;; pc += 4)
497 {
498 /* Sometimes it isn't clear if an instruction is a prologue
499 instruction or not. When we encounter one of these ambiguous
500 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
501 Otherwise, we'll assume that it really is a prologue instruction. */
502 if (prev_insn_was_prologue_insn)
503 last_prologue_pc = pc;
504
505 /* Stop scanning if we've hit the limit. */
506 if (lim_pc != 0 && pc >= lim_pc)
507 break;
508
509 prev_insn_was_prologue_insn = 1;
510
511 /* Fetch the instruction and convert it to an integer. */
512 if (target_read_memory (pc, buf, 4))
513 break;
514 op = extract_signed_integer (buf, 4);
515
516 if ((op & 0xfc1fffff) == 0x7c0802a6)
517 { /* mflr Rx */
518 lr_reg = (op & 0x03e00000) | 0x90010000;
519 continue;
520
521 }
522 else if ((op & 0xfc1fffff) == 0x7c000026)
523 { /* mfcr Rx */
524 cr_reg = (op & 0x03e00000) | 0x90010000;
525 continue;
526
527 }
528 else if ((op & 0xfc1f0000) == 0xd8010000)
529 { /* stfd Rx,NUM(r1) */
530 reg = GET_SRC_REG (op);
531 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
532 {
533 fdata->saved_fpr = reg;
534 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
535 }
536 continue;
537
538 }
539 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
540 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
541 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
542 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
543 {
544
545 reg = GET_SRC_REG (op);
546 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
547 {
548 fdata->saved_gpr = reg;
549 if ((op & 0xfc1f0003) == 0xf8010000)
550 op = (op >> 1) << 1;
551 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
552 }
553 continue;
554
555 }
556 else if ((op & 0xffff0000) == 0x60000000)
557 {
558 /* nop */
559 /* Allow nops in the prologue, but do not consider them to
560 be part of the prologue unless followed by other prologue
561 instructions. */
562 prev_insn_was_prologue_insn = 0;
563 continue;
564
565 }
566 else if ((op & 0xffff0000) == 0x3c000000)
567 { /* addis 0,0,NUM, used
568 for >= 32k frames */
569 fdata->offset = (op & 0x0000ffff) << 16;
570 fdata->frameless = 0;
571 continue;
572
573 }
574 else if ((op & 0xffff0000) == 0x60000000)
575 { /* ori 0,0,NUM, 2nd ha
576 lf of >= 32k frames */
577 fdata->offset |= (op & 0x0000ffff);
578 fdata->frameless = 0;
579 continue;
580
581 }
582 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
583 { /* st Rx,NUM(r1)
584 where Rx == lr */
585 fdata->lr_offset = SIGNED_SHORT (op) + offset;
586 fdata->nosavedpc = 0;
587 lr_reg = 0;
588 continue;
589
590 }
591 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
592 { /* st Rx,NUM(r1)
593 where Rx == cr */
594 fdata->cr_offset = SIGNED_SHORT (op) + offset;
595 cr_reg = 0;
596 continue;
597
598 }
599 else if (op == 0x48000005)
600 { /* bl .+4 used in
601 -mrelocatable */
602 continue;
603
604 }
605 else if (op == 0x48000004)
606 { /* b .+4 (xlc) */
607 break;
608
609 }
610 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
611 in V.4 -mminimal-toc */
612 (op & 0xffff0000) == 0x3bde0000)
613 { /* addi 30,30,foo@l */
614 continue;
615
616 }
617 else if ((op & 0xfc000001) == 0x48000001)
618 { /* bl foo,
619 to save fprs??? */
620
621 fdata->frameless = 0;
622 /* Don't skip over the subroutine call if it is not within
623 the first three instructions of the prologue. */
624 if ((pc - orig_pc) > 8)
625 break;
626
627 op = read_memory_integer (pc + 4, 4);
628
629 /* At this point, make sure this is not a trampoline
630 function (a function that simply calls another functions,
631 and nothing else). If the next is not a nop, this branch
632 was part of the function prologue. */
633
634 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
635 break; /* don't skip over
636 this branch */
637 continue;
638
639 /* update stack pointer */
640 }
641 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
642 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
643 {
644 fdata->frameless = 0;
645 if ((op & 0xffff0003) == 0xf8210001)
646 op = (op >> 1) << 1;
647 fdata->offset = SIGNED_SHORT (op);
648 offset = fdata->offset;
649 continue;
650
651 }
652 else if (op == 0x7c21016e)
653 { /* stwux 1,1,0 */
654 fdata->frameless = 0;
655 offset = fdata->offset;
656 continue;
657
658 /* Load up minimal toc pointer */
659 }
660 else if ((op >> 22) == 0x20f
661 && !minimal_toc_loaded)
662 { /* l r31,... or l r30,... */
663 minimal_toc_loaded = 1;
664 continue;
665
666 /* move parameters from argument registers to local variable
667 registers */
668 }
669 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
670 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
671 (((op >> 21) & 31) <= 10) &&
672 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
673 {
674 continue;
675
676 /* store parameters in stack */
677 }
678 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
679 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
680 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
681 {
682 continue;
683
684 /* store parameters in stack via frame pointer */
685 }
686 else if (framep &&
687 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
688 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
689 (op & 0xfc1f0000) == 0xfc1f0000))
690 { /* frsp, fp?,NUM(r1) */
691 continue;
692
693 /* Set up frame pointer */
694 }
695 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
696 || op == 0x7c3f0b78)
697 { /* mr r31, r1 */
698 fdata->frameless = 0;
699 framep = 1;
700 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
701 continue;
702
703 /* Another way to set up the frame pointer. */
704 }
705 else if ((op & 0xfc1fffff) == 0x38010000)
706 { /* addi rX, r1, 0x0 */
707 fdata->frameless = 0;
708 framep = 1;
709 fdata->alloca_reg = (tdep->ppc_gp0_regnum
710 + ((op & ~0x38010000) >> 21));
711 continue;
712 }
713 /* AltiVec related instructions. */
714 /* Store the vrsave register (spr 256) in another register for
715 later manipulation, or load a register into the vrsave
716 register. 2 instructions are used: mfvrsave and
717 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
718 and mtspr SPR256, Rn. */
719 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
720 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
721 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
722 {
723 vrsave_reg = GET_SRC_REG (op);
724 continue;
725 }
726 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
727 {
728 continue;
729 }
730 /* Store the register where vrsave was saved to onto the stack:
731 rS is the register where vrsave was stored in a previous
732 instruction. */
733 /* 100100 sssss 00001 dddddddd dddddddd */
734 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
735 {
736 if (vrsave_reg == GET_SRC_REG (op))
737 {
738 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
739 vrsave_reg = -1;
740 }
741 continue;
742 }
743 /* Compute the new value of vrsave, by modifying the register
744 where vrsave was saved to. */
745 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
746 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
747 {
748 continue;
749 }
750 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
751 in a pair of insns to save the vector registers on the
752 stack. */
753 /* 001110 00000 00000 iiii iiii iiii iiii */
754 /* 001110 01110 00000 iiii iiii iiii iiii */
755 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
756 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
757 {
758 li_found_pc = pc;
759 vr_saved_offset = SIGNED_SHORT (op);
760 }
761 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
762 /* 011111 sssss 11111 00000 00111001110 */
763 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
764 {
765 if (pc == (li_found_pc + 4))
766 {
767 vr_reg = GET_SRC_REG (op);
768 /* If this is the first vector reg to be saved, or if
769 it has a lower number than others previously seen,
770 reupdate the frame info. */
771 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
772 {
773 fdata->saved_vr = vr_reg;
774 fdata->vr_offset = vr_saved_offset + offset;
775 }
776 vr_saved_offset = -1;
777 vr_reg = -1;
778 li_found_pc = 0;
779 }
780 }
781 /* End AltiVec related instructions. */
782
783 /* Start BookE related instructions. */
784 /* Store gen register S at (r31+uimm).
785 Any register less than r13 is volatile, so we don't care. */
786 /* 000100 sssss 11111 iiiii 01100100001 */
787 else if (arch_info->mach == bfd_mach_ppc_e500
788 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
789 {
790 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
791 {
792 unsigned int imm;
793 ev_reg = GET_SRC_REG (op);
794 imm = (op >> 11) & 0x1f;
795 ev_offset = imm * 8;
796 /* If this is the first vector reg to be saved, or if
797 it has a lower number than others previously seen,
798 reupdate the frame info. */
799 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
800 {
801 fdata->saved_ev = ev_reg;
802 fdata->ev_offset = ev_offset + offset;
803 }
804 }
805 continue;
806 }
807 /* Store gen register rS at (r1+rB). */
808 /* 000100 sssss 00001 bbbbb 01100100000 */
809 else if (arch_info->mach == bfd_mach_ppc_e500
810 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
811 {
812 if (pc == (li_found_pc + 4))
813 {
814 ev_reg = GET_SRC_REG (op);
815 /* If this is the first vector reg to be saved, or if
816 it has a lower number than others previously seen,
817 reupdate the frame info. */
818 /* We know the contents of rB from the previous instruction. */
819 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
820 {
821 fdata->saved_ev = ev_reg;
822 fdata->ev_offset = vr_saved_offset + offset;
823 }
824 vr_saved_offset = -1;
825 ev_reg = -1;
826 li_found_pc = 0;
827 }
828 continue;
829 }
830 /* Store gen register r31 at (rA+uimm). */
831 /* 000100 11111 aaaaa iiiii 01100100001 */
832 else if (arch_info->mach == bfd_mach_ppc_e500
833 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
834 {
835 /* Wwe know that the source register is 31 already, but
836 it can't hurt to compute it. */
837 ev_reg = GET_SRC_REG (op);
838 ev_offset = ((op >> 11) & 0x1f) * 8;
839 /* If this is the first vector reg to be saved, or if
840 it has a lower number than others previously seen,
841 reupdate the frame info. */
842 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
843 {
844 fdata->saved_ev = ev_reg;
845 fdata->ev_offset = ev_offset + offset;
846 }
847
848 continue;
849 }
850 /* Store gen register S at (r31+r0).
851 Store param on stack when offset from SP bigger than 4 bytes. */
852 /* 000100 sssss 11111 00000 01100100000 */
853 else if (arch_info->mach == bfd_mach_ppc_e500
854 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
855 {
856 if (pc == (li_found_pc + 4))
857 {
858 if ((op & 0x03e00000) >= 0x01a00000)
859 {
860 ev_reg = GET_SRC_REG (op);
861 /* If this is the first vector reg to be saved, or if
862 it has a lower number than others previously seen,
863 reupdate the frame info. */
864 /* We know the contents of r0 from the previous
865 instruction. */
866 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
867 {
868 fdata->saved_ev = ev_reg;
869 fdata->ev_offset = vr_saved_offset + offset;
870 }
871 ev_reg = -1;
872 }
873 vr_saved_offset = -1;
874 li_found_pc = 0;
875 continue;
876 }
877 }
878 /* End BookE related instructions. */
879
880 else
881 {
882 /* Not a recognized prologue instruction.
883 Handle optimizer code motions into the prologue by continuing
884 the search if we have no valid frame yet or if the return
885 address is not yet saved in the frame. */
886 if (fdata->frameless == 0
887 && (lr_reg == -1 || fdata->nosavedpc == 0))
888 break;
889
890 if (op == 0x4e800020 /* blr */
891 || op == 0x4e800420) /* bctr */
892 /* Do not scan past epilogue in frameless functions or
893 trampolines. */
894 break;
895 if ((op & 0xf4000000) == 0x40000000) /* bxx */
896 /* Never skip branches. */
897 break;
898
899 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
900 /* Do not scan too many insns, scanning insns is expensive with
901 remote targets. */
902 break;
903
904 /* Continue scanning. */
905 prev_insn_was_prologue_insn = 0;
906 continue;
907 }
908 }
909
910 #if 0
911 /* I have problems with skipping over __main() that I need to address
912 * sometime. Previously, I used to use misc_function_vector which
913 * didn't work as well as I wanted to be. -MGO */
914
915 /* If the first thing after skipping a prolog is a branch to a function,
916 this might be a call to an initializer in main(), introduced by gcc2.
917 We'd like to skip over it as well. Fortunately, xlc does some extra
918 work before calling a function right after a prologue, thus we can
919 single out such gcc2 behaviour. */
920
921
922 if ((op & 0xfc000001) == 0x48000001)
923 { /* bl foo, an initializer function? */
924 op = read_memory_integer (pc + 4, 4);
925
926 if (op == 0x4def7b82)
927 { /* cror 0xf, 0xf, 0xf (nop) */
928
929 /* Check and see if we are in main. If so, skip over this
930 initializer function as well. */
931
932 tmp = find_pc_misc_function (pc);
933 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
934 return pc + 8;
935 }
936 }
937 #endif /* 0 */
938
939 fdata->offset = -fdata->offset;
940 return last_prologue_pc;
941 }
942
943
944 /*************************************************************************
945 Support for creating pushing a dummy frame into the stack, and popping
946 frames, etc.
947 *************************************************************************/
948
949
950 /* Pop the innermost frame, go back to the caller. */
951
952 static void
953 rs6000_pop_frame (void)
954 {
955 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
956 struct rs6000_framedata fdata;
957 struct frame_info *frame = get_current_frame ();
958 int ii, wordsize;
959
960 pc = read_pc ();
961 sp = get_frame_base (frame);
962
963 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
964 get_frame_base (frame),
965 get_frame_base (frame)))
966 {
967 generic_pop_dummy_frame ();
968 flush_cached_frames ();
969 return;
970 }
971
972 /* Make sure that all registers are valid. */
973 deprecated_read_register_bytes (0, NULL, REGISTER_BYTES);
974
975 /* Figure out previous %pc value. If the function is frameless, it is
976 still in the link register, otherwise walk the frames and retrieve the
977 saved %pc value in the previous frame. */
978
979 addr = get_pc_function_start (get_frame_pc (frame));
980 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
981
982 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
983 if (fdata.frameless)
984 prev_sp = sp;
985 else
986 prev_sp = read_memory_addr (sp, wordsize);
987 if (fdata.lr_offset == 0)
988 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
989 else
990 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
991
992 /* reset %pc value. */
993 write_register (PC_REGNUM, lr);
994
995 /* reset register values if any was saved earlier. */
996
997 if (fdata.saved_gpr != -1)
998 {
999 addr = prev_sp + fdata.gpr_offset;
1000 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1001 {
1002 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1003 wordsize);
1004 addr += wordsize;
1005 }
1006 }
1007
1008 if (fdata.saved_fpr != -1)
1009 {
1010 addr = prev_sp + fdata.fpr_offset;
1011 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1012 {
1013 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1014 addr += 8;
1015 }
1016 }
1017
1018 write_register (SP_REGNUM, prev_sp);
1019 target_store_registers (-1);
1020 flush_cached_frames ();
1021 }
1022
1023 /* Fixup the call sequence of a dummy function, with the real function
1024 address. Its arguments will be passed by gdb. */
1025
1026 static void
1027 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1028 int nargs, struct value **args, struct type *type,
1029 int gcc_p)
1030 {
1031 int ii;
1032 CORE_ADDR target_addr;
1033
1034 if (rs6000_find_toc_address_hook != NULL)
1035 {
1036 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1037 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1038 tocvalue);
1039 }
1040 }
1041
1042 /* All the ABI's require 16 byte alignment. */
1043 static CORE_ADDR
1044 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1045 {
1046 return (addr & -16);
1047 }
1048
1049 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1050 the first eight words of the argument list (that might be less than
1051 eight parameters if some parameters occupy more than one word) are
1052 passed in r3..r10 registers. float and double parameters are
1053 passed in fpr's, in addition to that. Rest of the parameters if any
1054 are passed in user stack. There might be cases in which half of the
1055 parameter is copied into registers, the other half is pushed into
1056 stack.
1057
1058 Stack must be aligned on 64-bit boundaries when synthesizing
1059 function calls.
1060
1061 If the function is returning a structure, then the return address is passed
1062 in r3, then the first 7 words of the parameters can be passed in registers,
1063 starting from r4. */
1064
1065 static CORE_ADDR
1066 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1067 int struct_return, CORE_ADDR struct_addr)
1068 {
1069 int ii;
1070 int len = 0;
1071 int argno; /* current argument number */
1072 int argbytes; /* current argument byte */
1073 char tmp_buffer[50];
1074 int f_argno = 0; /* current floating point argno */
1075 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1076
1077 struct value *arg = 0;
1078 struct type *type;
1079
1080 CORE_ADDR saved_sp;
1081
1082 /* The first eight words of ther arguments are passed in registers.
1083 Copy them appropriately.
1084
1085 If the function is returning a `struct', then the first word (which
1086 will be passed in r3) is used for struct return address. In that
1087 case we should advance one word and start from r4 register to copy
1088 parameters. */
1089
1090 ii = struct_return ? 1 : 0;
1091
1092 /*
1093 effectively indirect call... gcc does...
1094
1095 return_val example( float, int);
1096
1097 eabi:
1098 float in fp0, int in r3
1099 offset of stack on overflow 8/16
1100 for varargs, must go by type.
1101 power open:
1102 float in r3&r4, int in r5
1103 offset of stack on overflow different
1104 both:
1105 return in r3 or f0. If no float, must study how gcc emulates floats;
1106 pay attention to arg promotion.
1107 User may have to cast\args to handle promotion correctly
1108 since gdb won't know if prototype supplied or not.
1109 */
1110
1111 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1112 {
1113 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1114
1115 arg = args[argno];
1116 type = check_typedef (VALUE_TYPE (arg));
1117 len = TYPE_LENGTH (type);
1118
1119 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1120 {
1121
1122 /* Floating point arguments are passed in fpr's, as well as gpr's.
1123 There are 13 fpr's reserved for passing parameters. At this point
1124 there is no way we would run out of them. */
1125
1126 if (len > 8)
1127 printf_unfiltered (
1128 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1129
1130 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1131 VALUE_CONTENTS (arg),
1132 len);
1133 ++f_argno;
1134 }
1135
1136 if (len > reg_size)
1137 {
1138
1139 /* Argument takes more than one register. */
1140 while (argbytes < len)
1141 {
1142 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1143 reg_size);
1144 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
1145 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1146 (len - argbytes) > reg_size
1147 ? reg_size : len - argbytes);
1148 ++ii, argbytes += reg_size;
1149
1150 if (ii >= 8)
1151 goto ran_out_of_registers_for_arguments;
1152 }
1153 argbytes = 0;
1154 --ii;
1155 }
1156 else
1157 {
1158 /* Argument can fit in one register. No problem. */
1159 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1160 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1161 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
1162 VALUE_CONTENTS (arg), len);
1163 }
1164 ++argno;
1165 }
1166
1167 ran_out_of_registers_for_arguments:
1168
1169 saved_sp = read_sp ();
1170
1171 /* Location for 8 parameters are always reserved. */
1172 sp -= wordsize * 8;
1173
1174 /* Another six words for back chain, TOC register, link register, etc. */
1175 sp -= wordsize * 6;
1176
1177 /* Stack pointer must be quadword aligned. */
1178 sp &= -16;
1179
1180 /* If there are more arguments, allocate space for them in
1181 the stack, then push them starting from the ninth one. */
1182
1183 if ((argno < nargs) || argbytes)
1184 {
1185 int space = 0, jj;
1186
1187 if (argbytes)
1188 {
1189 space += ((len - argbytes + 3) & -4);
1190 jj = argno + 1;
1191 }
1192 else
1193 jj = argno;
1194
1195 for (; jj < nargs; ++jj)
1196 {
1197 struct value *val = args[jj];
1198 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1199 }
1200
1201 /* Add location required for the rest of the parameters. */
1202 space = (space + 15) & -16;
1203 sp -= space;
1204
1205 /* This is another instance we need to be concerned about
1206 securing our stack space. If we write anything underneath %sp
1207 (r1), we might conflict with the kernel who thinks he is free
1208 to use this area. So, update %sp first before doing anything
1209 else. */
1210
1211 write_register (SP_REGNUM, sp);
1212
1213 /* If the last argument copied into the registers didn't fit there
1214 completely, push the rest of it into stack. */
1215
1216 if (argbytes)
1217 {
1218 write_memory (sp + 24 + (ii * 4),
1219 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1220 len - argbytes);
1221 ++argno;
1222 ii += ((len - argbytes + 3) & -4) / 4;
1223 }
1224
1225 /* Push the rest of the arguments into stack. */
1226 for (; argno < nargs; ++argno)
1227 {
1228
1229 arg = args[argno];
1230 type = check_typedef (VALUE_TYPE (arg));
1231 len = TYPE_LENGTH (type);
1232
1233
1234 /* Float types should be passed in fpr's, as well as in the
1235 stack. */
1236 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1237 {
1238
1239 if (len > 8)
1240 printf_unfiltered (
1241 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1242
1243 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1244 VALUE_CONTENTS (arg),
1245 len);
1246 ++f_argno;
1247 }
1248
1249 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1250 ii += ((len + 3) & -4) / 4;
1251 }
1252 }
1253 else
1254 /* Secure stack areas first, before doing anything else. */
1255 write_register (SP_REGNUM, sp);
1256
1257 /* set back chain properly */
1258 store_address (tmp_buffer, 4, saved_sp);
1259 write_memory (sp, tmp_buffer, 4);
1260
1261 target_store_registers (-1);
1262 return sp;
1263 }
1264
1265 /* Function: ppc_push_return_address (pc, sp)
1266 Set up the return address for the inferior function call. */
1267
1268 static CORE_ADDR
1269 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1270 {
1271 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1272 CALL_DUMMY_ADDRESS ());
1273 return sp;
1274 }
1275
1276 /* Extract a function return value of type TYPE from raw register array
1277 REGBUF, and copy that return value into VALBUF in virtual format. */
1278 static void
1279 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1280 {
1281 int offset = 0;
1282 int vallen = TYPE_LENGTH (valtype);
1283 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1284
1285 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1286 && vallen == 8
1287 && TYPE_VECTOR (valtype))
1288 {
1289 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1290 }
1291 else
1292 {
1293 /* Return value is copied starting from r3. Note that r3 for us
1294 is a pseudo register. */
1295 int offset = 0;
1296 int return_regnum = tdep->ppc_gp0_regnum + 3;
1297 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1298 int reg_part_size;
1299 char *val_buffer;
1300 int copied = 0;
1301 int i = 0;
1302
1303 /* Compute where we will start storing the value from. */
1304 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1305 {
1306 if (vallen <= reg_size)
1307 offset = reg_size - vallen;
1308 else
1309 offset = reg_size + (reg_size - vallen);
1310 }
1311
1312 /* How big does the local buffer need to be? */
1313 if (vallen <= reg_size)
1314 val_buffer = alloca (reg_size);
1315 else
1316 val_buffer = alloca (vallen);
1317
1318 /* Read all we need into our private buffer. We copy it in
1319 chunks that are as long as one register, never shorter, even
1320 if the value is smaller than the register. */
1321 while (copied < vallen)
1322 {
1323 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1324 /* It is a pseudo/cooked register. */
1325 regcache_cooked_read (regbuf, return_regnum + i,
1326 val_buffer + copied);
1327 copied += reg_part_size;
1328 i++;
1329 }
1330 /* Put the stuff in the return buffer. */
1331 memcpy (valbuf, val_buffer + offset, vallen);
1332 }
1333 }
1334
1335 static void
1336 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1337 {
1338 int offset = 0;
1339 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1340
1341 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1342 {
1343
1344 double dd;
1345 float ff;
1346 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1347 We need to truncate the return value into float size (4 byte) if
1348 necessary. */
1349
1350 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1351 memcpy (valbuf,
1352 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1353 TYPE_LENGTH (valtype));
1354 else
1355 { /* float */
1356 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1357 ff = (float) dd;
1358 memcpy (valbuf, &ff, sizeof (float));
1359 }
1360 }
1361 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1362 && TYPE_LENGTH (valtype) == 16
1363 && TYPE_VECTOR (valtype))
1364 {
1365 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1366 TYPE_LENGTH (valtype));
1367 }
1368 else
1369 {
1370 /* return value is copied starting from r3. */
1371 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1372 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1373 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1374
1375 memcpy (valbuf,
1376 regbuf + REGISTER_BYTE (3) + offset,
1377 TYPE_LENGTH (valtype));
1378 }
1379 }
1380
1381 /* Return whether handle_inferior_event() should proceed through code
1382 starting at PC in function NAME when stepping.
1383
1384 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1385 handle memory references that are too distant to fit in instructions
1386 generated by the compiler. For example, if 'foo' in the following
1387 instruction:
1388
1389 lwz r9,foo(r2)
1390
1391 is greater than 32767, the linker might replace the lwz with a branch to
1392 somewhere in @FIX1 that does the load in 2 instructions and then branches
1393 back to where execution should continue.
1394
1395 GDB should silently step over @FIX code, just like AIX dbx does.
1396 Unfortunately, the linker uses the "b" instruction for the branches,
1397 meaning that the link register doesn't get set. Therefore, GDB's usual
1398 step_over_function() mechanism won't work.
1399
1400 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1401 in handle_inferior_event() to skip past @FIX code. */
1402
1403 int
1404 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1405 {
1406 return name && !strncmp (name, "@FIX", 4);
1407 }
1408
1409 /* Skip code that the user doesn't want to see when stepping:
1410
1411 1. Indirect function calls use a piece of trampoline code to do context
1412 switching, i.e. to set the new TOC table. Skip such code if we are on
1413 its first instruction (as when we have single-stepped to here).
1414
1415 2. Skip shared library trampoline code (which is different from
1416 indirect function call trampolines).
1417
1418 3. Skip bigtoc fixup code.
1419
1420 Result is desired PC to step until, or NULL if we are not in
1421 code that should be skipped. */
1422
1423 CORE_ADDR
1424 rs6000_skip_trampoline_code (CORE_ADDR pc)
1425 {
1426 register unsigned int ii, op;
1427 int rel;
1428 CORE_ADDR solib_target_pc;
1429 struct minimal_symbol *msymbol;
1430
1431 static unsigned trampoline_code[] =
1432 {
1433 0x800b0000, /* l r0,0x0(r11) */
1434 0x90410014, /* st r2,0x14(r1) */
1435 0x7c0903a6, /* mtctr r0 */
1436 0x804b0004, /* l r2,0x4(r11) */
1437 0x816b0008, /* l r11,0x8(r11) */
1438 0x4e800420, /* bctr */
1439 0x4e800020, /* br */
1440 0
1441 };
1442
1443 /* Check for bigtoc fixup code. */
1444 msymbol = lookup_minimal_symbol_by_pc (pc);
1445 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1446 {
1447 /* Double-check that the third instruction from PC is relative "b". */
1448 op = read_memory_integer (pc + 8, 4);
1449 if ((op & 0xfc000003) == 0x48000000)
1450 {
1451 /* Extract bits 6-29 as a signed 24-bit relative word address and
1452 add it to the containing PC. */
1453 rel = ((int)(op << 6) >> 6);
1454 return pc + 8 + rel;
1455 }
1456 }
1457
1458 /* If pc is in a shared library trampoline, return its target. */
1459 solib_target_pc = find_solib_trampoline_target (pc);
1460 if (solib_target_pc)
1461 return solib_target_pc;
1462
1463 for (ii = 0; trampoline_code[ii]; ++ii)
1464 {
1465 op = read_memory_integer (pc + (ii * 4), 4);
1466 if (op != trampoline_code[ii])
1467 return 0;
1468 }
1469 ii = read_register (11); /* r11 holds destination addr */
1470 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1471 return pc;
1472 }
1473
1474 /* Determines whether the function FI has a frame on the stack or not. */
1475
1476 int
1477 rs6000_frameless_function_invocation (struct frame_info *fi)
1478 {
1479 CORE_ADDR func_start;
1480 struct rs6000_framedata fdata;
1481
1482 /* Don't even think about framelessness except on the innermost frame
1483 or if the function was interrupted by a signal. */
1484 if (get_next_frame (fi) != NULL
1485 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1486 return 0;
1487
1488 func_start = get_pc_function_start (get_frame_pc (fi));
1489
1490 /* If we failed to find the start of the function, it is a mistake
1491 to inspect the instructions. */
1492
1493 if (!func_start)
1494 {
1495 /* A frame with a zero PC is usually created by dereferencing a NULL
1496 function pointer, normally causing an immediate core dump of the
1497 inferior. Mark function as frameless, as the inferior has no chance
1498 of setting up a stack frame. */
1499 if (get_frame_pc (fi) == 0)
1500 return 1;
1501 else
1502 return 0;
1503 }
1504
1505 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1506 return fdata.frameless;
1507 }
1508
1509 /* Return the PC saved in a frame. */
1510
1511 CORE_ADDR
1512 rs6000_frame_saved_pc (struct frame_info *fi)
1513 {
1514 CORE_ADDR func_start;
1515 struct rs6000_framedata fdata;
1516 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1517 int wordsize = tdep->wordsize;
1518
1519 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1520 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1521 wordsize);
1522
1523 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1524 get_frame_base (fi),
1525 get_frame_base (fi)))
1526 return deprecated_read_register_dummy (get_frame_pc (fi),
1527 get_frame_base (fi), PC_REGNUM);
1528
1529 func_start = get_pc_function_start (get_frame_pc (fi));
1530
1531 /* If we failed to find the start of the function, it is a mistake
1532 to inspect the instructions. */
1533 if (!func_start)
1534 return 0;
1535
1536 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1537
1538 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1539 {
1540 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1541 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1542 + SIG_FRAME_LR_OFFSET),
1543 wordsize);
1544 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1545 /* The link register wasn't saved by this frame and the next
1546 (inner, newer) frame is a dummy. Get the link register
1547 value by unwinding it from that [dummy] frame. */
1548 {
1549 ULONGEST lr;
1550 frame_unwind_unsigned_register (get_next_frame (fi),
1551 tdep->ppc_lr_regnum, &lr);
1552 return lr;
1553 }
1554 else
1555 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
1556 wordsize);
1557 }
1558
1559 if (fdata.lr_offset == 0)
1560 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1561
1562 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1563 }
1564
1565 /* If saved registers of frame FI are not known yet, read and cache them.
1566 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1567 in which case the framedata are read. */
1568
1569 static void
1570 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1571 {
1572 CORE_ADDR frame_addr;
1573 struct rs6000_framedata work_fdata;
1574 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1575 int wordsize = tdep->wordsize;
1576
1577 if (get_frame_saved_regs (fi))
1578 return;
1579
1580 if (fdatap == NULL)
1581 {
1582 fdatap = &work_fdata;
1583 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1584 get_frame_pc (fi), fdatap);
1585 }
1586
1587 frame_saved_regs_zalloc (fi);
1588
1589 /* If there were any saved registers, figure out parent's stack
1590 pointer. */
1591 /* The following is true only if the frame doesn't have a call to
1592 alloca(), FIXME. */
1593
1594 if (fdatap->saved_fpr == 0
1595 && fdatap->saved_gpr == 0
1596 && fdatap->saved_vr == 0
1597 && fdatap->saved_ev == 0
1598 && fdatap->lr_offset == 0
1599 && fdatap->cr_offset == 0
1600 && fdatap->vr_offset == 0
1601 && fdatap->ev_offset == 0)
1602 frame_addr = 0;
1603 else
1604 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1605 address of the current frame. Things might be easier if the
1606 ->frame pointed to the outer-most address of the frame. In the
1607 mean time, the address of the prev frame is used as the base
1608 address of this frame. */
1609 frame_addr = FRAME_CHAIN (fi);
1610
1611 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1612 All fpr's from saved_fpr to fp31 are saved. */
1613
1614 if (fdatap->saved_fpr >= 0)
1615 {
1616 int i;
1617 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1618 for (i = fdatap->saved_fpr; i < 32; i++)
1619 {
1620 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1621 fpr_addr += 8;
1622 }
1623 }
1624
1625 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1626 All gpr's from saved_gpr to gpr31 are saved. */
1627
1628 if (fdatap->saved_gpr >= 0)
1629 {
1630 int i;
1631 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1632 for (i = fdatap->saved_gpr; i < 32; i++)
1633 {
1634 get_frame_saved_regs (fi)[i] = gpr_addr;
1635 gpr_addr += wordsize;
1636 }
1637 }
1638
1639 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1640 All vr's from saved_vr to vr31 are saved. */
1641 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1642 {
1643 if (fdatap->saved_vr >= 0)
1644 {
1645 int i;
1646 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1647 for (i = fdatap->saved_vr; i < 32; i++)
1648 {
1649 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1650 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1651 }
1652 }
1653 }
1654
1655 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1656 All vr's from saved_ev to ev31 are saved. ????? */
1657 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1658 {
1659 if (fdatap->saved_ev >= 0)
1660 {
1661 int i;
1662 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1663 for (i = fdatap->saved_ev; i < 32; i++)
1664 {
1665 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1666 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1667 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1668 }
1669 }
1670 }
1671
1672 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1673 the CR. */
1674 if (fdatap->cr_offset != 0)
1675 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1676
1677 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1678 the LR. */
1679 if (fdatap->lr_offset != 0)
1680 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1681
1682 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1683 the VRSAVE. */
1684 if (fdatap->vrsave_offset != 0)
1685 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1686 }
1687
1688 /* Return the address of a frame. This is the inital %sp value when the frame
1689 was first allocated. For functions calling alloca(), it might be saved in
1690 an alloca register. */
1691
1692 static CORE_ADDR
1693 frame_initial_stack_address (struct frame_info *fi)
1694 {
1695 CORE_ADDR tmpaddr;
1696 struct rs6000_framedata fdata;
1697 struct frame_info *callee_fi;
1698
1699 /* If the initial stack pointer (frame address) of this frame is known,
1700 just return it. */
1701
1702 if (get_frame_extra_info (fi)->initial_sp)
1703 return get_frame_extra_info (fi)->initial_sp;
1704
1705 /* Find out if this function is using an alloca register. */
1706
1707 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1708 get_frame_pc (fi), &fdata);
1709
1710 /* If saved registers of this frame are not known yet, read and
1711 cache them. */
1712
1713 if (!get_frame_saved_regs (fi))
1714 frame_get_saved_regs (fi, &fdata);
1715
1716 /* If no alloca register used, then fi->frame is the value of the %sp for
1717 this frame, and it is good enough. */
1718
1719 if (fdata.alloca_reg < 0)
1720 {
1721 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1722 return get_frame_extra_info (fi)->initial_sp;
1723 }
1724
1725 /* There is an alloca register, use its value, in the current frame,
1726 as the initial stack pointer. */
1727 {
1728 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1729 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1730 {
1731 get_frame_extra_info (fi)->initial_sp
1732 = extract_unsigned_integer (tmpbuf,
1733 REGISTER_RAW_SIZE (fdata.alloca_reg));
1734 }
1735 else
1736 /* NOTE: cagney/2002-04-17: At present the only time
1737 frame_register_read will fail is when the register isn't
1738 available. If that does happen, use the frame. */
1739 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1740 }
1741 return get_frame_extra_info (fi)->initial_sp;
1742 }
1743
1744 /* Describe the pointer in each stack frame to the previous stack frame
1745 (its caller). */
1746
1747 /* FRAME_CHAIN takes a frame's nominal address
1748 and produces the frame's chain-pointer. */
1749
1750 /* In the case of the RS/6000, the frame's nominal address
1751 is the address of a 4-byte word containing the calling frame's address. */
1752
1753 CORE_ADDR
1754 rs6000_frame_chain (struct frame_info *thisframe)
1755 {
1756 CORE_ADDR fp, fpp, lr;
1757 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1758
1759 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1760 get_frame_base (thisframe),
1761 get_frame_base (thisframe)))
1762 /* A dummy frame always correctly chains back to the previous
1763 frame. */
1764 return read_memory_addr (get_frame_base (thisframe), wordsize);
1765
1766 if (inside_entry_file (get_frame_pc (thisframe))
1767 || get_frame_pc (thisframe) == entry_point_address ())
1768 return 0;
1769
1770 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1771 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1772 wordsize);
1773 else if (get_next_frame (thisframe) != NULL
1774 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1775 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1776 /* A frameless function interrupted by a signal did not change the
1777 frame pointer. */
1778 fp = get_frame_base (thisframe);
1779 else
1780 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1781 return fp;
1782 }
1783
1784 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1785 isn't available with that word size, return 0. */
1786
1787 static int
1788 regsize (const struct reg *reg, int wordsize)
1789 {
1790 return wordsize == 8 ? reg->sz64 : reg->sz32;
1791 }
1792
1793 /* Return the name of register number N, or null if no such register exists
1794 in the current architecture. */
1795
1796 static const char *
1797 rs6000_register_name (int n)
1798 {
1799 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1800 const struct reg *reg = tdep->regs + n;
1801
1802 if (!regsize (reg, tdep->wordsize))
1803 return NULL;
1804 return reg->name;
1805 }
1806
1807 /* Index within `registers' of the first byte of the space for
1808 register N. */
1809
1810 static int
1811 rs6000_register_byte (int n)
1812 {
1813 return gdbarch_tdep (current_gdbarch)->regoff[n];
1814 }
1815
1816 /* Return the number of bytes of storage in the actual machine representation
1817 for register N if that register is available, else return 0. */
1818
1819 static int
1820 rs6000_register_raw_size (int n)
1821 {
1822 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1823 const struct reg *reg = tdep->regs + n;
1824 return regsize (reg, tdep->wordsize);
1825 }
1826
1827 /* Return the GDB type object for the "standard" data type
1828 of data in register N. */
1829
1830 static struct type *
1831 rs6000_register_virtual_type (int n)
1832 {
1833 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1834 const struct reg *reg = tdep->regs + n;
1835
1836 if (reg->fpr)
1837 return builtin_type_double;
1838 else
1839 {
1840 int size = regsize (reg, tdep->wordsize);
1841 switch (size)
1842 {
1843 case 8:
1844 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1845 return builtin_type_vec64;
1846 else
1847 return builtin_type_int64;
1848 break;
1849 case 16:
1850 return builtin_type_vec128;
1851 break;
1852 default:
1853 return builtin_type_int32;
1854 break;
1855 }
1856 }
1857 }
1858
1859 /* Return whether register N requires conversion when moving from raw format
1860 to virtual format.
1861
1862 The register format for RS/6000 floating point registers is always
1863 double, we need a conversion if the memory format is float. */
1864
1865 static int
1866 rs6000_register_convertible (int n)
1867 {
1868 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1869 return reg->fpr;
1870 }
1871
1872 /* Convert data from raw format for register N in buffer FROM
1873 to virtual format with type TYPE in buffer TO. */
1874
1875 static void
1876 rs6000_register_convert_to_virtual (int n, struct type *type,
1877 char *from, char *to)
1878 {
1879 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1880 {
1881 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1882 store_floating (to, TYPE_LENGTH (type), val);
1883 }
1884 else
1885 memcpy (to, from, REGISTER_RAW_SIZE (n));
1886 }
1887
1888 /* Convert data from virtual format with type TYPE in buffer FROM
1889 to raw format for register N in buffer TO. */
1890
1891 static void
1892 rs6000_register_convert_to_raw (struct type *type, int n,
1893 char *from, char *to)
1894 {
1895 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1896 {
1897 double val = extract_floating (from, TYPE_LENGTH (type));
1898 store_floating (to, REGISTER_RAW_SIZE (n), val);
1899 }
1900 else
1901 memcpy (to, from, REGISTER_RAW_SIZE (n));
1902 }
1903
1904 static void
1905 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1906 int reg_nr, void *buffer)
1907 {
1908 int base_regnum;
1909 int offset = 0;
1910 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1911 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1912
1913 if (reg_nr >= tdep->ppc_gp0_regnum
1914 && reg_nr <= tdep->ppc_gplast_regnum)
1915 {
1916 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1917
1918 /* Build the value in the provided buffer. */
1919 /* Read the raw register of which this one is the lower portion. */
1920 regcache_raw_read (regcache, base_regnum, temp_buffer);
1921 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1922 offset = 4;
1923 memcpy ((char *) buffer, temp_buffer + offset, 4);
1924 }
1925 }
1926
1927 static void
1928 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1929 int reg_nr, const void *buffer)
1930 {
1931 int base_regnum;
1932 int offset = 0;
1933 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1934 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1935
1936 if (reg_nr >= tdep->ppc_gp0_regnum
1937 && reg_nr <= tdep->ppc_gplast_regnum)
1938 {
1939 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1940 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1941 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1942 offset = 4;
1943
1944 /* Let's read the value of the base register into a temporary
1945 buffer, so that overwriting the last four bytes with the new
1946 value of the pseudo will leave the upper 4 bytes unchanged. */
1947 regcache_raw_read (regcache, base_regnum, temp_buffer);
1948
1949 /* Write as an 8 byte quantity. */
1950 memcpy (temp_buffer + offset, (char *) buffer, 4);
1951 regcache_raw_write (regcache, base_regnum, temp_buffer);
1952 }
1953 }
1954
1955 /* Convert a dwarf2 register number to a gdb REGNUM. */
1956 static int
1957 e500_dwarf2_reg_to_regnum (int num)
1958 {
1959 int regnum;
1960 if (0 <= num && num <= 31)
1961 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1962 else
1963 return num;
1964 }
1965
1966 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1967 REGNUM. */
1968 static int
1969 rs6000_stab_reg_to_regnum (int num)
1970 {
1971 int regnum;
1972 switch (num)
1973 {
1974 case 64:
1975 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1976 break;
1977 case 65:
1978 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1979 break;
1980 case 66:
1981 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1982 break;
1983 case 76:
1984 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1985 break;
1986 default:
1987 regnum = num;
1988 break;
1989 }
1990 return regnum;
1991 }
1992
1993 /* Store the address of the place in which to copy the structure the
1994 subroutine will return. */
1995
1996 static void
1997 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1998 {
1999 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2000 write_register (tdep->ppc_gp0_regnum + 3, addr);
2001 }
2002
2003 /* Write into appropriate registers a function return value
2004 of type TYPE, given in virtual format. */
2005 static void
2006 e500_store_return_value (struct type *type, char *valbuf)
2007 {
2008 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2009
2010 /* Everything is returned in GPR3 and up. */
2011 int copied = 0;
2012 int i = 0;
2013 int len = TYPE_LENGTH (type);
2014 while (copied < len)
2015 {
2016 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2017 int reg_size = REGISTER_RAW_SIZE (regnum);
2018 char *reg_val_buf = alloca (reg_size);
2019
2020 memcpy (reg_val_buf, valbuf + copied, reg_size);
2021 copied += reg_size;
2022 deprecated_write_register_gen (regnum, reg_val_buf);
2023 i++;
2024 }
2025 }
2026
2027 static void
2028 rs6000_store_return_value (struct type *type, char *valbuf)
2029 {
2030 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2031
2032 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2033
2034 /* Floating point values are returned starting from FPR1 and up.
2035 Say a double_double_double type could be returned in
2036 FPR1/FPR2/FPR3 triple. */
2037
2038 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2039 TYPE_LENGTH (type));
2040 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2041 {
2042 if (TYPE_LENGTH (type) == 16
2043 && TYPE_VECTOR (type))
2044 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2045 valbuf, TYPE_LENGTH (type));
2046 }
2047 else
2048 /* Everything else is returned in GPR3 and up. */
2049 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2050 valbuf, TYPE_LENGTH (type));
2051 }
2052
2053 /* Extract from an array REGBUF containing the (raw) register state
2054 the address in which a function should return its structure value,
2055 as a CORE_ADDR (or an expression that can be used as one). */
2056
2057 static CORE_ADDR
2058 rs6000_extract_struct_value_address (struct regcache *regcache)
2059 {
2060 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2061 function call GDB knows the address of the struct return value
2062 and hence, should not need to call this function. Unfortunately,
2063 the current hand_function_call() code only saves the most recent
2064 struct address leading to occasional calls. The code should
2065 instead maintain a stack of such addresses (in the dummy frame
2066 object). */
2067 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2068 really got no idea where the return value is being stored. While
2069 r3, on function entry, contained the address it will have since
2070 been reused (scratch) and hence wouldn't be valid */
2071 return 0;
2072 }
2073
2074 /* Return whether PC is in a dummy function call.
2075
2076 FIXME: This just checks for the end of the stack, which is broken
2077 for things like stepping through gcc nested function stubs. */
2078
2079 static int
2080 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2081 {
2082 return sp < pc && pc < fp;
2083 }
2084
2085 /* Hook called when a new child process is started. */
2086
2087 void
2088 rs6000_create_inferior (int pid)
2089 {
2090 if (rs6000_set_host_arch_hook)
2091 rs6000_set_host_arch_hook (pid);
2092 }
2093 \f
2094 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2095
2096 Usually a function pointer's representation is simply the address
2097 of the function. On the RS/6000 however, a function pointer is
2098 represented by a pointer to a TOC entry. This TOC entry contains
2099 three words, the first word is the address of the function, the
2100 second word is the TOC pointer (r2), and the third word is the
2101 static chain value. Throughout GDB it is currently assumed that a
2102 function pointer contains the address of the function, which is not
2103 easy to fix. In addition, the conversion of a function address to
2104 a function pointer would require allocation of a TOC entry in the
2105 inferior's memory space, with all its drawbacks. To be able to
2106 call C++ virtual methods in the inferior (which are called via
2107 function pointers), find_function_addr uses this function to get the
2108 function address from a function pointer. */
2109
2110 /* Return real function address if ADDR (a function pointer) is in the data
2111 space and is therefore a special function pointer. */
2112
2113 CORE_ADDR
2114 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2115 {
2116 struct obj_section *s;
2117
2118 s = find_pc_section (addr);
2119 if (s && s->the_bfd_section->flags & SEC_CODE)
2120 return addr;
2121
2122 /* ADDR is in the data space, so it's a special function pointer. */
2123 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2124 }
2125 \f
2126
2127 /* Handling the various POWER/PowerPC variants. */
2128
2129
2130 /* The arrays here called registers_MUMBLE hold information about available
2131 registers.
2132
2133 For each family of PPC variants, I've tried to isolate out the
2134 common registers and put them up front, so that as long as you get
2135 the general family right, GDB will correctly identify the registers
2136 common to that family. The common register sets are:
2137
2138 For the 60x family: hid0 hid1 iabr dabr pir
2139
2140 For the 505 and 860 family: eie eid nri
2141
2142 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2143 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2144 pbu1 pbl2 pbu2
2145
2146 Most of these register groups aren't anything formal. I arrived at
2147 them by looking at the registers that occurred in more than one
2148 processor.
2149
2150 Note: kevinb/2002-04-30: Support for the fpscr register was added
2151 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2152 for Power. For PowerPC, slot 70 was unused and was already in the
2153 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2154 slot 70 was being used for "mq", so the next available slot (71)
2155 was chosen. It would have been nice to be able to make the
2156 register numbers the same across processor cores, but this wasn't
2157 possible without either 1) renumbering some registers for some
2158 processors or 2) assigning fpscr to a really high slot that's
2159 larger than any current register number. Doing (1) is bad because
2160 existing stubs would break. Doing (2) is undesirable because it
2161 would introduce a really large gap between fpscr and the rest of
2162 the registers for most processors. */
2163
2164 /* Convenience macros for populating register arrays. */
2165
2166 /* Within another macro, convert S to a string. */
2167
2168 #define STR(s) #s
2169
2170 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2171 and 64 bits on 64-bit systems. */
2172 #define R(name) { STR(name), 4, 8, 0, 0 }
2173
2174 /* Return a struct reg defining register NAME that's 32 bits on all
2175 systems. */
2176 #define R4(name) { STR(name), 4, 4, 0, 0 }
2177
2178 /* Return a struct reg defining register NAME that's 64 bits on all
2179 systems. */
2180 #define R8(name) { STR(name), 8, 8, 0, 0 }
2181
2182 /* Return a struct reg defining register NAME that's 128 bits on all
2183 systems. */
2184 #define R16(name) { STR(name), 16, 16, 0, 0 }
2185
2186 /* Return a struct reg defining floating-point register NAME. */
2187 #define F(name) { STR(name), 8, 8, 1, 0 }
2188
2189 /* Return a struct reg defining a pseudo register NAME. */
2190 #define P(name) { STR(name), 4, 8, 0, 1}
2191
2192 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2193 systems and that doesn't exist on 64-bit systems. */
2194 #define R32(name) { STR(name), 4, 0, 0, 0 }
2195
2196 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2197 systems and that doesn't exist on 32-bit systems. */
2198 #define R64(name) { STR(name), 0, 8, 0, 0 }
2199
2200 /* Return a struct reg placeholder for a register that doesn't exist. */
2201 #define R0 { 0, 0, 0, 0, 0 }
2202
2203 /* UISA registers common across all architectures, including POWER. */
2204
2205 #define COMMON_UISA_REGS \
2206 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2207 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2208 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2209 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2210 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2211 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2212 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2213 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2214 /* 64 */ R(pc), R(ps)
2215
2216 #define COMMON_UISA_NOFP_REGS \
2217 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2218 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2219 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2220 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2221 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2222 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2223 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2224 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2225 /* 64 */ R(pc), R(ps)
2226
2227 /* UISA-level SPRs for PowerPC. */
2228 #define PPC_UISA_SPRS \
2229 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2230
2231 /* UISA-level SPRs for PowerPC without floating point support. */
2232 #define PPC_UISA_NOFP_SPRS \
2233 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2234
2235 /* Segment registers, for PowerPC. */
2236 #define PPC_SEGMENT_REGS \
2237 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2238 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2239 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2240 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2241
2242 /* OEA SPRs for PowerPC. */
2243 #define PPC_OEA_SPRS \
2244 /* 87 */ R4(pvr), \
2245 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2246 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2247 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2248 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2249 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2250 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2251 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2252 /* 116 */ R4(dec), R(dabr), R4(ear)
2253
2254 /* AltiVec registers. */
2255 #define PPC_ALTIVEC_REGS \
2256 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2257 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2258 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2259 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2260 /*151*/R4(vscr), R4(vrsave)
2261
2262 /* Vectors of hi-lo general purpose registers. */
2263 #define PPC_EV_REGS \
2264 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2265 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2266 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2267 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2268
2269 /* Lower half of the EV registers. */
2270 #define PPC_GPRS_PSEUDO_REGS \
2271 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2272 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2273 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2274 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2275
2276 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2277 user-level SPR's. */
2278 static const struct reg registers_power[] =
2279 {
2280 COMMON_UISA_REGS,
2281 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2282 /* 71 */ R4(fpscr)
2283 };
2284
2285 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2286 view of the PowerPC. */
2287 static const struct reg registers_powerpc[] =
2288 {
2289 COMMON_UISA_REGS,
2290 PPC_UISA_SPRS,
2291 PPC_ALTIVEC_REGS
2292 };
2293
2294 /* PowerPC UISA - a PPC processor as viewed by user-level
2295 code, but without floating point registers. */
2296 static const struct reg registers_powerpc_nofp[] =
2297 {
2298 COMMON_UISA_NOFP_REGS,
2299 PPC_UISA_SPRS
2300 };
2301
2302 /* IBM PowerPC 403. */
2303 static const struct reg registers_403[] =
2304 {
2305 COMMON_UISA_REGS,
2306 PPC_UISA_SPRS,
2307 PPC_SEGMENT_REGS,
2308 PPC_OEA_SPRS,
2309 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2310 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2311 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2312 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2313 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2314 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2315 };
2316
2317 /* IBM PowerPC 403GC. */
2318 static const struct reg registers_403GC[] =
2319 {
2320 COMMON_UISA_REGS,
2321 PPC_UISA_SPRS,
2322 PPC_SEGMENT_REGS,
2323 PPC_OEA_SPRS,
2324 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2325 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2326 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2327 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2328 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2329 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2330 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2331 /* 147 */ R(tbhu), R(tblu)
2332 };
2333
2334 /* Motorola PowerPC 505. */
2335 static const struct reg registers_505[] =
2336 {
2337 COMMON_UISA_REGS,
2338 PPC_UISA_SPRS,
2339 PPC_SEGMENT_REGS,
2340 PPC_OEA_SPRS,
2341 /* 119 */ R(eie), R(eid), R(nri)
2342 };
2343
2344 /* Motorola PowerPC 860 or 850. */
2345 static const struct reg registers_860[] =
2346 {
2347 COMMON_UISA_REGS,
2348 PPC_UISA_SPRS,
2349 PPC_SEGMENT_REGS,
2350 PPC_OEA_SPRS,
2351 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2352 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2353 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2354 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2355 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2356 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2357 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2358 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2359 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2360 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2361 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2362 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2363 };
2364
2365 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2366 for reading and writing RTCU and RTCL. However, how one reads and writes a
2367 register is the stub's problem. */
2368 static const struct reg registers_601[] =
2369 {
2370 COMMON_UISA_REGS,
2371 PPC_UISA_SPRS,
2372 PPC_SEGMENT_REGS,
2373 PPC_OEA_SPRS,
2374 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2375 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2376 };
2377
2378 /* Motorola PowerPC 602. */
2379 static const struct reg registers_602[] =
2380 {
2381 COMMON_UISA_REGS,
2382 PPC_UISA_SPRS,
2383 PPC_SEGMENT_REGS,
2384 PPC_OEA_SPRS,
2385 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2386 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2387 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2388 };
2389
2390 /* Motorola/IBM PowerPC 603 or 603e. */
2391 static const struct reg registers_603[] =
2392 {
2393 COMMON_UISA_REGS,
2394 PPC_UISA_SPRS,
2395 PPC_SEGMENT_REGS,
2396 PPC_OEA_SPRS,
2397 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2398 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2399 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2400 };
2401
2402 /* Motorola PowerPC 604 or 604e. */
2403 static const struct reg registers_604[] =
2404 {
2405 COMMON_UISA_REGS,
2406 PPC_UISA_SPRS,
2407 PPC_SEGMENT_REGS,
2408 PPC_OEA_SPRS,
2409 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2410 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2411 /* 127 */ R(sia), R(sda)
2412 };
2413
2414 /* Motorola/IBM PowerPC 750 or 740. */
2415 static const struct reg registers_750[] =
2416 {
2417 COMMON_UISA_REGS,
2418 PPC_UISA_SPRS,
2419 PPC_SEGMENT_REGS,
2420 PPC_OEA_SPRS,
2421 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2422 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2423 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2424 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2425 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2426 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2427 };
2428
2429
2430 /* Motorola PowerPC 7400. */
2431 static const struct reg registers_7400[] =
2432 {
2433 /* gpr0-gpr31, fpr0-fpr31 */
2434 COMMON_UISA_REGS,
2435 /* ctr, xre, lr, cr */
2436 PPC_UISA_SPRS,
2437 /* sr0-sr15 */
2438 PPC_SEGMENT_REGS,
2439 PPC_OEA_SPRS,
2440 /* vr0-vr31, vrsave, vscr */
2441 PPC_ALTIVEC_REGS
2442 /* FIXME? Add more registers? */
2443 };
2444
2445 /* Motorola e500. */
2446 static const struct reg registers_e500[] =
2447 {
2448 R(pc), R(ps),
2449 /* cr, lr, ctr, xer, "" */
2450 PPC_UISA_NOFP_SPRS,
2451 /* 7...38 */
2452 PPC_EV_REGS,
2453 /* 39...70 */
2454 PPC_GPRS_PSEUDO_REGS
2455 };
2456
2457 /* Information about a particular processor variant. */
2458
2459 struct variant
2460 {
2461 /* Name of this variant. */
2462 char *name;
2463
2464 /* English description of the variant. */
2465 char *description;
2466
2467 /* bfd_arch_info.arch corresponding to variant. */
2468 enum bfd_architecture arch;
2469
2470 /* bfd_arch_info.mach corresponding to variant. */
2471 unsigned long mach;
2472
2473 /* Number of real registers. */
2474 int nregs;
2475
2476 /* Number of pseudo registers. */
2477 int npregs;
2478
2479 /* Number of total registers (the sum of nregs and npregs). */
2480 int num_tot_regs;
2481
2482 /* Table of register names; registers[R] is the name of the register
2483 number R. */
2484 const struct reg *regs;
2485 };
2486
2487 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2488
2489 static int
2490 num_registers (const struct reg *reg_list, int num_tot_regs)
2491 {
2492 int i;
2493 int nregs = 0;
2494
2495 for (i = 0; i < num_tot_regs; i++)
2496 if (!reg_list[i].pseudo)
2497 nregs++;
2498
2499 return nregs;
2500 }
2501
2502 static int
2503 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2504 {
2505 int i;
2506 int npregs = 0;
2507
2508 for (i = 0; i < num_tot_regs; i++)
2509 if (reg_list[i].pseudo)
2510 npregs ++;
2511
2512 return npregs;
2513 }
2514
2515 /* Information in this table comes from the following web sites:
2516 IBM: http://www.chips.ibm.com:80/products/embedded/
2517 Motorola: http://www.mot.com/SPS/PowerPC/
2518
2519 I'm sure I've got some of the variant descriptions not quite right.
2520 Please report any inaccuracies you find to GDB's maintainer.
2521
2522 If you add entries to this table, please be sure to allow the new
2523 value as an argument to the --with-cpu flag, in configure.in. */
2524
2525 static struct variant variants[] =
2526 {
2527
2528 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2529 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2530 registers_powerpc},
2531 {"power", "POWER user-level", bfd_arch_rs6000,
2532 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2533 registers_power},
2534 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2535 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2536 registers_403},
2537 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2538 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2539 registers_601},
2540 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2541 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2542 registers_602},
2543 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2544 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2545 registers_603},
2546 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2547 604, -1, -1, tot_num_registers (registers_604),
2548 registers_604},
2549 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2550 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2551 registers_403GC},
2552 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2553 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2554 registers_505},
2555 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2556 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2557 registers_860},
2558 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2559 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2560 registers_750},
2561 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2562 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2563 registers_7400},
2564 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2565 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2566 registers_e500},
2567
2568 /* 64-bit */
2569 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2570 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2571 registers_powerpc},
2572 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2573 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2574 registers_powerpc},
2575 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2576 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2577 registers_powerpc},
2578 {"a35", "PowerPC A35", bfd_arch_powerpc,
2579 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2580 registers_powerpc},
2581 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2582 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2583 registers_powerpc},
2584 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2585 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2586 registers_powerpc},
2587
2588 /* FIXME: I haven't checked the register sets of the following. */
2589 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2590 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2591 registers_power},
2592 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2593 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2594 registers_power},
2595 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2596 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2597 registers_power},
2598
2599 {0, 0, 0, 0, 0, 0, 0, 0}
2600 };
2601
2602 /* Initialize the number of registers and pseudo registers in each variant. */
2603
2604 static void
2605 init_variants (void)
2606 {
2607 struct variant *v;
2608
2609 for (v = variants; v->name; v++)
2610 {
2611 if (v->nregs == -1)
2612 v->nregs = num_registers (v->regs, v->num_tot_regs);
2613 if (v->npregs == -1)
2614 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2615 }
2616 }
2617
2618 /* Return the variant corresponding to architecture ARCH and machine number
2619 MACH. If no such variant exists, return null. */
2620
2621 static const struct variant *
2622 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2623 {
2624 const struct variant *v;
2625
2626 for (v = variants; v->name; v++)
2627 if (arch == v->arch && mach == v->mach)
2628 return v;
2629
2630 return NULL;
2631 }
2632
2633 static int
2634 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2635 {
2636 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2637 return print_insn_big_powerpc (memaddr, info);
2638 else
2639 return print_insn_little_powerpc (memaddr, info);
2640 }
2641 \f
2642 /* Initialize the current architecture based on INFO. If possible, re-use an
2643 architecture from ARCHES, which is a list of architectures already created
2644 during this debugging session.
2645
2646 Called e.g. at program startup, when reading a core file, and when reading
2647 a binary file. */
2648
2649 static struct gdbarch *
2650 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2651 {
2652 struct gdbarch *gdbarch;
2653 struct gdbarch_tdep *tdep;
2654 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2655 struct reg *regs;
2656 const struct variant *v;
2657 enum bfd_architecture arch;
2658 unsigned long mach;
2659 bfd abfd;
2660 int sysv_abi;
2661 asection *sect;
2662
2663 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2664 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2665
2666 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2667 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2668
2669 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2670
2671 /* Check word size. If INFO is from a binary file, infer it from
2672 that, else choose a likely default. */
2673 if (from_xcoff_exec)
2674 {
2675 if (bfd_xcoff_is_xcoff64 (info.abfd))
2676 wordsize = 8;
2677 else
2678 wordsize = 4;
2679 }
2680 else if (from_elf_exec)
2681 {
2682 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2683 wordsize = 8;
2684 else
2685 wordsize = 4;
2686 }
2687 else
2688 {
2689 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2690 wordsize = info.bfd_arch_info->bits_per_word /
2691 info.bfd_arch_info->bits_per_byte;
2692 else
2693 wordsize = 4;
2694 }
2695
2696 /* Find a candidate among extant architectures. */
2697 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2698 arches != NULL;
2699 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2700 {
2701 /* Word size in the various PowerPC bfd_arch_info structs isn't
2702 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2703 separate word size check. */
2704 tdep = gdbarch_tdep (arches->gdbarch);
2705 if (tdep && tdep->wordsize == wordsize)
2706 return arches->gdbarch;
2707 }
2708
2709 /* None found, create a new architecture from INFO, whose bfd_arch_info
2710 validity depends on the source:
2711 - executable useless
2712 - rs6000_host_arch() good
2713 - core file good
2714 - "set arch" trust blindly
2715 - GDB startup useless but harmless */
2716
2717 if (!from_xcoff_exec)
2718 {
2719 arch = info.bfd_arch_info->arch;
2720 mach = info.bfd_arch_info->mach;
2721 }
2722 else
2723 {
2724 arch = bfd_arch_powerpc;
2725 mach = 0;
2726 bfd_default_set_arch_mach (&abfd, arch, mach);
2727 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2728 }
2729 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2730 tdep->wordsize = wordsize;
2731
2732 /* For e500 executables, the apuinfo section is of help here. Such
2733 section contains the identifier and revision number of each
2734 Application-specific Processing Unit that is present on the
2735 chip. The content of the section is determined by the assembler
2736 which looks at each instruction and determines which unit (and
2737 which version of it) can execute it. In our case we just look for
2738 the existance of the section. */
2739
2740 if (info.abfd)
2741 {
2742 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2743 if (sect)
2744 {
2745 arch = info.bfd_arch_info->arch;
2746 mach = bfd_mach_ppc_e500;
2747 bfd_default_set_arch_mach (&abfd, arch, mach);
2748 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2749 }
2750 }
2751
2752 gdbarch = gdbarch_alloc (&info, tdep);
2753 power = arch == bfd_arch_rs6000;
2754
2755 /* Initialize the number of real and pseudo registers in each variant. */
2756 init_variants ();
2757
2758 /* Choose variant. */
2759 v = find_variant_by_arch (arch, mach);
2760 if (!v)
2761 return NULL;
2762
2763 tdep->regs = v->regs;
2764
2765 tdep->ppc_gp0_regnum = 0;
2766 tdep->ppc_gplast_regnum = 31;
2767 tdep->ppc_toc_regnum = 2;
2768 tdep->ppc_ps_regnum = 65;
2769 tdep->ppc_cr_regnum = 66;
2770 tdep->ppc_lr_regnum = 67;
2771 tdep->ppc_ctr_regnum = 68;
2772 tdep->ppc_xer_regnum = 69;
2773 if (v->mach == bfd_mach_ppc_601)
2774 tdep->ppc_mq_regnum = 124;
2775 else if (power)
2776 tdep->ppc_mq_regnum = 70;
2777 else
2778 tdep->ppc_mq_regnum = -1;
2779 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2780
2781 set_gdbarch_pc_regnum (gdbarch, 64);
2782 set_gdbarch_sp_regnum (gdbarch, 1);
2783 set_gdbarch_fp_regnum (gdbarch, 1);
2784 set_gdbarch_deprecated_extract_return_value (gdbarch,
2785 rs6000_extract_return_value);
2786 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2787
2788 if (v->arch == bfd_arch_powerpc)
2789 switch (v->mach)
2790 {
2791 case bfd_mach_ppc:
2792 tdep->ppc_vr0_regnum = 71;
2793 tdep->ppc_vrsave_regnum = 104;
2794 tdep->ppc_ev0_regnum = -1;
2795 tdep->ppc_ev31_regnum = -1;
2796 break;
2797 case bfd_mach_ppc_7400:
2798 tdep->ppc_vr0_regnum = 119;
2799 tdep->ppc_vrsave_regnum = 152;
2800 tdep->ppc_ev0_regnum = -1;
2801 tdep->ppc_ev31_regnum = -1;
2802 break;
2803 case bfd_mach_ppc_e500:
2804 tdep->ppc_gp0_regnum = 39;
2805 tdep->ppc_gplast_regnum = 70;
2806 tdep->ppc_toc_regnum = -1;
2807 tdep->ppc_ps_regnum = 1;
2808 tdep->ppc_cr_regnum = 2;
2809 tdep->ppc_lr_regnum = 3;
2810 tdep->ppc_ctr_regnum = 4;
2811 tdep->ppc_xer_regnum = 5;
2812 tdep->ppc_ev0_regnum = 7;
2813 tdep->ppc_ev31_regnum = 38;
2814 set_gdbarch_pc_regnum (gdbarch, 0);
2815 set_gdbarch_sp_regnum (gdbarch, 40);
2816 set_gdbarch_fp_regnum (gdbarch, 40);
2817 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2818 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2819 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2820 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2821 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2822 break;
2823 default:
2824 tdep->ppc_vr0_regnum = -1;
2825 tdep->ppc_vrsave_regnum = -1;
2826 tdep->ppc_ev0_regnum = -1;
2827 tdep->ppc_ev31_regnum = -1;
2828 break;
2829 }
2830
2831 /* Set lr_frame_offset. */
2832 if (wordsize == 8)
2833 tdep->lr_frame_offset = 16;
2834 else if (sysv_abi)
2835 tdep->lr_frame_offset = 4;
2836 else
2837 tdep->lr_frame_offset = 8;
2838
2839 /* Calculate byte offsets in raw register array. */
2840 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2841 for (i = off = 0; i < v->num_tot_regs; i++)
2842 {
2843 tdep->regoff[i] = off;
2844 off += regsize (v->regs + i, wordsize);
2845 }
2846
2847 /* Select instruction printer. */
2848 if (arch == power)
2849 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2850 else
2851 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2852
2853 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2854 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2855 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2856 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2857 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2858
2859 set_gdbarch_num_regs (gdbarch, v->nregs);
2860 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2861 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2862 set_gdbarch_register_size (gdbarch, wordsize);
2863 set_gdbarch_register_bytes (gdbarch, off);
2864 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2865 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2866 set_gdbarch_max_register_raw_size (gdbarch, 16);
2867 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2868 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2869 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2870
2871 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2872 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2873 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2874 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2875 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2876 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2877 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2878 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2879 set_gdbarch_char_signed (gdbarch, 0);
2880
2881 set_gdbarch_call_dummy_length (gdbarch, 0);
2882 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2883 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2884 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2885 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2886 set_gdbarch_call_dummy_p (gdbarch, 1);
2887 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2888 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2889 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2890 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2891 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2892 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2893 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2894
2895 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2896 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2897 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2898 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2899 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2900 is correct for the SysV ABI when the wordsize is 8, but I'm also
2901 fairly certain that ppc_sysv_abi_push_arguments() will give even
2902 worse results since it only works for 32-bit code. So, for the moment,
2903 we're better off calling rs6000_push_arguments() since it works for
2904 64-bit code. At some point in the future, this matter needs to be
2905 revisited. */
2906 if (sysv_abi && wordsize == 4)
2907 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2908 else
2909 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2910
2911 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2912 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2913 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2914
2915 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2916 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2917 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2918 set_gdbarch_function_start_offset (gdbarch, 0);
2919 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2920
2921 /* Not sure on this. FIXMEmgo */
2922 set_gdbarch_frame_args_skip (gdbarch, 8);
2923
2924 if (sysv_abi)
2925 set_gdbarch_use_struct_convention (gdbarch,
2926 ppc_sysv_abi_use_struct_convention);
2927 else
2928 set_gdbarch_use_struct_convention (gdbarch,
2929 generic_use_struct_convention);
2930
2931 set_gdbarch_frameless_function_invocation (gdbarch,
2932 rs6000_frameless_function_invocation);
2933 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2934 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2935
2936 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2937 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2938
2939 if (!sysv_abi)
2940 {
2941 /* Handle RS/6000 function pointers (which are really function
2942 descriptors). */
2943 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2944 rs6000_convert_from_func_ptr_addr);
2945 }
2946 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2947 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2948 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2949
2950 /* We can't tell how many args there are
2951 now that the C compiler delays popping them. */
2952 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2953
2954 /* Hook in ABI-specific overrides, if they have been registered. */
2955 gdbarch_init_osabi (info, gdbarch);
2956
2957 return gdbarch;
2958 }
2959
2960 static void
2961 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2962 {
2963 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2964
2965 if (tdep == NULL)
2966 return;
2967
2968 /* FIXME: Dump gdbarch_tdep. */
2969 }
2970
2971 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2972
2973 static void
2974 rs6000_info_powerpc_command (char *args, int from_tty)
2975 {
2976 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2977 }
2978
2979 /* Initialization code. */
2980
2981 void
2982 _initialize_rs6000_tdep (void)
2983 {
2984 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2985 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2986
2987 /* Add root prefix command for "info powerpc" commands */
2988 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2989 "Various POWERPC info specific commands.",
2990 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2991 }