]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
2006-01-16 Paul Gilliam <pgilliam@us.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 #include "reggroups.h"
63
64 /* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71 #define SIG_FRAME_PC_OFFSET 96
72 #define SIG_FRAME_LR_OFFSET 108
73 #define SIG_FRAME_FP_OFFSET 284
74
75 /* To be used by skip_prologue. */
76
77 struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
84 int saved_vr; /* smallest # of saved vr */
85 int saved_ev; /* smallest # of saved ev */
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
91 int vr_offset; /* offset of saved vrs from prev sp */
92 int ev_offset; /* offset of saved evs from prev sp */
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
95 int vrsave_offset; /* offset of saved vrsave register */
96 };
97
98 /* Description of a single register. */
99
100 struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
105 unsigned char fpr; /* whether register is floating-point */
106 unsigned char pseudo; /* whether register is pseudo */
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
110 };
111
112 /* Breakpoint shadows for the single step instructions will be kept here. */
113
114 static struct sstep_breaks
115 {
116 /* Address, or 0 if this is not in use. */
117 CORE_ADDR address;
118 /* Shadow contents. */
119 gdb_byte data[4];
120 }
121 stepBreaks[2];
122
123 /* Hook for determining the TOC address when calling functions in the
124 inferior under AIX. The initialization code in rs6000-nat.c sets
125 this hook to point to find_toc_address. */
126
127 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
128
129 /* Hook to set the current architecture when starting a child process.
130 rs6000-nat.c sets this. */
131
132 void (*rs6000_set_host_arch_hook) (int) = NULL;
133
134 /* Static function prototypes */
135
136 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
137 CORE_ADDR safety);
138 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
139 struct rs6000_framedata *);
140
141 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
142 int
143 altivec_register_p (int regno)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
147 return 0;
148 else
149 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
150 }
151
152
153 /* Return true if REGNO is an SPE register, false otherwise. */
154 int
155 spe_register_p (int regno)
156 {
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
158
159 /* Is it a reference to EV0 -- EV31, and do we have those? */
160 if (tdep->ppc_ev0_regnum >= 0
161 && tdep->ppc_ev31_regnum >= 0
162 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
163 return 1;
164
165 /* Is it a reference to one of the raw upper GPR halves? */
166 if (tdep->ppc_ev0_upper_regnum >= 0
167 && tdep->ppc_ev0_upper_regnum <= regno
168 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
169 return 1;
170
171 /* Is it a reference to the 64-bit accumulator, and do we have that? */
172 if (tdep->ppc_acc_regnum >= 0
173 && tdep->ppc_acc_regnum == regno)
174 return 1;
175
176 /* Is it a reference to the SPE floating-point status and control register,
177 and do we have that? */
178 if (tdep->ppc_spefscr_regnum >= 0
179 && tdep->ppc_spefscr_regnum == regno)
180 return 1;
181
182 return 0;
183 }
184
185
186 /* Return non-zero if the architecture described by GDBARCH has
187 floating-point registers (f0 --- f31 and fpscr). */
188 int
189 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 return (tdep->ppc_fp0_regnum >= 0
194 && tdep->ppc_fpscr_regnum >= 0);
195 }
196
197
198 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
199 set it to SIM_REGNO.
200
201 This is a helper function for init_sim_regno_table, constructing
202 the table mapping GDB register numbers to sim register numbers; we
203 initialize every element in that table to -1 before we start
204 filling it in. */
205 static void
206 set_sim_regno (int *table, int gdb_regno, int sim_regno)
207 {
208 /* Make sure we don't try to assign any given GDB register a sim
209 register number more than once. */
210 gdb_assert (table[gdb_regno] == -1);
211 table[gdb_regno] = sim_regno;
212 }
213
214
215 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
216 numbers to simulator register numbers, based on the values placed
217 in the ARCH->tdep->ppc_foo_regnum members. */
218 static void
219 init_sim_regno_table (struct gdbarch *arch)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
222 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
223 const struct reg *regs = tdep->regs;
224 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
225 int i;
226
227 /* Presume that all registers not explicitly mentioned below are
228 unavailable from the sim. */
229 for (i = 0; i < total_regs; i++)
230 sim_regno[i] = -1;
231
232 /* General-purpose registers. */
233 for (i = 0; i < ppc_num_gprs; i++)
234 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
235
236 /* Floating-point registers. */
237 if (tdep->ppc_fp0_regnum >= 0)
238 for (i = 0; i < ppc_num_fprs; i++)
239 set_sim_regno (sim_regno,
240 tdep->ppc_fp0_regnum + i,
241 sim_ppc_f0_regnum + i);
242 if (tdep->ppc_fpscr_regnum >= 0)
243 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
244
245 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
246 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
247 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
248
249 /* Segment registers. */
250 if (tdep->ppc_sr0_regnum >= 0)
251 for (i = 0; i < ppc_num_srs; i++)
252 set_sim_regno (sim_regno,
253 tdep->ppc_sr0_regnum + i,
254 sim_ppc_sr0_regnum + i);
255
256 /* Altivec registers. */
257 if (tdep->ppc_vr0_regnum >= 0)
258 {
259 for (i = 0; i < ppc_num_vrs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_vr0_regnum + i,
262 sim_ppc_vr0_regnum + i);
263
264 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
265 we can treat this more like the other cases. */
266 set_sim_regno (sim_regno,
267 tdep->ppc_vr0_regnum + ppc_num_vrs,
268 sim_ppc_vscr_regnum);
269 }
270 /* vsave is a special-purpose register, so the code below handles it. */
271
272 /* SPE APU (E500) registers. */
273 if (tdep->ppc_ev0_regnum >= 0)
274 for (i = 0; i < ppc_num_gprs; i++)
275 set_sim_regno (sim_regno,
276 tdep->ppc_ev0_regnum + i,
277 sim_ppc_ev0_regnum + i);
278 if (tdep->ppc_ev0_upper_regnum >= 0)
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno,
281 tdep->ppc_ev0_upper_regnum + i,
282 sim_ppc_rh0_regnum + i);
283 if (tdep->ppc_acc_regnum >= 0)
284 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
285 /* spefscr is a special-purpose register, so the code below handles it. */
286
287 /* Now handle all special-purpose registers. Verify that they
288 haven't mistakenly been assigned numbers by any of the above
289 code). */
290 for (i = 0; i < total_regs; i++)
291 if (regs[i].spr_num >= 0)
292 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
293
294 /* Drop the initialized array into place. */
295 tdep->sim_regno = sim_regno;
296 }
297
298
299 /* Given a GDB register number REG, return the corresponding SIM
300 register number. */
301 static int
302 rs6000_register_sim_regno (int reg)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
305 int sim_regno;
306
307 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
308 sim_regno = tdep->sim_regno[reg];
309
310 if (sim_regno >= 0)
311 return sim_regno;
312 else
313 return LEGACY_SIM_REGNO_IGNORE;
314 }
315
316 \f
317
318 /* Register set support functions. */
319
320 static void
321 ppc_supply_reg (struct regcache *regcache, int regnum,
322 const gdb_byte *regs, size_t offset)
323 {
324 if (regnum != -1 && offset != -1)
325 regcache_raw_supply (regcache, regnum, regs + offset);
326 }
327
328 static void
329 ppc_collect_reg (const struct regcache *regcache, int regnum,
330 gdb_byte *regs, size_t offset)
331 {
332 if (regnum != -1 && offset != -1)
333 regcache_raw_collect (regcache, regnum, regs + offset);
334 }
335
336 /* Supply register REGNUM in the general-purpose register set REGSET
337 from the buffer specified by GREGS and LEN to register cache
338 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
339
340 void
341 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
342 int regnum, const void *gregs, size_t len)
343 {
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 const struct ppc_reg_offsets *offsets = regset->descr;
347 size_t offset;
348 int i;
349
350 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
351 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
352 i++, offset += 4)
353 {
354 if (regnum == -1 || regnum == i)
355 ppc_supply_reg (regcache, i, gregs, offset);
356 }
357
358 if (regnum == -1 || regnum == PC_REGNUM)
359 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
360 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
362 gregs, offsets->ps_offset);
363 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
365 gregs, offsets->cr_offset);
366 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
367 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
368 gregs, offsets->lr_offset);
369 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
370 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
371 gregs, offsets->ctr_offset);
372 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
373 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
374 gregs, offsets->cr_offset);
375 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
376 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
377 }
378
379 /* Supply register REGNUM in the floating-point register set REGSET
380 from the buffer specified by FPREGS and LEN to register cache
381 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
382
383 void
384 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
385 int regnum, const void *fpregs, size_t len)
386 {
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
389 const struct ppc_reg_offsets *offsets = regset->descr;
390 size_t offset;
391 int i;
392
393 gdb_assert (ppc_floating_point_unit_p (gdbarch));
394
395 offset = offsets->f0_offset;
396 for (i = tdep->ppc_fp0_regnum;
397 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
398 i++, offset += 8)
399 {
400 if (regnum == -1 || regnum == i)
401 ppc_supply_reg (regcache, i, fpregs, offset);
402 }
403
404 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
405 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
406 fpregs, offsets->fpscr_offset);
407 }
408
409 /* Collect register REGNUM in the general-purpose register set
410 REGSET. from register cache REGCACHE into the buffer specified by
411 GREGS and LEN. If REGNUM is -1, do this for all registers in
412 REGSET. */
413
414 void
415 ppc_collect_gregset (const struct regset *regset,
416 const struct regcache *regcache,
417 int regnum, void *gregs, size_t len)
418 {
419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 const struct ppc_reg_offsets *offsets = regset->descr;
422 size_t offset;
423 int i;
424
425 offset = offsets->r0_offset;
426 for (i = tdep->ppc_gp0_regnum;
427 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
428 i++, offset += 4)
429 {
430 if (regnum == -1 || regnum == i)
431 ppc_collect_reg (regcache, i, gregs, offset);
432 }
433
434 if (regnum == -1 || regnum == PC_REGNUM)
435 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
436 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
438 gregs, offsets->ps_offset);
439 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
440 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset);
442 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
443 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
444 gregs, offsets->lr_offset);
445 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
446 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
447 gregs, offsets->ctr_offset);
448 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
449 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
450 gregs, offsets->xer_offset);
451 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
452 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
453 gregs, offsets->mq_offset);
454 }
455
456 /* Collect register REGNUM in the floating-point register set
457 REGSET. from register cache REGCACHE into the buffer specified by
458 FPREGS and LEN. If REGNUM is -1, do this for all registers in
459 REGSET. */
460
461 void
462 ppc_collect_fpregset (const struct regset *regset,
463 const struct regcache *regcache,
464 int regnum, void *fpregs, size_t len)
465 {
466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468 const struct ppc_reg_offsets *offsets = regset->descr;
469 size_t offset;
470 int i;
471
472 gdb_assert (ppc_floating_point_unit_p (gdbarch));
473
474 offset = offsets->f0_offset;
475 for (i = tdep->ppc_fp0_regnum;
476 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
477 i++, offset += 8)
478 {
479 if (regnum == -1 || regnum == i)
480 ppc_collect_reg (regcache, i, fpregs, offset);
481 }
482
483 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
484 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
485 fpregs, offsets->fpscr_offset);
486 }
487 \f
488
489 /* Read a LEN-byte address from debugged memory address MEMADDR. */
490
491 static CORE_ADDR
492 read_memory_addr (CORE_ADDR memaddr, int len)
493 {
494 return read_memory_unsigned_integer (memaddr, len);
495 }
496
497 static CORE_ADDR
498 rs6000_skip_prologue (CORE_ADDR pc)
499 {
500 struct rs6000_framedata frame;
501 pc = skip_prologue (pc, 0, &frame);
502 return pc;
503 }
504
505 static int
506 insn_changes_sp_or_jumps (unsigned long insn)
507 {
508 int opcode = (insn >> 26) & 0x03f;
509 int sd = (insn >> 21) & 0x01f;
510 int a = (insn >> 16) & 0x01f;
511 int subcode = (insn >> 1) & 0x3ff;
512
513 /* Changes the stack pointer. */
514
515 /* NOTE: There are many ways to change the value of a given register.
516 The ways below are those used when the register is R1, the SP,
517 in a funtion's epilogue. */
518
519 if (opcode == 31 && subcode == 444 && a == 1)
520 return 1; /* mr R1,Rn */
521 if (opcode == 14 && sd == 1)
522 return 1; /* addi R1,Rn,simm */
523 if (opcode == 58 && sd == 1)
524 return 1; /* ld R1,ds(Rn) */
525
526 /* Transfers control. */
527
528 if (opcode == 18)
529 return 1; /* b */
530 if (opcode == 16)
531 return 1; /* bc */
532 if (opcode == 19 && subcode == 16)
533 return 1; /* bclr */
534 if (opcode == 19 && subcode == 528)
535 return 1; /* bcctr */
536
537 return 0;
538 }
539
540 /* Return true if we are in the function's epilogue, i.e. after the
541 instruction that destroyed the function's stack frame.
542
543 1) scan forward from the point of execution:
544 a) If you find an instruction that modifies the stack pointer
545 or transfers control (except a return), execution is not in
546 an epilogue, return.
547 b) Stop scanning if you find a return instruction or reach the
548 end of the function or reach the hard limit for the size of
549 an epilogue.
550 2) scan backward from the point of execution:
551 a) If you find an instruction that modifies the stack pointer,
552 execution *is* in an epilogue, return.
553 b) Stop scanning if you reach an instruction that transfers
554 control or the beginning of the function or reach the hard
555 limit for the size of an epilogue. */
556
557 static int
558 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
559 {
560 bfd_byte insn_buf[PPC_INSN_SIZE];
561 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
562 unsigned long insn;
563 struct frame_info *curfrm;
564
565 /* Find the search limits based on function boundaries and hard limit. */
566
567 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
568 return 0;
569
570 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
571 if (epilogue_start < func_start) epilogue_start = func_start;
572
573 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
574 if (epilogue_end > func_end) epilogue_end = func_end;
575
576 curfrm = get_current_frame ();
577
578 /* Scan forward until next 'blr'. */
579
580 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
581 {
582 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
583 return 0;
584 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
585 if (insn == 0x4e800020)
586 break;
587 if (insn_changes_sp_or_jumps (insn))
588 return 0;
589 }
590
591 /* Scan backward until adjustment to stack pointer (R1). */
592
593 for (scan_pc = pc - PPC_INSN_SIZE;
594 scan_pc >= epilogue_start;
595 scan_pc -= PPC_INSN_SIZE)
596 {
597 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
598 return 0;
599 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
600 if (insn_changes_sp_or_jumps (insn))
601 return 1;
602 }
603
604 return 0;
605 }
606
607
608 /* Fill in fi->saved_regs */
609
610 struct frame_extra_info
611 {
612 /* Functions calling alloca() change the value of the stack
613 pointer. We need to use initial stack pointer (which is saved in
614 r31 by gcc) in such cases. If a compiler emits traceback table,
615 then we should use the alloca register specified in traceback
616 table. FIXME. */
617 CORE_ADDR initial_sp; /* initial stack pointer. */
618 };
619
620 /* Get the ith function argument for the current function. */
621 static CORE_ADDR
622 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
623 struct type *type)
624 {
625 return get_frame_register_unsigned (frame, 3 + argi);
626 }
627
628 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
629
630 static CORE_ADDR
631 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
632 {
633 CORE_ADDR dest;
634 int immediate;
635 int absolute;
636 int ext_op;
637
638 absolute = (int) ((instr >> 1) & 1);
639
640 switch (opcode)
641 {
642 case 18:
643 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
644 if (absolute)
645 dest = immediate;
646 else
647 dest = pc + immediate;
648 break;
649
650 case 16:
651 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
652 if (absolute)
653 dest = immediate;
654 else
655 dest = pc + immediate;
656 break;
657
658 case 19:
659 ext_op = (instr >> 1) & 0x3ff;
660
661 if (ext_op == 16) /* br conditional register */
662 {
663 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
664
665 /* If we are about to return from a signal handler, dest is
666 something like 0x3c90. The current frame is a signal handler
667 caller frame, upon completion of the sigreturn system call
668 execution will return to the saved PC in the frame. */
669 if (dest < TEXT_SEGMENT_BASE)
670 {
671 struct frame_info *fi;
672
673 fi = get_current_frame ();
674 if (fi != NULL)
675 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
676 gdbarch_tdep (current_gdbarch)->wordsize);
677 }
678 }
679
680 else if (ext_op == 528) /* br cond to count reg */
681 {
682 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
683
684 /* If we are about to execute a system call, dest is something
685 like 0x22fc or 0x3b00. Upon completion the system call
686 will return to the address in the link register. */
687 if (dest < TEXT_SEGMENT_BASE)
688 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
689 }
690 else
691 return -1;
692 break;
693
694 default:
695 return -1;
696 }
697 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
698 }
699
700
701 /* Sequence of bytes for breakpoint instruction. */
702
703 const static unsigned char *
704 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
705 {
706 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
707 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
708 *bp_size = 4;
709 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
710 return big_breakpoint;
711 else
712 return little_breakpoint;
713 }
714
715
716 /* AIX does not support PT_STEP. Simulate it. */
717
718 void
719 rs6000_software_single_step (enum target_signal signal,
720 int insert_breakpoints_p)
721 {
722 CORE_ADDR dummy;
723 int breakp_sz;
724 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
725 int ii, insn;
726 CORE_ADDR loc;
727 CORE_ADDR breaks[2];
728 int opcode;
729
730 if (insert_breakpoints_p)
731 {
732
733 loc = read_pc ();
734
735 insn = read_memory_integer (loc, 4);
736
737 breaks[0] = loc + breakp_sz;
738 opcode = insn >> 26;
739 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
740
741 /* Don't put two breakpoints on the same address. */
742 if (breaks[1] == breaks[0])
743 breaks[1] = -1;
744
745 stepBreaks[1].address = 0;
746
747 for (ii = 0; ii < 2; ++ii)
748 {
749
750 /* ignore invalid breakpoint. */
751 if (breaks[ii] == -1)
752 continue;
753 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
754 stepBreaks[ii].address = breaks[ii];
755 }
756
757 }
758 else
759 {
760
761 /* remove step breakpoints. */
762 for (ii = 0; ii < 2; ++ii)
763 if (stepBreaks[ii].address != 0)
764 target_remove_breakpoint (stepBreaks[ii].address,
765 stepBreaks[ii].data);
766 }
767 errno = 0; /* FIXME, don't ignore errors! */
768 /* What errors? {read,write}_memory call error(). */
769 }
770
771
772 /* return pc value after skipping a function prologue and also return
773 information about a function frame.
774
775 in struct rs6000_framedata fdata:
776 - frameless is TRUE, if function does not have a frame.
777 - nosavedpc is TRUE, if function does not save %pc value in its frame.
778 - offset is the initial size of this stack frame --- the amount by
779 which we decrement the sp to allocate the frame.
780 - saved_gpr is the number of the first saved gpr.
781 - saved_fpr is the number of the first saved fpr.
782 - saved_vr is the number of the first saved vr.
783 - saved_ev is the number of the first saved ev.
784 - alloca_reg is the number of the register used for alloca() handling.
785 Otherwise -1.
786 - gpr_offset is the offset of the first saved gpr from the previous frame.
787 - fpr_offset is the offset of the first saved fpr from the previous frame.
788 - vr_offset is the offset of the first saved vr from the previous frame.
789 - ev_offset is the offset of the first saved ev from the previous frame.
790 - lr_offset is the offset of the saved lr
791 - cr_offset is the offset of the saved cr
792 - vrsave_offset is the offset of the saved vrsave register
793 */
794
795 #define SIGNED_SHORT(x) \
796 ((sizeof (short) == 2) \
797 ? ((int)(short)(x)) \
798 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
799
800 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
801
802 /* Limit the number of skipped non-prologue instructions, as the examining
803 of the prologue is expensive. */
804 static int max_skip_non_prologue_insns = 10;
805
806 /* Given PC representing the starting address of a function, and
807 LIM_PC which is the (sloppy) limit to which to scan when looking
808 for a prologue, attempt to further refine this limit by using
809 the line data in the symbol table. If successful, a better guess
810 on where the prologue ends is returned, otherwise the previous
811 value of lim_pc is returned. */
812
813 /* FIXME: cagney/2004-02-14: This function and logic have largely been
814 superseded by skip_prologue_using_sal. */
815
816 static CORE_ADDR
817 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
818 {
819 struct symtab_and_line prologue_sal;
820
821 prologue_sal = find_pc_line (pc, 0);
822 if (prologue_sal.line != 0)
823 {
824 int i;
825 CORE_ADDR addr = prologue_sal.end;
826
827 /* Handle the case in which compiler's optimizer/scheduler
828 has moved instructions into the prologue. We scan ahead
829 in the function looking for address ranges whose corresponding
830 line number is less than or equal to the first one that we
831 found for the function. (It can be less than when the
832 scheduler puts a body instruction before the first prologue
833 instruction.) */
834 for (i = 2 * max_skip_non_prologue_insns;
835 i > 0 && (lim_pc == 0 || addr < lim_pc);
836 i--)
837 {
838 struct symtab_and_line sal;
839
840 sal = find_pc_line (addr, 0);
841 if (sal.line == 0)
842 break;
843 if (sal.line <= prologue_sal.line
844 && sal.symtab == prologue_sal.symtab)
845 {
846 prologue_sal = sal;
847 }
848 addr = sal.end;
849 }
850
851 if (lim_pc == 0 || prologue_sal.end < lim_pc)
852 lim_pc = prologue_sal.end;
853 }
854 return lim_pc;
855 }
856
857 /* Return nonzero if the given instruction OP can be part of the prologue
858 of a function and saves a parameter on the stack. FRAMEP should be
859 set if one of the previous instructions in the function has set the
860 Frame Pointer. */
861
862 static int
863 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
864 {
865 /* Move parameters from argument registers to temporary register. */
866 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
867 {
868 /* Rx must be scratch register r0. */
869 const int rx_regno = (op >> 16) & 31;
870 /* Ry: Only r3 - r10 are used for parameter passing. */
871 const int ry_regno = GET_SRC_REG (op);
872
873 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
874 {
875 *r0_contains_arg = 1;
876 return 1;
877 }
878 else
879 return 0;
880 }
881
882 /* Save a General Purpose Register on stack. */
883
884 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
885 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
886 {
887 /* Rx: Only r3 - r10 are used for parameter passing. */
888 const int rx_regno = GET_SRC_REG (op);
889
890 return (rx_regno >= 3 && rx_regno <= 10);
891 }
892
893 /* Save a General Purpose Register on stack via the Frame Pointer. */
894
895 if (framep &&
896 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
897 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
898 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
899 {
900 /* Rx: Usually, only r3 - r10 are used for parameter passing.
901 However, the compiler sometimes uses r0 to hold an argument. */
902 const int rx_regno = GET_SRC_REG (op);
903
904 return ((rx_regno >= 3 && rx_regno <= 10)
905 || (rx_regno == 0 && *r0_contains_arg));
906 }
907
908 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
909 {
910 /* Only f2 - f8 are used for parameter passing. */
911 const int src_regno = GET_SRC_REG (op);
912
913 return (src_regno >= 2 && src_regno <= 8);
914 }
915
916 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
917 {
918 /* Only f2 - f8 are used for parameter passing. */
919 const int src_regno = GET_SRC_REG (op);
920
921 return (src_regno >= 2 && src_regno <= 8);
922 }
923
924 /* Not an insn that saves a parameter on stack. */
925 return 0;
926 }
927
928 static CORE_ADDR
929 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
930 {
931 CORE_ADDR orig_pc = pc;
932 CORE_ADDR last_prologue_pc = pc;
933 CORE_ADDR li_found_pc = 0;
934 gdb_byte buf[4];
935 unsigned long op;
936 long offset = 0;
937 long vr_saved_offset = 0;
938 int lr_reg = -1;
939 int cr_reg = -1;
940 int vr_reg = -1;
941 int ev_reg = -1;
942 long ev_offset = 0;
943 int vrsave_reg = -1;
944 int reg;
945 int framep = 0;
946 int minimal_toc_loaded = 0;
947 int prev_insn_was_prologue_insn = 1;
948 int num_skip_non_prologue_insns = 0;
949 int r0_contains_arg = 0;
950 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
951 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
952
953 /* Attempt to find the end of the prologue when no limit is specified.
954 Note that refine_prologue_limit() has been written so that it may
955 be used to "refine" the limits of non-zero PC values too, but this
956 is only safe if we 1) trust the line information provided by the
957 compiler and 2) iterate enough to actually find the end of the
958 prologue.
959
960 It may become a good idea at some point (for both performance and
961 accuracy) to unconditionally call refine_prologue_limit(). But,
962 until we can make a clear determination that this is beneficial,
963 we'll play it safe and only use it to obtain a limit when none
964 has been specified. */
965 if (lim_pc == 0)
966 lim_pc = refine_prologue_limit (pc, lim_pc);
967
968 memset (fdata, 0, sizeof (struct rs6000_framedata));
969 fdata->saved_gpr = -1;
970 fdata->saved_fpr = -1;
971 fdata->saved_vr = -1;
972 fdata->saved_ev = -1;
973 fdata->alloca_reg = -1;
974 fdata->frameless = 1;
975 fdata->nosavedpc = 1;
976
977 for (;; pc += 4)
978 {
979 /* Sometimes it isn't clear if an instruction is a prologue
980 instruction or not. When we encounter one of these ambiguous
981 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
982 Otherwise, we'll assume that it really is a prologue instruction. */
983 if (prev_insn_was_prologue_insn)
984 last_prologue_pc = pc;
985
986 /* Stop scanning if we've hit the limit. */
987 if (lim_pc != 0 && pc >= lim_pc)
988 break;
989
990 prev_insn_was_prologue_insn = 1;
991
992 /* Fetch the instruction and convert it to an integer. */
993 if (target_read_memory (pc, buf, 4))
994 break;
995 op = extract_signed_integer (buf, 4);
996
997 if ((op & 0xfc1fffff) == 0x7c0802a6)
998 { /* mflr Rx */
999 /* Since shared library / PIC code, which needs to get its
1000 address at runtime, can appear to save more than one link
1001 register vis:
1002
1003 *INDENT-OFF*
1004 stwu r1,-304(r1)
1005 mflr r3
1006 bl 0xff570d0 (blrl)
1007 stw r30,296(r1)
1008 mflr r30
1009 stw r31,300(r1)
1010 stw r3,308(r1);
1011 ...
1012 *INDENT-ON*
1013
1014 remember just the first one, but skip over additional
1015 ones. */
1016 if (lr_reg < 0)
1017 lr_reg = (op & 0x03e00000);
1018 if (lr_reg == 0)
1019 r0_contains_arg = 0;
1020 continue;
1021 }
1022 else if ((op & 0xfc1fffff) == 0x7c000026)
1023 { /* mfcr Rx */
1024 cr_reg = (op & 0x03e00000);
1025 if (cr_reg == 0)
1026 r0_contains_arg = 0;
1027 continue;
1028
1029 }
1030 else if ((op & 0xfc1f0000) == 0xd8010000)
1031 { /* stfd Rx,NUM(r1) */
1032 reg = GET_SRC_REG (op);
1033 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1034 {
1035 fdata->saved_fpr = reg;
1036 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1037 }
1038 continue;
1039
1040 }
1041 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1042 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1043 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1044 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1045 {
1046
1047 reg = GET_SRC_REG (op);
1048 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1049 {
1050 fdata->saved_gpr = reg;
1051 if ((op & 0xfc1f0003) == 0xf8010000)
1052 op &= ~3UL;
1053 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1054 }
1055 continue;
1056
1057 }
1058 else if ((op & 0xffff0000) == 0x60000000)
1059 {
1060 /* nop */
1061 /* Allow nops in the prologue, but do not consider them to
1062 be part of the prologue unless followed by other prologue
1063 instructions. */
1064 prev_insn_was_prologue_insn = 0;
1065 continue;
1066
1067 }
1068 else if ((op & 0xffff0000) == 0x3c000000)
1069 { /* addis 0,0,NUM, used
1070 for >= 32k frames */
1071 fdata->offset = (op & 0x0000ffff) << 16;
1072 fdata->frameless = 0;
1073 r0_contains_arg = 0;
1074 continue;
1075
1076 }
1077 else if ((op & 0xffff0000) == 0x60000000)
1078 { /* ori 0,0,NUM, 2nd ha
1079 lf of >= 32k frames */
1080 fdata->offset |= (op & 0x0000ffff);
1081 fdata->frameless = 0;
1082 r0_contains_arg = 0;
1083 continue;
1084
1085 }
1086 else if (lr_reg >= 0 &&
1087 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1088 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1089 /* stw Rx, NUM(r1) */
1090 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1091 /* stwu Rx, NUM(r1) */
1092 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1093 { /* where Rx == lr */
1094 fdata->lr_offset = offset;
1095 fdata->nosavedpc = 0;
1096 /* Invalidate lr_reg, but don't set it to -1.
1097 That would mean that it had never been set. */
1098 lr_reg = -2;
1099 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1100 (op & 0xfc000000) == 0x90000000) /* stw */
1101 {
1102 /* Does not update r1, so add displacement to lr_offset. */
1103 fdata->lr_offset += SIGNED_SHORT (op);
1104 }
1105 continue;
1106
1107 }
1108 else if (cr_reg >= 0 &&
1109 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1110 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1111 /* stw Rx, NUM(r1) */
1112 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1113 /* stwu Rx, NUM(r1) */
1114 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1115 { /* where Rx == cr */
1116 fdata->cr_offset = offset;
1117 /* Invalidate cr_reg, but don't set it to -1.
1118 That would mean that it had never been set. */
1119 cr_reg = -2;
1120 if ((op & 0xfc000003) == 0xf8000000 ||
1121 (op & 0xfc000000) == 0x90000000)
1122 {
1123 /* Does not update r1, so add displacement to cr_offset. */
1124 fdata->cr_offset += SIGNED_SHORT (op);
1125 }
1126 continue;
1127
1128 }
1129 else if (op == 0x48000005)
1130 { /* bl .+4 used in
1131 -mrelocatable */
1132 continue;
1133
1134 }
1135 else if (op == 0x48000004)
1136 { /* b .+4 (xlc) */
1137 break;
1138
1139 }
1140 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1141 in V.4 -mminimal-toc */
1142 (op & 0xffff0000) == 0x3bde0000)
1143 { /* addi 30,30,foo@l */
1144 continue;
1145
1146 }
1147 else if ((op & 0xfc000001) == 0x48000001)
1148 { /* bl foo,
1149 to save fprs??? */
1150
1151 fdata->frameless = 0;
1152 /* Don't skip over the subroutine call if it is not within
1153 the first three instructions of the prologue and either
1154 we have no line table information or the line info tells
1155 us that the subroutine call is not part of the line
1156 associated with the prologue. */
1157 if ((pc - orig_pc) > 8)
1158 {
1159 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1160 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1161
1162 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1163 break;
1164 }
1165
1166 op = read_memory_integer (pc + 4, 4);
1167
1168 /* At this point, make sure this is not a trampoline
1169 function (a function that simply calls another functions,
1170 and nothing else). If the next is not a nop, this branch
1171 was part of the function prologue. */
1172
1173 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1174 break; /* don't skip over
1175 this branch */
1176 continue;
1177
1178 }
1179 /* update stack pointer */
1180 else if ((op & 0xfc1f0000) == 0x94010000)
1181 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1182 fdata->frameless = 0;
1183 fdata->offset = SIGNED_SHORT (op);
1184 offset = fdata->offset;
1185 continue;
1186 }
1187 else if ((op & 0xfc1f016a) == 0x7c01016e)
1188 { /* stwux rX,r1,rY */
1189 /* no way to figure out what r1 is going to be */
1190 fdata->frameless = 0;
1191 offset = fdata->offset;
1192 continue;
1193 }
1194 else if ((op & 0xfc1f0003) == 0xf8010001)
1195 { /* stdu rX,NUM(r1) */
1196 fdata->frameless = 0;
1197 fdata->offset = SIGNED_SHORT (op & ~3UL);
1198 offset = fdata->offset;
1199 continue;
1200 }
1201 else if ((op & 0xfc1f016a) == 0x7c01016a)
1202 { /* stdux rX,r1,rY */
1203 /* no way to figure out what r1 is going to be */
1204 fdata->frameless = 0;
1205 offset = fdata->offset;
1206 continue;
1207 }
1208 /* Load up minimal toc pointer */
1209 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1210 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1211 && !minimal_toc_loaded)
1212 {
1213 minimal_toc_loaded = 1;
1214 continue;
1215
1216 /* move parameters from argument registers to local variable
1217 registers */
1218 }
1219 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1220 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1221 (((op >> 21) & 31) <= 10) &&
1222 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1223 {
1224 continue;
1225
1226 /* store parameters in stack */
1227 }
1228 /* Move parameters from argument registers to temporary register. */
1229 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1230 {
1231 continue;
1232
1233 /* Set up frame pointer */
1234 }
1235 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1236 || op == 0x7c3f0b78)
1237 { /* mr r31, r1 */
1238 fdata->frameless = 0;
1239 framep = 1;
1240 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1241 continue;
1242
1243 /* Another way to set up the frame pointer. */
1244 }
1245 else if ((op & 0xfc1fffff) == 0x38010000)
1246 { /* addi rX, r1, 0x0 */
1247 fdata->frameless = 0;
1248 framep = 1;
1249 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1250 + ((op & ~0x38010000) >> 21));
1251 continue;
1252 }
1253 /* AltiVec related instructions. */
1254 /* Store the vrsave register (spr 256) in another register for
1255 later manipulation, or load a register into the vrsave
1256 register. 2 instructions are used: mfvrsave and
1257 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1258 and mtspr SPR256, Rn. */
1259 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1260 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1261 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1262 {
1263 vrsave_reg = GET_SRC_REG (op);
1264 continue;
1265 }
1266 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1267 {
1268 continue;
1269 }
1270 /* Store the register where vrsave was saved to onto the stack:
1271 rS is the register where vrsave was stored in a previous
1272 instruction. */
1273 /* 100100 sssss 00001 dddddddd dddddddd */
1274 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1275 {
1276 if (vrsave_reg == GET_SRC_REG (op))
1277 {
1278 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1279 vrsave_reg = -1;
1280 }
1281 continue;
1282 }
1283 /* Compute the new value of vrsave, by modifying the register
1284 where vrsave was saved to. */
1285 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1286 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1287 {
1288 continue;
1289 }
1290 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1291 in a pair of insns to save the vector registers on the
1292 stack. */
1293 /* 001110 00000 00000 iiii iiii iiii iiii */
1294 /* 001110 01110 00000 iiii iiii iiii iiii */
1295 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1296 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1297 {
1298 if ((op & 0xffff0000) == 0x38000000)
1299 r0_contains_arg = 0;
1300 li_found_pc = pc;
1301 vr_saved_offset = SIGNED_SHORT (op);
1302
1303 /* This insn by itself is not part of the prologue, unless
1304 if part of the pair of insns mentioned above. So do not
1305 record this insn as part of the prologue yet. */
1306 prev_insn_was_prologue_insn = 0;
1307 }
1308 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1309 /* 011111 sssss 11111 00000 00111001110 */
1310 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1311 {
1312 if (pc == (li_found_pc + 4))
1313 {
1314 vr_reg = GET_SRC_REG (op);
1315 /* If this is the first vector reg to be saved, or if
1316 it has a lower number than others previously seen,
1317 reupdate the frame info. */
1318 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1319 {
1320 fdata->saved_vr = vr_reg;
1321 fdata->vr_offset = vr_saved_offset + offset;
1322 }
1323 vr_saved_offset = -1;
1324 vr_reg = -1;
1325 li_found_pc = 0;
1326 }
1327 }
1328 /* End AltiVec related instructions. */
1329
1330 /* Start BookE related instructions. */
1331 /* Store gen register S at (r31+uimm).
1332 Any register less than r13 is volatile, so we don't care. */
1333 /* 000100 sssss 11111 iiiii 01100100001 */
1334 else if (arch_info->mach == bfd_mach_ppc_e500
1335 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1336 {
1337 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1338 {
1339 unsigned int imm;
1340 ev_reg = GET_SRC_REG (op);
1341 imm = (op >> 11) & 0x1f;
1342 ev_offset = imm * 8;
1343 /* If this is the first vector reg to be saved, or if
1344 it has a lower number than others previously seen,
1345 reupdate the frame info. */
1346 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1347 {
1348 fdata->saved_ev = ev_reg;
1349 fdata->ev_offset = ev_offset + offset;
1350 }
1351 }
1352 continue;
1353 }
1354 /* Store gen register rS at (r1+rB). */
1355 /* 000100 sssss 00001 bbbbb 01100100000 */
1356 else if (arch_info->mach == bfd_mach_ppc_e500
1357 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1358 {
1359 if (pc == (li_found_pc + 4))
1360 {
1361 ev_reg = GET_SRC_REG (op);
1362 /* If this is the first vector reg to be saved, or if
1363 it has a lower number than others previously seen,
1364 reupdate the frame info. */
1365 /* We know the contents of rB from the previous instruction. */
1366 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1367 {
1368 fdata->saved_ev = ev_reg;
1369 fdata->ev_offset = vr_saved_offset + offset;
1370 }
1371 vr_saved_offset = -1;
1372 ev_reg = -1;
1373 li_found_pc = 0;
1374 }
1375 continue;
1376 }
1377 /* Store gen register r31 at (rA+uimm). */
1378 /* 000100 11111 aaaaa iiiii 01100100001 */
1379 else if (arch_info->mach == bfd_mach_ppc_e500
1380 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1381 {
1382 /* Wwe know that the source register is 31 already, but
1383 it can't hurt to compute it. */
1384 ev_reg = GET_SRC_REG (op);
1385 ev_offset = ((op >> 11) & 0x1f) * 8;
1386 /* If this is the first vector reg to be saved, or if
1387 it has a lower number than others previously seen,
1388 reupdate the frame info. */
1389 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1390 {
1391 fdata->saved_ev = ev_reg;
1392 fdata->ev_offset = ev_offset + offset;
1393 }
1394
1395 continue;
1396 }
1397 /* Store gen register S at (r31+r0).
1398 Store param on stack when offset from SP bigger than 4 bytes. */
1399 /* 000100 sssss 11111 00000 01100100000 */
1400 else if (arch_info->mach == bfd_mach_ppc_e500
1401 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1402 {
1403 if (pc == (li_found_pc + 4))
1404 {
1405 if ((op & 0x03e00000) >= 0x01a00000)
1406 {
1407 ev_reg = GET_SRC_REG (op);
1408 /* If this is the first vector reg to be saved, or if
1409 it has a lower number than others previously seen,
1410 reupdate the frame info. */
1411 /* We know the contents of r0 from the previous
1412 instruction. */
1413 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1414 {
1415 fdata->saved_ev = ev_reg;
1416 fdata->ev_offset = vr_saved_offset + offset;
1417 }
1418 ev_reg = -1;
1419 }
1420 vr_saved_offset = -1;
1421 li_found_pc = 0;
1422 continue;
1423 }
1424 }
1425 /* End BookE related instructions. */
1426
1427 else
1428 {
1429 /* Not a recognized prologue instruction.
1430 Handle optimizer code motions into the prologue by continuing
1431 the search if we have no valid frame yet or if the return
1432 address is not yet saved in the frame. */
1433 if (fdata->frameless == 0
1434 && (lr_reg == -1 || fdata->nosavedpc == 0))
1435 break;
1436
1437 if (op == 0x4e800020 /* blr */
1438 || op == 0x4e800420) /* bctr */
1439 /* Do not scan past epilogue in frameless functions or
1440 trampolines. */
1441 break;
1442 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1443 /* Never skip branches. */
1444 break;
1445
1446 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1447 /* Do not scan too many insns, scanning insns is expensive with
1448 remote targets. */
1449 break;
1450
1451 /* Continue scanning. */
1452 prev_insn_was_prologue_insn = 0;
1453 continue;
1454 }
1455 }
1456
1457 #if 0
1458 /* I have problems with skipping over __main() that I need to address
1459 * sometime. Previously, I used to use misc_function_vector which
1460 * didn't work as well as I wanted to be. -MGO */
1461
1462 /* If the first thing after skipping a prolog is a branch to a function,
1463 this might be a call to an initializer in main(), introduced by gcc2.
1464 We'd like to skip over it as well. Fortunately, xlc does some extra
1465 work before calling a function right after a prologue, thus we can
1466 single out such gcc2 behaviour. */
1467
1468
1469 if ((op & 0xfc000001) == 0x48000001)
1470 { /* bl foo, an initializer function? */
1471 op = read_memory_integer (pc + 4, 4);
1472
1473 if (op == 0x4def7b82)
1474 { /* cror 0xf, 0xf, 0xf (nop) */
1475
1476 /* Check and see if we are in main. If so, skip over this
1477 initializer function as well. */
1478
1479 tmp = find_pc_misc_function (pc);
1480 if (tmp >= 0
1481 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1482 return pc + 8;
1483 }
1484 }
1485 #endif /* 0 */
1486
1487 fdata->offset = -fdata->offset;
1488 return last_prologue_pc;
1489 }
1490
1491
1492 /*************************************************************************
1493 Support for creating pushing a dummy frame into the stack, and popping
1494 frames, etc.
1495 *************************************************************************/
1496
1497
1498 /* All the ABI's require 16 byte alignment. */
1499 static CORE_ADDR
1500 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1501 {
1502 return (addr & -16);
1503 }
1504
1505 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1506 the first eight words of the argument list (that might be less than
1507 eight parameters if some parameters occupy more than one word) are
1508 passed in r3..r10 registers. float and double parameters are
1509 passed in fpr's, in addition to that. Rest of the parameters if any
1510 are passed in user stack. There might be cases in which half of the
1511 parameter is copied into registers, the other half is pushed into
1512 stack.
1513
1514 Stack must be aligned on 64-bit boundaries when synthesizing
1515 function calls.
1516
1517 If the function is returning a structure, then the return address is passed
1518 in r3, then the first 7 words of the parameters can be passed in registers,
1519 starting from r4. */
1520
1521 static CORE_ADDR
1522 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1523 struct regcache *regcache, CORE_ADDR bp_addr,
1524 int nargs, struct value **args, CORE_ADDR sp,
1525 int struct_return, CORE_ADDR struct_addr)
1526 {
1527 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1528 int ii;
1529 int len = 0;
1530 int argno; /* current argument number */
1531 int argbytes; /* current argument byte */
1532 gdb_byte tmp_buffer[50];
1533 int f_argno = 0; /* current floating point argno */
1534 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1535 CORE_ADDR func_addr = find_function_addr (function, NULL);
1536
1537 struct value *arg = 0;
1538 struct type *type;
1539
1540 CORE_ADDR saved_sp;
1541
1542 /* The calling convention this function implements assumes the
1543 processor has floating-point registers. We shouldn't be using it
1544 on PPC variants that lack them. */
1545 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1546
1547 /* The first eight words of ther arguments are passed in registers.
1548 Copy them appropriately. */
1549 ii = 0;
1550
1551 /* If the function is returning a `struct', then the first word
1552 (which will be passed in r3) is used for struct return address.
1553 In that case we should advance one word and start from r4
1554 register to copy parameters. */
1555 if (struct_return)
1556 {
1557 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1558 struct_addr);
1559 ii++;
1560 }
1561
1562 /*
1563 effectively indirect call... gcc does...
1564
1565 return_val example( float, int);
1566
1567 eabi:
1568 float in fp0, int in r3
1569 offset of stack on overflow 8/16
1570 for varargs, must go by type.
1571 power open:
1572 float in r3&r4, int in r5
1573 offset of stack on overflow different
1574 both:
1575 return in r3 or f0. If no float, must study how gcc emulates floats;
1576 pay attention to arg promotion.
1577 User may have to cast\args to handle promotion correctly
1578 since gdb won't know if prototype supplied or not.
1579 */
1580
1581 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1582 {
1583 int reg_size = register_size (current_gdbarch, ii + 3);
1584
1585 arg = args[argno];
1586 type = check_typedef (value_type (arg));
1587 len = TYPE_LENGTH (type);
1588
1589 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1590 {
1591
1592 /* Floating point arguments are passed in fpr's, as well as gpr's.
1593 There are 13 fpr's reserved for passing parameters. At this point
1594 there is no way we would run out of them. */
1595
1596 gdb_assert (len <= 8);
1597
1598 regcache_cooked_write (regcache,
1599 tdep->ppc_fp0_regnum + 1 + f_argno,
1600 value_contents (arg));
1601 ++f_argno;
1602 }
1603
1604 if (len > reg_size)
1605 {
1606
1607 /* Argument takes more than one register. */
1608 while (argbytes < len)
1609 {
1610 gdb_byte word[MAX_REGISTER_SIZE];
1611 memset (word, 0, reg_size);
1612 memcpy (word,
1613 ((char *) value_contents (arg)) + argbytes,
1614 (len - argbytes) > reg_size
1615 ? reg_size : len - argbytes);
1616 regcache_cooked_write (regcache,
1617 tdep->ppc_gp0_regnum + 3 + ii,
1618 word);
1619 ++ii, argbytes += reg_size;
1620
1621 if (ii >= 8)
1622 goto ran_out_of_registers_for_arguments;
1623 }
1624 argbytes = 0;
1625 --ii;
1626 }
1627 else
1628 {
1629 /* Argument can fit in one register. No problem. */
1630 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1631 gdb_byte word[MAX_REGISTER_SIZE];
1632
1633 memset (word, 0, reg_size);
1634 memcpy (word, value_contents (arg), len);
1635 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1636 }
1637 ++argno;
1638 }
1639
1640 ran_out_of_registers_for_arguments:
1641
1642 saved_sp = read_sp ();
1643
1644 /* Location for 8 parameters are always reserved. */
1645 sp -= wordsize * 8;
1646
1647 /* Another six words for back chain, TOC register, link register, etc. */
1648 sp -= wordsize * 6;
1649
1650 /* Stack pointer must be quadword aligned. */
1651 sp &= -16;
1652
1653 /* If there are more arguments, allocate space for them in
1654 the stack, then push them starting from the ninth one. */
1655
1656 if ((argno < nargs) || argbytes)
1657 {
1658 int space = 0, jj;
1659
1660 if (argbytes)
1661 {
1662 space += ((len - argbytes + 3) & -4);
1663 jj = argno + 1;
1664 }
1665 else
1666 jj = argno;
1667
1668 for (; jj < nargs; ++jj)
1669 {
1670 struct value *val = args[jj];
1671 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1672 }
1673
1674 /* Add location required for the rest of the parameters. */
1675 space = (space + 15) & -16;
1676 sp -= space;
1677
1678 /* This is another instance we need to be concerned about
1679 securing our stack space. If we write anything underneath %sp
1680 (r1), we might conflict with the kernel who thinks he is free
1681 to use this area. So, update %sp first before doing anything
1682 else. */
1683
1684 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1685
1686 /* If the last argument copied into the registers didn't fit there
1687 completely, push the rest of it into stack. */
1688
1689 if (argbytes)
1690 {
1691 write_memory (sp + 24 + (ii * 4),
1692 value_contents (arg) + argbytes,
1693 len - argbytes);
1694 ++argno;
1695 ii += ((len - argbytes + 3) & -4) / 4;
1696 }
1697
1698 /* Push the rest of the arguments into stack. */
1699 for (; argno < nargs; ++argno)
1700 {
1701
1702 arg = args[argno];
1703 type = check_typedef (value_type (arg));
1704 len = TYPE_LENGTH (type);
1705
1706
1707 /* Float types should be passed in fpr's, as well as in the
1708 stack. */
1709 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1710 {
1711
1712 gdb_assert (len <= 8);
1713
1714 regcache_cooked_write (regcache,
1715 tdep->ppc_fp0_regnum + 1 + f_argno,
1716 value_contents (arg));
1717 ++f_argno;
1718 }
1719
1720 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1721 ii += ((len + 3) & -4) / 4;
1722 }
1723 }
1724
1725 /* Set the stack pointer. According to the ABI, the SP is meant to
1726 be set _before_ the corresponding stack space is used. On AIX,
1727 this even applies when the target has been completely stopped!
1728 Not doing this can lead to conflicts with the kernel which thinks
1729 that it still has control over this not-yet-allocated stack
1730 region. */
1731 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1732
1733 /* Set back chain properly. */
1734 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1735 write_memory (sp, tmp_buffer, wordsize);
1736
1737 /* Point the inferior function call's return address at the dummy's
1738 breakpoint. */
1739 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1740
1741 /* Set the TOC register, get the value from the objfile reader
1742 which, in turn, gets it from the VMAP table. */
1743 if (rs6000_find_toc_address_hook != NULL)
1744 {
1745 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1746 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1747 }
1748
1749 target_store_registers (-1);
1750 return sp;
1751 }
1752
1753 /* PowerOpen always puts structures in memory. Vectors, which were
1754 added later, do get returned in a register though. */
1755
1756 static int
1757 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1758 {
1759 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1760 && TYPE_VECTOR (value_type))
1761 return 0;
1762 return 1;
1763 }
1764
1765 static void
1766 rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
1767 gdb_byte *valbuf)
1768 {
1769 int offset = 0;
1770 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1771
1772 /* The calling convention this function implements assumes the
1773 processor has floating-point registers. We shouldn't be using it
1774 on PPC variants that lack them. */
1775 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1776
1777 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1778 {
1779
1780 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1781 We need to truncate the return value into float size (4 byte) if
1782 necessary. */
1783
1784 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1785 (tdep->ppc_fp0_regnum + 1)],
1786 builtin_type_double,
1787 valbuf,
1788 valtype);
1789 }
1790 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1791 && TYPE_LENGTH (valtype) == 16
1792 && TYPE_VECTOR (valtype))
1793 {
1794 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1795 TYPE_LENGTH (valtype));
1796 }
1797 else
1798 {
1799 /* return value is copied starting from r3. */
1800 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1801 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1802 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
1803
1804 memcpy (valbuf,
1805 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1806 TYPE_LENGTH (valtype));
1807 }
1808 }
1809
1810 /* Return whether handle_inferior_event() should proceed through code
1811 starting at PC in function NAME when stepping.
1812
1813 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1814 handle memory references that are too distant to fit in instructions
1815 generated by the compiler. For example, if 'foo' in the following
1816 instruction:
1817
1818 lwz r9,foo(r2)
1819
1820 is greater than 32767, the linker might replace the lwz with a branch to
1821 somewhere in @FIX1 that does the load in 2 instructions and then branches
1822 back to where execution should continue.
1823
1824 GDB should silently step over @FIX code, just like AIX dbx does.
1825 Unfortunately, the linker uses the "b" instruction for the
1826 branches, meaning that the link register doesn't get set.
1827 Therefore, GDB's usual step_over_function () mechanism won't work.
1828
1829 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1830 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1831 @FIX code. */
1832
1833 int
1834 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1835 {
1836 return name && !strncmp (name, "@FIX", 4);
1837 }
1838
1839 /* Skip code that the user doesn't want to see when stepping:
1840
1841 1. Indirect function calls use a piece of trampoline code to do context
1842 switching, i.e. to set the new TOC table. Skip such code if we are on
1843 its first instruction (as when we have single-stepped to here).
1844
1845 2. Skip shared library trampoline code (which is different from
1846 indirect function call trampolines).
1847
1848 3. Skip bigtoc fixup code.
1849
1850 Result is desired PC to step until, or NULL if we are not in
1851 code that should be skipped. */
1852
1853 CORE_ADDR
1854 rs6000_skip_trampoline_code (CORE_ADDR pc)
1855 {
1856 unsigned int ii, op;
1857 int rel;
1858 CORE_ADDR solib_target_pc;
1859 struct minimal_symbol *msymbol;
1860
1861 static unsigned trampoline_code[] =
1862 {
1863 0x800b0000, /* l r0,0x0(r11) */
1864 0x90410014, /* st r2,0x14(r1) */
1865 0x7c0903a6, /* mtctr r0 */
1866 0x804b0004, /* l r2,0x4(r11) */
1867 0x816b0008, /* l r11,0x8(r11) */
1868 0x4e800420, /* bctr */
1869 0x4e800020, /* br */
1870 0
1871 };
1872
1873 /* Check for bigtoc fixup code. */
1874 msymbol = lookup_minimal_symbol_by_pc (pc);
1875 if (msymbol
1876 && rs6000_in_solib_return_trampoline (pc,
1877 DEPRECATED_SYMBOL_NAME (msymbol)))
1878 {
1879 /* Double-check that the third instruction from PC is relative "b". */
1880 op = read_memory_integer (pc + 8, 4);
1881 if ((op & 0xfc000003) == 0x48000000)
1882 {
1883 /* Extract bits 6-29 as a signed 24-bit relative word address and
1884 add it to the containing PC. */
1885 rel = ((int)(op << 6) >> 6);
1886 return pc + 8 + rel;
1887 }
1888 }
1889
1890 /* If pc is in a shared library trampoline, return its target. */
1891 solib_target_pc = find_solib_trampoline_target (pc);
1892 if (solib_target_pc)
1893 return solib_target_pc;
1894
1895 for (ii = 0; trampoline_code[ii]; ++ii)
1896 {
1897 op = read_memory_integer (pc + (ii * 4), 4);
1898 if (op != trampoline_code[ii])
1899 return 0;
1900 }
1901 ii = read_register (11); /* r11 holds destination addr */
1902 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1903 return pc;
1904 }
1905
1906 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1907 isn't available with that word size, return 0. */
1908
1909 static int
1910 regsize (const struct reg *reg, int wordsize)
1911 {
1912 return wordsize == 8 ? reg->sz64 : reg->sz32;
1913 }
1914
1915 /* Return the name of register number N, or null if no such register exists
1916 in the current architecture. */
1917
1918 static const char *
1919 rs6000_register_name (int n)
1920 {
1921 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1922 const struct reg *reg = tdep->regs + n;
1923
1924 if (!regsize (reg, tdep->wordsize))
1925 return NULL;
1926 return reg->name;
1927 }
1928
1929 /* Return the GDB type object for the "standard" data type
1930 of data in register N. */
1931
1932 static struct type *
1933 rs6000_register_type (struct gdbarch *gdbarch, int n)
1934 {
1935 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1936 const struct reg *reg = tdep->regs + n;
1937
1938 if (reg->fpr)
1939 return builtin_type_double;
1940 else
1941 {
1942 int size = regsize (reg, tdep->wordsize);
1943 switch (size)
1944 {
1945 case 0:
1946 return builtin_type_int0;
1947 case 4:
1948 return builtin_type_uint32;
1949 case 8:
1950 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1951 return builtin_type_vec64;
1952 else
1953 return builtin_type_uint64;
1954 break;
1955 case 16:
1956 return builtin_type_vec128;
1957 break;
1958 default:
1959 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
1960 n, size);
1961 }
1962 }
1963 }
1964
1965 /* Is REGNUM a member of REGGROUP? */
1966 static int
1967 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1968 struct reggroup *group)
1969 {
1970 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1971 int float_p;
1972 int vector_p;
1973 int general_p;
1974
1975 if (REGISTER_NAME (regnum) == NULL
1976 || *REGISTER_NAME (regnum) == '\0')
1977 return 0;
1978 if (group == all_reggroup)
1979 return 1;
1980
1981 float_p = (regnum == tdep->ppc_fpscr_regnum
1982 || (regnum >= tdep->ppc_fp0_regnum
1983 && regnum < tdep->ppc_fp0_regnum + 32));
1984 if (group == float_reggroup)
1985 return float_p;
1986
1987 vector_p = ((tdep->ppc_vr0_regnum >= 0
1988 && regnum >= tdep->ppc_vr0_regnum
1989 && regnum < tdep->ppc_vr0_regnum + 32)
1990 || (tdep->ppc_ev0_regnum >= 0
1991 && regnum >= tdep->ppc_ev0_regnum
1992 && regnum < tdep->ppc_ev0_regnum + 32)
1993 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
1994 || regnum == tdep->ppc_vrsave_regnum
1995 || regnum == tdep->ppc_acc_regnum
1996 || regnum == tdep->ppc_spefscr_regnum);
1997 if (group == vector_reggroup)
1998 return vector_p;
1999
2000 /* Note that PS aka MSR isn't included - it's a system register (and
2001 besides, due to GCC's CFI foobar you do not want to restore
2002 it). */
2003 general_p = ((regnum >= tdep->ppc_gp0_regnum
2004 && regnum < tdep->ppc_gp0_regnum + 32)
2005 || regnum == tdep->ppc_toc_regnum
2006 || regnum == tdep->ppc_cr_regnum
2007 || regnum == tdep->ppc_lr_regnum
2008 || regnum == tdep->ppc_ctr_regnum
2009 || regnum == tdep->ppc_xer_regnum
2010 || regnum == PC_REGNUM);
2011 if (group == general_reggroup)
2012 return general_p;
2013
2014 if (group == save_reggroup || group == restore_reggroup)
2015 return general_p || vector_p || float_p;
2016
2017 return 0;
2018 }
2019
2020 /* The register format for RS/6000 floating point registers is always
2021 double, we need a conversion if the memory format is float. */
2022
2023 static int
2024 rs6000_convert_register_p (int regnum, struct type *type)
2025 {
2026 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2027
2028 return (reg->fpr
2029 && TYPE_CODE (type) == TYPE_CODE_FLT
2030 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2031 }
2032
2033 static void
2034 rs6000_register_to_value (struct frame_info *frame,
2035 int regnum,
2036 struct type *type,
2037 gdb_byte *to)
2038 {
2039 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2040 gdb_byte from[MAX_REGISTER_SIZE];
2041
2042 gdb_assert (reg->fpr);
2043 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2044
2045 get_frame_register (frame, regnum, from);
2046 convert_typed_floating (from, builtin_type_double, to, type);
2047 }
2048
2049 static void
2050 rs6000_value_to_register (struct frame_info *frame,
2051 int regnum,
2052 struct type *type,
2053 const gdb_byte *from)
2054 {
2055 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2056 gdb_byte to[MAX_REGISTER_SIZE];
2057
2058 gdb_assert (reg->fpr);
2059 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2060
2061 convert_typed_floating (from, type, to, builtin_type_double);
2062 put_frame_register (frame, regnum, to);
2063 }
2064
2065 /* Move SPE vector register values between a 64-bit buffer and the two
2066 32-bit raw register halves in a regcache. This function handles
2067 both splitting a 64-bit value into two 32-bit halves, and joining
2068 two halves into a whole 64-bit value, depending on the function
2069 passed as the MOVE argument.
2070
2071 EV_REG must be the number of an SPE evN vector register --- a
2072 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2073 64-bit buffer.
2074
2075 Call MOVE once for each 32-bit half of that register, passing
2076 REGCACHE, the number of the raw register corresponding to that
2077 half, and the address of the appropriate half of BUFFER.
2078
2079 For example, passing 'regcache_raw_read' as the MOVE function will
2080 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2081 'regcache_raw_supply' will supply the contents of BUFFER to the
2082 appropriate pair of raw registers in REGCACHE.
2083
2084 You may need to cast away some 'const' qualifiers when passing
2085 MOVE, since this function can't tell at compile-time which of
2086 REGCACHE or BUFFER is acting as the source of the data. If C had
2087 co-variant type qualifiers, ... */
2088 static void
2089 e500_move_ev_register (void (*move) (struct regcache *regcache,
2090 int regnum, gdb_byte *buf),
2091 struct regcache *regcache, int ev_reg,
2092 gdb_byte *buffer)
2093 {
2094 struct gdbarch *arch = get_regcache_arch (regcache);
2095 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2096 int reg_index;
2097 gdb_byte *byte_buffer = buffer;
2098
2099 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2100 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2101
2102 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2103
2104 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2105 {
2106 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2107 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2108 }
2109 else
2110 {
2111 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2112 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2113 }
2114 }
2115
2116 static void
2117 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2118 int reg_nr, gdb_byte *buffer)
2119 {
2120 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2122
2123 gdb_assert (regcache_arch == gdbarch);
2124
2125 if (tdep->ppc_ev0_regnum <= reg_nr
2126 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2127 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2128 else
2129 internal_error (__FILE__, __LINE__,
2130 _("e500_pseudo_register_read: "
2131 "called on unexpected register '%s' (%d)"),
2132 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2133 }
2134
2135 static void
2136 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2137 int reg_nr, const gdb_byte *buffer)
2138 {
2139 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2141
2142 gdb_assert (regcache_arch == gdbarch);
2143
2144 if (tdep->ppc_ev0_regnum <= reg_nr
2145 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2146 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2147 regcache_raw_write,
2148 regcache, reg_nr, (gdb_byte *) buffer);
2149 else
2150 internal_error (__FILE__, __LINE__,
2151 _("e500_pseudo_register_read: "
2152 "called on unexpected register '%s' (%d)"),
2153 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2154 }
2155
2156 /* The E500 needs a custom reggroup function: it has anonymous raw
2157 registers, and default_register_reggroup_p assumes that anonymous
2158 registers are not members of any reggroup. */
2159 static int
2160 e500_register_reggroup_p (struct gdbarch *gdbarch,
2161 int regnum,
2162 struct reggroup *group)
2163 {
2164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2165
2166 /* The save and restore register groups need to include the
2167 upper-half registers, even though they're anonymous. */
2168 if ((group == save_reggroup
2169 || group == restore_reggroup)
2170 && (tdep->ppc_ev0_upper_regnum <= regnum
2171 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2172 return 1;
2173
2174 /* In all other regards, the default reggroup definition is fine. */
2175 return default_register_reggroup_p (gdbarch, regnum, group);
2176 }
2177
2178 /* Convert a DBX STABS register number to a GDB register number. */
2179 static int
2180 rs6000_stab_reg_to_regnum (int num)
2181 {
2182 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2183
2184 if (0 <= num && num <= 31)
2185 return tdep->ppc_gp0_regnum + num;
2186 else if (32 <= num && num <= 63)
2187 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2188 specifies registers the architecture doesn't have? Our
2189 callers don't check the value we return. */
2190 return tdep->ppc_fp0_regnum + (num - 32);
2191 else if (77 <= num && num <= 108)
2192 return tdep->ppc_vr0_regnum + (num - 77);
2193 else if (1200 <= num && num < 1200 + 32)
2194 return tdep->ppc_ev0_regnum + (num - 1200);
2195 else
2196 switch (num)
2197 {
2198 case 64:
2199 return tdep->ppc_mq_regnum;
2200 case 65:
2201 return tdep->ppc_lr_regnum;
2202 case 66:
2203 return tdep->ppc_ctr_regnum;
2204 case 76:
2205 return tdep->ppc_xer_regnum;
2206 case 109:
2207 return tdep->ppc_vrsave_regnum;
2208 case 110:
2209 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2210 case 111:
2211 return tdep->ppc_acc_regnum;
2212 case 112:
2213 return tdep->ppc_spefscr_regnum;
2214 default:
2215 return num;
2216 }
2217 }
2218
2219
2220 /* Convert a Dwarf 2 register number to a GDB register number. */
2221 static int
2222 rs6000_dwarf2_reg_to_regnum (int num)
2223 {
2224 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2225
2226 if (0 <= num && num <= 31)
2227 return tdep->ppc_gp0_regnum + num;
2228 else if (32 <= num && num <= 63)
2229 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2230 specifies registers the architecture doesn't have? Our
2231 callers don't check the value we return. */
2232 return tdep->ppc_fp0_regnum + (num - 32);
2233 else if (1124 <= num && num < 1124 + 32)
2234 return tdep->ppc_vr0_regnum + (num - 1124);
2235 else if (1200 <= num && num < 1200 + 32)
2236 return tdep->ppc_ev0_regnum + (num - 1200);
2237 else
2238 switch (num)
2239 {
2240 case 67:
2241 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2242 case 99:
2243 return tdep->ppc_acc_regnum;
2244 case 100:
2245 return tdep->ppc_mq_regnum;
2246 case 101:
2247 return tdep->ppc_xer_regnum;
2248 case 108:
2249 return tdep->ppc_lr_regnum;
2250 case 109:
2251 return tdep->ppc_ctr_regnum;
2252 case 356:
2253 return tdep->ppc_vrsave_regnum;
2254 case 612:
2255 return tdep->ppc_spefscr_regnum;
2256 default:
2257 return num;
2258 }
2259 }
2260
2261
2262 static void
2263 rs6000_store_return_value (struct type *type,
2264 struct regcache *regcache,
2265 const gdb_byte *valbuf)
2266 {
2267 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2269 int regnum = -1;
2270
2271 /* The calling convention this function implements assumes the
2272 processor has floating-point registers. We shouldn't be using it
2273 on PPC variants that lack them. */
2274 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2275
2276 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2277 /* Floating point values are returned starting from FPR1 and up.
2278 Say a double_double_double type could be returned in
2279 FPR1/FPR2/FPR3 triple. */
2280 regnum = tdep->ppc_fp0_regnum + 1;
2281 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2282 {
2283 if (TYPE_LENGTH (type) == 16
2284 && TYPE_VECTOR (type))
2285 regnum = tdep->ppc_vr0_regnum + 2;
2286 else
2287 internal_error (__FILE__, __LINE__,
2288 _("rs6000_store_return_value: "
2289 "unexpected array return type"));
2290 }
2291 else
2292 /* Everything else is returned in GPR3 and up. */
2293 regnum = tdep->ppc_gp0_regnum + 3;
2294
2295 {
2296 size_t bytes_written = 0;
2297
2298 while (bytes_written < TYPE_LENGTH (type))
2299 {
2300 /* How much of this value can we write to this register? */
2301 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2302 register_size (gdbarch, regnum));
2303 regcache_cooked_write_part (regcache, regnum,
2304 0, bytes_to_write,
2305 valbuf + bytes_written);
2306 regnum++;
2307 bytes_written += bytes_to_write;
2308 }
2309 }
2310 }
2311
2312
2313 /* Extract from an array REGBUF containing the (raw) register state
2314 the address in which a function should return its structure value,
2315 as a CORE_ADDR (or an expression that can be used as one). */
2316
2317 static CORE_ADDR
2318 rs6000_extract_struct_value_address (struct regcache *regcache)
2319 {
2320 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2321 function call GDB knows the address of the struct return value
2322 and hence, should not need to call this function. Unfortunately,
2323 the current call_function_by_hand() code only saves the most
2324 recent struct address leading to occasional calls. The code
2325 should instead maintain a stack of such addresses (in the dummy
2326 frame object). */
2327 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2328 really got no idea where the return value is being stored. While
2329 r3, on function entry, contained the address it will have since
2330 been reused (scratch) and hence wouldn't be valid */
2331 return 0;
2332 }
2333
2334 /* Hook called when a new child process is started. */
2335
2336 void
2337 rs6000_create_inferior (int pid)
2338 {
2339 if (rs6000_set_host_arch_hook)
2340 rs6000_set_host_arch_hook (pid);
2341 }
2342 \f
2343 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2344
2345 Usually a function pointer's representation is simply the address
2346 of the function. On the RS/6000 however, a function pointer is
2347 represented by a pointer to an OPD entry. This OPD entry contains
2348 three words, the first word is the address of the function, the
2349 second word is the TOC pointer (r2), and the third word is the
2350 static chain value. Throughout GDB it is currently assumed that a
2351 function pointer contains the address of the function, which is not
2352 easy to fix. In addition, the conversion of a function address to
2353 a function pointer would require allocation of an OPD entry in the
2354 inferior's memory space, with all its drawbacks. To be able to
2355 call C++ virtual methods in the inferior (which are called via
2356 function pointers), find_function_addr uses this function to get the
2357 function address from a function pointer. */
2358
2359 /* Return real function address if ADDR (a function pointer) is in the data
2360 space and is therefore a special function pointer. */
2361
2362 static CORE_ADDR
2363 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2364 CORE_ADDR addr,
2365 struct target_ops *targ)
2366 {
2367 struct obj_section *s;
2368
2369 s = find_pc_section (addr);
2370 if (s && s->the_bfd_section->flags & SEC_CODE)
2371 return addr;
2372
2373 /* ADDR is in the data space, so it's a special function pointer. */
2374 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2375 }
2376 \f
2377
2378 /* Handling the various POWER/PowerPC variants. */
2379
2380
2381 /* The arrays here called registers_MUMBLE hold information about available
2382 registers.
2383
2384 For each family of PPC variants, I've tried to isolate out the
2385 common registers and put them up front, so that as long as you get
2386 the general family right, GDB will correctly identify the registers
2387 common to that family. The common register sets are:
2388
2389 For the 60x family: hid0 hid1 iabr dabr pir
2390
2391 For the 505 and 860 family: eie eid nri
2392
2393 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2394 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2395 pbu1 pbl2 pbu2
2396
2397 Most of these register groups aren't anything formal. I arrived at
2398 them by looking at the registers that occurred in more than one
2399 processor.
2400
2401 Note: kevinb/2002-04-30: Support for the fpscr register was added
2402 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2403 for Power. For PowerPC, slot 70 was unused and was already in the
2404 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2405 slot 70 was being used for "mq", so the next available slot (71)
2406 was chosen. It would have been nice to be able to make the
2407 register numbers the same across processor cores, but this wasn't
2408 possible without either 1) renumbering some registers for some
2409 processors or 2) assigning fpscr to a really high slot that's
2410 larger than any current register number. Doing (1) is bad because
2411 existing stubs would break. Doing (2) is undesirable because it
2412 would introduce a really large gap between fpscr and the rest of
2413 the registers for most processors. */
2414
2415 /* Convenience macros for populating register arrays. */
2416
2417 /* Within another macro, convert S to a string. */
2418
2419 #define STR(s) #s
2420
2421 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2422 and 64 bits on 64-bit systems. */
2423 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2424
2425 /* Return a struct reg defining register NAME that's 32 bits on all
2426 systems. */
2427 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2428
2429 /* Return a struct reg defining register NAME that's 64 bits on all
2430 systems. */
2431 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2432
2433 /* Return a struct reg defining register NAME that's 128 bits on all
2434 systems. */
2435 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2436
2437 /* Return a struct reg defining floating-point register NAME. */
2438 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2439
2440 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2441 long on all systems. */
2442 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2443
2444 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2445 systems and that doesn't exist on 64-bit systems. */
2446 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2447
2448 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2449 systems and that doesn't exist on 32-bit systems. */
2450 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2451
2452 /* Return a struct reg placeholder for a register that doesn't exist. */
2453 #define R0 { 0, 0, 0, 0, 0, -1 }
2454
2455 /* Return a struct reg defining an anonymous raw register that's 32
2456 bits on all systems. */
2457 #define A4 { 0, 4, 4, 0, 0, -1 }
2458
2459 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2460 32-bit systems and 64 bits on 64-bit systems. */
2461 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2462
2463 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2464 all systems. */
2465 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2466
2467 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2468 all systems, and whose SPR number is NUMBER. */
2469 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2470
2471 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2472 64-bit systems and that doesn't exist on 32-bit systems. */
2473 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2474
2475 /* UISA registers common across all architectures, including POWER. */
2476
2477 #define COMMON_UISA_REGS \
2478 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2479 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2480 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2481 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2482 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2483 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2484 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2485 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2486 /* 64 */ R(pc), R(ps)
2487
2488 /* UISA-level SPRs for PowerPC. */
2489 #define PPC_UISA_SPRS \
2490 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2491
2492 /* UISA-level SPRs for PowerPC without floating point support. */
2493 #define PPC_UISA_NOFP_SPRS \
2494 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2495
2496 /* Segment registers, for PowerPC. */
2497 #define PPC_SEGMENT_REGS \
2498 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2499 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2500 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2501 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2502
2503 /* OEA SPRs for PowerPC. */
2504 #define PPC_OEA_SPRS \
2505 /* 87 */ S4(pvr), \
2506 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2507 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2508 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2509 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2510 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2511 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2512 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2513 /* 116 */ S4(dec), S(dabr), S4(ear)
2514
2515 /* AltiVec registers. */
2516 #define PPC_ALTIVEC_REGS \
2517 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2518 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2519 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2520 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2521 /*151*/R4(vscr), R4(vrsave)
2522
2523
2524 /* On machines supporting the SPE APU, the general-purpose registers
2525 are 64 bits long. There are SIMD vector instructions to treat them
2526 as pairs of floats, but the rest of the instruction set treats them
2527 as 32-bit registers, and only operates on their lower halves.
2528
2529 In the GDB regcache, we treat their high and low halves as separate
2530 registers. The low halves we present as the general-purpose
2531 registers, and then we have pseudo-registers that stitch together
2532 the upper and lower halves and present them as pseudo-registers. */
2533
2534 /* SPE GPR lower halves --- raw registers. */
2535 #define PPC_SPE_GP_REGS \
2536 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2537 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2538 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2539 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2540
2541 /* SPE GPR upper halves --- anonymous raw registers. */
2542 #define PPC_SPE_UPPER_GP_REGS \
2543 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2544 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2545 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2546 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2547
2548 /* SPE GPR vector registers --- pseudo registers based on underlying
2549 gprs and the anonymous upper half raw registers. */
2550 #define PPC_EV_PSEUDO_REGS \
2551 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2552 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2553 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2554 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2555
2556 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2557 user-level SPR's. */
2558 static const struct reg registers_power[] =
2559 {
2560 COMMON_UISA_REGS,
2561 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2562 /* 71 */ R4(fpscr)
2563 };
2564
2565 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2566 view of the PowerPC. */
2567 static const struct reg registers_powerpc[] =
2568 {
2569 COMMON_UISA_REGS,
2570 PPC_UISA_SPRS,
2571 PPC_ALTIVEC_REGS
2572 };
2573
2574 /* IBM PowerPC 403.
2575
2576 Some notes about the "tcr" special-purpose register:
2577 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2578 403's programmable interval timer, fixed interval timer, and
2579 watchdog timer.
2580 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2581 watchdog timer, and nothing else.
2582
2583 Some of the fields are similar between the two, but they're not
2584 compatible with each other. Since the two variants have different
2585 registers, with different numbers, but the same name, we can't
2586 splice the register name to get the SPR number. */
2587 static const struct reg registers_403[] =
2588 {
2589 COMMON_UISA_REGS,
2590 PPC_UISA_SPRS,
2591 PPC_SEGMENT_REGS,
2592 PPC_OEA_SPRS,
2593 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2594 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2595 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2596 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2597 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2598 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2599 };
2600
2601 /* IBM PowerPC 403GC.
2602 See the comments about 'tcr' for the 403, above. */
2603 static const struct reg registers_403GC[] =
2604 {
2605 COMMON_UISA_REGS,
2606 PPC_UISA_SPRS,
2607 PPC_SEGMENT_REGS,
2608 PPC_OEA_SPRS,
2609 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2610 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2611 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2612 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2613 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2614 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2615 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2616 /* 147 */ S(tbhu), S(tblu)
2617 };
2618
2619 /* Motorola PowerPC 505. */
2620 static const struct reg registers_505[] =
2621 {
2622 COMMON_UISA_REGS,
2623 PPC_UISA_SPRS,
2624 PPC_SEGMENT_REGS,
2625 PPC_OEA_SPRS,
2626 /* 119 */ S(eie), S(eid), S(nri)
2627 };
2628
2629 /* Motorola PowerPC 860 or 850. */
2630 static const struct reg registers_860[] =
2631 {
2632 COMMON_UISA_REGS,
2633 PPC_UISA_SPRS,
2634 PPC_SEGMENT_REGS,
2635 PPC_OEA_SPRS,
2636 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2637 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2638 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2639 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2640 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2641 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2642 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2643 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2644 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2645 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2646 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2647 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2648 };
2649
2650 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2651 for reading and writing RTCU and RTCL. However, how one reads and writes a
2652 register is the stub's problem. */
2653 static const struct reg registers_601[] =
2654 {
2655 COMMON_UISA_REGS,
2656 PPC_UISA_SPRS,
2657 PPC_SEGMENT_REGS,
2658 PPC_OEA_SPRS,
2659 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2660 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2661 };
2662
2663 /* Motorola PowerPC 602.
2664 See the notes under the 403 about 'tcr'. */
2665 static const struct reg registers_602[] =
2666 {
2667 COMMON_UISA_REGS,
2668 PPC_UISA_SPRS,
2669 PPC_SEGMENT_REGS,
2670 PPC_OEA_SPRS,
2671 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2672 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2673 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2674 };
2675
2676 /* Motorola/IBM PowerPC 603 or 603e. */
2677 static const struct reg registers_603[] =
2678 {
2679 COMMON_UISA_REGS,
2680 PPC_UISA_SPRS,
2681 PPC_SEGMENT_REGS,
2682 PPC_OEA_SPRS,
2683 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2684 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2685 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2686 };
2687
2688 /* Motorola PowerPC 604 or 604e. */
2689 static const struct reg registers_604[] =
2690 {
2691 COMMON_UISA_REGS,
2692 PPC_UISA_SPRS,
2693 PPC_SEGMENT_REGS,
2694 PPC_OEA_SPRS,
2695 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2696 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2697 /* 127 */ S(sia), S(sda)
2698 };
2699
2700 /* Motorola/IBM PowerPC 750 or 740. */
2701 static const struct reg registers_750[] =
2702 {
2703 COMMON_UISA_REGS,
2704 PPC_UISA_SPRS,
2705 PPC_SEGMENT_REGS,
2706 PPC_OEA_SPRS,
2707 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2708 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2709 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2710 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2711 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2712 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2713 };
2714
2715
2716 /* Motorola PowerPC 7400. */
2717 static const struct reg registers_7400[] =
2718 {
2719 /* gpr0-gpr31, fpr0-fpr31 */
2720 COMMON_UISA_REGS,
2721 /* cr, lr, ctr, xer, fpscr */
2722 PPC_UISA_SPRS,
2723 /* sr0-sr15 */
2724 PPC_SEGMENT_REGS,
2725 PPC_OEA_SPRS,
2726 /* vr0-vr31, vrsave, vscr */
2727 PPC_ALTIVEC_REGS
2728 /* FIXME? Add more registers? */
2729 };
2730
2731 /* Motorola e500. */
2732 static const struct reg registers_e500[] =
2733 {
2734 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2735 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2736 /* 64 .. 65 */ R(pc), R(ps),
2737 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2738 /* 71 .. 72 */ R8(acc), S4(spefscr),
2739 /* NOTE: Add new registers here the end of the raw register
2740 list and just before the first pseudo register. */
2741 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2742 };
2743
2744 /* Information about a particular processor variant. */
2745
2746 struct variant
2747 {
2748 /* Name of this variant. */
2749 char *name;
2750
2751 /* English description of the variant. */
2752 char *description;
2753
2754 /* bfd_arch_info.arch corresponding to variant. */
2755 enum bfd_architecture arch;
2756
2757 /* bfd_arch_info.mach corresponding to variant. */
2758 unsigned long mach;
2759
2760 /* Number of real registers. */
2761 int nregs;
2762
2763 /* Number of pseudo registers. */
2764 int npregs;
2765
2766 /* Number of total registers (the sum of nregs and npregs). */
2767 int num_tot_regs;
2768
2769 /* Table of register names; registers[R] is the name of the register
2770 number R. */
2771 const struct reg *regs;
2772 };
2773
2774 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2775
2776 static int
2777 num_registers (const struct reg *reg_list, int num_tot_regs)
2778 {
2779 int i;
2780 int nregs = 0;
2781
2782 for (i = 0; i < num_tot_regs; i++)
2783 if (!reg_list[i].pseudo)
2784 nregs++;
2785
2786 return nregs;
2787 }
2788
2789 static int
2790 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2791 {
2792 int i;
2793 int npregs = 0;
2794
2795 for (i = 0; i < num_tot_regs; i++)
2796 if (reg_list[i].pseudo)
2797 npregs ++;
2798
2799 return npregs;
2800 }
2801
2802 /* Information in this table comes from the following web sites:
2803 IBM: http://www.chips.ibm.com:80/products/embedded/
2804 Motorola: http://www.mot.com/SPS/PowerPC/
2805
2806 I'm sure I've got some of the variant descriptions not quite right.
2807 Please report any inaccuracies you find to GDB's maintainer.
2808
2809 If you add entries to this table, please be sure to allow the new
2810 value as an argument to the --with-cpu flag, in configure.in. */
2811
2812 static struct variant variants[] =
2813 {
2814
2815 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2816 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2817 registers_powerpc},
2818 {"power", "POWER user-level", bfd_arch_rs6000,
2819 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2820 registers_power},
2821 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2822 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2823 registers_403},
2824 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2825 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2826 registers_601},
2827 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2828 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2829 registers_602},
2830 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2831 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2832 registers_603},
2833 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2834 604, -1, -1, tot_num_registers (registers_604),
2835 registers_604},
2836 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2837 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2838 registers_403GC},
2839 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2840 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2841 registers_505},
2842 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2843 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2844 registers_860},
2845 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2846 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2847 registers_750},
2848 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2849 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2850 registers_7400},
2851 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2852 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2853 registers_e500},
2854
2855 /* 64-bit */
2856 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2857 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2858 registers_powerpc},
2859 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2860 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2861 registers_powerpc},
2862 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2863 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2864 registers_powerpc},
2865 {"a35", "PowerPC A35", bfd_arch_powerpc,
2866 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2867 registers_powerpc},
2868 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2869 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2870 registers_powerpc},
2871 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2872 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2873 registers_powerpc},
2874
2875 /* FIXME: I haven't checked the register sets of the following. */
2876 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2877 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2878 registers_power},
2879 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2880 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2881 registers_power},
2882 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2883 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2884 registers_power},
2885
2886 {0, 0, 0, 0, 0, 0, 0, 0}
2887 };
2888
2889 /* Initialize the number of registers and pseudo registers in each variant. */
2890
2891 static void
2892 init_variants (void)
2893 {
2894 struct variant *v;
2895
2896 for (v = variants; v->name; v++)
2897 {
2898 if (v->nregs == -1)
2899 v->nregs = num_registers (v->regs, v->num_tot_regs);
2900 if (v->npregs == -1)
2901 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2902 }
2903 }
2904
2905 /* Return the variant corresponding to architecture ARCH and machine number
2906 MACH. If no such variant exists, return null. */
2907
2908 static const struct variant *
2909 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2910 {
2911 const struct variant *v;
2912
2913 for (v = variants; v->name; v++)
2914 if (arch == v->arch && mach == v->mach)
2915 return v;
2916
2917 return NULL;
2918 }
2919
2920 static int
2921 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2922 {
2923 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2924 return print_insn_big_powerpc (memaddr, info);
2925 else
2926 return print_insn_little_powerpc (memaddr, info);
2927 }
2928 \f
2929 static CORE_ADDR
2930 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2931 {
2932 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2933 }
2934
2935 static struct frame_id
2936 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2937 {
2938 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2939 SP_REGNUM),
2940 frame_pc_unwind (next_frame));
2941 }
2942
2943 struct rs6000_frame_cache
2944 {
2945 CORE_ADDR base;
2946 CORE_ADDR initial_sp;
2947 struct trad_frame_saved_reg *saved_regs;
2948 };
2949
2950 static struct rs6000_frame_cache *
2951 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2952 {
2953 struct rs6000_frame_cache *cache;
2954 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2955 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2956 struct rs6000_framedata fdata;
2957 int wordsize = tdep->wordsize;
2958 CORE_ADDR func, pc;
2959
2960 if ((*this_cache) != NULL)
2961 return (*this_cache);
2962 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2963 (*this_cache) = cache;
2964 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2965
2966 func = frame_func_unwind (next_frame);
2967 pc = frame_pc_unwind (next_frame);
2968 skip_prologue (func, pc, &fdata);
2969
2970 /* Figure out the parent's stack pointer. */
2971
2972 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2973 address of the current frame. Things might be easier if the
2974 ->frame pointed to the outer-most address of the frame. In
2975 the mean time, the address of the prev frame is used as the
2976 base address of this frame. */
2977 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2978
2979 /* If the function appears to be frameless, check a couple of likely
2980 indicators that we have simply failed to find the frame setup.
2981 Two common cases of this are missing symbols (i.e.
2982 frame_func_unwind returns the wrong address or 0), and assembly
2983 stubs which have a fast exit path but set up a frame on the slow
2984 path.
2985
2986 If the LR appears to return to this function, then presume that
2987 we have an ABI compliant frame that we failed to find. */
2988 if (fdata.frameless && fdata.lr_offset == 0)
2989 {
2990 CORE_ADDR saved_lr;
2991 int make_frame = 0;
2992
2993 saved_lr = frame_unwind_register_unsigned (next_frame,
2994 tdep->ppc_lr_regnum);
2995 if (func == 0 && saved_lr == pc)
2996 make_frame = 1;
2997 else if (func != 0)
2998 {
2999 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3000 if (func == saved_func)
3001 make_frame = 1;
3002 }
3003
3004 if (make_frame)
3005 {
3006 fdata.frameless = 0;
3007 fdata.lr_offset = wordsize;
3008 }
3009 }
3010
3011 if (!fdata.frameless)
3012 /* Frameless really means stackless. */
3013 cache->base = read_memory_addr (cache->base, wordsize);
3014
3015 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3016
3017 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3018 All fpr's from saved_fpr to fp31 are saved. */
3019
3020 if (fdata.saved_fpr >= 0)
3021 {
3022 int i;
3023 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3024
3025 /* If skip_prologue says floating-point registers were saved,
3026 but the current architecture has no floating-point registers,
3027 then that's strange. But we have no indices to even record
3028 the addresses under, so we just ignore it. */
3029 if (ppc_floating_point_unit_p (gdbarch))
3030 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3031 {
3032 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3033 fpr_addr += 8;
3034 }
3035 }
3036
3037 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3038 All gpr's from saved_gpr to gpr31 are saved. */
3039
3040 if (fdata.saved_gpr >= 0)
3041 {
3042 int i;
3043 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3044 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3045 {
3046 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3047 gpr_addr += wordsize;
3048 }
3049 }
3050
3051 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3052 All vr's from saved_vr to vr31 are saved. */
3053 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3054 {
3055 if (fdata.saved_vr >= 0)
3056 {
3057 int i;
3058 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3059 for (i = fdata.saved_vr; i < 32; i++)
3060 {
3061 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3062 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3063 }
3064 }
3065 }
3066
3067 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3068 All vr's from saved_ev to ev31 are saved. ????? */
3069 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3070 {
3071 if (fdata.saved_ev >= 0)
3072 {
3073 int i;
3074 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3075 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3076 {
3077 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3078 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3079 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3080 }
3081 }
3082 }
3083
3084 /* If != 0, fdata.cr_offset is the offset from the frame that
3085 holds the CR. */
3086 if (fdata.cr_offset != 0)
3087 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3088
3089 /* If != 0, fdata.lr_offset is the offset from the frame that
3090 holds the LR. */
3091 if (fdata.lr_offset != 0)
3092 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3093 /* The PC is found in the link register. */
3094 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3095
3096 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3097 holds the VRSAVE. */
3098 if (fdata.vrsave_offset != 0)
3099 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3100
3101 if (fdata.alloca_reg < 0)
3102 /* If no alloca register used, then fi->frame is the value of the
3103 %sp for this frame, and it is good enough. */
3104 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3105 else
3106 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3107 fdata.alloca_reg);
3108
3109 return cache;
3110 }
3111
3112 static void
3113 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3114 struct frame_id *this_id)
3115 {
3116 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3117 this_cache);
3118 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
3119 }
3120
3121 static void
3122 rs6000_frame_prev_register (struct frame_info *next_frame,
3123 void **this_cache,
3124 int regnum, int *optimizedp,
3125 enum lval_type *lvalp, CORE_ADDR *addrp,
3126 int *realnump, gdb_byte *valuep)
3127 {
3128 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3129 this_cache);
3130 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3131 optimizedp, lvalp, addrp, realnump, valuep);
3132 }
3133
3134 static const struct frame_unwind rs6000_frame_unwind =
3135 {
3136 NORMAL_FRAME,
3137 rs6000_frame_this_id,
3138 rs6000_frame_prev_register
3139 };
3140
3141 static const struct frame_unwind *
3142 rs6000_frame_sniffer (struct frame_info *next_frame)
3143 {
3144 return &rs6000_frame_unwind;
3145 }
3146
3147 \f
3148
3149 static CORE_ADDR
3150 rs6000_frame_base_address (struct frame_info *next_frame,
3151 void **this_cache)
3152 {
3153 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3154 this_cache);
3155 return info->initial_sp;
3156 }
3157
3158 static const struct frame_base rs6000_frame_base = {
3159 &rs6000_frame_unwind,
3160 rs6000_frame_base_address,
3161 rs6000_frame_base_address,
3162 rs6000_frame_base_address
3163 };
3164
3165 static const struct frame_base *
3166 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3167 {
3168 return &rs6000_frame_base;
3169 }
3170
3171 /* Initialize the current architecture based on INFO. If possible, re-use an
3172 architecture from ARCHES, which is a list of architectures already created
3173 during this debugging session.
3174
3175 Called e.g. at program startup, when reading a core file, and when reading
3176 a binary file. */
3177
3178 static struct gdbarch *
3179 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3180 {
3181 struct gdbarch *gdbarch;
3182 struct gdbarch_tdep *tdep;
3183 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3184 struct reg *regs;
3185 const struct variant *v;
3186 enum bfd_architecture arch;
3187 unsigned long mach;
3188 bfd abfd;
3189 int sysv_abi;
3190 asection *sect;
3191
3192 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3193 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3194
3195 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3196 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3197
3198 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3199
3200 /* Check word size. If INFO is from a binary file, infer it from
3201 that, else choose a likely default. */
3202 if (from_xcoff_exec)
3203 {
3204 if (bfd_xcoff_is_xcoff64 (info.abfd))
3205 wordsize = 8;
3206 else
3207 wordsize = 4;
3208 }
3209 else if (from_elf_exec)
3210 {
3211 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3212 wordsize = 8;
3213 else
3214 wordsize = 4;
3215 }
3216 else
3217 {
3218 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3219 wordsize = info.bfd_arch_info->bits_per_word /
3220 info.bfd_arch_info->bits_per_byte;
3221 else
3222 wordsize = 4;
3223 }
3224
3225 /* Find a candidate among extant architectures. */
3226 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3227 arches != NULL;
3228 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3229 {
3230 /* Word size in the various PowerPC bfd_arch_info structs isn't
3231 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3232 separate word size check. */
3233 tdep = gdbarch_tdep (arches->gdbarch);
3234 if (tdep && tdep->wordsize == wordsize)
3235 return arches->gdbarch;
3236 }
3237
3238 /* None found, create a new architecture from INFO, whose bfd_arch_info
3239 validity depends on the source:
3240 - executable useless
3241 - rs6000_host_arch() good
3242 - core file good
3243 - "set arch" trust blindly
3244 - GDB startup useless but harmless */
3245
3246 if (!from_xcoff_exec)
3247 {
3248 arch = info.bfd_arch_info->arch;
3249 mach = info.bfd_arch_info->mach;
3250 }
3251 else
3252 {
3253 arch = bfd_arch_powerpc;
3254 bfd_default_set_arch_mach (&abfd, arch, 0);
3255 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3256 mach = info.bfd_arch_info->mach;
3257 }
3258 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3259 tdep->wordsize = wordsize;
3260
3261 /* For e500 executables, the apuinfo section is of help here. Such
3262 section contains the identifier and revision number of each
3263 Application-specific Processing Unit that is present on the
3264 chip. The content of the section is determined by the assembler
3265 which looks at each instruction and determines which unit (and
3266 which version of it) can execute it. In our case we just look for
3267 the existance of the section. */
3268
3269 if (info.abfd)
3270 {
3271 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3272 if (sect)
3273 {
3274 arch = info.bfd_arch_info->arch;
3275 mach = bfd_mach_ppc_e500;
3276 bfd_default_set_arch_mach (&abfd, arch, mach);
3277 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3278 }
3279 }
3280
3281 gdbarch = gdbarch_alloc (&info, tdep);
3282
3283 /* Initialize the number of real and pseudo registers in each variant. */
3284 init_variants ();
3285
3286 /* Choose variant. */
3287 v = find_variant_by_arch (arch, mach);
3288 if (!v)
3289 return NULL;
3290
3291 tdep->regs = v->regs;
3292
3293 tdep->ppc_gp0_regnum = 0;
3294 tdep->ppc_toc_regnum = 2;
3295 tdep->ppc_ps_regnum = 65;
3296 tdep->ppc_cr_regnum = 66;
3297 tdep->ppc_lr_regnum = 67;
3298 tdep->ppc_ctr_regnum = 68;
3299 tdep->ppc_xer_regnum = 69;
3300 if (v->mach == bfd_mach_ppc_601)
3301 tdep->ppc_mq_regnum = 124;
3302 else if (arch == bfd_arch_rs6000)
3303 tdep->ppc_mq_regnum = 70;
3304 else
3305 tdep->ppc_mq_regnum = -1;
3306 tdep->ppc_fp0_regnum = 32;
3307 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3308 tdep->ppc_sr0_regnum = 71;
3309 tdep->ppc_vr0_regnum = -1;
3310 tdep->ppc_vrsave_regnum = -1;
3311 tdep->ppc_ev0_upper_regnum = -1;
3312 tdep->ppc_ev0_regnum = -1;
3313 tdep->ppc_ev31_regnum = -1;
3314 tdep->ppc_acc_regnum = -1;
3315 tdep->ppc_spefscr_regnum = -1;
3316
3317 set_gdbarch_pc_regnum (gdbarch, 64);
3318 set_gdbarch_sp_regnum (gdbarch, 1);
3319 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3320 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3321 if (sysv_abi && wordsize == 8)
3322 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3323 else if (sysv_abi && wordsize == 4)
3324 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3325 else
3326 {
3327 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
3328 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
3329 }
3330
3331 /* Set lr_frame_offset. */
3332 if (wordsize == 8)
3333 tdep->lr_frame_offset = 16;
3334 else if (sysv_abi)
3335 tdep->lr_frame_offset = 4;
3336 else
3337 tdep->lr_frame_offset = 8;
3338
3339 if (v->arch == bfd_arch_rs6000)
3340 tdep->ppc_sr0_regnum = -1;
3341 else if (v->arch == bfd_arch_powerpc)
3342 switch (v->mach)
3343 {
3344 case bfd_mach_ppc:
3345 tdep->ppc_sr0_regnum = -1;
3346 tdep->ppc_vr0_regnum = 71;
3347 tdep->ppc_vrsave_regnum = 104;
3348 break;
3349 case bfd_mach_ppc_7400:
3350 tdep->ppc_vr0_regnum = 119;
3351 tdep->ppc_vrsave_regnum = 152;
3352 break;
3353 case bfd_mach_ppc_e500:
3354 tdep->ppc_toc_regnum = -1;
3355 tdep->ppc_ev0_upper_regnum = 32;
3356 tdep->ppc_ev0_regnum = 73;
3357 tdep->ppc_ev31_regnum = 104;
3358 tdep->ppc_acc_regnum = 71;
3359 tdep->ppc_spefscr_regnum = 72;
3360 tdep->ppc_fp0_regnum = -1;
3361 tdep->ppc_fpscr_regnum = -1;
3362 tdep->ppc_sr0_regnum = -1;
3363 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3364 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3365 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3366 break;
3367
3368 case bfd_mach_ppc64:
3369 case bfd_mach_ppc_620:
3370 case bfd_mach_ppc_630:
3371 case bfd_mach_ppc_a35:
3372 case bfd_mach_ppc_rs64ii:
3373 case bfd_mach_ppc_rs64iii:
3374 /* These processor's register sets don't have segment registers. */
3375 tdep->ppc_sr0_regnum = -1;
3376 break;
3377 }
3378 else
3379 internal_error (__FILE__, __LINE__,
3380 _("rs6000_gdbarch_init: "
3381 "received unexpected BFD 'arch' value"));
3382
3383 /* Sanity check on registers. */
3384 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3385
3386 /* Select instruction printer. */
3387 if (arch == bfd_arch_rs6000)
3388 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3389 else
3390 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3391
3392 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3393
3394 set_gdbarch_num_regs (gdbarch, v->nregs);
3395 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3396 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3397 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3398 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3399
3400 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3401 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3402 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3403 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3404 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3405 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3406 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3407 if (sysv_abi)
3408 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3409 else
3410 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3411 set_gdbarch_char_signed (gdbarch, 0);
3412
3413 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3414 if (sysv_abi && wordsize == 8)
3415 /* PPC64 SYSV. */
3416 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3417 else if (!sysv_abi && wordsize == 4)
3418 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3419 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3420 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3421 224. */
3422 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3423
3424 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3425 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3426 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3427
3428 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3429 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3430 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3431 is correct for the SysV ABI when the wordsize is 8, but I'm also
3432 fairly certain that ppc_sysv_abi_push_arguments() will give even
3433 worse results since it only works for 32-bit code. So, for the moment,
3434 we're better off calling rs6000_push_arguments() since it works for
3435 64-bit code. At some point in the future, this matter needs to be
3436 revisited. */
3437 if (sysv_abi && wordsize == 4)
3438 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3439 else if (sysv_abi && wordsize == 8)
3440 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3441 else
3442 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3443
3444 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3445
3446 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3447 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3448
3449 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3450 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3451
3452 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3453 for the descriptor and ".FN" for the entry-point -- a user
3454 specifying "break FN" will unexpectedly end up with a breakpoint
3455 on the descriptor and not the function. This architecture method
3456 transforms any breakpoints on descriptors into breakpoints on the
3457 corresponding entry point. */
3458 if (sysv_abi && wordsize == 8)
3459 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3460
3461 /* Not sure on this. FIXMEmgo */
3462 set_gdbarch_frame_args_skip (gdbarch, 8);
3463
3464 if (!sysv_abi)
3465 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3466
3467 if (!sysv_abi)
3468 {
3469 /* Handle RS/6000 function pointers (which are really function
3470 descriptors). */
3471 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3472 rs6000_convert_from_func_ptr_addr);
3473 }
3474
3475 /* Helpers for function argument information. */
3476 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3477
3478 /* Hook in ABI-specific overrides, if they have been registered. */
3479 gdbarch_init_osabi (info, gdbarch);
3480
3481 switch (info.osabi)
3482 {
3483 case GDB_OSABI_LINUX:
3484 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3485 have altivec registers. If not, ptrace will fail the first time it's
3486 called to access one and will not be called again. This wart will
3487 be removed when Daniel Jacobowitz's proposal for autodetecting target
3488 registers is implemented. */
3489 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3490 {
3491 tdep->ppc_vr0_regnum = 71;
3492 tdep->ppc_vrsave_regnum = 104;
3493 }
3494 /* Fall Thru */
3495 case GDB_OSABI_NETBSD_AOUT:
3496 case GDB_OSABI_NETBSD_ELF:
3497 case GDB_OSABI_UNKNOWN:
3498 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3499 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3500 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3501 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3502 break;
3503 default:
3504 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3505
3506 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3507 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3508 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3509 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3510 }
3511
3512 if (from_xcoff_exec)
3513 {
3514 /* NOTE: jimix/2003-06-09: This test should really check for
3515 GDB_OSABI_AIX when that is defined and becomes
3516 available. (Actually, once things are properly split apart,
3517 the test goes away.) */
3518 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3519 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3520 }
3521
3522 init_sim_regno_table (gdbarch);
3523
3524 return gdbarch;
3525 }
3526
3527 static void
3528 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3529 {
3530 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3531
3532 if (tdep == NULL)
3533 return;
3534
3535 /* FIXME: Dump gdbarch_tdep. */
3536 }
3537
3538 /* Initialization code. */
3539
3540 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3541
3542 void
3543 _initialize_rs6000_tdep (void)
3544 {
3545 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3546 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3547 }