]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
* rs6000-tdep.c (set_sim_regno, init_sim_regno_table,
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 /* If the kernel has to deliver a signal, it pushes a sigcontext
63 structure on the stack and then calls the signal handler, passing
64 the address of the sigcontext in an argument register. Usually
65 the signal handler doesn't save this register, so we have to
66 access the sigcontext structure via an offset from the signal handler
67 frame.
68 The following constants were determined by experimentation on AIX 3.2. */
69 #define SIG_FRAME_PC_OFFSET 96
70 #define SIG_FRAME_LR_OFFSET 108
71 #define SIG_FRAME_FP_OFFSET 284
72
73 /* To be used by skip_prologue. */
74
75 struct rs6000_framedata
76 {
77 int offset; /* total size of frame --- the distance
78 by which we decrement sp to allocate
79 the frame */
80 int saved_gpr; /* smallest # of saved gpr */
81 int saved_fpr; /* smallest # of saved fpr */
82 int saved_vr; /* smallest # of saved vr */
83 int saved_ev; /* smallest # of saved ev */
84 int alloca_reg; /* alloca register number (frame ptr) */
85 char frameless; /* true if frameless functions. */
86 char nosavedpc; /* true if pc not saved. */
87 int gpr_offset; /* offset of saved gprs from prev sp */
88 int fpr_offset; /* offset of saved fprs from prev sp */
89 int vr_offset; /* offset of saved vrs from prev sp */
90 int ev_offset; /* offset of saved evs from prev sp */
91 int lr_offset; /* offset of saved lr */
92 int cr_offset; /* offset of saved cr */
93 int vrsave_offset; /* offset of saved vrsave register */
94 };
95
96 /* Description of a single register. */
97
98 struct reg
99 {
100 char *name; /* name of register */
101 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
102 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
103 unsigned char fpr; /* whether register is floating-point */
104 unsigned char pseudo; /* whether register is pseudo */
105 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
106 This is an ISA SPR number, not a GDB
107 register number. */
108 };
109
110 /* Breakpoint shadows for the single step instructions will be kept here. */
111
112 static struct sstep_breaks
113 {
114 /* Address, or 0 if this is not in use. */
115 CORE_ADDR address;
116 /* Shadow contents. */
117 char data[4];
118 }
119 stepBreaks[2];
120
121 /* Hook for determining the TOC address when calling functions in the
122 inferior under AIX. The initialization code in rs6000-nat.c sets
123 this hook to point to find_toc_address. */
124
125 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
126
127 /* Hook to set the current architecture when starting a child process.
128 rs6000-nat.c sets this. */
129
130 void (*rs6000_set_host_arch_hook) (int) = NULL;
131
132 /* Static function prototypes */
133
134 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
135 CORE_ADDR safety);
136 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
137 struct rs6000_framedata *);
138
139 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
140 int
141 altivec_register_p (int regno)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
144 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
145 return 0;
146 else
147 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
148 }
149
150
151 /* Return true if REGNO is an SPE register, false otherwise. */
152 int
153 spe_register_p (int regno)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
156
157 /* Is it a reference to EV0 -- EV31, and do we have those? */
158 if (tdep->ppc_ev0_regnum >= 0
159 && tdep->ppc_ev31_regnum >= 0
160 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
161 return 1;
162
163 /* Is it a reference to one of the raw upper GPR halves? */
164 if (tdep->ppc_ev0_upper_regnum >= 0
165 && tdep->ppc_ev0_upper_regnum <= regno
166 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
167 return 1;
168
169 /* Is it a reference to the 64-bit accumulator, and do we have that? */
170 if (tdep->ppc_acc_regnum >= 0
171 && tdep->ppc_acc_regnum == regno)
172 return 1;
173
174 /* Is it a reference to the SPE floating-point status and control register,
175 and do we have that? */
176 if (tdep->ppc_spefscr_regnum >= 0
177 && tdep->ppc_spefscr_regnum == regno)
178 return 1;
179
180 return 0;
181 }
182
183
184 /* Return non-zero if the architecture described by GDBARCH has
185 floating-point registers (f0 --- f31 and fpscr). */
186 int
187 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
188 {
189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
190
191 return (tdep->ppc_fp0_regnum >= 0
192 && tdep->ppc_fpscr_regnum >= 0);
193 }
194
195
196 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
197 set it to SIM_REGNO.
198
199 This is a helper function for init_sim_regno_table, constructing
200 the table mapping GDB register numbers to sim register numbers; we
201 initialize every element in that table to -1 before we start
202 filling it in. */
203 static void
204 set_sim_regno (int *table, int gdb_regno, int sim_regno)
205 {
206 /* Make sure we don't try to assign any given GDB register a sim
207 register number more than once. */
208 gdb_assert (table[gdb_regno] == -1);
209 table[gdb_regno] = sim_regno;
210 }
211
212
213 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
214 numbers to simulator register numbers, based on the values placed
215 in the ARCH->tdep->ppc_foo_regnum members. */
216 static void
217 init_sim_regno_table (struct gdbarch *arch)
218 {
219 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
220 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
221 const struct reg *regs = tdep->regs;
222 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
223 int i;
224
225 /* Presume that all registers not explicitly mentioned below are
226 unavailable from the sim. */
227 for (i = 0; i < total_regs; i++)
228 sim_regno[i] = -1;
229
230 /* General-purpose registers. */
231 for (i = 0; i < ppc_num_gprs; i++)
232 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
233
234 /* Floating-point registers. */
235 if (tdep->ppc_fp0_regnum >= 0)
236 for (i = 0; i < ppc_num_fprs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_fp0_regnum + i,
239 sim_ppc_f0_regnum + i);
240 if (tdep->ppc_fpscr_regnum >= 0)
241 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
242
243 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
244 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
245 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
246
247 /* Segment registers. */
248 if (tdep->ppc_sr0_regnum >= 0)
249 for (i = 0; i < ppc_num_srs; i++)
250 set_sim_regno (sim_regno,
251 tdep->ppc_sr0_regnum + i,
252 sim_ppc_sr0_regnum + i);
253
254 /* Altivec registers. */
255 if (tdep->ppc_vr0_regnum >= 0)
256 {
257 for (i = 0; i < ppc_num_vrs; i++)
258 set_sim_regno (sim_regno,
259 tdep->ppc_vr0_regnum + i,
260 sim_ppc_vr0_regnum + i);
261
262 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
263 we can treat this more like the other cases. */
264 set_sim_regno (sim_regno,
265 tdep->ppc_vr0_regnum + ppc_num_vrs,
266 sim_ppc_vscr_regnum);
267 }
268 /* vsave is a special-purpose register, so the code below handles it. */
269
270 /* SPE APU (E500) registers. */
271 if (tdep->ppc_ev0_regnum >= 0)
272 for (i = 0; i < ppc_num_gprs; i++)
273 set_sim_regno (sim_regno,
274 tdep->ppc_ev0_regnum + i,
275 sim_ppc_ev0_regnum + i);
276 if (tdep->ppc_ev0_upper_regnum >= 0)
277 for (i = 0; i < ppc_num_gprs; i++)
278 set_sim_regno (sim_regno,
279 tdep->ppc_ev0_upper_regnum + i,
280 sim_ppc_rh0_regnum + i);
281 if (tdep->ppc_acc_regnum >= 0)
282 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
283 /* spefscr is a special-purpose register, so the code below handles it. */
284
285 /* Now handle all special-purpose registers. Verify that they
286 haven't mistakenly been assigned numbers by any of the above
287 code). */
288 for (i = 0; i < total_regs; i++)
289 if (regs[i].spr_num >= 0)
290 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
291
292 /* Drop the initialized array into place. */
293 tdep->sim_regno = sim_regno;
294 }
295
296
297 /* Given a GDB register number REG, return the corresponding SIM
298 register number. */
299 static int
300 rs6000_register_sim_regno (int reg)
301 {
302 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
303 int sim_regno;
304
305 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
306 sim_regno = tdep->sim_regno[reg];
307
308 if (sim_regno >= 0)
309 return sim_regno;
310 else
311 return LEGACY_SIM_REGNO_IGNORE;
312 }
313
314 \f
315
316 /* Register set support functions. */
317
318 static void
319 ppc_supply_reg (struct regcache *regcache, int regnum,
320 const char *regs, size_t offset)
321 {
322 if (regnum != -1 && offset != -1)
323 regcache_raw_supply (regcache, regnum, regs + offset);
324 }
325
326 static void
327 ppc_collect_reg (const struct regcache *regcache, int regnum,
328 char *regs, size_t offset)
329 {
330 if (regnum != -1 && offset != -1)
331 regcache_raw_collect (regcache, regnum, regs + offset);
332 }
333
334 /* Supply register REGNUM in the general-purpose register set REGSET
335 from the buffer specified by GREGS and LEN to register cache
336 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
337
338 void
339 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
340 int regnum, const void *gregs, size_t len)
341 {
342 struct gdbarch *gdbarch = get_regcache_arch (regcache);
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 const struct ppc_reg_offsets *offsets = regset->descr;
345 size_t offset;
346 int i;
347
348 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
349 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
350 i++, offset += 4)
351 {
352 if (regnum == -1 || regnum == i)
353 ppc_supply_reg (regcache, i, gregs, offset);
354 }
355
356 if (regnum == -1 || regnum == PC_REGNUM)
357 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
358 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
359 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
360 gregs, offsets->ps_offset);
361 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
362 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
363 gregs, offsets->cr_offset);
364 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
365 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
366 gregs, offsets->lr_offset);
367 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
368 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
369 gregs, offsets->ctr_offset);
370 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
371 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
372 gregs, offsets->cr_offset);
373 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
374 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
375 }
376
377 /* Supply register REGNUM in the floating-point register set REGSET
378 from the buffer specified by FPREGS and LEN to register cache
379 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
380
381 void
382 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
383 int regnum, const void *fpregs, size_t len)
384 {
385 struct gdbarch *gdbarch = get_regcache_arch (regcache);
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387 const struct ppc_reg_offsets *offsets = regset->descr;
388 size_t offset;
389 int i;
390
391 gdb_assert (ppc_floating_point_unit_p (gdbarch));
392
393 offset = offsets->f0_offset;
394 for (i = tdep->ppc_fp0_regnum;
395 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
396 i++, offset += 4)
397 {
398 if (regnum == -1 || regnum == i)
399 ppc_supply_reg (regcache, i, fpregs, offset);
400 }
401
402 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
403 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
404 fpregs, offsets->fpscr_offset);
405 }
406
407 /* Collect register REGNUM in the general-purpose register set
408 REGSET. from register cache REGCACHE into the buffer specified by
409 GREGS and LEN. If REGNUM is -1, do this for all registers in
410 REGSET. */
411
412 void
413 ppc_collect_gregset (const struct regset *regset,
414 const struct regcache *regcache,
415 int regnum, void *gregs, size_t len)
416 {
417 struct gdbarch *gdbarch = get_regcache_arch (regcache);
418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419 const struct ppc_reg_offsets *offsets = regset->descr;
420 size_t offset;
421 int i;
422
423 offset = offsets->r0_offset;
424 for (i = tdep->ppc_gp0_regnum;
425 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
426 i++, offset += 4)
427 {
428 if (regnum == -1 || regnum == i)
429 ppc_collect_reg (regcache, i, gregs, offset);
430 }
431
432 if (regnum == -1 || regnum == PC_REGNUM)
433 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
434 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
435 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
436 gregs, offsets->ps_offset);
437 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
438 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
439 gregs, offsets->cr_offset);
440 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
441 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
442 gregs, offsets->lr_offset);
443 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
444 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
445 gregs, offsets->ctr_offset);
446 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
447 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
448 gregs, offsets->xer_offset);
449 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
450 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
451 gregs, offsets->mq_offset);
452 }
453
454 /* Collect register REGNUM in the floating-point register set
455 REGSET. from register cache REGCACHE into the buffer specified by
456 FPREGS and LEN. If REGNUM is -1, do this for all registers in
457 REGSET. */
458
459 void
460 ppc_collect_fpregset (const struct regset *regset,
461 const struct regcache *regcache,
462 int regnum, void *fpregs, size_t len)
463 {
464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
466 const struct ppc_reg_offsets *offsets = regset->descr;
467 size_t offset;
468 int i;
469
470 gdb_assert (ppc_floating_point_unit_p (gdbarch));
471
472 offset = offsets->f0_offset;
473 for (i = tdep->ppc_fp0_regnum;
474 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
475 i++, offset += 4)
476 {
477 if (regnum == -1 || regnum == i)
478 ppc_collect_reg (regcache, regnum, fpregs, offset);
479 }
480
481 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
482 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
483 fpregs, offsets->fpscr_offset);
484 }
485 \f
486
487 /* Read a LEN-byte address from debugged memory address MEMADDR. */
488
489 static CORE_ADDR
490 read_memory_addr (CORE_ADDR memaddr, int len)
491 {
492 return read_memory_unsigned_integer (memaddr, len);
493 }
494
495 static CORE_ADDR
496 rs6000_skip_prologue (CORE_ADDR pc)
497 {
498 struct rs6000_framedata frame;
499 pc = skip_prologue (pc, 0, &frame);
500 return pc;
501 }
502
503
504 /* Fill in fi->saved_regs */
505
506 struct frame_extra_info
507 {
508 /* Functions calling alloca() change the value of the stack
509 pointer. We need to use initial stack pointer (which is saved in
510 r31 by gcc) in such cases. If a compiler emits traceback table,
511 then we should use the alloca register specified in traceback
512 table. FIXME. */
513 CORE_ADDR initial_sp; /* initial stack pointer. */
514 };
515
516 /* Get the ith function argument for the current function. */
517 static CORE_ADDR
518 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
519 struct type *type)
520 {
521 CORE_ADDR addr;
522 get_frame_register (frame, 3 + argi, &addr);
523 return addr;
524 }
525
526 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
527
528 static CORE_ADDR
529 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
530 {
531 CORE_ADDR dest;
532 int immediate;
533 int absolute;
534 int ext_op;
535
536 absolute = (int) ((instr >> 1) & 1);
537
538 switch (opcode)
539 {
540 case 18:
541 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
542 if (absolute)
543 dest = immediate;
544 else
545 dest = pc + immediate;
546 break;
547
548 case 16:
549 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
550 if (absolute)
551 dest = immediate;
552 else
553 dest = pc + immediate;
554 break;
555
556 case 19:
557 ext_op = (instr >> 1) & 0x3ff;
558
559 if (ext_op == 16) /* br conditional register */
560 {
561 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
562
563 /* If we are about to return from a signal handler, dest is
564 something like 0x3c90. The current frame is a signal handler
565 caller frame, upon completion of the sigreturn system call
566 execution will return to the saved PC in the frame. */
567 if (dest < TEXT_SEGMENT_BASE)
568 {
569 struct frame_info *fi;
570
571 fi = get_current_frame ();
572 if (fi != NULL)
573 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
574 gdbarch_tdep (current_gdbarch)->wordsize);
575 }
576 }
577
578 else if (ext_op == 528) /* br cond to count reg */
579 {
580 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
581
582 /* If we are about to execute a system call, dest is something
583 like 0x22fc or 0x3b00. Upon completion the system call
584 will return to the address in the link register. */
585 if (dest < TEXT_SEGMENT_BASE)
586 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
587 }
588 else
589 return -1;
590 break;
591
592 default:
593 return -1;
594 }
595 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
596 }
597
598
599 /* Sequence of bytes for breakpoint instruction. */
600
601 const static unsigned char *
602 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
603 {
604 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
605 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
606 *bp_size = 4;
607 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
608 return big_breakpoint;
609 else
610 return little_breakpoint;
611 }
612
613
614 /* AIX does not support PT_STEP. Simulate it. */
615
616 void
617 rs6000_software_single_step (enum target_signal signal,
618 int insert_breakpoints_p)
619 {
620 CORE_ADDR dummy;
621 int breakp_sz;
622 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
623 int ii, insn;
624 CORE_ADDR loc;
625 CORE_ADDR breaks[2];
626 int opcode;
627
628 if (insert_breakpoints_p)
629 {
630
631 loc = read_pc ();
632
633 insn = read_memory_integer (loc, 4);
634
635 breaks[0] = loc + breakp_sz;
636 opcode = insn >> 26;
637 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
638
639 /* Don't put two breakpoints on the same address. */
640 if (breaks[1] == breaks[0])
641 breaks[1] = -1;
642
643 stepBreaks[1].address = 0;
644
645 for (ii = 0; ii < 2; ++ii)
646 {
647
648 /* ignore invalid breakpoint. */
649 if (breaks[ii] == -1)
650 continue;
651 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
652 stepBreaks[ii].address = breaks[ii];
653 }
654
655 }
656 else
657 {
658
659 /* remove step breakpoints. */
660 for (ii = 0; ii < 2; ++ii)
661 if (stepBreaks[ii].address != 0)
662 target_remove_breakpoint (stepBreaks[ii].address,
663 stepBreaks[ii].data);
664 }
665 errno = 0; /* FIXME, don't ignore errors! */
666 /* What errors? {read,write}_memory call error(). */
667 }
668
669
670 /* return pc value after skipping a function prologue and also return
671 information about a function frame.
672
673 in struct rs6000_framedata fdata:
674 - frameless is TRUE, if function does not have a frame.
675 - nosavedpc is TRUE, if function does not save %pc value in its frame.
676 - offset is the initial size of this stack frame --- the amount by
677 which we decrement the sp to allocate the frame.
678 - saved_gpr is the number of the first saved gpr.
679 - saved_fpr is the number of the first saved fpr.
680 - saved_vr is the number of the first saved vr.
681 - saved_ev is the number of the first saved ev.
682 - alloca_reg is the number of the register used for alloca() handling.
683 Otherwise -1.
684 - gpr_offset is the offset of the first saved gpr from the previous frame.
685 - fpr_offset is the offset of the first saved fpr from the previous frame.
686 - vr_offset is the offset of the first saved vr from the previous frame.
687 - ev_offset is the offset of the first saved ev from the previous frame.
688 - lr_offset is the offset of the saved lr
689 - cr_offset is the offset of the saved cr
690 - vrsave_offset is the offset of the saved vrsave register
691 */
692
693 #define SIGNED_SHORT(x) \
694 ((sizeof (short) == 2) \
695 ? ((int)(short)(x)) \
696 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
697
698 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
699
700 /* Limit the number of skipped non-prologue instructions, as the examining
701 of the prologue is expensive. */
702 static int max_skip_non_prologue_insns = 10;
703
704 /* Given PC representing the starting address of a function, and
705 LIM_PC which is the (sloppy) limit to which to scan when looking
706 for a prologue, attempt to further refine this limit by using
707 the line data in the symbol table. If successful, a better guess
708 on where the prologue ends is returned, otherwise the previous
709 value of lim_pc is returned. */
710
711 /* FIXME: cagney/2004-02-14: This function and logic have largely been
712 superseded by skip_prologue_using_sal. */
713
714 static CORE_ADDR
715 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
716 {
717 struct symtab_and_line prologue_sal;
718
719 prologue_sal = find_pc_line (pc, 0);
720 if (prologue_sal.line != 0)
721 {
722 int i;
723 CORE_ADDR addr = prologue_sal.end;
724
725 /* Handle the case in which compiler's optimizer/scheduler
726 has moved instructions into the prologue. We scan ahead
727 in the function looking for address ranges whose corresponding
728 line number is less than or equal to the first one that we
729 found for the function. (It can be less than when the
730 scheduler puts a body instruction before the first prologue
731 instruction.) */
732 for (i = 2 * max_skip_non_prologue_insns;
733 i > 0 && (lim_pc == 0 || addr < lim_pc);
734 i--)
735 {
736 struct symtab_and_line sal;
737
738 sal = find_pc_line (addr, 0);
739 if (sal.line == 0)
740 break;
741 if (sal.line <= prologue_sal.line
742 && sal.symtab == prologue_sal.symtab)
743 {
744 prologue_sal = sal;
745 }
746 addr = sal.end;
747 }
748
749 if (lim_pc == 0 || prologue_sal.end < lim_pc)
750 lim_pc = prologue_sal.end;
751 }
752 return lim_pc;
753 }
754
755 /* Return nonzero if the given instruction OP can be part of the prologue
756 of a function and saves a parameter on the stack. FRAMEP should be
757 set if one of the previous instructions in the function has set the
758 Frame Pointer. */
759
760 static int
761 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
762 {
763 /* Move parameters from argument registers to temporary register. */
764 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
765 {
766 /* Rx must be scratch register r0. */
767 const int rx_regno = (op >> 16) & 31;
768 /* Ry: Only r3 - r10 are used for parameter passing. */
769 const int ry_regno = GET_SRC_REG (op);
770
771 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
772 {
773 *r0_contains_arg = 1;
774 return 1;
775 }
776 else
777 return 0;
778 }
779
780 /* Save a General Purpose Register on stack. */
781
782 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
783 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
784 {
785 /* Rx: Only r3 - r10 are used for parameter passing. */
786 const int rx_regno = GET_SRC_REG (op);
787
788 return (rx_regno >= 3 && rx_regno <= 10);
789 }
790
791 /* Save a General Purpose Register on stack via the Frame Pointer. */
792
793 if (framep &&
794 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
795 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
796 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
797 {
798 /* Rx: Usually, only r3 - r10 are used for parameter passing.
799 However, the compiler sometimes uses r0 to hold an argument. */
800 const int rx_regno = GET_SRC_REG (op);
801
802 return ((rx_regno >= 3 && rx_regno <= 10)
803 || (rx_regno == 0 && *r0_contains_arg));
804 }
805
806 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
807 {
808 /* Only f2 - f8 are used for parameter passing. */
809 const int src_regno = GET_SRC_REG (op);
810
811 return (src_regno >= 2 && src_regno <= 8);
812 }
813
814 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
815 {
816 /* Only f2 - f8 are used for parameter passing. */
817 const int src_regno = GET_SRC_REG (op);
818
819 return (src_regno >= 2 && src_regno <= 8);
820 }
821
822 /* Not an insn that saves a parameter on stack. */
823 return 0;
824 }
825
826 static CORE_ADDR
827 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
828 {
829 CORE_ADDR orig_pc = pc;
830 CORE_ADDR last_prologue_pc = pc;
831 CORE_ADDR li_found_pc = 0;
832 char buf[4];
833 unsigned long op;
834 long offset = 0;
835 long vr_saved_offset = 0;
836 int lr_reg = -1;
837 int cr_reg = -1;
838 int vr_reg = -1;
839 int ev_reg = -1;
840 long ev_offset = 0;
841 int vrsave_reg = -1;
842 int reg;
843 int framep = 0;
844 int minimal_toc_loaded = 0;
845 int prev_insn_was_prologue_insn = 1;
846 int num_skip_non_prologue_insns = 0;
847 int r0_contains_arg = 0;
848 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
850
851 /* Attempt to find the end of the prologue when no limit is specified.
852 Note that refine_prologue_limit() has been written so that it may
853 be used to "refine" the limits of non-zero PC values too, but this
854 is only safe if we 1) trust the line information provided by the
855 compiler and 2) iterate enough to actually find the end of the
856 prologue.
857
858 It may become a good idea at some point (for both performance and
859 accuracy) to unconditionally call refine_prologue_limit(). But,
860 until we can make a clear determination that this is beneficial,
861 we'll play it safe and only use it to obtain a limit when none
862 has been specified. */
863 if (lim_pc == 0)
864 lim_pc = refine_prologue_limit (pc, lim_pc);
865
866 memset (fdata, 0, sizeof (struct rs6000_framedata));
867 fdata->saved_gpr = -1;
868 fdata->saved_fpr = -1;
869 fdata->saved_vr = -1;
870 fdata->saved_ev = -1;
871 fdata->alloca_reg = -1;
872 fdata->frameless = 1;
873 fdata->nosavedpc = 1;
874
875 for (;; pc += 4)
876 {
877 /* Sometimes it isn't clear if an instruction is a prologue
878 instruction or not. When we encounter one of these ambiguous
879 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
880 Otherwise, we'll assume that it really is a prologue instruction. */
881 if (prev_insn_was_prologue_insn)
882 last_prologue_pc = pc;
883
884 /* Stop scanning if we've hit the limit. */
885 if (lim_pc != 0 && pc >= lim_pc)
886 break;
887
888 prev_insn_was_prologue_insn = 1;
889
890 /* Fetch the instruction and convert it to an integer. */
891 if (target_read_memory (pc, buf, 4))
892 break;
893 op = extract_signed_integer (buf, 4);
894
895 if ((op & 0xfc1fffff) == 0x7c0802a6)
896 { /* mflr Rx */
897 /* Since shared library / PIC code, which needs to get its
898 address at runtime, can appear to save more than one link
899 register vis:
900
901 *INDENT-OFF*
902 stwu r1,-304(r1)
903 mflr r3
904 bl 0xff570d0 (blrl)
905 stw r30,296(r1)
906 mflr r30
907 stw r31,300(r1)
908 stw r3,308(r1);
909 ...
910 *INDENT-ON*
911
912 remember just the first one, but skip over additional
913 ones. */
914 if (lr_reg < 0)
915 lr_reg = (op & 0x03e00000);
916 if (lr_reg == 0)
917 r0_contains_arg = 0;
918 continue;
919 }
920 else if ((op & 0xfc1fffff) == 0x7c000026)
921 { /* mfcr Rx */
922 cr_reg = (op & 0x03e00000);
923 if (cr_reg == 0)
924 r0_contains_arg = 0;
925 continue;
926
927 }
928 else if ((op & 0xfc1f0000) == 0xd8010000)
929 { /* stfd Rx,NUM(r1) */
930 reg = GET_SRC_REG (op);
931 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
932 {
933 fdata->saved_fpr = reg;
934 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
935 }
936 continue;
937
938 }
939 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
940 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
941 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
942 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
943 {
944
945 reg = GET_SRC_REG (op);
946 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
947 {
948 fdata->saved_gpr = reg;
949 if ((op & 0xfc1f0003) == 0xf8010000)
950 op &= ~3UL;
951 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
952 }
953 continue;
954
955 }
956 else if ((op & 0xffff0000) == 0x60000000)
957 {
958 /* nop */
959 /* Allow nops in the prologue, but do not consider them to
960 be part of the prologue unless followed by other prologue
961 instructions. */
962 prev_insn_was_prologue_insn = 0;
963 continue;
964
965 }
966 else if ((op & 0xffff0000) == 0x3c000000)
967 { /* addis 0,0,NUM, used
968 for >= 32k frames */
969 fdata->offset = (op & 0x0000ffff) << 16;
970 fdata->frameless = 0;
971 r0_contains_arg = 0;
972 continue;
973
974 }
975 else if ((op & 0xffff0000) == 0x60000000)
976 { /* ori 0,0,NUM, 2nd ha
977 lf of >= 32k frames */
978 fdata->offset |= (op & 0x0000ffff);
979 fdata->frameless = 0;
980 r0_contains_arg = 0;
981 continue;
982
983 }
984 else if (lr_reg != -1 &&
985 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
986 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
987 /* stw Rx, NUM(r1) */
988 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
989 /* stwu Rx, NUM(r1) */
990 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
991 { /* where Rx == lr */
992 fdata->lr_offset = offset;
993 fdata->nosavedpc = 0;
994 lr_reg = 0;
995 if ((op & 0xfc000003) == 0xf8000000 || /* std */
996 (op & 0xfc000000) == 0x90000000) /* stw */
997 {
998 /* Does not update r1, so add displacement to lr_offset. */
999 fdata->lr_offset += SIGNED_SHORT (op);
1000 }
1001 continue;
1002
1003 }
1004 else if (cr_reg != -1 &&
1005 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1006 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1007 /* stw Rx, NUM(r1) */
1008 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1009 /* stwu Rx, NUM(r1) */
1010 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1011 { /* where Rx == cr */
1012 fdata->cr_offset = offset;
1013 cr_reg = 0;
1014 if ((op & 0xfc000003) == 0xf8000000 ||
1015 (op & 0xfc000000) == 0x90000000)
1016 {
1017 /* Does not update r1, so add displacement to cr_offset. */
1018 fdata->cr_offset += SIGNED_SHORT (op);
1019 }
1020 continue;
1021
1022 }
1023 else if (op == 0x48000005)
1024 { /* bl .+4 used in
1025 -mrelocatable */
1026 continue;
1027
1028 }
1029 else if (op == 0x48000004)
1030 { /* b .+4 (xlc) */
1031 break;
1032
1033 }
1034 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1035 in V.4 -mminimal-toc */
1036 (op & 0xffff0000) == 0x3bde0000)
1037 { /* addi 30,30,foo@l */
1038 continue;
1039
1040 }
1041 else if ((op & 0xfc000001) == 0x48000001)
1042 { /* bl foo,
1043 to save fprs??? */
1044
1045 fdata->frameless = 0;
1046 /* Don't skip over the subroutine call if it is not within
1047 the first three instructions of the prologue. */
1048 if ((pc - orig_pc) > 8)
1049 break;
1050
1051 op = read_memory_integer (pc + 4, 4);
1052
1053 /* At this point, make sure this is not a trampoline
1054 function (a function that simply calls another functions,
1055 and nothing else). If the next is not a nop, this branch
1056 was part of the function prologue. */
1057
1058 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1059 break; /* don't skip over
1060 this branch */
1061 continue;
1062
1063 }
1064 /* update stack pointer */
1065 else if ((op & 0xfc1f0000) == 0x94010000)
1066 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1067 fdata->frameless = 0;
1068 fdata->offset = SIGNED_SHORT (op);
1069 offset = fdata->offset;
1070 continue;
1071 }
1072 else if ((op & 0xfc1f016a) == 0x7c01016e)
1073 { /* stwux rX,r1,rY */
1074 /* no way to figure out what r1 is going to be */
1075 fdata->frameless = 0;
1076 offset = fdata->offset;
1077 continue;
1078 }
1079 else if ((op & 0xfc1f0003) == 0xf8010001)
1080 { /* stdu rX,NUM(r1) */
1081 fdata->frameless = 0;
1082 fdata->offset = SIGNED_SHORT (op & ~3UL);
1083 offset = fdata->offset;
1084 continue;
1085 }
1086 else if ((op & 0xfc1f016a) == 0x7c01016a)
1087 { /* stdux rX,r1,rY */
1088 /* no way to figure out what r1 is going to be */
1089 fdata->frameless = 0;
1090 offset = fdata->offset;
1091 continue;
1092 }
1093 /* Load up minimal toc pointer */
1094 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1095 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1096 && !minimal_toc_loaded)
1097 {
1098 minimal_toc_loaded = 1;
1099 continue;
1100
1101 /* move parameters from argument registers to local variable
1102 registers */
1103 }
1104 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1105 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1106 (((op >> 21) & 31) <= 10) &&
1107 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1108 {
1109 continue;
1110
1111 /* store parameters in stack */
1112 }
1113 /* Move parameters from argument registers to temporary register. */
1114 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1115 {
1116 continue;
1117
1118 /* Set up frame pointer */
1119 }
1120 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1121 || op == 0x7c3f0b78)
1122 { /* mr r31, r1 */
1123 fdata->frameless = 0;
1124 framep = 1;
1125 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1126 continue;
1127
1128 /* Another way to set up the frame pointer. */
1129 }
1130 else if ((op & 0xfc1fffff) == 0x38010000)
1131 { /* addi rX, r1, 0x0 */
1132 fdata->frameless = 0;
1133 framep = 1;
1134 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1135 + ((op & ~0x38010000) >> 21));
1136 continue;
1137 }
1138 /* AltiVec related instructions. */
1139 /* Store the vrsave register (spr 256) in another register for
1140 later manipulation, or load a register into the vrsave
1141 register. 2 instructions are used: mfvrsave and
1142 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1143 and mtspr SPR256, Rn. */
1144 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1145 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1146 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1147 {
1148 vrsave_reg = GET_SRC_REG (op);
1149 continue;
1150 }
1151 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1152 {
1153 continue;
1154 }
1155 /* Store the register where vrsave was saved to onto the stack:
1156 rS is the register where vrsave was stored in a previous
1157 instruction. */
1158 /* 100100 sssss 00001 dddddddd dddddddd */
1159 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1160 {
1161 if (vrsave_reg == GET_SRC_REG (op))
1162 {
1163 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1164 vrsave_reg = -1;
1165 }
1166 continue;
1167 }
1168 /* Compute the new value of vrsave, by modifying the register
1169 where vrsave was saved to. */
1170 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1171 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1172 {
1173 continue;
1174 }
1175 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1176 in a pair of insns to save the vector registers on the
1177 stack. */
1178 /* 001110 00000 00000 iiii iiii iiii iiii */
1179 /* 001110 01110 00000 iiii iiii iiii iiii */
1180 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1181 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1182 {
1183 if ((op & 0xffff0000) == 0x38000000)
1184 r0_contains_arg = 0;
1185 li_found_pc = pc;
1186 vr_saved_offset = SIGNED_SHORT (op);
1187
1188 /* This insn by itself is not part of the prologue, unless
1189 if part of the pair of insns mentioned above. So do not
1190 record this insn as part of the prologue yet. */
1191 prev_insn_was_prologue_insn = 0;
1192 }
1193 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1194 /* 011111 sssss 11111 00000 00111001110 */
1195 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1196 {
1197 if (pc == (li_found_pc + 4))
1198 {
1199 vr_reg = GET_SRC_REG (op);
1200 /* If this is the first vector reg to be saved, or if
1201 it has a lower number than others previously seen,
1202 reupdate the frame info. */
1203 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1204 {
1205 fdata->saved_vr = vr_reg;
1206 fdata->vr_offset = vr_saved_offset + offset;
1207 }
1208 vr_saved_offset = -1;
1209 vr_reg = -1;
1210 li_found_pc = 0;
1211 }
1212 }
1213 /* End AltiVec related instructions. */
1214
1215 /* Start BookE related instructions. */
1216 /* Store gen register S at (r31+uimm).
1217 Any register less than r13 is volatile, so we don't care. */
1218 /* 000100 sssss 11111 iiiii 01100100001 */
1219 else if (arch_info->mach == bfd_mach_ppc_e500
1220 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1221 {
1222 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1223 {
1224 unsigned int imm;
1225 ev_reg = GET_SRC_REG (op);
1226 imm = (op >> 11) & 0x1f;
1227 ev_offset = imm * 8;
1228 /* If this is the first vector reg to be saved, or if
1229 it has a lower number than others previously seen,
1230 reupdate the frame info. */
1231 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1232 {
1233 fdata->saved_ev = ev_reg;
1234 fdata->ev_offset = ev_offset + offset;
1235 }
1236 }
1237 continue;
1238 }
1239 /* Store gen register rS at (r1+rB). */
1240 /* 000100 sssss 00001 bbbbb 01100100000 */
1241 else if (arch_info->mach == bfd_mach_ppc_e500
1242 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1243 {
1244 if (pc == (li_found_pc + 4))
1245 {
1246 ev_reg = GET_SRC_REG (op);
1247 /* If this is the first vector reg to be saved, or if
1248 it has a lower number than others previously seen,
1249 reupdate the frame info. */
1250 /* We know the contents of rB from the previous instruction. */
1251 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1252 {
1253 fdata->saved_ev = ev_reg;
1254 fdata->ev_offset = vr_saved_offset + offset;
1255 }
1256 vr_saved_offset = -1;
1257 ev_reg = -1;
1258 li_found_pc = 0;
1259 }
1260 continue;
1261 }
1262 /* Store gen register r31 at (rA+uimm). */
1263 /* 000100 11111 aaaaa iiiii 01100100001 */
1264 else if (arch_info->mach == bfd_mach_ppc_e500
1265 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1266 {
1267 /* Wwe know that the source register is 31 already, but
1268 it can't hurt to compute it. */
1269 ev_reg = GET_SRC_REG (op);
1270 ev_offset = ((op >> 11) & 0x1f) * 8;
1271 /* If this is the first vector reg to be saved, or if
1272 it has a lower number than others previously seen,
1273 reupdate the frame info. */
1274 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1275 {
1276 fdata->saved_ev = ev_reg;
1277 fdata->ev_offset = ev_offset + offset;
1278 }
1279
1280 continue;
1281 }
1282 /* Store gen register S at (r31+r0).
1283 Store param on stack when offset from SP bigger than 4 bytes. */
1284 /* 000100 sssss 11111 00000 01100100000 */
1285 else if (arch_info->mach == bfd_mach_ppc_e500
1286 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1287 {
1288 if (pc == (li_found_pc + 4))
1289 {
1290 if ((op & 0x03e00000) >= 0x01a00000)
1291 {
1292 ev_reg = GET_SRC_REG (op);
1293 /* If this is the first vector reg to be saved, or if
1294 it has a lower number than others previously seen,
1295 reupdate the frame info. */
1296 /* We know the contents of r0 from the previous
1297 instruction. */
1298 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1299 {
1300 fdata->saved_ev = ev_reg;
1301 fdata->ev_offset = vr_saved_offset + offset;
1302 }
1303 ev_reg = -1;
1304 }
1305 vr_saved_offset = -1;
1306 li_found_pc = 0;
1307 continue;
1308 }
1309 }
1310 /* End BookE related instructions. */
1311
1312 else
1313 {
1314 /* Not a recognized prologue instruction.
1315 Handle optimizer code motions into the prologue by continuing
1316 the search if we have no valid frame yet or if the return
1317 address is not yet saved in the frame. */
1318 if (fdata->frameless == 0
1319 && (lr_reg == -1 || fdata->nosavedpc == 0))
1320 break;
1321
1322 if (op == 0x4e800020 /* blr */
1323 || op == 0x4e800420) /* bctr */
1324 /* Do not scan past epilogue in frameless functions or
1325 trampolines. */
1326 break;
1327 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1328 /* Never skip branches. */
1329 break;
1330
1331 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1332 /* Do not scan too many insns, scanning insns is expensive with
1333 remote targets. */
1334 break;
1335
1336 /* Continue scanning. */
1337 prev_insn_was_prologue_insn = 0;
1338 continue;
1339 }
1340 }
1341
1342 #if 0
1343 /* I have problems with skipping over __main() that I need to address
1344 * sometime. Previously, I used to use misc_function_vector which
1345 * didn't work as well as I wanted to be. -MGO */
1346
1347 /* If the first thing after skipping a prolog is a branch to a function,
1348 this might be a call to an initializer in main(), introduced by gcc2.
1349 We'd like to skip over it as well. Fortunately, xlc does some extra
1350 work before calling a function right after a prologue, thus we can
1351 single out such gcc2 behaviour. */
1352
1353
1354 if ((op & 0xfc000001) == 0x48000001)
1355 { /* bl foo, an initializer function? */
1356 op = read_memory_integer (pc + 4, 4);
1357
1358 if (op == 0x4def7b82)
1359 { /* cror 0xf, 0xf, 0xf (nop) */
1360
1361 /* Check and see if we are in main. If so, skip over this
1362 initializer function as well. */
1363
1364 tmp = find_pc_misc_function (pc);
1365 if (tmp >= 0
1366 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1367 return pc + 8;
1368 }
1369 }
1370 #endif /* 0 */
1371
1372 fdata->offset = -fdata->offset;
1373 return last_prologue_pc;
1374 }
1375
1376
1377 /*************************************************************************
1378 Support for creating pushing a dummy frame into the stack, and popping
1379 frames, etc.
1380 *************************************************************************/
1381
1382
1383 /* All the ABI's require 16 byte alignment. */
1384 static CORE_ADDR
1385 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1386 {
1387 return (addr & -16);
1388 }
1389
1390 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1391 the first eight words of the argument list (that might be less than
1392 eight parameters if some parameters occupy more than one word) are
1393 passed in r3..r10 registers. float and double parameters are
1394 passed in fpr's, in addition to that. Rest of the parameters if any
1395 are passed in user stack. There might be cases in which half of the
1396 parameter is copied into registers, the other half is pushed into
1397 stack.
1398
1399 Stack must be aligned on 64-bit boundaries when synthesizing
1400 function calls.
1401
1402 If the function is returning a structure, then the return address is passed
1403 in r3, then the first 7 words of the parameters can be passed in registers,
1404 starting from r4. */
1405
1406 static CORE_ADDR
1407 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1408 struct regcache *regcache, CORE_ADDR bp_addr,
1409 int nargs, struct value **args, CORE_ADDR sp,
1410 int struct_return, CORE_ADDR struct_addr)
1411 {
1412 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1413 int ii;
1414 int len = 0;
1415 int argno; /* current argument number */
1416 int argbytes; /* current argument byte */
1417 char tmp_buffer[50];
1418 int f_argno = 0; /* current floating point argno */
1419 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1420 CORE_ADDR func_addr = find_function_addr (function, NULL);
1421
1422 struct value *arg = 0;
1423 struct type *type;
1424
1425 CORE_ADDR saved_sp;
1426
1427 /* The calling convention this function implements assumes the
1428 processor has floating-point registers. We shouldn't be using it
1429 on PPC variants that lack them. */
1430 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1431
1432 /* The first eight words of ther arguments are passed in registers.
1433 Copy them appropriately. */
1434 ii = 0;
1435
1436 /* If the function is returning a `struct', then the first word
1437 (which will be passed in r3) is used for struct return address.
1438 In that case we should advance one word and start from r4
1439 register to copy parameters. */
1440 if (struct_return)
1441 {
1442 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1443 struct_addr);
1444 ii++;
1445 }
1446
1447 /*
1448 effectively indirect call... gcc does...
1449
1450 return_val example( float, int);
1451
1452 eabi:
1453 float in fp0, int in r3
1454 offset of stack on overflow 8/16
1455 for varargs, must go by type.
1456 power open:
1457 float in r3&r4, int in r5
1458 offset of stack on overflow different
1459 both:
1460 return in r3 or f0. If no float, must study how gcc emulates floats;
1461 pay attention to arg promotion.
1462 User may have to cast\args to handle promotion correctly
1463 since gdb won't know if prototype supplied or not.
1464 */
1465
1466 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1467 {
1468 int reg_size = register_size (current_gdbarch, ii + 3);
1469
1470 arg = args[argno];
1471 type = check_typedef (VALUE_TYPE (arg));
1472 len = TYPE_LENGTH (type);
1473
1474 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1475 {
1476
1477 /* Floating point arguments are passed in fpr's, as well as gpr's.
1478 There are 13 fpr's reserved for passing parameters. At this point
1479 there is no way we would run out of them. */
1480
1481 if (len > 8)
1482 printf_unfiltered ("Fatal Error: a floating point parameter "
1483 "#%d with a size > 8 is found!\n", argno);
1484
1485 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE
1486 (tdep->ppc_fp0_regnum + 1 + f_argno)],
1487 VALUE_CONTENTS (arg),
1488 len);
1489 ++f_argno;
1490 }
1491
1492 if (len > reg_size)
1493 {
1494
1495 /* Argument takes more than one register. */
1496 while (argbytes < len)
1497 {
1498 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1499 reg_size);
1500 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1501 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1502 (len - argbytes) > reg_size
1503 ? reg_size : len - argbytes);
1504 ++ii, argbytes += reg_size;
1505
1506 if (ii >= 8)
1507 goto ran_out_of_registers_for_arguments;
1508 }
1509 argbytes = 0;
1510 --ii;
1511 }
1512 else
1513 {
1514 /* Argument can fit in one register. No problem. */
1515 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1516 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1517 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1518 VALUE_CONTENTS (arg), len);
1519 }
1520 ++argno;
1521 }
1522
1523 ran_out_of_registers_for_arguments:
1524
1525 saved_sp = read_sp ();
1526
1527 /* Location for 8 parameters are always reserved. */
1528 sp -= wordsize * 8;
1529
1530 /* Another six words for back chain, TOC register, link register, etc. */
1531 sp -= wordsize * 6;
1532
1533 /* Stack pointer must be quadword aligned. */
1534 sp &= -16;
1535
1536 /* If there are more arguments, allocate space for them in
1537 the stack, then push them starting from the ninth one. */
1538
1539 if ((argno < nargs) || argbytes)
1540 {
1541 int space = 0, jj;
1542
1543 if (argbytes)
1544 {
1545 space += ((len - argbytes + 3) & -4);
1546 jj = argno + 1;
1547 }
1548 else
1549 jj = argno;
1550
1551 for (; jj < nargs; ++jj)
1552 {
1553 struct value *val = args[jj];
1554 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1555 }
1556
1557 /* Add location required for the rest of the parameters. */
1558 space = (space + 15) & -16;
1559 sp -= space;
1560
1561 /* This is another instance we need to be concerned about
1562 securing our stack space. If we write anything underneath %sp
1563 (r1), we might conflict with the kernel who thinks he is free
1564 to use this area. So, update %sp first before doing anything
1565 else. */
1566
1567 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1568
1569 /* If the last argument copied into the registers didn't fit there
1570 completely, push the rest of it into stack. */
1571
1572 if (argbytes)
1573 {
1574 write_memory (sp + 24 + (ii * 4),
1575 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1576 len - argbytes);
1577 ++argno;
1578 ii += ((len - argbytes + 3) & -4) / 4;
1579 }
1580
1581 /* Push the rest of the arguments into stack. */
1582 for (; argno < nargs; ++argno)
1583 {
1584
1585 arg = args[argno];
1586 type = check_typedef (VALUE_TYPE (arg));
1587 len = TYPE_LENGTH (type);
1588
1589
1590 /* Float types should be passed in fpr's, as well as in the
1591 stack. */
1592 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1593 {
1594
1595 if (len > 8)
1596 printf_unfiltered ("Fatal Error: a floating point parameter"
1597 " #%d with a size > 8 is found!\n", argno);
1598
1599 memcpy (&(deprecated_registers
1600 [DEPRECATED_REGISTER_BYTE
1601 (tdep->ppc_fp0_regnum + 1 + f_argno)]),
1602 VALUE_CONTENTS (arg),
1603 len);
1604 ++f_argno;
1605 }
1606
1607 write_memory (sp + 24 + (ii * 4),
1608 (char *) VALUE_CONTENTS (arg),
1609 len);
1610 ii += ((len + 3) & -4) / 4;
1611 }
1612 }
1613
1614 /* Set the stack pointer. According to the ABI, the SP is meant to
1615 be set _before_ the corresponding stack space is used. On AIX,
1616 this even applies when the target has been completely stopped!
1617 Not doing this can lead to conflicts with the kernel which thinks
1618 that it still has control over this not-yet-allocated stack
1619 region. */
1620 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1621
1622 /* Set back chain properly. */
1623 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1624 write_memory (sp, tmp_buffer, 4);
1625
1626 /* Point the inferior function call's return address at the dummy's
1627 breakpoint. */
1628 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1629
1630 /* Set the TOC register, get the value from the objfile reader
1631 which, in turn, gets it from the VMAP table. */
1632 if (rs6000_find_toc_address_hook != NULL)
1633 {
1634 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1635 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1636 }
1637
1638 target_store_registers (-1);
1639 return sp;
1640 }
1641
1642 /* PowerOpen always puts structures in memory. Vectors, which were
1643 added later, do get returned in a register though. */
1644
1645 static int
1646 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1647 {
1648 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1649 && TYPE_VECTOR (value_type))
1650 return 0;
1651 return 1;
1652 }
1653
1654 static void
1655 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1656 {
1657 int offset = 0;
1658 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1659
1660 /* The calling convention this function implements assumes the
1661 processor has floating-point registers. We shouldn't be using it
1662 on PPC variants that lack them. */
1663 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1664
1665 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1666 {
1667
1668 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1669 We need to truncate the return value into float size (4 byte) if
1670 necessary. */
1671
1672 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1673 (tdep->ppc_fp0_regnum + 1)],
1674 builtin_type_double,
1675 valbuf,
1676 valtype);
1677 }
1678 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1679 && TYPE_LENGTH (valtype) == 16
1680 && TYPE_VECTOR (valtype))
1681 {
1682 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1683 TYPE_LENGTH (valtype));
1684 }
1685 else
1686 {
1687 /* return value is copied starting from r3. */
1688 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1689 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1690 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
1691
1692 memcpy (valbuf,
1693 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1694 TYPE_LENGTH (valtype));
1695 }
1696 }
1697
1698 /* Return whether handle_inferior_event() should proceed through code
1699 starting at PC in function NAME when stepping.
1700
1701 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1702 handle memory references that are too distant to fit in instructions
1703 generated by the compiler. For example, if 'foo' in the following
1704 instruction:
1705
1706 lwz r9,foo(r2)
1707
1708 is greater than 32767, the linker might replace the lwz with a branch to
1709 somewhere in @FIX1 that does the load in 2 instructions and then branches
1710 back to where execution should continue.
1711
1712 GDB should silently step over @FIX code, just like AIX dbx does.
1713 Unfortunately, the linker uses the "b" instruction for the branches,
1714 meaning that the link register doesn't get set. Therefore, GDB's usual
1715 step_over_function() mechanism won't work.
1716
1717 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1718 in handle_inferior_event() to skip past @FIX code. */
1719
1720 int
1721 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1722 {
1723 return name && !strncmp (name, "@FIX", 4);
1724 }
1725
1726 /* Skip code that the user doesn't want to see when stepping:
1727
1728 1. Indirect function calls use a piece of trampoline code to do context
1729 switching, i.e. to set the new TOC table. Skip such code if we are on
1730 its first instruction (as when we have single-stepped to here).
1731
1732 2. Skip shared library trampoline code (which is different from
1733 indirect function call trampolines).
1734
1735 3. Skip bigtoc fixup code.
1736
1737 Result is desired PC to step until, or NULL if we are not in
1738 code that should be skipped. */
1739
1740 CORE_ADDR
1741 rs6000_skip_trampoline_code (CORE_ADDR pc)
1742 {
1743 unsigned int ii, op;
1744 int rel;
1745 CORE_ADDR solib_target_pc;
1746 struct minimal_symbol *msymbol;
1747
1748 static unsigned trampoline_code[] =
1749 {
1750 0x800b0000, /* l r0,0x0(r11) */
1751 0x90410014, /* st r2,0x14(r1) */
1752 0x7c0903a6, /* mtctr r0 */
1753 0x804b0004, /* l r2,0x4(r11) */
1754 0x816b0008, /* l r11,0x8(r11) */
1755 0x4e800420, /* bctr */
1756 0x4e800020, /* br */
1757 0
1758 };
1759
1760 /* Check for bigtoc fixup code. */
1761 msymbol = lookup_minimal_symbol_by_pc (pc);
1762 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1763 {
1764 /* Double-check that the third instruction from PC is relative "b". */
1765 op = read_memory_integer (pc + 8, 4);
1766 if ((op & 0xfc000003) == 0x48000000)
1767 {
1768 /* Extract bits 6-29 as a signed 24-bit relative word address and
1769 add it to the containing PC. */
1770 rel = ((int)(op << 6) >> 6);
1771 return pc + 8 + rel;
1772 }
1773 }
1774
1775 /* If pc is in a shared library trampoline, return its target. */
1776 solib_target_pc = find_solib_trampoline_target (pc);
1777 if (solib_target_pc)
1778 return solib_target_pc;
1779
1780 for (ii = 0; trampoline_code[ii]; ++ii)
1781 {
1782 op = read_memory_integer (pc + (ii * 4), 4);
1783 if (op != trampoline_code[ii])
1784 return 0;
1785 }
1786 ii = read_register (11); /* r11 holds destination addr */
1787 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1788 return pc;
1789 }
1790
1791 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1792 isn't available with that word size, return 0. */
1793
1794 static int
1795 regsize (const struct reg *reg, int wordsize)
1796 {
1797 return wordsize == 8 ? reg->sz64 : reg->sz32;
1798 }
1799
1800 /* Return the name of register number N, or null if no such register exists
1801 in the current architecture. */
1802
1803 static const char *
1804 rs6000_register_name (int n)
1805 {
1806 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1807 const struct reg *reg = tdep->regs + n;
1808
1809 if (!regsize (reg, tdep->wordsize))
1810 return NULL;
1811 return reg->name;
1812 }
1813
1814 /* Return the GDB type object for the "standard" data type
1815 of data in register N. */
1816
1817 static struct type *
1818 rs6000_register_type (struct gdbarch *gdbarch, int n)
1819 {
1820 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1821 const struct reg *reg = tdep->regs + n;
1822
1823 if (reg->fpr)
1824 return builtin_type_double;
1825 else
1826 {
1827 int size = regsize (reg, tdep->wordsize);
1828 switch (size)
1829 {
1830 case 0:
1831 return builtin_type_int0;
1832 case 4:
1833 return builtin_type_uint32;
1834 case 8:
1835 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1836 return builtin_type_vec64;
1837 else
1838 return builtin_type_uint64;
1839 break;
1840 case 16:
1841 return builtin_type_vec128;
1842 break;
1843 default:
1844 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1845 n, size);
1846 }
1847 }
1848 }
1849
1850 /* The register format for RS/6000 floating point registers is always
1851 double, we need a conversion if the memory format is float. */
1852
1853 static int
1854 rs6000_convert_register_p (int regnum, struct type *type)
1855 {
1856 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1857
1858 return (reg->fpr
1859 && TYPE_CODE (type) == TYPE_CODE_FLT
1860 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
1861 }
1862
1863 static void
1864 rs6000_register_to_value (struct frame_info *frame,
1865 int regnum,
1866 struct type *type,
1867 void *to)
1868 {
1869 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1870 char from[MAX_REGISTER_SIZE];
1871
1872 gdb_assert (reg->fpr);
1873 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1874
1875 get_frame_register (frame, regnum, from);
1876 convert_typed_floating (from, builtin_type_double, to, type);
1877 }
1878
1879 static void
1880 rs6000_value_to_register (struct frame_info *frame,
1881 int regnum,
1882 struct type *type,
1883 const void *from)
1884 {
1885 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1886 char to[MAX_REGISTER_SIZE];
1887
1888 gdb_assert (reg->fpr);
1889 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1890
1891 convert_typed_floating (from, type, to, builtin_type_double);
1892 put_frame_register (frame, regnum, to);
1893 }
1894
1895 /* Move SPE vector register values between a 64-bit buffer and the two
1896 32-bit raw register halves in a regcache. This function handles
1897 both splitting a 64-bit value into two 32-bit halves, and joining
1898 two halves into a whole 64-bit value, depending on the function
1899 passed as the MOVE argument.
1900
1901 EV_REG must be the number of an SPE evN vector register --- a
1902 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1903 64-bit buffer.
1904
1905 Call MOVE once for each 32-bit half of that register, passing
1906 REGCACHE, the number of the raw register corresponding to that
1907 half, and the address of the appropriate half of BUFFER.
1908
1909 For example, passing 'regcache_raw_read' as the MOVE function will
1910 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1911 'regcache_raw_supply' will supply the contents of BUFFER to the
1912 appropriate pair of raw registers in REGCACHE.
1913
1914 You may need to cast away some 'const' qualifiers when passing
1915 MOVE, since this function can't tell at compile-time which of
1916 REGCACHE or BUFFER is acting as the source of the data. If C had
1917 co-variant type qualifiers, ... */
1918 static void
1919 e500_move_ev_register (void (*move) (struct regcache *regcache,
1920 int regnum, void *buf),
1921 struct regcache *regcache, int ev_reg,
1922 void *buffer)
1923 {
1924 struct gdbarch *arch = get_regcache_arch (regcache);
1925 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1926 int reg_index;
1927 char *byte_buffer = buffer;
1928
1929 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1930 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1931
1932 reg_index = ev_reg - tdep->ppc_ev0_regnum;
1933
1934 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1935 {
1936 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
1937 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
1938 }
1939 else
1940 {
1941 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
1942 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
1943 }
1944 }
1945
1946 static void
1947 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1948 int reg_nr, void *buffer)
1949 {
1950 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1952
1953 gdb_assert (regcache_arch == gdbarch);
1954
1955 if (tdep->ppc_ev0_regnum <= reg_nr
1956 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1957 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
1958 else
1959 internal_error (__FILE__, __LINE__,
1960 "e500_pseudo_register_read: "
1961 "called on unexpected register '%s' (%d)",
1962 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
1963 }
1964
1965 static void
1966 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1967 int reg_nr, const void *buffer)
1968 {
1969 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1970 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1971
1972 gdb_assert (regcache_arch == gdbarch);
1973
1974 if (tdep->ppc_ev0_regnum <= reg_nr
1975 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1976 e500_move_ev_register ((void (*) (struct regcache *, int, void *))
1977 regcache_raw_write,
1978 regcache, reg_nr, (void *) buffer);
1979 else
1980 internal_error (__FILE__, __LINE__,
1981 "e500_pseudo_register_read: "
1982 "called on unexpected register '%s' (%d)",
1983 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
1984 }
1985
1986 /* The E500 needs a custom reggroup function: it has anonymous raw
1987 registers, and default_register_reggroup_p assumes that anonymous
1988 registers are not members of any reggroup. */
1989 static int
1990 e500_register_reggroup_p (struct gdbarch *gdbarch,
1991 int regnum,
1992 struct reggroup *group)
1993 {
1994 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1995
1996 /* The save and restore register groups need to include the
1997 upper-half registers, even though they're anonymous. */
1998 if ((group == save_reggroup
1999 || group == restore_reggroup)
2000 && (tdep->ppc_ev0_upper_regnum <= regnum
2001 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2002 return 1;
2003
2004 /* In all other regards, the default reggroup definition is fine. */
2005 return default_register_reggroup_p (gdbarch, regnum, group);
2006 }
2007
2008 /* Convert a DBX STABS register number to a GDB register number. */
2009 static int
2010 rs6000_stab_reg_to_regnum (int num)
2011 {
2012 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2013
2014 if (0 <= num && num <= 31)
2015 return tdep->ppc_gp0_regnum + num;
2016 else if (32 <= num && num <= 63)
2017 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2018 specifies registers the architecture doesn't have? Our
2019 callers don't check the value we return. */
2020 return tdep->ppc_fp0_regnum + (num - 32);
2021 else if (77 <= num && num <= 108)
2022 return tdep->ppc_vr0_regnum + (num - 77);
2023 else if (1200 <= num && num < 1200 + 32)
2024 return tdep->ppc_ev0_regnum + (num - 1200);
2025 else
2026 switch (num)
2027 {
2028 case 64:
2029 return tdep->ppc_mq_regnum;
2030 case 65:
2031 return tdep->ppc_lr_regnum;
2032 case 66:
2033 return tdep->ppc_ctr_regnum;
2034 case 76:
2035 return tdep->ppc_xer_regnum;
2036 case 109:
2037 return tdep->ppc_vrsave_regnum;
2038 case 110:
2039 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2040 case 111:
2041 return tdep->ppc_acc_regnum;
2042 case 112:
2043 return tdep->ppc_spefscr_regnum;
2044 default:
2045 return num;
2046 }
2047 }
2048
2049
2050 /* Convert a Dwarf 2 register number to a GDB register number. */
2051 static int
2052 rs6000_dwarf2_reg_to_regnum (int num)
2053 {
2054 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2055
2056 if (0 <= num && num <= 31)
2057 return tdep->ppc_gp0_regnum + num;
2058 else if (32 <= num && num <= 63)
2059 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2060 specifies registers the architecture doesn't have? Our
2061 callers don't check the value we return. */
2062 return tdep->ppc_fp0_regnum + (num - 32);
2063 else if (1124 <= num && num < 1124 + 32)
2064 return tdep->ppc_vr0_regnum + (num - 1124);
2065 else if (1200 <= num && num < 1200 + 32)
2066 return tdep->ppc_ev0_regnum + (num - 1200);
2067 else
2068 switch (num)
2069 {
2070 case 67:
2071 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2072 case 99:
2073 return tdep->ppc_acc_regnum;
2074 case 100:
2075 return tdep->ppc_mq_regnum;
2076 case 101:
2077 return tdep->ppc_xer_regnum;
2078 case 108:
2079 return tdep->ppc_lr_regnum;
2080 case 109:
2081 return tdep->ppc_ctr_regnum;
2082 case 356:
2083 return tdep->ppc_vrsave_regnum;
2084 case 612:
2085 return tdep->ppc_spefscr_regnum;
2086 default:
2087 return num;
2088 }
2089 }
2090
2091
2092 static void
2093 rs6000_store_return_value (struct type *type,
2094 struct regcache *regcache,
2095 const void *valbuf)
2096 {
2097 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2098 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2099 int regnum = -1;
2100
2101 /* The calling convention this function implements assumes the
2102 processor has floating-point registers. We shouldn't be using it
2103 on PPC variants that lack them. */
2104 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2105
2106 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2107 /* Floating point values are returned starting from FPR1 and up.
2108 Say a double_double_double type could be returned in
2109 FPR1/FPR2/FPR3 triple. */
2110 regnum = tdep->ppc_fp0_regnum + 1;
2111 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2112 {
2113 if (TYPE_LENGTH (type) == 16
2114 && TYPE_VECTOR (type))
2115 regnum = tdep->ppc_vr0_regnum + 2;
2116 else
2117 internal_error (__FILE__, __LINE__,
2118 "rs6000_store_return_value: "
2119 "unexpected array return type");
2120 }
2121 else
2122 /* Everything else is returned in GPR3 and up. */
2123 regnum = tdep->ppc_gp0_regnum + 3;
2124
2125 {
2126 size_t bytes_written = 0;
2127
2128 while (bytes_written < TYPE_LENGTH (type))
2129 {
2130 /* How much of this value can we write to this register? */
2131 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2132 register_size (gdbarch, regnum));
2133 regcache_cooked_write_part (regcache, regnum,
2134 0, bytes_to_write,
2135 (char *) valbuf + bytes_written);
2136 regnum++;
2137 bytes_written += bytes_to_write;
2138 }
2139 }
2140 }
2141
2142
2143 /* Extract from an array REGBUF containing the (raw) register state
2144 the address in which a function should return its structure value,
2145 as a CORE_ADDR (or an expression that can be used as one). */
2146
2147 static CORE_ADDR
2148 rs6000_extract_struct_value_address (struct regcache *regcache)
2149 {
2150 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2151 function call GDB knows the address of the struct return value
2152 and hence, should not need to call this function. Unfortunately,
2153 the current call_function_by_hand() code only saves the most
2154 recent struct address leading to occasional calls. The code
2155 should instead maintain a stack of such addresses (in the dummy
2156 frame object). */
2157 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2158 really got no idea where the return value is being stored. While
2159 r3, on function entry, contained the address it will have since
2160 been reused (scratch) and hence wouldn't be valid */
2161 return 0;
2162 }
2163
2164 /* Hook called when a new child process is started. */
2165
2166 void
2167 rs6000_create_inferior (int pid)
2168 {
2169 if (rs6000_set_host_arch_hook)
2170 rs6000_set_host_arch_hook (pid);
2171 }
2172 \f
2173 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2174
2175 Usually a function pointer's representation is simply the address
2176 of the function. On the RS/6000 however, a function pointer is
2177 represented by a pointer to a TOC entry. This TOC entry contains
2178 three words, the first word is the address of the function, the
2179 second word is the TOC pointer (r2), and the third word is the
2180 static chain value. Throughout GDB it is currently assumed that a
2181 function pointer contains the address of the function, which is not
2182 easy to fix. In addition, the conversion of a function address to
2183 a function pointer would require allocation of a TOC entry in the
2184 inferior's memory space, with all its drawbacks. To be able to
2185 call C++ virtual methods in the inferior (which are called via
2186 function pointers), find_function_addr uses this function to get the
2187 function address from a function pointer. */
2188
2189 /* Return real function address if ADDR (a function pointer) is in the data
2190 space and is therefore a special function pointer. */
2191
2192 static CORE_ADDR
2193 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2194 CORE_ADDR addr,
2195 struct target_ops *targ)
2196 {
2197 struct obj_section *s;
2198
2199 s = find_pc_section (addr);
2200 if (s && s->the_bfd_section->flags & SEC_CODE)
2201 return addr;
2202
2203 /* ADDR is in the data space, so it's a special function pointer. */
2204 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2205 }
2206 \f
2207
2208 /* Handling the various POWER/PowerPC variants. */
2209
2210
2211 /* The arrays here called registers_MUMBLE hold information about available
2212 registers.
2213
2214 For each family of PPC variants, I've tried to isolate out the
2215 common registers and put them up front, so that as long as you get
2216 the general family right, GDB will correctly identify the registers
2217 common to that family. The common register sets are:
2218
2219 For the 60x family: hid0 hid1 iabr dabr pir
2220
2221 For the 505 and 860 family: eie eid nri
2222
2223 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2224 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2225 pbu1 pbl2 pbu2
2226
2227 Most of these register groups aren't anything formal. I arrived at
2228 them by looking at the registers that occurred in more than one
2229 processor.
2230
2231 Note: kevinb/2002-04-30: Support for the fpscr register was added
2232 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2233 for Power. For PowerPC, slot 70 was unused and was already in the
2234 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2235 slot 70 was being used for "mq", so the next available slot (71)
2236 was chosen. It would have been nice to be able to make the
2237 register numbers the same across processor cores, but this wasn't
2238 possible without either 1) renumbering some registers for some
2239 processors or 2) assigning fpscr to a really high slot that's
2240 larger than any current register number. Doing (1) is bad because
2241 existing stubs would break. Doing (2) is undesirable because it
2242 would introduce a really large gap between fpscr and the rest of
2243 the registers for most processors. */
2244
2245 /* Convenience macros for populating register arrays. */
2246
2247 /* Within another macro, convert S to a string. */
2248
2249 #define STR(s) #s
2250
2251 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2252 and 64 bits on 64-bit systems. */
2253 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2254
2255 /* Return a struct reg defining register NAME that's 32 bits on all
2256 systems. */
2257 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2258
2259 /* Return a struct reg defining register NAME that's 64 bits on all
2260 systems. */
2261 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2262
2263 /* Return a struct reg defining register NAME that's 128 bits on all
2264 systems. */
2265 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2266
2267 /* Return a struct reg defining floating-point register NAME. */
2268 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2269
2270 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2271 long on all systems. */
2272 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2273
2274 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2275 systems and that doesn't exist on 64-bit systems. */
2276 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2277
2278 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2279 systems and that doesn't exist on 32-bit systems. */
2280 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2281
2282 /* Return a struct reg placeholder for a register that doesn't exist. */
2283 #define R0 { 0, 0, 0, 0, 0, -1 }
2284
2285 /* Return a struct reg defining an anonymous raw register that's 32
2286 bits on all systems. */
2287 #define A4 { 0, 4, 4, 0, 0, -1 }
2288
2289 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2290 32-bit systems and 64 bits on 64-bit systems. */
2291 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2292
2293 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2294 all systems. */
2295 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2296
2297 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2298 all systems, and whose SPR number is NUMBER. */
2299 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2300
2301 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2302 64-bit systems and that doesn't exist on 32-bit systems. */
2303 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2304
2305 /* UISA registers common across all architectures, including POWER. */
2306
2307 #define COMMON_UISA_REGS \
2308 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2309 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2310 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2311 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2312 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2313 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2314 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2315 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2316 /* 64 */ R(pc), R(ps)
2317
2318 /* UISA-level SPRs for PowerPC. */
2319 #define PPC_UISA_SPRS \
2320 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2321
2322 /* UISA-level SPRs for PowerPC without floating point support. */
2323 #define PPC_UISA_NOFP_SPRS \
2324 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2325
2326 /* Segment registers, for PowerPC. */
2327 #define PPC_SEGMENT_REGS \
2328 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2329 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2330 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2331 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2332
2333 /* OEA SPRs for PowerPC. */
2334 #define PPC_OEA_SPRS \
2335 /* 87 */ S4(pvr), \
2336 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2337 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2338 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2339 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2340 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2341 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2342 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2343 /* 116 */ S4(dec), S(dabr), S4(ear)
2344
2345 /* AltiVec registers. */
2346 #define PPC_ALTIVEC_REGS \
2347 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2348 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2349 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2350 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2351 /*151*/R4(vscr), R4(vrsave)
2352
2353
2354 /* On machines supporting the SPE APU, the general-purpose registers
2355 are 64 bits long. There are SIMD vector instructions to treat them
2356 as pairs of floats, but the rest of the instruction set treats them
2357 as 32-bit registers, and only operates on their lower halves.
2358
2359 In the GDB regcache, we treat their high and low halves as separate
2360 registers. The low halves we present as the general-purpose
2361 registers, and then we have pseudo-registers that stitch together
2362 the upper and lower halves and present them as pseudo-registers. */
2363
2364 /* SPE GPR lower halves --- raw registers. */
2365 #define PPC_SPE_GP_REGS \
2366 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2367 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2368 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2369 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2370
2371 /* SPE GPR upper halves --- anonymous raw registers. */
2372 #define PPC_SPE_UPPER_GP_REGS \
2373 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2374 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2375 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2376 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2377
2378 /* SPE GPR vector registers --- pseudo registers based on underlying
2379 gprs and the anonymous upper half raw registers. */
2380 #define PPC_EV_PSEUDO_REGS \
2381 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2382 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2383 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2384 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2385
2386 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2387 user-level SPR's. */
2388 static const struct reg registers_power[] =
2389 {
2390 COMMON_UISA_REGS,
2391 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2392 /* 71 */ R4(fpscr)
2393 };
2394
2395 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2396 view of the PowerPC. */
2397 static const struct reg registers_powerpc[] =
2398 {
2399 COMMON_UISA_REGS,
2400 PPC_UISA_SPRS,
2401 PPC_ALTIVEC_REGS
2402 };
2403
2404 /* IBM PowerPC 403.
2405
2406 Some notes about the "tcr" special-purpose register:
2407 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2408 403's programmable interval timer, fixed interval timer, and
2409 watchdog timer.
2410 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2411 watchdog timer, and nothing else.
2412
2413 Some of the fields are similar between the two, but they're not
2414 compatible with each other. Since the two variants have different
2415 registers, with different numbers, but the same name, we can't
2416 splice the register name to get the SPR number. */
2417 static const struct reg registers_403[] =
2418 {
2419 COMMON_UISA_REGS,
2420 PPC_UISA_SPRS,
2421 PPC_SEGMENT_REGS,
2422 PPC_OEA_SPRS,
2423 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2424 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2425 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2426 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2427 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2428 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2429 };
2430
2431 /* IBM PowerPC 403GC.
2432 See the comments about 'tcr' for the 403, above. */
2433 static const struct reg registers_403GC[] =
2434 {
2435 COMMON_UISA_REGS,
2436 PPC_UISA_SPRS,
2437 PPC_SEGMENT_REGS,
2438 PPC_OEA_SPRS,
2439 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2440 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2441 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2442 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2443 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2444 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2445 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2446 /* 147 */ S(tbhu), S(tblu)
2447 };
2448
2449 /* Motorola PowerPC 505. */
2450 static const struct reg registers_505[] =
2451 {
2452 COMMON_UISA_REGS,
2453 PPC_UISA_SPRS,
2454 PPC_SEGMENT_REGS,
2455 PPC_OEA_SPRS,
2456 /* 119 */ S(eie), S(eid), S(nri)
2457 };
2458
2459 /* Motorola PowerPC 860 or 850. */
2460 static const struct reg registers_860[] =
2461 {
2462 COMMON_UISA_REGS,
2463 PPC_UISA_SPRS,
2464 PPC_SEGMENT_REGS,
2465 PPC_OEA_SPRS,
2466 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2467 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2468 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2469 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2470 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2471 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2472 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2473 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2474 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2475 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2476 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2477 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2478 };
2479
2480 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2481 for reading and writing RTCU and RTCL. However, how one reads and writes a
2482 register is the stub's problem. */
2483 static const struct reg registers_601[] =
2484 {
2485 COMMON_UISA_REGS,
2486 PPC_UISA_SPRS,
2487 PPC_SEGMENT_REGS,
2488 PPC_OEA_SPRS,
2489 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2490 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2491 };
2492
2493 /* Motorola PowerPC 602.
2494 See the notes under the 403 about 'tcr'. */
2495 static const struct reg registers_602[] =
2496 {
2497 COMMON_UISA_REGS,
2498 PPC_UISA_SPRS,
2499 PPC_SEGMENT_REGS,
2500 PPC_OEA_SPRS,
2501 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2502 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2503 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2504 };
2505
2506 /* Motorola/IBM PowerPC 603 or 603e. */
2507 static const struct reg registers_603[] =
2508 {
2509 COMMON_UISA_REGS,
2510 PPC_UISA_SPRS,
2511 PPC_SEGMENT_REGS,
2512 PPC_OEA_SPRS,
2513 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2514 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2515 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2516 };
2517
2518 /* Motorola PowerPC 604 or 604e. */
2519 static const struct reg registers_604[] =
2520 {
2521 COMMON_UISA_REGS,
2522 PPC_UISA_SPRS,
2523 PPC_SEGMENT_REGS,
2524 PPC_OEA_SPRS,
2525 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2526 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2527 /* 127 */ S(sia), S(sda)
2528 };
2529
2530 /* Motorola/IBM PowerPC 750 or 740. */
2531 static const struct reg registers_750[] =
2532 {
2533 COMMON_UISA_REGS,
2534 PPC_UISA_SPRS,
2535 PPC_SEGMENT_REGS,
2536 PPC_OEA_SPRS,
2537 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2538 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2539 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2540 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2541 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2542 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2543 };
2544
2545
2546 /* Motorola PowerPC 7400. */
2547 static const struct reg registers_7400[] =
2548 {
2549 /* gpr0-gpr31, fpr0-fpr31 */
2550 COMMON_UISA_REGS,
2551 /* cr, lr, ctr, xer, fpscr */
2552 PPC_UISA_SPRS,
2553 /* sr0-sr15 */
2554 PPC_SEGMENT_REGS,
2555 PPC_OEA_SPRS,
2556 /* vr0-vr31, vrsave, vscr */
2557 PPC_ALTIVEC_REGS
2558 /* FIXME? Add more registers? */
2559 };
2560
2561 /* Motorola e500. */
2562 static const struct reg registers_e500[] =
2563 {
2564 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2565 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2566 /* 64 .. 65 */ R(pc), R(ps),
2567 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2568 /* 71 .. 72 */ R8(acc), S4(spefscr),
2569 /* NOTE: Add new registers here the end of the raw register
2570 list and just before the first pseudo register. */
2571 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2572 };
2573
2574 /* Information about a particular processor variant. */
2575
2576 struct variant
2577 {
2578 /* Name of this variant. */
2579 char *name;
2580
2581 /* English description of the variant. */
2582 char *description;
2583
2584 /* bfd_arch_info.arch corresponding to variant. */
2585 enum bfd_architecture arch;
2586
2587 /* bfd_arch_info.mach corresponding to variant. */
2588 unsigned long mach;
2589
2590 /* Number of real registers. */
2591 int nregs;
2592
2593 /* Number of pseudo registers. */
2594 int npregs;
2595
2596 /* Number of total registers (the sum of nregs and npregs). */
2597 int num_tot_regs;
2598
2599 /* Table of register names; registers[R] is the name of the register
2600 number R. */
2601 const struct reg *regs;
2602 };
2603
2604 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2605
2606 static int
2607 num_registers (const struct reg *reg_list, int num_tot_regs)
2608 {
2609 int i;
2610 int nregs = 0;
2611
2612 for (i = 0; i < num_tot_regs; i++)
2613 if (!reg_list[i].pseudo)
2614 nregs++;
2615
2616 return nregs;
2617 }
2618
2619 static int
2620 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2621 {
2622 int i;
2623 int npregs = 0;
2624
2625 for (i = 0; i < num_tot_regs; i++)
2626 if (reg_list[i].pseudo)
2627 npregs ++;
2628
2629 return npregs;
2630 }
2631
2632 /* Information in this table comes from the following web sites:
2633 IBM: http://www.chips.ibm.com:80/products/embedded/
2634 Motorola: http://www.mot.com/SPS/PowerPC/
2635
2636 I'm sure I've got some of the variant descriptions not quite right.
2637 Please report any inaccuracies you find to GDB's maintainer.
2638
2639 If you add entries to this table, please be sure to allow the new
2640 value as an argument to the --with-cpu flag, in configure.in. */
2641
2642 static struct variant variants[] =
2643 {
2644
2645 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2646 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2647 registers_powerpc},
2648 {"power", "POWER user-level", bfd_arch_rs6000,
2649 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2650 registers_power},
2651 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2652 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2653 registers_403},
2654 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2655 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2656 registers_601},
2657 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2658 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2659 registers_602},
2660 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2661 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2662 registers_603},
2663 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2664 604, -1, -1, tot_num_registers (registers_604),
2665 registers_604},
2666 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2667 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2668 registers_403GC},
2669 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2670 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2671 registers_505},
2672 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2673 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2674 registers_860},
2675 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2676 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2677 registers_750},
2678 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2679 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2680 registers_7400},
2681 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2682 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2683 registers_e500},
2684
2685 /* 64-bit */
2686 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2687 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2688 registers_powerpc},
2689 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2690 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2691 registers_powerpc},
2692 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2693 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2694 registers_powerpc},
2695 {"a35", "PowerPC A35", bfd_arch_powerpc,
2696 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2697 registers_powerpc},
2698 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2699 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2700 registers_powerpc},
2701 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2702 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2703 registers_powerpc},
2704
2705 /* FIXME: I haven't checked the register sets of the following. */
2706 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2707 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2708 registers_power},
2709 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2710 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2711 registers_power},
2712 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2713 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2714 registers_power},
2715
2716 {0, 0, 0, 0, 0, 0, 0, 0}
2717 };
2718
2719 /* Initialize the number of registers and pseudo registers in each variant. */
2720
2721 static void
2722 init_variants (void)
2723 {
2724 struct variant *v;
2725
2726 for (v = variants; v->name; v++)
2727 {
2728 if (v->nregs == -1)
2729 v->nregs = num_registers (v->regs, v->num_tot_regs);
2730 if (v->npregs == -1)
2731 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2732 }
2733 }
2734
2735 /* Return the variant corresponding to architecture ARCH and machine number
2736 MACH. If no such variant exists, return null. */
2737
2738 static const struct variant *
2739 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2740 {
2741 const struct variant *v;
2742
2743 for (v = variants; v->name; v++)
2744 if (arch == v->arch && mach == v->mach)
2745 return v;
2746
2747 return NULL;
2748 }
2749
2750 static int
2751 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2752 {
2753 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2754 return print_insn_big_powerpc (memaddr, info);
2755 else
2756 return print_insn_little_powerpc (memaddr, info);
2757 }
2758 \f
2759 static CORE_ADDR
2760 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2761 {
2762 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2763 }
2764
2765 static struct frame_id
2766 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2767 {
2768 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2769 SP_REGNUM),
2770 frame_pc_unwind (next_frame));
2771 }
2772
2773 struct rs6000_frame_cache
2774 {
2775 CORE_ADDR base;
2776 CORE_ADDR initial_sp;
2777 struct trad_frame_saved_reg *saved_regs;
2778 };
2779
2780 static struct rs6000_frame_cache *
2781 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2782 {
2783 struct rs6000_frame_cache *cache;
2784 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2785 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2786 struct rs6000_framedata fdata;
2787 int wordsize = tdep->wordsize;
2788
2789 if ((*this_cache) != NULL)
2790 return (*this_cache);
2791 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2792 (*this_cache) = cache;
2793 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2794
2795 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2796 &fdata);
2797
2798 /* If there were any saved registers, figure out parent's stack
2799 pointer. */
2800 /* The following is true only if the frame doesn't have a call to
2801 alloca(), FIXME. */
2802
2803 if (fdata.saved_fpr == 0
2804 && fdata.saved_gpr == 0
2805 && fdata.saved_vr == 0
2806 && fdata.saved_ev == 0
2807 && fdata.lr_offset == 0
2808 && fdata.cr_offset == 0
2809 && fdata.vr_offset == 0
2810 && fdata.ev_offset == 0)
2811 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2812 else
2813 {
2814 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2815 address of the current frame. Things might be easier if the
2816 ->frame pointed to the outer-most address of the frame. In
2817 the mean time, the address of the prev frame is used as the
2818 base address of this frame. */
2819 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2820 if (!fdata.frameless)
2821 /* Frameless really means stackless. */
2822 cache->base = read_memory_addr (cache->base, wordsize);
2823 }
2824 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2825
2826 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2827 All fpr's from saved_fpr to fp31 are saved. */
2828
2829 if (fdata.saved_fpr >= 0)
2830 {
2831 int i;
2832 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2833
2834 /* If skip_prologue says floating-point registers were saved,
2835 but the current architecture has no floating-point registers,
2836 then that's strange. But we have no indices to even record
2837 the addresses under, so we just ignore it. */
2838 if (ppc_floating_point_unit_p (gdbarch))
2839 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2840 {
2841 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2842 fpr_addr += 8;
2843 }
2844 }
2845
2846 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2847 All gpr's from saved_gpr to gpr31 are saved. */
2848
2849 if (fdata.saved_gpr >= 0)
2850 {
2851 int i;
2852 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2853 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2854 {
2855 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2856 gpr_addr += wordsize;
2857 }
2858 }
2859
2860 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2861 All vr's from saved_vr to vr31 are saved. */
2862 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2863 {
2864 if (fdata.saved_vr >= 0)
2865 {
2866 int i;
2867 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2868 for (i = fdata.saved_vr; i < 32; i++)
2869 {
2870 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2871 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2872 }
2873 }
2874 }
2875
2876 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2877 All vr's from saved_ev to ev31 are saved. ????? */
2878 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2879 {
2880 if (fdata.saved_ev >= 0)
2881 {
2882 int i;
2883 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2884 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2885 {
2886 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2887 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2888 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2889 }
2890 }
2891 }
2892
2893 /* If != 0, fdata.cr_offset is the offset from the frame that
2894 holds the CR. */
2895 if (fdata.cr_offset != 0)
2896 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2897
2898 /* If != 0, fdata.lr_offset is the offset from the frame that
2899 holds the LR. */
2900 if (fdata.lr_offset != 0)
2901 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2902 /* The PC is found in the link register. */
2903 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2904
2905 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2906 holds the VRSAVE. */
2907 if (fdata.vrsave_offset != 0)
2908 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2909
2910 if (fdata.alloca_reg < 0)
2911 /* If no alloca register used, then fi->frame is the value of the
2912 %sp for this frame, and it is good enough. */
2913 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2914 else
2915 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2916 fdata.alloca_reg);
2917
2918 return cache;
2919 }
2920
2921 static void
2922 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2923 struct frame_id *this_id)
2924 {
2925 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2926 this_cache);
2927 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2928 }
2929
2930 static void
2931 rs6000_frame_prev_register (struct frame_info *next_frame,
2932 void **this_cache,
2933 int regnum, int *optimizedp,
2934 enum lval_type *lvalp, CORE_ADDR *addrp,
2935 int *realnump, void *valuep)
2936 {
2937 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2938 this_cache);
2939 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2940 optimizedp, lvalp, addrp, realnump, valuep);
2941 }
2942
2943 static const struct frame_unwind rs6000_frame_unwind =
2944 {
2945 NORMAL_FRAME,
2946 rs6000_frame_this_id,
2947 rs6000_frame_prev_register
2948 };
2949
2950 static const struct frame_unwind *
2951 rs6000_frame_sniffer (struct frame_info *next_frame)
2952 {
2953 return &rs6000_frame_unwind;
2954 }
2955
2956 \f
2957
2958 static CORE_ADDR
2959 rs6000_frame_base_address (struct frame_info *next_frame,
2960 void **this_cache)
2961 {
2962 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2963 this_cache);
2964 return info->initial_sp;
2965 }
2966
2967 static const struct frame_base rs6000_frame_base = {
2968 &rs6000_frame_unwind,
2969 rs6000_frame_base_address,
2970 rs6000_frame_base_address,
2971 rs6000_frame_base_address
2972 };
2973
2974 static const struct frame_base *
2975 rs6000_frame_base_sniffer (struct frame_info *next_frame)
2976 {
2977 return &rs6000_frame_base;
2978 }
2979
2980 /* Initialize the current architecture based on INFO. If possible, re-use an
2981 architecture from ARCHES, which is a list of architectures already created
2982 during this debugging session.
2983
2984 Called e.g. at program startup, when reading a core file, and when reading
2985 a binary file. */
2986
2987 static struct gdbarch *
2988 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2989 {
2990 struct gdbarch *gdbarch;
2991 struct gdbarch_tdep *tdep;
2992 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
2993 struct reg *regs;
2994 const struct variant *v;
2995 enum bfd_architecture arch;
2996 unsigned long mach;
2997 bfd abfd;
2998 int sysv_abi;
2999 asection *sect;
3000
3001 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3002 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3003
3004 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3005 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3006
3007 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3008
3009 /* Check word size. If INFO is from a binary file, infer it from
3010 that, else choose a likely default. */
3011 if (from_xcoff_exec)
3012 {
3013 if (bfd_xcoff_is_xcoff64 (info.abfd))
3014 wordsize = 8;
3015 else
3016 wordsize = 4;
3017 }
3018 else if (from_elf_exec)
3019 {
3020 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3021 wordsize = 8;
3022 else
3023 wordsize = 4;
3024 }
3025 else
3026 {
3027 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3028 wordsize = info.bfd_arch_info->bits_per_word /
3029 info.bfd_arch_info->bits_per_byte;
3030 else
3031 wordsize = 4;
3032 }
3033
3034 /* Find a candidate among extant architectures. */
3035 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3036 arches != NULL;
3037 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3038 {
3039 /* Word size in the various PowerPC bfd_arch_info structs isn't
3040 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3041 separate word size check. */
3042 tdep = gdbarch_tdep (arches->gdbarch);
3043 if (tdep && tdep->wordsize == wordsize)
3044 return arches->gdbarch;
3045 }
3046
3047 /* None found, create a new architecture from INFO, whose bfd_arch_info
3048 validity depends on the source:
3049 - executable useless
3050 - rs6000_host_arch() good
3051 - core file good
3052 - "set arch" trust blindly
3053 - GDB startup useless but harmless */
3054
3055 if (!from_xcoff_exec)
3056 {
3057 arch = info.bfd_arch_info->arch;
3058 mach = info.bfd_arch_info->mach;
3059 }
3060 else
3061 {
3062 arch = bfd_arch_powerpc;
3063 bfd_default_set_arch_mach (&abfd, arch, 0);
3064 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3065 mach = info.bfd_arch_info->mach;
3066 }
3067 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3068 tdep->wordsize = wordsize;
3069
3070 /* For e500 executables, the apuinfo section is of help here. Such
3071 section contains the identifier and revision number of each
3072 Application-specific Processing Unit that is present on the
3073 chip. The content of the section is determined by the assembler
3074 which looks at each instruction and determines which unit (and
3075 which version of it) can execute it. In our case we just look for
3076 the existance of the section. */
3077
3078 if (info.abfd)
3079 {
3080 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3081 if (sect)
3082 {
3083 arch = info.bfd_arch_info->arch;
3084 mach = bfd_mach_ppc_e500;
3085 bfd_default_set_arch_mach (&abfd, arch, mach);
3086 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3087 }
3088 }
3089
3090 gdbarch = gdbarch_alloc (&info, tdep);
3091
3092 /* Initialize the number of real and pseudo registers in each variant. */
3093 init_variants ();
3094
3095 /* Choose variant. */
3096 v = find_variant_by_arch (arch, mach);
3097 if (!v)
3098 return NULL;
3099
3100 tdep->regs = v->regs;
3101
3102 tdep->ppc_gp0_regnum = 0;
3103 tdep->ppc_toc_regnum = 2;
3104 tdep->ppc_ps_regnum = 65;
3105 tdep->ppc_cr_regnum = 66;
3106 tdep->ppc_lr_regnum = 67;
3107 tdep->ppc_ctr_regnum = 68;
3108 tdep->ppc_xer_regnum = 69;
3109 if (v->mach == bfd_mach_ppc_601)
3110 tdep->ppc_mq_regnum = 124;
3111 else if (arch == bfd_arch_rs6000)
3112 tdep->ppc_mq_regnum = 70;
3113 else
3114 tdep->ppc_mq_regnum = -1;
3115 tdep->ppc_fp0_regnum = 32;
3116 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3117 tdep->ppc_sr0_regnum = 71;
3118 tdep->ppc_vr0_regnum = -1;
3119 tdep->ppc_vrsave_regnum = -1;
3120 tdep->ppc_ev0_upper_regnum = -1;
3121 tdep->ppc_ev0_regnum = -1;
3122 tdep->ppc_ev31_regnum = -1;
3123 tdep->ppc_acc_regnum = -1;
3124 tdep->ppc_spefscr_regnum = -1;
3125
3126 set_gdbarch_pc_regnum (gdbarch, 64);
3127 set_gdbarch_sp_regnum (gdbarch, 1);
3128 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3129 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3130 if (sysv_abi && wordsize == 8)
3131 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3132 else if (sysv_abi && wordsize == 4)
3133 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3134 else
3135 {
3136 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
3137 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
3138 }
3139
3140 /* Set lr_frame_offset. */
3141 if (wordsize == 8)
3142 tdep->lr_frame_offset = 16;
3143 else if (sysv_abi)
3144 tdep->lr_frame_offset = 4;
3145 else
3146 tdep->lr_frame_offset = 8;
3147
3148 if (v->arch == bfd_arch_rs6000)
3149 tdep->ppc_sr0_regnum = -1;
3150 else if (v->arch == bfd_arch_powerpc)
3151 switch (v->mach)
3152 {
3153 case bfd_mach_ppc:
3154 tdep->ppc_sr0_regnum = -1;
3155 tdep->ppc_vr0_regnum = 71;
3156 tdep->ppc_vrsave_regnum = 104;
3157 break;
3158 case bfd_mach_ppc_7400:
3159 tdep->ppc_vr0_regnum = 119;
3160 tdep->ppc_vrsave_regnum = 152;
3161 break;
3162 case bfd_mach_ppc_e500:
3163 tdep->ppc_toc_regnum = -1;
3164 tdep->ppc_ev0_upper_regnum = 32;
3165 tdep->ppc_ev0_regnum = 73;
3166 tdep->ppc_ev31_regnum = 104;
3167 tdep->ppc_acc_regnum = 71;
3168 tdep->ppc_spefscr_regnum = 72;
3169 tdep->ppc_fp0_regnum = -1;
3170 tdep->ppc_fpscr_regnum = -1;
3171 tdep->ppc_sr0_regnum = -1;
3172 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3173 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3174 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3175 break;
3176
3177 case bfd_mach_ppc64:
3178 case bfd_mach_ppc_620:
3179 case bfd_mach_ppc_630:
3180 case bfd_mach_ppc_a35:
3181 case bfd_mach_ppc_rs64ii:
3182 case bfd_mach_ppc_rs64iii:
3183 /* These processor's register sets don't have segment registers. */
3184 tdep->ppc_sr0_regnum = -1;
3185 break;
3186 }
3187 else
3188 internal_error (__FILE__, __LINE__,
3189 "rs6000_gdbarch_init: "
3190 "received unexpected BFD 'arch' value");
3191
3192 /* Sanity check on registers. */
3193 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3194
3195 /* Select instruction printer. */
3196 if (arch == bfd_arch_rs6000)
3197 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3198 else
3199 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3200
3201 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3202
3203 set_gdbarch_num_regs (gdbarch, v->nregs);
3204 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3205 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3206 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3207
3208 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3209 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3210 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3211 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3212 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3213 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3214 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3215 if (sysv_abi)
3216 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3217 else
3218 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3219 set_gdbarch_char_signed (gdbarch, 0);
3220
3221 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3222 if (sysv_abi && wordsize == 8)
3223 /* PPC64 SYSV. */
3224 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3225 else if (!sysv_abi && wordsize == 4)
3226 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3227 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3228 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3229 224. */
3230 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3231
3232 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3233 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3234 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3235
3236 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3237 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3238 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3239 is correct for the SysV ABI when the wordsize is 8, but I'm also
3240 fairly certain that ppc_sysv_abi_push_arguments() will give even
3241 worse results since it only works for 32-bit code. So, for the moment,
3242 we're better off calling rs6000_push_arguments() since it works for
3243 64-bit code. At some point in the future, this matter needs to be
3244 revisited. */
3245 if (sysv_abi && wordsize == 4)
3246 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3247 else if (sysv_abi && wordsize == 8)
3248 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3249 else
3250 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3251
3252 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3253
3254 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3255 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3256 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3257
3258 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3259 for the descriptor and ".FN" for the entry-point -- a user
3260 specifying "break FN" will unexpectedly end up with a breakpoint
3261 on the descriptor and not the function. This architecture method
3262 transforms any breakpoints on descriptors into breakpoints on the
3263 corresponding entry point. */
3264 if (sysv_abi && wordsize == 8)
3265 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3266
3267 /* Not sure on this. FIXMEmgo */
3268 set_gdbarch_frame_args_skip (gdbarch, 8);
3269
3270 if (!sysv_abi)
3271 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3272
3273 if (!sysv_abi)
3274 {
3275 /* Handle RS/6000 function pointers (which are really function
3276 descriptors). */
3277 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3278 rs6000_convert_from_func_ptr_addr);
3279 }
3280
3281 /* Helpers for function argument information. */
3282 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3283
3284 /* Hook in ABI-specific overrides, if they have been registered. */
3285 gdbarch_init_osabi (info, gdbarch);
3286
3287 switch (info.osabi)
3288 {
3289 case GDB_OSABI_NETBSD_AOUT:
3290 case GDB_OSABI_NETBSD_ELF:
3291 case GDB_OSABI_UNKNOWN:
3292 case GDB_OSABI_LINUX:
3293 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3294 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3295 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3296 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3297 break;
3298 default:
3299 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3300
3301 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3302 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3303 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3304 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3305 }
3306
3307 if (from_xcoff_exec)
3308 {
3309 /* NOTE: jimix/2003-06-09: This test should really check for
3310 GDB_OSABI_AIX when that is defined and becomes
3311 available. (Actually, once things are properly split apart,
3312 the test goes away.) */
3313 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3314 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3315 }
3316
3317 init_sim_regno_table (gdbarch);
3318
3319 return gdbarch;
3320 }
3321
3322 static void
3323 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3324 {
3325 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3326
3327 if (tdep == NULL)
3328 return;
3329
3330 /* FIXME: Dump gdbarch_tdep. */
3331 }
3332
3333 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3334
3335 static void
3336 rs6000_info_powerpc_command (char *args, int from_tty)
3337 {
3338 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3339 }
3340
3341 /* Initialization code. */
3342
3343 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3344
3345 void
3346 _initialize_rs6000_tdep (void)
3347 {
3348 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3349 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3350
3351 /* Add root prefix command for "info powerpc" commands */
3352 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3353 "Various POWERPC info specific commands.",
3354 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3355 }