]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
* gdbarch.sh (read_pc): Add REGCACHE argument. Remove PTID argument.
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43 #include "dwarf2-frame.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52
53 #include "solib-svr4.h"
54 #include "ppc-tdep.h"
55
56 #include "gdb_assert.h"
57 #include "dis-asm.h"
58
59 #include "trad-frame.h"
60 #include "frame-unwind.h"
61 #include "frame-base.h"
62
63 #include "rs6000-tdep.h"
64
65 /* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72 #define SIG_FRAME_PC_OFFSET 96
73 #define SIG_FRAME_LR_OFFSET 108
74 #define SIG_FRAME_FP_OFFSET 284
75
76 /* To be used by skip_prologue. */
77
78 struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
85 int saved_vr; /* smallest # of saved vr */
86 int saved_ev; /* smallest # of saved ev */
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
92 int vr_offset; /* offset of saved vrs from prev sp */
93 int ev_offset; /* offset of saved evs from prev sp */
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
96 int vrsave_offset; /* offset of saved vrsave register */
97 };
98
99 /* Description of a single register. */
100
101 struct reg
102 {
103 char *name; /* name of register */
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
106 unsigned char fpr; /* whether register is floating-point */
107 unsigned char pseudo; /* whether register is pseudo */
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
111 };
112
113 /* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
117 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
119 /* Static function prototypes */
120
121 static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
122 int instr, CORE_ADDR pc, CORE_ADDR safety);
123 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137
138 /* Return true if REGNO is an SPE register, false otherwise. */
139 int
140 spe_register_p (int regno)
141 {
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
143
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
148 return 1;
149
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
154 return 1;
155
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
159 return 1;
160
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
165 return 1;
166
167 return 0;
168 }
169
170
171 /* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
173 int
174 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
180 }
181
182
183 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
184 set it to SIM_REGNO.
185
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
189 filling it in. */
190 static void
191 set_sim_regno (int *table, int gdb_regno, int sim_regno)
192 {
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
197 }
198
199
200 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
203 static void
204 init_sim_regno_table (struct gdbarch *arch)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
210 int i;
211
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
215 sim_regno[i] = -1;
216
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
220
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
229
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
233
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
240
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
243 {
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
248
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
254 }
255 /* vsave is a special-purpose register, so the code below handles it. */
256
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
271
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
274 code). */
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
278
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
281 }
282
283
284 /* Given a GDB register number REG, return the corresponding SIM
285 register number. */
286 static int
287 rs6000_register_sim_regno (int reg)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290 int sim_regno;
291
292 gdb_assert (0 <= reg
293 && reg <= gdbarch_num_regs (current_gdbarch)
294 + gdbarch_num_pseudo_regs (current_gdbarch));
295 sim_regno = tdep->sim_regno[reg];
296
297 if (sim_regno >= 0)
298 return sim_regno;
299 else
300 return LEGACY_SIM_REGNO_IGNORE;
301 }
302
303 \f
304
305 /* Register set support functions. */
306
307 static void
308 ppc_supply_reg (struct regcache *regcache, int regnum,
309 const gdb_byte *regs, size_t offset)
310 {
311 if (regnum != -1 && offset != -1)
312 regcache_raw_supply (regcache, regnum, regs + offset);
313 }
314
315 static void
316 ppc_collect_reg (const struct regcache *regcache, int regnum,
317 gdb_byte *regs, size_t offset)
318 {
319 if (regnum != -1 && offset != -1)
320 regcache_raw_collect (regcache, regnum, regs + offset);
321 }
322
323 /* Supply register REGNUM in the general-purpose register set REGSET
324 from the buffer specified by GREGS and LEN to register cache
325 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
326
327 void
328 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
329 int regnum, const void *gregs, size_t len)
330 {
331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 const struct ppc_reg_offsets *offsets = regset->descr;
334 size_t offset;
335 int i;
336
337 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
338 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
339 i++, offset += 4)
340 {
341 if (regnum == -1 || regnum == i)
342 ppc_supply_reg (regcache, i, gregs, offset);
343 }
344
345 if (regnum == -1 || regnum == PC_REGNUM)
346 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
347 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
348 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
349 gregs, offsets->ps_offset);
350 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
351 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
352 gregs, offsets->cr_offset);
353 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
354 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
355 gregs, offsets->lr_offset);
356 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
357 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
358 gregs, offsets->ctr_offset);
359 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
360 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
361 gregs, offsets->cr_offset);
362 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
363 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
364 }
365
366 /* Supply register REGNUM in the floating-point register set REGSET
367 from the buffer specified by FPREGS and LEN to register cache
368 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
369
370 void
371 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
372 int regnum, const void *fpregs, size_t len)
373 {
374 struct gdbarch *gdbarch = get_regcache_arch (regcache);
375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
376 const struct ppc_reg_offsets *offsets = regset->descr;
377 size_t offset;
378 int i;
379
380 gdb_assert (ppc_floating_point_unit_p (gdbarch));
381
382 offset = offsets->f0_offset;
383 for (i = tdep->ppc_fp0_regnum;
384 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
385 i++, offset += 8)
386 {
387 if (regnum == -1 || regnum == i)
388 ppc_supply_reg (regcache, i, fpregs, offset);
389 }
390
391 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
392 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
393 fpregs, offsets->fpscr_offset);
394 }
395
396 /* Collect register REGNUM in the general-purpose register set
397 REGSET. from register cache REGCACHE into the buffer specified by
398 GREGS and LEN. If REGNUM is -1, do this for all registers in
399 REGSET. */
400
401 void
402 ppc_collect_gregset (const struct regset *regset,
403 const struct regcache *regcache,
404 int regnum, void *gregs, size_t len)
405 {
406 struct gdbarch *gdbarch = get_regcache_arch (regcache);
407 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
408 const struct ppc_reg_offsets *offsets = regset->descr;
409 size_t offset;
410 int i;
411
412 offset = offsets->r0_offset;
413 for (i = tdep->ppc_gp0_regnum;
414 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
415 i++, offset += 4)
416 {
417 if (regnum == -1 || regnum == i)
418 ppc_collect_reg (regcache, i, gregs, offset);
419 }
420
421 if (regnum == -1 || regnum == PC_REGNUM)
422 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
423 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
424 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
425 gregs, offsets->ps_offset);
426 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
427 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
428 gregs, offsets->cr_offset);
429 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
430 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
431 gregs, offsets->lr_offset);
432 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
433 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
434 gregs, offsets->ctr_offset);
435 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
436 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
437 gregs, offsets->xer_offset);
438 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
439 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
440 gregs, offsets->mq_offset);
441 }
442
443 /* Collect register REGNUM in the floating-point register set
444 REGSET. from register cache REGCACHE into the buffer specified by
445 FPREGS and LEN. If REGNUM is -1, do this for all registers in
446 REGSET. */
447
448 void
449 ppc_collect_fpregset (const struct regset *regset,
450 const struct regcache *regcache,
451 int regnum, void *fpregs, size_t len)
452 {
453 struct gdbarch *gdbarch = get_regcache_arch (regcache);
454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
455 const struct ppc_reg_offsets *offsets = regset->descr;
456 size_t offset;
457 int i;
458
459 gdb_assert (ppc_floating_point_unit_p (gdbarch));
460
461 offset = offsets->f0_offset;
462 for (i = tdep->ppc_fp0_regnum;
463 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
464 i++, offset += 8)
465 {
466 if (regnum == -1 || regnum == i)
467 ppc_collect_reg (regcache, i, fpregs, offset);
468 }
469
470 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
471 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
472 fpregs, offsets->fpscr_offset);
473 }
474 \f
475
476 /* Read a LEN-byte address from debugged memory address MEMADDR. */
477
478 static CORE_ADDR
479 read_memory_addr (CORE_ADDR memaddr, int len)
480 {
481 return read_memory_unsigned_integer (memaddr, len);
482 }
483
484 static CORE_ADDR
485 rs6000_skip_prologue (CORE_ADDR pc)
486 {
487 struct rs6000_framedata frame;
488 CORE_ADDR limit_pc, func_addr;
489
490 /* See if we can determine the end of the prologue via the symbol table.
491 If so, then return either PC, or the PC after the prologue, whichever
492 is greater. */
493 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
494 {
495 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
496 if (post_prologue_pc != 0)
497 return max (pc, post_prologue_pc);
498 }
499
500 /* Can't determine prologue from the symbol table, need to examine
501 instructions. */
502
503 /* Find an upper limit on the function prologue using the debug
504 information. If the debug information could not be used to provide
505 that bound, then use an arbitrary large number as the upper bound. */
506 limit_pc = skip_prologue_using_sal (pc);
507 if (limit_pc == 0)
508 limit_pc = pc + 100; /* Magic. */
509
510 pc = skip_prologue (pc, limit_pc, &frame);
511 return pc;
512 }
513
514 static int
515 insn_changes_sp_or_jumps (unsigned long insn)
516 {
517 int opcode = (insn >> 26) & 0x03f;
518 int sd = (insn >> 21) & 0x01f;
519 int a = (insn >> 16) & 0x01f;
520 int subcode = (insn >> 1) & 0x3ff;
521
522 /* Changes the stack pointer. */
523
524 /* NOTE: There are many ways to change the value of a given register.
525 The ways below are those used when the register is R1, the SP,
526 in a funtion's epilogue. */
527
528 if (opcode == 31 && subcode == 444 && a == 1)
529 return 1; /* mr R1,Rn */
530 if (opcode == 14 && sd == 1)
531 return 1; /* addi R1,Rn,simm */
532 if (opcode == 58 && sd == 1)
533 return 1; /* ld R1,ds(Rn) */
534
535 /* Transfers control. */
536
537 if (opcode == 18)
538 return 1; /* b */
539 if (opcode == 16)
540 return 1; /* bc */
541 if (opcode == 19 && subcode == 16)
542 return 1; /* bclr */
543 if (opcode == 19 && subcode == 528)
544 return 1; /* bcctr */
545
546 return 0;
547 }
548
549 /* Return true if we are in the function's epilogue, i.e. after the
550 instruction that destroyed the function's stack frame.
551
552 1) scan forward from the point of execution:
553 a) If you find an instruction that modifies the stack pointer
554 or transfers control (except a return), execution is not in
555 an epilogue, return.
556 b) Stop scanning if you find a return instruction or reach the
557 end of the function or reach the hard limit for the size of
558 an epilogue.
559 2) scan backward from the point of execution:
560 a) If you find an instruction that modifies the stack pointer,
561 execution *is* in an epilogue, return.
562 b) Stop scanning if you reach an instruction that transfers
563 control or the beginning of the function or reach the hard
564 limit for the size of an epilogue. */
565
566 static int
567 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
568 {
569 bfd_byte insn_buf[PPC_INSN_SIZE];
570 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
571 unsigned long insn;
572 struct frame_info *curfrm;
573
574 /* Find the search limits based on function boundaries and hard limit. */
575
576 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
577 return 0;
578
579 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
580 if (epilogue_start < func_start) epilogue_start = func_start;
581
582 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
583 if (epilogue_end > func_end) epilogue_end = func_end;
584
585 curfrm = get_current_frame ();
586
587 /* Scan forward until next 'blr'. */
588
589 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
590 {
591 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
592 return 0;
593 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
594 if (insn == 0x4e800020)
595 break;
596 if (insn_changes_sp_or_jumps (insn))
597 return 0;
598 }
599
600 /* Scan backward until adjustment to stack pointer (R1). */
601
602 for (scan_pc = pc - PPC_INSN_SIZE;
603 scan_pc >= epilogue_start;
604 scan_pc -= PPC_INSN_SIZE)
605 {
606 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
607 return 0;
608 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
609 if (insn_changes_sp_or_jumps (insn))
610 return 1;
611 }
612
613 return 0;
614 }
615
616 /* Get the ith function argument for the current function. */
617 static CORE_ADDR
618 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
619 struct type *type)
620 {
621 return get_frame_register_unsigned (frame, 3 + argi);
622 }
623
624 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
625
626 static CORE_ADDR
627 branch_dest (struct frame_info *frame, int opcode, int instr,
628 CORE_ADDR pc, CORE_ADDR safety)
629 {
630 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
631 CORE_ADDR dest;
632 int immediate;
633 int absolute;
634 int ext_op;
635
636 absolute = (int) ((instr >> 1) & 1);
637
638 switch (opcode)
639 {
640 case 18:
641 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
642 if (absolute)
643 dest = immediate;
644 else
645 dest = pc + immediate;
646 break;
647
648 case 16:
649 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
650 if (absolute)
651 dest = immediate;
652 else
653 dest = pc + immediate;
654 break;
655
656 case 19:
657 ext_op = (instr >> 1) & 0x3ff;
658
659 if (ext_op == 16) /* br conditional register */
660 {
661 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
662
663 /* If we are about to return from a signal handler, dest is
664 something like 0x3c90. The current frame is a signal handler
665 caller frame, upon completion of the sigreturn system call
666 execution will return to the saved PC in the frame. */
667 if (dest < tdep->text_segment_base)
668 dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
669 tdep->wordsize);
670 }
671
672 else if (ext_op == 528) /* br cond to count reg */
673 {
674 dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
675
676 /* If we are about to execute a system call, dest is something
677 like 0x22fc or 0x3b00. Upon completion the system call
678 will return to the address in the link register. */
679 if (dest < tdep->text_segment_base)
680 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
681 }
682 else
683 return -1;
684 break;
685
686 default:
687 return -1;
688 }
689 return (dest < tdep->text_segment_base) ? safety : dest;
690 }
691
692
693 /* Sequence of bytes for breakpoint instruction. */
694
695 const static unsigned char *
696 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
697 {
698 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
699 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
700 *bp_size = 4;
701 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
702 return big_breakpoint;
703 else
704 return little_breakpoint;
705 }
706
707
708 /* Instruction masks used during single-stepping of atomic sequences. */
709 #define LWARX_MASK 0xfc0007fe
710 #define LWARX_INSTRUCTION 0x7c000028
711 #define LDARX_INSTRUCTION 0x7c0000A8
712 #define STWCX_MASK 0xfc0007ff
713 #define STWCX_INSTRUCTION 0x7c00012d
714 #define STDCX_INSTRUCTION 0x7c0001ad
715 #define BC_MASK 0xfc000000
716 #define BC_INSTRUCTION 0x40000000
717
718 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
719 instruction and ending with a STWCX/STDCX instruction. If such a sequence
720 is found, attempt to step through it. A breakpoint is placed at the end of
721 the sequence. */
722
723 static int
724 deal_with_atomic_sequence (struct frame_info *frame)
725 {
726 CORE_ADDR pc = get_frame_pc (frame);
727 CORE_ADDR breaks[2] = {-1, -1};
728 CORE_ADDR loc = pc;
729 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
730 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
731 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
732 int insn_count;
733 int index;
734 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
735 const int atomic_sequence_length = 16; /* Instruction sequence length. */
736 int opcode; /* Branch instruction's OPcode. */
737 int bc_insn_count = 0; /* Conditional branch instruction count. */
738
739 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
740 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
741 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
742 return 0;
743
744 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
745 instructions. */
746 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
747 {
748 loc += PPC_INSN_SIZE;
749 insn = read_memory_integer (loc, PPC_INSN_SIZE);
750
751 /* Assume that there is at most one conditional branch in the atomic
752 sequence. If a conditional branch is found, put a breakpoint in
753 its destination address. */
754 if ((insn & BC_MASK) == BC_INSTRUCTION)
755 {
756 if (bc_insn_count >= 1)
757 return 0; /* More than one conditional branch found, fallback
758 to the standard single-step code. */
759
760 opcode = insn >> 26;
761 branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
762
763 if (branch_bp != -1)
764 {
765 breaks[1] = branch_bp;
766 bc_insn_count++;
767 last_breakpoint++;
768 }
769 }
770
771 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
772 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
773 break;
774 }
775
776 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
777 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
778 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
779 return 0;
780
781 closing_insn = loc;
782 loc += PPC_INSN_SIZE;
783 insn = read_memory_integer (loc, PPC_INSN_SIZE);
784
785 /* Insert a breakpoint right after the end of the atomic sequence. */
786 breaks[0] = loc;
787
788 /* Check for duplicated breakpoints. Check also for a breakpoint
789 placed (branch instruction's destination) at the stwcx/stdcx
790 instruction, this resets the reservation and take us back to the
791 lwarx/ldarx instruction at the beginning of the atomic sequence. */
792 if (last_breakpoint && ((breaks[1] == breaks[0])
793 || (breaks[1] == closing_insn)))
794 last_breakpoint = 0;
795
796 /* Effectively inserts the breakpoints. */
797 for (index = 0; index <= last_breakpoint; index++)
798 insert_single_step_breakpoint (breaks[index]);
799
800 return 1;
801 }
802
803 /* AIX does not support PT_STEP. Simulate it. */
804
805 int
806 rs6000_software_single_step (struct frame_info *frame)
807 {
808 CORE_ADDR dummy;
809 int breakp_sz;
810 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
811 int ii, insn;
812 CORE_ADDR loc;
813 CORE_ADDR breaks[2];
814 int opcode;
815
816 loc = get_frame_pc (frame);
817
818 insn = read_memory_integer (loc, 4);
819
820 if (deal_with_atomic_sequence (frame))
821 return 1;
822
823 breaks[0] = loc + breakp_sz;
824 opcode = insn >> 26;
825 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
826
827 /* Don't put two breakpoints on the same address. */
828 if (breaks[1] == breaks[0])
829 breaks[1] = -1;
830
831 for (ii = 0; ii < 2; ++ii)
832 {
833 /* ignore invalid breakpoint. */
834 if (breaks[ii] == -1)
835 continue;
836 insert_single_step_breakpoint (breaks[ii]);
837 }
838
839 errno = 0; /* FIXME, don't ignore errors! */
840 /* What errors? {read,write}_memory call error(). */
841 return 1;
842 }
843
844
845 /* return pc value after skipping a function prologue and also return
846 information about a function frame.
847
848 in struct rs6000_framedata fdata:
849 - frameless is TRUE, if function does not have a frame.
850 - nosavedpc is TRUE, if function does not save %pc value in its frame.
851 - offset is the initial size of this stack frame --- the amount by
852 which we decrement the sp to allocate the frame.
853 - saved_gpr is the number of the first saved gpr.
854 - saved_fpr is the number of the first saved fpr.
855 - saved_vr is the number of the first saved vr.
856 - saved_ev is the number of the first saved ev.
857 - alloca_reg is the number of the register used for alloca() handling.
858 Otherwise -1.
859 - gpr_offset is the offset of the first saved gpr from the previous frame.
860 - fpr_offset is the offset of the first saved fpr from the previous frame.
861 - vr_offset is the offset of the first saved vr from the previous frame.
862 - ev_offset is the offset of the first saved ev from the previous frame.
863 - lr_offset is the offset of the saved lr
864 - cr_offset is the offset of the saved cr
865 - vrsave_offset is the offset of the saved vrsave register
866 */
867
868 #define SIGNED_SHORT(x) \
869 ((sizeof (short) == 2) \
870 ? ((int)(short)(x)) \
871 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
872
873 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
874
875 /* Limit the number of skipped non-prologue instructions, as the examining
876 of the prologue is expensive. */
877 static int max_skip_non_prologue_insns = 10;
878
879 /* Return nonzero if the given instruction OP can be part of the prologue
880 of a function and saves a parameter on the stack. FRAMEP should be
881 set if one of the previous instructions in the function has set the
882 Frame Pointer. */
883
884 static int
885 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
886 {
887 /* Move parameters from argument registers to temporary register. */
888 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
889 {
890 /* Rx must be scratch register r0. */
891 const int rx_regno = (op >> 16) & 31;
892 /* Ry: Only r3 - r10 are used for parameter passing. */
893 const int ry_regno = GET_SRC_REG (op);
894
895 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
896 {
897 *r0_contains_arg = 1;
898 return 1;
899 }
900 else
901 return 0;
902 }
903
904 /* Save a General Purpose Register on stack. */
905
906 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
907 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
908 {
909 /* Rx: Only r3 - r10 are used for parameter passing. */
910 const int rx_regno = GET_SRC_REG (op);
911
912 return (rx_regno >= 3 && rx_regno <= 10);
913 }
914
915 /* Save a General Purpose Register on stack via the Frame Pointer. */
916
917 if (framep &&
918 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
919 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
920 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
921 {
922 /* Rx: Usually, only r3 - r10 are used for parameter passing.
923 However, the compiler sometimes uses r0 to hold an argument. */
924 const int rx_regno = GET_SRC_REG (op);
925
926 return ((rx_regno >= 3 && rx_regno <= 10)
927 || (rx_regno == 0 && *r0_contains_arg));
928 }
929
930 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
931 {
932 /* Only f2 - f8 are used for parameter passing. */
933 const int src_regno = GET_SRC_REG (op);
934
935 return (src_regno >= 2 && src_regno <= 8);
936 }
937
938 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
939 {
940 /* Only f2 - f8 are used for parameter passing. */
941 const int src_regno = GET_SRC_REG (op);
942
943 return (src_regno >= 2 && src_regno <= 8);
944 }
945
946 /* Not an insn that saves a parameter on stack. */
947 return 0;
948 }
949
950 /* Assuming that INSN is a "bl" instruction located at PC, return
951 nonzero if the destination of the branch is a "blrl" instruction.
952
953 This sequence is sometimes found in certain function prologues.
954 It allows the function to load the LR register with a value that
955 they can use to access PIC data using PC-relative offsets. */
956
957 static int
958 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
959 {
960 CORE_ADDR dest;
961 int immediate;
962 int absolute;
963 int dest_insn;
964
965 absolute = (int) ((insn >> 1) & 1);
966 immediate = ((insn & ~3) << 6) >> 6;
967 if (absolute)
968 dest = immediate;
969 else
970 dest = pc + immediate;
971
972 dest_insn = read_memory_integer (dest, 4);
973 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
974 return 1;
975
976 return 0;
977 }
978
979 static CORE_ADDR
980 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
981 {
982 CORE_ADDR orig_pc = pc;
983 CORE_ADDR last_prologue_pc = pc;
984 CORE_ADDR li_found_pc = 0;
985 gdb_byte buf[4];
986 unsigned long op;
987 long offset = 0;
988 long vr_saved_offset = 0;
989 int lr_reg = -1;
990 int cr_reg = -1;
991 int vr_reg = -1;
992 int ev_reg = -1;
993 long ev_offset = 0;
994 int vrsave_reg = -1;
995 int reg;
996 int framep = 0;
997 int minimal_toc_loaded = 0;
998 int prev_insn_was_prologue_insn = 1;
999 int num_skip_non_prologue_insns = 0;
1000 int r0_contains_arg = 0;
1001 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
1002 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1003
1004 memset (fdata, 0, sizeof (struct rs6000_framedata));
1005 fdata->saved_gpr = -1;
1006 fdata->saved_fpr = -1;
1007 fdata->saved_vr = -1;
1008 fdata->saved_ev = -1;
1009 fdata->alloca_reg = -1;
1010 fdata->frameless = 1;
1011 fdata->nosavedpc = 1;
1012
1013 for (;; pc += 4)
1014 {
1015 /* Sometimes it isn't clear if an instruction is a prologue
1016 instruction or not. When we encounter one of these ambiguous
1017 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1018 Otherwise, we'll assume that it really is a prologue instruction. */
1019 if (prev_insn_was_prologue_insn)
1020 last_prologue_pc = pc;
1021
1022 /* Stop scanning if we've hit the limit. */
1023 if (pc >= lim_pc)
1024 break;
1025
1026 prev_insn_was_prologue_insn = 1;
1027
1028 /* Fetch the instruction and convert it to an integer. */
1029 if (target_read_memory (pc, buf, 4))
1030 break;
1031 op = extract_unsigned_integer (buf, 4);
1032
1033 if ((op & 0xfc1fffff) == 0x7c0802a6)
1034 { /* mflr Rx */
1035 /* Since shared library / PIC code, which needs to get its
1036 address at runtime, can appear to save more than one link
1037 register vis:
1038
1039 *INDENT-OFF*
1040 stwu r1,-304(r1)
1041 mflr r3
1042 bl 0xff570d0 (blrl)
1043 stw r30,296(r1)
1044 mflr r30
1045 stw r31,300(r1)
1046 stw r3,308(r1);
1047 ...
1048 *INDENT-ON*
1049
1050 remember just the first one, but skip over additional
1051 ones. */
1052 if (lr_reg == -1)
1053 lr_reg = (op & 0x03e00000);
1054 if (lr_reg == 0)
1055 r0_contains_arg = 0;
1056 continue;
1057 }
1058 else if ((op & 0xfc1fffff) == 0x7c000026)
1059 { /* mfcr Rx */
1060 cr_reg = (op & 0x03e00000);
1061 if (cr_reg == 0)
1062 r0_contains_arg = 0;
1063 continue;
1064
1065 }
1066 else if ((op & 0xfc1f0000) == 0xd8010000)
1067 { /* stfd Rx,NUM(r1) */
1068 reg = GET_SRC_REG (op);
1069 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1070 {
1071 fdata->saved_fpr = reg;
1072 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1073 }
1074 continue;
1075
1076 }
1077 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1078 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1079 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1080 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1081 {
1082
1083 reg = GET_SRC_REG (op);
1084 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1085 {
1086 fdata->saved_gpr = reg;
1087 if ((op & 0xfc1f0003) == 0xf8010000)
1088 op &= ~3UL;
1089 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1090 }
1091 continue;
1092
1093 }
1094 else if ((op & 0xffff0000) == 0x60000000)
1095 {
1096 /* nop */
1097 /* Allow nops in the prologue, but do not consider them to
1098 be part of the prologue unless followed by other prologue
1099 instructions. */
1100 prev_insn_was_prologue_insn = 0;
1101 continue;
1102
1103 }
1104 else if ((op & 0xffff0000) == 0x3c000000)
1105 { /* addis 0,0,NUM, used
1106 for >= 32k frames */
1107 fdata->offset = (op & 0x0000ffff) << 16;
1108 fdata->frameless = 0;
1109 r0_contains_arg = 0;
1110 continue;
1111
1112 }
1113 else if ((op & 0xffff0000) == 0x60000000)
1114 { /* ori 0,0,NUM, 2nd ha
1115 lf of >= 32k frames */
1116 fdata->offset |= (op & 0x0000ffff);
1117 fdata->frameless = 0;
1118 r0_contains_arg = 0;
1119 continue;
1120
1121 }
1122 else if (lr_reg >= 0 &&
1123 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1124 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1125 /* stw Rx, NUM(r1) */
1126 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1127 /* stwu Rx, NUM(r1) */
1128 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1129 { /* where Rx == lr */
1130 fdata->lr_offset = offset;
1131 fdata->nosavedpc = 0;
1132 /* Invalidate lr_reg, but don't set it to -1.
1133 That would mean that it had never been set. */
1134 lr_reg = -2;
1135 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1136 (op & 0xfc000000) == 0x90000000) /* stw */
1137 {
1138 /* Does not update r1, so add displacement to lr_offset. */
1139 fdata->lr_offset += SIGNED_SHORT (op);
1140 }
1141 continue;
1142
1143 }
1144 else if (cr_reg >= 0 &&
1145 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1146 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1147 /* stw Rx, NUM(r1) */
1148 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1149 /* stwu Rx, NUM(r1) */
1150 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1151 { /* where Rx == cr */
1152 fdata->cr_offset = offset;
1153 /* Invalidate cr_reg, but don't set it to -1.
1154 That would mean that it had never been set. */
1155 cr_reg = -2;
1156 if ((op & 0xfc000003) == 0xf8000000 ||
1157 (op & 0xfc000000) == 0x90000000)
1158 {
1159 /* Does not update r1, so add displacement to cr_offset. */
1160 fdata->cr_offset += SIGNED_SHORT (op);
1161 }
1162 continue;
1163
1164 }
1165 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1166 {
1167 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1168 prediction bits. If the LR has already been saved, we can
1169 skip it. */
1170 continue;
1171 }
1172 else if (op == 0x48000005)
1173 { /* bl .+4 used in
1174 -mrelocatable */
1175 continue;
1176
1177 }
1178 else if (op == 0x48000004)
1179 { /* b .+4 (xlc) */
1180 break;
1181
1182 }
1183 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1184 in V.4 -mminimal-toc */
1185 (op & 0xffff0000) == 0x3bde0000)
1186 { /* addi 30,30,foo@l */
1187 continue;
1188
1189 }
1190 else if ((op & 0xfc000001) == 0x48000001)
1191 { /* bl foo,
1192 to save fprs??? */
1193
1194 fdata->frameless = 0;
1195
1196 /* If the return address has already been saved, we can skip
1197 calls to blrl (for PIC). */
1198 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1199 continue;
1200
1201 /* Don't skip over the subroutine call if it is not within
1202 the first three instructions of the prologue and either
1203 we have no line table information or the line info tells
1204 us that the subroutine call is not part of the line
1205 associated with the prologue. */
1206 if ((pc - orig_pc) > 8)
1207 {
1208 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1209 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1210
1211 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1212 break;
1213 }
1214
1215 op = read_memory_integer (pc + 4, 4);
1216
1217 /* At this point, make sure this is not a trampoline
1218 function (a function that simply calls another functions,
1219 and nothing else). If the next is not a nop, this branch
1220 was part of the function prologue. */
1221
1222 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1223 break; /* don't skip over
1224 this branch */
1225 continue;
1226
1227 }
1228 /* update stack pointer */
1229 else if ((op & 0xfc1f0000) == 0x94010000)
1230 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1231 fdata->frameless = 0;
1232 fdata->offset = SIGNED_SHORT (op);
1233 offset = fdata->offset;
1234 continue;
1235 }
1236 else if ((op & 0xfc1f016a) == 0x7c01016e)
1237 { /* stwux rX,r1,rY */
1238 /* no way to figure out what r1 is going to be */
1239 fdata->frameless = 0;
1240 offset = fdata->offset;
1241 continue;
1242 }
1243 else if ((op & 0xfc1f0003) == 0xf8010001)
1244 { /* stdu rX,NUM(r1) */
1245 fdata->frameless = 0;
1246 fdata->offset = SIGNED_SHORT (op & ~3UL);
1247 offset = fdata->offset;
1248 continue;
1249 }
1250 else if ((op & 0xfc1f016a) == 0x7c01016a)
1251 { /* stdux rX,r1,rY */
1252 /* no way to figure out what r1 is going to be */
1253 fdata->frameless = 0;
1254 offset = fdata->offset;
1255 continue;
1256 }
1257 else if ((op & 0xffff0000) == 0x38210000)
1258 { /* addi r1,r1,SIMM */
1259 fdata->frameless = 0;
1260 fdata->offset += SIGNED_SHORT (op);
1261 offset = fdata->offset;
1262 continue;
1263 }
1264 /* Load up minimal toc pointer. Do not treat an epilogue restore
1265 of r31 as a minimal TOC load. */
1266 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1267 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1268 && !framep
1269 && !minimal_toc_loaded)
1270 {
1271 minimal_toc_loaded = 1;
1272 continue;
1273
1274 /* move parameters from argument registers to local variable
1275 registers */
1276 }
1277 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1278 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1279 (((op >> 21) & 31) <= 10) &&
1280 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1281 {
1282 continue;
1283
1284 /* store parameters in stack */
1285 }
1286 /* Move parameters from argument registers to temporary register. */
1287 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1288 {
1289 continue;
1290
1291 /* Set up frame pointer */
1292 }
1293 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1294 || op == 0x7c3f0b78)
1295 { /* mr r31, r1 */
1296 fdata->frameless = 0;
1297 framep = 1;
1298 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1299 continue;
1300
1301 /* Another way to set up the frame pointer. */
1302 }
1303 else if ((op & 0xfc1fffff) == 0x38010000)
1304 { /* addi rX, r1, 0x0 */
1305 fdata->frameless = 0;
1306 framep = 1;
1307 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1308 + ((op & ~0x38010000) >> 21));
1309 continue;
1310 }
1311 /* AltiVec related instructions. */
1312 /* Store the vrsave register (spr 256) in another register for
1313 later manipulation, or load a register into the vrsave
1314 register. 2 instructions are used: mfvrsave and
1315 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1316 and mtspr SPR256, Rn. */
1317 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1318 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1319 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1320 {
1321 vrsave_reg = GET_SRC_REG (op);
1322 continue;
1323 }
1324 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1325 {
1326 continue;
1327 }
1328 /* Store the register where vrsave was saved to onto the stack:
1329 rS is the register where vrsave was stored in a previous
1330 instruction. */
1331 /* 100100 sssss 00001 dddddddd dddddddd */
1332 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1333 {
1334 if (vrsave_reg == GET_SRC_REG (op))
1335 {
1336 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1337 vrsave_reg = -1;
1338 }
1339 continue;
1340 }
1341 /* Compute the new value of vrsave, by modifying the register
1342 where vrsave was saved to. */
1343 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1344 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1345 {
1346 continue;
1347 }
1348 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1349 in a pair of insns to save the vector registers on the
1350 stack. */
1351 /* 001110 00000 00000 iiii iiii iiii iiii */
1352 /* 001110 01110 00000 iiii iiii iiii iiii */
1353 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1354 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1355 {
1356 if ((op & 0xffff0000) == 0x38000000)
1357 r0_contains_arg = 0;
1358 li_found_pc = pc;
1359 vr_saved_offset = SIGNED_SHORT (op);
1360
1361 /* This insn by itself is not part of the prologue, unless
1362 if part of the pair of insns mentioned above. So do not
1363 record this insn as part of the prologue yet. */
1364 prev_insn_was_prologue_insn = 0;
1365 }
1366 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1367 /* 011111 sssss 11111 00000 00111001110 */
1368 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1369 {
1370 if (pc == (li_found_pc + 4))
1371 {
1372 vr_reg = GET_SRC_REG (op);
1373 /* If this is the first vector reg to be saved, or if
1374 it has a lower number than others previously seen,
1375 reupdate the frame info. */
1376 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1377 {
1378 fdata->saved_vr = vr_reg;
1379 fdata->vr_offset = vr_saved_offset + offset;
1380 }
1381 vr_saved_offset = -1;
1382 vr_reg = -1;
1383 li_found_pc = 0;
1384 }
1385 }
1386 /* End AltiVec related instructions. */
1387
1388 /* Start BookE related instructions. */
1389 /* Store gen register S at (r31+uimm).
1390 Any register less than r13 is volatile, so we don't care. */
1391 /* 000100 sssss 11111 iiiii 01100100001 */
1392 else if (arch_info->mach == bfd_mach_ppc_e500
1393 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1394 {
1395 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1396 {
1397 unsigned int imm;
1398 ev_reg = GET_SRC_REG (op);
1399 imm = (op >> 11) & 0x1f;
1400 ev_offset = imm * 8;
1401 /* If this is the first vector reg to be saved, or if
1402 it has a lower number than others previously seen,
1403 reupdate the frame info. */
1404 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1405 {
1406 fdata->saved_ev = ev_reg;
1407 fdata->ev_offset = ev_offset + offset;
1408 }
1409 }
1410 continue;
1411 }
1412 /* Store gen register rS at (r1+rB). */
1413 /* 000100 sssss 00001 bbbbb 01100100000 */
1414 else if (arch_info->mach == bfd_mach_ppc_e500
1415 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1416 {
1417 if (pc == (li_found_pc + 4))
1418 {
1419 ev_reg = GET_SRC_REG (op);
1420 /* If this is the first vector reg to be saved, or if
1421 it has a lower number than others previously seen,
1422 reupdate the frame info. */
1423 /* We know the contents of rB from the previous instruction. */
1424 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1425 {
1426 fdata->saved_ev = ev_reg;
1427 fdata->ev_offset = vr_saved_offset + offset;
1428 }
1429 vr_saved_offset = -1;
1430 ev_reg = -1;
1431 li_found_pc = 0;
1432 }
1433 continue;
1434 }
1435 /* Store gen register r31 at (rA+uimm). */
1436 /* 000100 11111 aaaaa iiiii 01100100001 */
1437 else if (arch_info->mach == bfd_mach_ppc_e500
1438 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1439 {
1440 /* Wwe know that the source register is 31 already, but
1441 it can't hurt to compute it. */
1442 ev_reg = GET_SRC_REG (op);
1443 ev_offset = ((op >> 11) & 0x1f) * 8;
1444 /* If this is the first vector reg to be saved, or if
1445 it has a lower number than others previously seen,
1446 reupdate the frame info. */
1447 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1448 {
1449 fdata->saved_ev = ev_reg;
1450 fdata->ev_offset = ev_offset + offset;
1451 }
1452
1453 continue;
1454 }
1455 /* Store gen register S at (r31+r0).
1456 Store param on stack when offset from SP bigger than 4 bytes. */
1457 /* 000100 sssss 11111 00000 01100100000 */
1458 else if (arch_info->mach == bfd_mach_ppc_e500
1459 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1460 {
1461 if (pc == (li_found_pc + 4))
1462 {
1463 if ((op & 0x03e00000) >= 0x01a00000)
1464 {
1465 ev_reg = GET_SRC_REG (op);
1466 /* If this is the first vector reg to be saved, or if
1467 it has a lower number than others previously seen,
1468 reupdate the frame info. */
1469 /* We know the contents of r0 from the previous
1470 instruction. */
1471 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1472 {
1473 fdata->saved_ev = ev_reg;
1474 fdata->ev_offset = vr_saved_offset + offset;
1475 }
1476 ev_reg = -1;
1477 }
1478 vr_saved_offset = -1;
1479 li_found_pc = 0;
1480 continue;
1481 }
1482 }
1483 /* End BookE related instructions. */
1484
1485 else
1486 {
1487 /* Not a recognized prologue instruction.
1488 Handle optimizer code motions into the prologue by continuing
1489 the search if we have no valid frame yet or if the return
1490 address is not yet saved in the frame. */
1491 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1492 break;
1493
1494 if (op == 0x4e800020 /* blr */
1495 || op == 0x4e800420) /* bctr */
1496 /* Do not scan past epilogue in frameless functions or
1497 trampolines. */
1498 break;
1499 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1500 /* Never skip branches. */
1501 break;
1502
1503 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1504 /* Do not scan too many insns, scanning insns is expensive with
1505 remote targets. */
1506 break;
1507
1508 /* Continue scanning. */
1509 prev_insn_was_prologue_insn = 0;
1510 continue;
1511 }
1512 }
1513
1514 #if 0
1515 /* I have problems with skipping over __main() that I need to address
1516 * sometime. Previously, I used to use misc_function_vector which
1517 * didn't work as well as I wanted to be. -MGO */
1518
1519 /* If the first thing after skipping a prolog is a branch to a function,
1520 this might be a call to an initializer in main(), introduced by gcc2.
1521 We'd like to skip over it as well. Fortunately, xlc does some extra
1522 work before calling a function right after a prologue, thus we can
1523 single out such gcc2 behaviour. */
1524
1525
1526 if ((op & 0xfc000001) == 0x48000001)
1527 { /* bl foo, an initializer function? */
1528 op = read_memory_integer (pc + 4, 4);
1529
1530 if (op == 0x4def7b82)
1531 { /* cror 0xf, 0xf, 0xf (nop) */
1532
1533 /* Check and see if we are in main. If so, skip over this
1534 initializer function as well. */
1535
1536 tmp = find_pc_misc_function (pc);
1537 if (tmp >= 0
1538 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1539 return pc + 8;
1540 }
1541 }
1542 #endif /* 0 */
1543
1544 fdata->offset = -fdata->offset;
1545 return last_prologue_pc;
1546 }
1547
1548
1549 /*************************************************************************
1550 Support for creating pushing a dummy frame into the stack, and popping
1551 frames, etc.
1552 *************************************************************************/
1553
1554
1555 /* All the ABI's require 16 byte alignment. */
1556 static CORE_ADDR
1557 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1558 {
1559 return (addr & -16);
1560 }
1561
1562 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1563 the first eight words of the argument list (that might be less than
1564 eight parameters if some parameters occupy more than one word) are
1565 passed in r3..r10 registers. float and double parameters are
1566 passed in fpr's, in addition to that. Rest of the parameters if any
1567 are passed in user stack. There might be cases in which half of the
1568 parameter is copied into registers, the other half is pushed into
1569 stack.
1570
1571 Stack must be aligned on 64-bit boundaries when synthesizing
1572 function calls.
1573
1574 If the function is returning a structure, then the return address is passed
1575 in r3, then the first 7 words of the parameters can be passed in registers,
1576 starting from r4. */
1577
1578 static CORE_ADDR
1579 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1580 struct regcache *regcache, CORE_ADDR bp_addr,
1581 int nargs, struct value **args, CORE_ADDR sp,
1582 int struct_return, CORE_ADDR struct_addr)
1583 {
1584 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1585 int ii;
1586 int len = 0;
1587 int argno; /* current argument number */
1588 int argbytes; /* current argument byte */
1589 gdb_byte tmp_buffer[50];
1590 int f_argno = 0; /* current floating point argno */
1591 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1592 CORE_ADDR func_addr = find_function_addr (function, NULL);
1593
1594 struct value *arg = 0;
1595 struct type *type;
1596
1597 ULONGEST saved_sp;
1598
1599 /* The calling convention this function implements assumes the
1600 processor has floating-point registers. We shouldn't be using it
1601 on PPC variants that lack them. */
1602 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1603
1604 /* The first eight words of ther arguments are passed in registers.
1605 Copy them appropriately. */
1606 ii = 0;
1607
1608 /* If the function is returning a `struct', then the first word
1609 (which will be passed in r3) is used for struct return address.
1610 In that case we should advance one word and start from r4
1611 register to copy parameters. */
1612 if (struct_return)
1613 {
1614 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1615 struct_addr);
1616 ii++;
1617 }
1618
1619 /*
1620 effectively indirect call... gcc does...
1621
1622 return_val example( float, int);
1623
1624 eabi:
1625 float in fp0, int in r3
1626 offset of stack on overflow 8/16
1627 for varargs, must go by type.
1628 power open:
1629 float in r3&r4, int in r5
1630 offset of stack on overflow different
1631 both:
1632 return in r3 or f0. If no float, must study how gcc emulates floats;
1633 pay attention to arg promotion.
1634 User may have to cast\args to handle promotion correctly
1635 since gdb won't know if prototype supplied or not.
1636 */
1637
1638 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1639 {
1640 int reg_size = register_size (current_gdbarch, ii + 3);
1641
1642 arg = args[argno];
1643 type = check_typedef (value_type (arg));
1644 len = TYPE_LENGTH (type);
1645
1646 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1647 {
1648
1649 /* Floating point arguments are passed in fpr's, as well as gpr's.
1650 There are 13 fpr's reserved for passing parameters. At this point
1651 there is no way we would run out of them. */
1652
1653 gdb_assert (len <= 8);
1654
1655 regcache_cooked_write (regcache,
1656 tdep->ppc_fp0_regnum + 1 + f_argno,
1657 value_contents (arg));
1658 ++f_argno;
1659 }
1660
1661 if (len > reg_size)
1662 {
1663
1664 /* Argument takes more than one register. */
1665 while (argbytes < len)
1666 {
1667 gdb_byte word[MAX_REGISTER_SIZE];
1668 memset (word, 0, reg_size);
1669 memcpy (word,
1670 ((char *) value_contents (arg)) + argbytes,
1671 (len - argbytes) > reg_size
1672 ? reg_size : len - argbytes);
1673 regcache_cooked_write (regcache,
1674 tdep->ppc_gp0_regnum + 3 + ii,
1675 word);
1676 ++ii, argbytes += reg_size;
1677
1678 if (ii >= 8)
1679 goto ran_out_of_registers_for_arguments;
1680 }
1681 argbytes = 0;
1682 --ii;
1683 }
1684 else
1685 {
1686 /* Argument can fit in one register. No problem. */
1687 int adj = gdbarch_byte_order (current_gdbarch)
1688 == BFD_ENDIAN_BIG ? reg_size - len : 0;
1689 gdb_byte word[MAX_REGISTER_SIZE];
1690
1691 memset (word, 0, reg_size);
1692 memcpy (word, value_contents (arg), len);
1693 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1694 }
1695 ++argno;
1696 }
1697
1698 ran_out_of_registers_for_arguments:
1699
1700 regcache_cooked_read_unsigned (regcache, SP_REGNUM, &saved_sp);
1701
1702 /* Location for 8 parameters are always reserved. */
1703 sp -= wordsize * 8;
1704
1705 /* Another six words for back chain, TOC register, link register, etc. */
1706 sp -= wordsize * 6;
1707
1708 /* Stack pointer must be quadword aligned. */
1709 sp &= -16;
1710
1711 /* If there are more arguments, allocate space for them in
1712 the stack, then push them starting from the ninth one. */
1713
1714 if ((argno < nargs) || argbytes)
1715 {
1716 int space = 0, jj;
1717
1718 if (argbytes)
1719 {
1720 space += ((len - argbytes + 3) & -4);
1721 jj = argno + 1;
1722 }
1723 else
1724 jj = argno;
1725
1726 for (; jj < nargs; ++jj)
1727 {
1728 struct value *val = args[jj];
1729 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1730 }
1731
1732 /* Add location required for the rest of the parameters. */
1733 space = (space + 15) & -16;
1734 sp -= space;
1735
1736 /* This is another instance we need to be concerned about
1737 securing our stack space. If we write anything underneath %sp
1738 (r1), we might conflict with the kernel who thinks he is free
1739 to use this area. So, update %sp first before doing anything
1740 else. */
1741
1742 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1743
1744 /* If the last argument copied into the registers didn't fit there
1745 completely, push the rest of it into stack. */
1746
1747 if (argbytes)
1748 {
1749 write_memory (sp + 24 + (ii * 4),
1750 value_contents (arg) + argbytes,
1751 len - argbytes);
1752 ++argno;
1753 ii += ((len - argbytes + 3) & -4) / 4;
1754 }
1755
1756 /* Push the rest of the arguments into stack. */
1757 for (; argno < nargs; ++argno)
1758 {
1759
1760 arg = args[argno];
1761 type = check_typedef (value_type (arg));
1762 len = TYPE_LENGTH (type);
1763
1764
1765 /* Float types should be passed in fpr's, as well as in the
1766 stack. */
1767 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1768 {
1769
1770 gdb_assert (len <= 8);
1771
1772 regcache_cooked_write (regcache,
1773 tdep->ppc_fp0_regnum + 1 + f_argno,
1774 value_contents (arg));
1775 ++f_argno;
1776 }
1777
1778 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1779 ii += ((len + 3) & -4) / 4;
1780 }
1781 }
1782
1783 /* Set the stack pointer. According to the ABI, the SP is meant to
1784 be set _before_ the corresponding stack space is used. On AIX,
1785 this even applies when the target has been completely stopped!
1786 Not doing this can lead to conflicts with the kernel which thinks
1787 that it still has control over this not-yet-allocated stack
1788 region. */
1789 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1790
1791 /* Set back chain properly. */
1792 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1793 write_memory (sp, tmp_buffer, wordsize);
1794
1795 /* Point the inferior function call's return address at the dummy's
1796 breakpoint. */
1797 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1798
1799 /* Set the TOC register, get the value from the objfile reader
1800 which, in turn, gets it from the VMAP table. */
1801 if (rs6000_find_toc_address_hook != NULL)
1802 {
1803 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1804 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1805 }
1806
1807 target_store_registers (regcache, -1);
1808 return sp;
1809 }
1810
1811 static enum return_value_convention
1812 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1813 struct regcache *regcache, gdb_byte *readbuf,
1814 const gdb_byte *writebuf)
1815 {
1816 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1817 gdb_byte buf[8];
1818
1819 /* The calling convention this function implements assumes the
1820 processor has floating-point registers. We shouldn't be using it
1821 on PowerPC variants that lack them. */
1822 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1823
1824 /* AltiVec extension: Functions that declare a vector data type as a
1825 return value place that return value in VR2. */
1826 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1827 && TYPE_LENGTH (valtype) == 16)
1828 {
1829 if (readbuf)
1830 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1831 if (writebuf)
1832 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1833
1834 return RETURN_VALUE_REGISTER_CONVENTION;
1835 }
1836
1837 /* If the called subprogram returns an aggregate, there exists an
1838 implicit first argument, whose value is the address of a caller-
1839 allocated buffer into which the callee is assumed to store its
1840 return value. All explicit parameters are appropriately
1841 relabeled. */
1842 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1843 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1844 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1845 return RETURN_VALUE_STRUCT_CONVENTION;
1846
1847 /* Scalar floating-point values are returned in FPR1 for float or
1848 double, and in FPR1:FPR2 for quadword precision. Fortran
1849 complex*8 and complex*16 are returned in FPR1:FPR2, and
1850 complex*32 is returned in FPR1:FPR4. */
1851 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1852 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1853 {
1854 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1855 gdb_byte regval[8];
1856
1857 /* FIXME: kettenis/2007-01-01: Add support for quadword
1858 precision and complex. */
1859
1860 if (readbuf)
1861 {
1862 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1863 convert_typed_floating (regval, regtype, readbuf, valtype);
1864 }
1865 if (writebuf)
1866 {
1867 convert_typed_floating (writebuf, valtype, regval, regtype);
1868 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1869 }
1870
1871 return RETURN_VALUE_REGISTER_CONVENTION;
1872 }
1873
1874 /* Values of the types int, long, short, pointer, and char (length
1875 is less than or equal to four bytes), as well as bit values of
1876 lengths less than or equal to 32 bits, must be returned right
1877 justified in GPR3 with signed values sign extended and unsigned
1878 values zero extended, as necessary. */
1879 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1880 {
1881 if (readbuf)
1882 {
1883 ULONGEST regval;
1884
1885 /* For reading we don't have to worry about sign extension. */
1886 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1887 &regval);
1888 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1889 }
1890 if (writebuf)
1891 {
1892 /* For writing, use unpack_long since that should handle any
1893 required sign extension. */
1894 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1895 unpack_long (valtype, writebuf));
1896 }
1897
1898 return RETURN_VALUE_REGISTER_CONVENTION;
1899 }
1900
1901 /* Eight-byte non-floating-point scalar values must be returned in
1902 GPR3:GPR4. */
1903
1904 if (TYPE_LENGTH (valtype) == 8)
1905 {
1906 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1907 gdb_assert (tdep->wordsize == 4);
1908
1909 if (readbuf)
1910 {
1911 gdb_byte regval[8];
1912
1913 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1914 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1915 regval + 4);
1916 memcpy (readbuf, regval, 8);
1917 }
1918 if (writebuf)
1919 {
1920 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1921 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1922 writebuf + 4);
1923 }
1924
1925 return RETURN_VALUE_REGISTER_CONVENTION;
1926 }
1927
1928 return RETURN_VALUE_STRUCT_CONVENTION;
1929 }
1930
1931 /* Return whether handle_inferior_event() should proceed through code
1932 starting at PC in function NAME when stepping.
1933
1934 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1935 handle memory references that are too distant to fit in instructions
1936 generated by the compiler. For example, if 'foo' in the following
1937 instruction:
1938
1939 lwz r9,foo(r2)
1940
1941 is greater than 32767, the linker might replace the lwz with a branch to
1942 somewhere in @FIX1 that does the load in 2 instructions and then branches
1943 back to where execution should continue.
1944
1945 GDB should silently step over @FIX code, just like AIX dbx does.
1946 Unfortunately, the linker uses the "b" instruction for the
1947 branches, meaning that the link register doesn't get set.
1948 Therefore, GDB's usual step_over_function () mechanism won't work.
1949
1950 Instead, use the gdbarch_skip_trampoline_code and
1951 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
1952 @FIX code. */
1953
1954 int
1955 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1956 {
1957 return name && !strncmp (name, "@FIX", 4);
1958 }
1959
1960 /* Skip code that the user doesn't want to see when stepping:
1961
1962 1. Indirect function calls use a piece of trampoline code to do context
1963 switching, i.e. to set the new TOC table. Skip such code if we are on
1964 its first instruction (as when we have single-stepped to here).
1965
1966 2. Skip shared library trampoline code (which is different from
1967 indirect function call trampolines).
1968
1969 3. Skip bigtoc fixup code.
1970
1971 Result is desired PC to step until, or NULL if we are not in
1972 code that should be skipped. */
1973
1974 CORE_ADDR
1975 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1976 {
1977 unsigned int ii, op;
1978 int rel;
1979 CORE_ADDR solib_target_pc;
1980 struct minimal_symbol *msymbol;
1981
1982 static unsigned trampoline_code[] =
1983 {
1984 0x800b0000, /* l r0,0x0(r11) */
1985 0x90410014, /* st r2,0x14(r1) */
1986 0x7c0903a6, /* mtctr r0 */
1987 0x804b0004, /* l r2,0x4(r11) */
1988 0x816b0008, /* l r11,0x8(r11) */
1989 0x4e800420, /* bctr */
1990 0x4e800020, /* br */
1991 0
1992 };
1993
1994 /* Check for bigtoc fixup code. */
1995 msymbol = lookup_minimal_symbol_by_pc (pc);
1996 if (msymbol
1997 && rs6000_in_solib_return_trampoline (pc,
1998 DEPRECATED_SYMBOL_NAME (msymbol)))
1999 {
2000 /* Double-check that the third instruction from PC is relative "b". */
2001 op = read_memory_integer (pc + 8, 4);
2002 if ((op & 0xfc000003) == 0x48000000)
2003 {
2004 /* Extract bits 6-29 as a signed 24-bit relative word address and
2005 add it to the containing PC. */
2006 rel = ((int)(op << 6) >> 6);
2007 return pc + 8 + rel;
2008 }
2009 }
2010
2011 /* If pc is in a shared library trampoline, return its target. */
2012 solib_target_pc = find_solib_trampoline_target (frame, pc);
2013 if (solib_target_pc)
2014 return solib_target_pc;
2015
2016 for (ii = 0; trampoline_code[ii]; ++ii)
2017 {
2018 op = read_memory_integer (pc + (ii * 4), 4);
2019 if (op != trampoline_code[ii])
2020 return 0;
2021 }
2022 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
2023 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
2024 return pc;
2025 }
2026
2027 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
2028 isn't available with that word size, return 0. */
2029
2030 static int
2031 regsize (const struct reg *reg, int wordsize)
2032 {
2033 return wordsize == 8 ? reg->sz64 : reg->sz32;
2034 }
2035
2036 /* Return the name of register number N, or null if no such register exists
2037 in the current architecture. */
2038
2039 static const char *
2040 rs6000_register_name (int n)
2041 {
2042 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2043 const struct reg *reg = tdep->regs + n;
2044
2045 if (!regsize (reg, tdep->wordsize))
2046 return NULL;
2047 return reg->name;
2048 }
2049
2050 /* Return the GDB type object for the "standard" data type
2051 of data in register N. */
2052
2053 static struct type *
2054 rs6000_register_type (struct gdbarch *gdbarch, int n)
2055 {
2056 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2057 const struct reg *reg = tdep->regs + n;
2058
2059 if (reg->fpr)
2060 return builtin_type_double;
2061 else
2062 {
2063 int size = regsize (reg, tdep->wordsize);
2064 switch (size)
2065 {
2066 case 0:
2067 return builtin_type_int0;
2068 case 4:
2069 return builtin_type_uint32;
2070 case 8:
2071 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
2072 return builtin_type_vec64;
2073 else
2074 return builtin_type_uint64;
2075 break;
2076 case 16:
2077 return builtin_type_vec128;
2078 break;
2079 default:
2080 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
2081 n, size);
2082 }
2083 }
2084 }
2085
2086 /* Is REGNUM a member of REGGROUP? */
2087 static int
2088 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2089 struct reggroup *group)
2090 {
2091 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2092 int float_p;
2093 int vector_p;
2094 int general_p;
2095
2096 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
2097 || *gdbarch_register_name (current_gdbarch, regnum) == '\0')
2098 return 0;
2099 if (group == all_reggroup)
2100 return 1;
2101
2102 float_p = (regnum == tdep->ppc_fpscr_regnum
2103 || (regnum >= tdep->ppc_fp0_regnum
2104 && regnum < tdep->ppc_fp0_regnum + 32));
2105 if (group == float_reggroup)
2106 return float_p;
2107
2108 vector_p = ((tdep->ppc_vr0_regnum >= 0
2109 && regnum >= tdep->ppc_vr0_regnum
2110 && regnum < tdep->ppc_vr0_regnum + 32)
2111 || (tdep->ppc_ev0_regnum >= 0
2112 && regnum >= tdep->ppc_ev0_regnum
2113 && regnum < tdep->ppc_ev0_regnum + 32)
2114 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2115 || regnum == tdep->ppc_vrsave_regnum
2116 || regnum == tdep->ppc_acc_regnum
2117 || regnum == tdep->ppc_spefscr_regnum);
2118 if (group == vector_reggroup)
2119 return vector_p;
2120
2121 /* Note that PS aka MSR isn't included - it's a system register (and
2122 besides, due to GCC's CFI foobar you do not want to restore
2123 it). */
2124 general_p = ((regnum >= tdep->ppc_gp0_regnum
2125 && regnum < tdep->ppc_gp0_regnum + 32)
2126 || regnum == tdep->ppc_toc_regnum
2127 || regnum == tdep->ppc_cr_regnum
2128 || regnum == tdep->ppc_lr_regnum
2129 || regnum == tdep->ppc_ctr_regnum
2130 || regnum == tdep->ppc_xer_regnum
2131 || regnum == PC_REGNUM);
2132 if (group == general_reggroup)
2133 return general_p;
2134
2135 if (group == save_reggroup || group == restore_reggroup)
2136 return general_p || vector_p || float_p;
2137
2138 return 0;
2139 }
2140
2141 /* The register format for RS/6000 floating point registers is always
2142 double, we need a conversion if the memory format is float. */
2143
2144 static int
2145 rs6000_convert_register_p (int regnum, struct type *type)
2146 {
2147 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2148
2149 return (reg->fpr
2150 && TYPE_CODE (type) == TYPE_CODE_FLT
2151 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2152 }
2153
2154 static void
2155 rs6000_register_to_value (struct frame_info *frame,
2156 int regnum,
2157 struct type *type,
2158 gdb_byte *to)
2159 {
2160 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2161 gdb_byte from[MAX_REGISTER_SIZE];
2162
2163 gdb_assert (reg->fpr);
2164 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2165
2166 get_frame_register (frame, regnum, from);
2167 convert_typed_floating (from, builtin_type_double, to, type);
2168 }
2169
2170 static void
2171 rs6000_value_to_register (struct frame_info *frame,
2172 int regnum,
2173 struct type *type,
2174 const gdb_byte *from)
2175 {
2176 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2177 gdb_byte to[MAX_REGISTER_SIZE];
2178
2179 gdb_assert (reg->fpr);
2180 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2181
2182 convert_typed_floating (from, type, to, builtin_type_double);
2183 put_frame_register (frame, regnum, to);
2184 }
2185
2186 /* Move SPE vector register values between a 64-bit buffer and the two
2187 32-bit raw register halves in a regcache. This function handles
2188 both splitting a 64-bit value into two 32-bit halves, and joining
2189 two halves into a whole 64-bit value, depending on the function
2190 passed as the MOVE argument.
2191
2192 EV_REG must be the number of an SPE evN vector register --- a
2193 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2194 64-bit buffer.
2195
2196 Call MOVE once for each 32-bit half of that register, passing
2197 REGCACHE, the number of the raw register corresponding to that
2198 half, and the address of the appropriate half of BUFFER.
2199
2200 For example, passing 'regcache_raw_read' as the MOVE function will
2201 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2202 'regcache_raw_supply' will supply the contents of BUFFER to the
2203 appropriate pair of raw registers in REGCACHE.
2204
2205 You may need to cast away some 'const' qualifiers when passing
2206 MOVE, since this function can't tell at compile-time which of
2207 REGCACHE or BUFFER is acting as the source of the data. If C had
2208 co-variant type qualifiers, ... */
2209 static void
2210 e500_move_ev_register (void (*move) (struct regcache *regcache,
2211 int regnum, gdb_byte *buf),
2212 struct regcache *regcache, int ev_reg,
2213 gdb_byte *buffer)
2214 {
2215 struct gdbarch *arch = get_regcache_arch (regcache);
2216 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2217 int reg_index;
2218 gdb_byte *byte_buffer = buffer;
2219
2220 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2221 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2222
2223 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2224
2225 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2226 {
2227 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2228 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2229 }
2230 else
2231 {
2232 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2233 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2234 }
2235 }
2236
2237 static void
2238 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2239 int reg_nr, gdb_byte *buffer)
2240 {
2241 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2242 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2243
2244 gdb_assert (regcache_arch == gdbarch);
2245
2246 if (tdep->ppc_ev0_regnum <= reg_nr
2247 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2248 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2249 else
2250 internal_error (__FILE__, __LINE__,
2251 _("e500_pseudo_register_read: "
2252 "called on unexpected register '%s' (%d)"),
2253 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2254 }
2255
2256 static void
2257 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2258 int reg_nr, const gdb_byte *buffer)
2259 {
2260 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2261 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2262
2263 gdb_assert (regcache_arch == gdbarch);
2264
2265 if (tdep->ppc_ev0_regnum <= reg_nr
2266 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2267 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2268 regcache_raw_write,
2269 regcache, reg_nr, (gdb_byte *) buffer);
2270 else
2271 internal_error (__FILE__, __LINE__,
2272 _("e500_pseudo_register_read: "
2273 "called on unexpected register '%s' (%d)"),
2274 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2275 }
2276
2277 /* The E500 needs a custom reggroup function: it has anonymous raw
2278 registers, and default_register_reggroup_p assumes that anonymous
2279 registers are not members of any reggroup. */
2280 static int
2281 e500_register_reggroup_p (struct gdbarch *gdbarch,
2282 int regnum,
2283 struct reggroup *group)
2284 {
2285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2286
2287 /* The save and restore register groups need to include the
2288 upper-half registers, even though they're anonymous. */
2289 if ((group == save_reggroup
2290 || group == restore_reggroup)
2291 && (tdep->ppc_ev0_upper_regnum <= regnum
2292 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2293 return 1;
2294
2295 /* In all other regards, the default reggroup definition is fine. */
2296 return default_register_reggroup_p (gdbarch, regnum, group);
2297 }
2298
2299 /* Convert a DBX STABS register number to a GDB register number. */
2300 static int
2301 rs6000_stab_reg_to_regnum (int num)
2302 {
2303 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2304
2305 if (0 <= num && num <= 31)
2306 return tdep->ppc_gp0_regnum + num;
2307 else if (32 <= num && num <= 63)
2308 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2309 specifies registers the architecture doesn't have? Our
2310 callers don't check the value we return. */
2311 return tdep->ppc_fp0_regnum + (num - 32);
2312 else if (77 <= num && num <= 108)
2313 return tdep->ppc_vr0_regnum + (num - 77);
2314 else if (1200 <= num && num < 1200 + 32)
2315 return tdep->ppc_ev0_regnum + (num - 1200);
2316 else
2317 switch (num)
2318 {
2319 case 64:
2320 return tdep->ppc_mq_regnum;
2321 case 65:
2322 return tdep->ppc_lr_regnum;
2323 case 66:
2324 return tdep->ppc_ctr_regnum;
2325 case 76:
2326 return tdep->ppc_xer_regnum;
2327 case 109:
2328 return tdep->ppc_vrsave_regnum;
2329 case 110:
2330 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2331 case 111:
2332 return tdep->ppc_acc_regnum;
2333 case 112:
2334 return tdep->ppc_spefscr_regnum;
2335 default:
2336 return num;
2337 }
2338 }
2339
2340
2341 /* Convert a Dwarf 2 register number to a GDB register number. */
2342 static int
2343 rs6000_dwarf2_reg_to_regnum (int num)
2344 {
2345 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2346
2347 if (0 <= num && num <= 31)
2348 return tdep->ppc_gp0_regnum + num;
2349 else if (32 <= num && num <= 63)
2350 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2351 specifies registers the architecture doesn't have? Our
2352 callers don't check the value we return. */
2353 return tdep->ppc_fp0_regnum + (num - 32);
2354 else if (1124 <= num && num < 1124 + 32)
2355 return tdep->ppc_vr0_regnum + (num - 1124);
2356 else if (1200 <= num && num < 1200 + 32)
2357 return tdep->ppc_ev0_regnum + (num - 1200);
2358 else
2359 switch (num)
2360 {
2361 case 64:
2362 return tdep->ppc_cr_regnum;
2363 case 67:
2364 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2365 case 99:
2366 return tdep->ppc_acc_regnum;
2367 case 100:
2368 return tdep->ppc_mq_regnum;
2369 case 101:
2370 return tdep->ppc_xer_regnum;
2371 case 108:
2372 return tdep->ppc_lr_regnum;
2373 case 109:
2374 return tdep->ppc_ctr_regnum;
2375 case 356:
2376 return tdep->ppc_vrsave_regnum;
2377 case 612:
2378 return tdep->ppc_spefscr_regnum;
2379 default:
2380 return num;
2381 }
2382 }
2383
2384 /* Translate a .eh_frame register to DWARF register, or adjust a
2385 .debug_frame register. */
2386
2387 static int
2388 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2389 {
2390 /* GCC releases before 3.4 use GCC internal register numbering in
2391 .debug_frame (and .debug_info, et cetera). The numbering is
2392 different from the standard SysV numbering for everything except
2393 for GPRs and FPRs. We can not detect this problem in most cases
2394 - to get accurate debug info for variables living in lr, ctr, v0,
2395 et cetera, use a newer version of GCC. But we must detect
2396 one important case - lr is in column 65 in .debug_frame output,
2397 instead of 108.
2398
2399 GCC 3.4, and the "hammer" branch, have a related problem. They
2400 record lr register saves in .debug_frame as 108, but still record
2401 the return column as 65. We fix that up too.
2402
2403 We can do this because 65 is assigned to fpsr, and GCC never
2404 generates debug info referring to it. To add support for
2405 handwritten debug info that restores fpsr, we would need to add a
2406 producer version check to this. */
2407 if (!eh_frame_p)
2408 {
2409 if (num == 65)
2410 return 108;
2411 else
2412 return num;
2413 }
2414
2415 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2416 internal register numbering; translate that to the standard DWARF2
2417 register numbering. */
2418 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2419 return num;
2420 else if (68 <= num && num <= 75) /* cr0-cr8 */
2421 return num - 68 + 86;
2422 else if (77 <= num && num <= 108) /* vr0-vr31 */
2423 return num - 77 + 1124;
2424 else
2425 switch (num)
2426 {
2427 case 64: /* mq */
2428 return 100;
2429 case 65: /* lr */
2430 return 108;
2431 case 66: /* ctr */
2432 return 109;
2433 case 76: /* xer */
2434 return 101;
2435 case 109: /* vrsave */
2436 return 356;
2437 case 110: /* vscr */
2438 return 67;
2439 case 111: /* spe_acc */
2440 return 99;
2441 case 112: /* spefscr */
2442 return 612;
2443 default:
2444 return num;
2445 }
2446 }
2447 \f
2448 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2449
2450 Usually a function pointer's representation is simply the address
2451 of the function. On the RS/6000 however, a function pointer is
2452 represented by a pointer to an OPD entry. This OPD entry contains
2453 three words, the first word is the address of the function, the
2454 second word is the TOC pointer (r2), and the third word is the
2455 static chain value. Throughout GDB it is currently assumed that a
2456 function pointer contains the address of the function, which is not
2457 easy to fix. In addition, the conversion of a function address to
2458 a function pointer would require allocation of an OPD entry in the
2459 inferior's memory space, with all its drawbacks. To be able to
2460 call C++ virtual methods in the inferior (which are called via
2461 function pointers), find_function_addr uses this function to get the
2462 function address from a function pointer. */
2463
2464 /* Return real function address if ADDR (a function pointer) is in the data
2465 space and is therefore a special function pointer. */
2466
2467 static CORE_ADDR
2468 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2469 CORE_ADDR addr,
2470 struct target_ops *targ)
2471 {
2472 struct obj_section *s;
2473
2474 s = find_pc_section (addr);
2475 if (s && s->the_bfd_section->flags & SEC_CODE)
2476 return addr;
2477
2478 /* ADDR is in the data space, so it's a special function pointer. */
2479 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
2480 }
2481 \f
2482
2483 /* Handling the various POWER/PowerPC variants. */
2484
2485
2486 /* The arrays here called registers_MUMBLE hold information about available
2487 registers.
2488
2489 For each family of PPC variants, I've tried to isolate out the
2490 common registers and put them up front, so that as long as you get
2491 the general family right, GDB will correctly identify the registers
2492 common to that family. The common register sets are:
2493
2494 For the 60x family: hid0 hid1 iabr dabr pir
2495
2496 For the 505 and 860 family: eie eid nri
2497
2498 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2499 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2500 pbu1 pbl2 pbu2
2501
2502 Most of these register groups aren't anything formal. I arrived at
2503 them by looking at the registers that occurred in more than one
2504 processor.
2505
2506 Note: kevinb/2002-04-30: Support for the fpscr register was added
2507 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2508 for Power. For PowerPC, slot 70 was unused and was already in the
2509 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2510 slot 70 was being used for "mq", so the next available slot (71)
2511 was chosen. It would have been nice to be able to make the
2512 register numbers the same across processor cores, but this wasn't
2513 possible without either 1) renumbering some registers for some
2514 processors or 2) assigning fpscr to a really high slot that's
2515 larger than any current register number. Doing (1) is bad because
2516 existing stubs would break. Doing (2) is undesirable because it
2517 would introduce a really large gap between fpscr and the rest of
2518 the registers for most processors. */
2519
2520 /* Convenience macros for populating register arrays. */
2521
2522 /* Within another macro, convert S to a string. */
2523
2524 #define STR(s) #s
2525
2526 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2527 and 64 bits on 64-bit systems. */
2528 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2529
2530 /* Return a struct reg defining register NAME that's 32 bits on all
2531 systems. */
2532 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2533
2534 /* Return a struct reg defining register NAME that's 64 bits on all
2535 systems. */
2536 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2537
2538 /* Return a struct reg defining register NAME that's 128 bits on all
2539 systems. */
2540 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2541
2542 /* Return a struct reg defining floating-point register NAME. */
2543 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2544
2545 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2546 long on all systems. */
2547 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2548
2549 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2550 systems and that doesn't exist on 64-bit systems. */
2551 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2552
2553 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2554 systems and that doesn't exist on 32-bit systems. */
2555 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2556
2557 /* Return a struct reg placeholder for a register that doesn't exist. */
2558 #define R0 { 0, 0, 0, 0, 0, -1 }
2559
2560 /* Return a struct reg defining an anonymous raw register that's 32
2561 bits on all systems. */
2562 #define A4 { 0, 4, 4, 0, 0, -1 }
2563
2564 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2565 32-bit systems and 64 bits on 64-bit systems. */
2566 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2567
2568 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2569 all systems. */
2570 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2571
2572 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2573 all systems, and whose SPR number is NUMBER. */
2574 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2575
2576 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2577 64-bit systems and that doesn't exist on 32-bit systems. */
2578 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2579
2580 /* UISA registers common across all architectures, including POWER. */
2581
2582 #define COMMON_UISA_REGS \
2583 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2584 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2585 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2586 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2587 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2588 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2589 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2590 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2591 /* 64 */ R(pc), R(ps)
2592
2593 /* UISA-level SPRs for PowerPC. */
2594 #define PPC_UISA_SPRS \
2595 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2596
2597 /* UISA-level SPRs for PowerPC without floating point support. */
2598 #define PPC_UISA_NOFP_SPRS \
2599 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2600
2601 /* Segment registers, for PowerPC. */
2602 #define PPC_SEGMENT_REGS \
2603 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2604 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2605 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2606 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2607
2608 /* OEA SPRs for PowerPC. */
2609 #define PPC_OEA_SPRS \
2610 /* 87 */ S4(pvr), \
2611 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2612 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2613 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2614 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2615 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2616 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2617 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2618 /* 116 */ S4(dec), S(dabr), S4(ear)
2619
2620 /* AltiVec registers. */
2621 #define PPC_ALTIVEC_REGS \
2622 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2623 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2624 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2625 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2626 /*151*/R4(vscr), R4(vrsave)
2627
2628
2629 /* On machines supporting the SPE APU, the general-purpose registers
2630 are 64 bits long. There are SIMD vector instructions to treat them
2631 as pairs of floats, but the rest of the instruction set treats them
2632 as 32-bit registers, and only operates on their lower halves.
2633
2634 In the GDB regcache, we treat their high and low halves as separate
2635 registers. The low halves we present as the general-purpose
2636 registers, and then we have pseudo-registers that stitch together
2637 the upper and lower halves and present them as pseudo-registers. */
2638
2639 /* SPE GPR lower halves --- raw registers. */
2640 #define PPC_SPE_GP_REGS \
2641 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2642 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2643 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2644 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2645
2646 /* SPE GPR upper halves --- anonymous raw registers. */
2647 #define PPC_SPE_UPPER_GP_REGS \
2648 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2649 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2650 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2651 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2652
2653 /* SPE GPR vector registers --- pseudo registers based on underlying
2654 gprs and the anonymous upper half raw registers. */
2655 #define PPC_EV_PSEUDO_REGS \
2656 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2657 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2658 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2659 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2660
2661 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2662 user-level SPR's. */
2663 static const struct reg registers_power[] =
2664 {
2665 COMMON_UISA_REGS,
2666 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2667 /* 71 */ R4(fpscr)
2668 };
2669
2670 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2671 view of the PowerPC. */
2672 static const struct reg registers_powerpc[] =
2673 {
2674 COMMON_UISA_REGS,
2675 PPC_UISA_SPRS,
2676 PPC_ALTIVEC_REGS
2677 };
2678
2679 /* IBM PowerPC 403.
2680
2681 Some notes about the "tcr" special-purpose register:
2682 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2683 403's programmable interval timer, fixed interval timer, and
2684 watchdog timer.
2685 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2686 watchdog timer, and nothing else.
2687
2688 Some of the fields are similar between the two, but they're not
2689 compatible with each other. Since the two variants have different
2690 registers, with different numbers, but the same name, we can't
2691 splice the register name to get the SPR number. */
2692 static const struct reg registers_403[] =
2693 {
2694 COMMON_UISA_REGS,
2695 PPC_UISA_SPRS,
2696 PPC_SEGMENT_REGS,
2697 PPC_OEA_SPRS,
2698 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2699 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2700 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2701 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2702 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2703 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2704 };
2705
2706 /* IBM PowerPC 403GC.
2707 See the comments about 'tcr' for the 403, above. */
2708 static const struct reg registers_403GC[] =
2709 {
2710 COMMON_UISA_REGS,
2711 PPC_UISA_SPRS,
2712 PPC_SEGMENT_REGS,
2713 PPC_OEA_SPRS,
2714 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2715 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2716 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2717 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2718 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2719 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2720 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2721 /* 147 */ S(tbhu), S(tblu)
2722 };
2723
2724 /* Motorola PowerPC 505. */
2725 static const struct reg registers_505[] =
2726 {
2727 COMMON_UISA_REGS,
2728 PPC_UISA_SPRS,
2729 PPC_SEGMENT_REGS,
2730 PPC_OEA_SPRS,
2731 /* 119 */ S(eie), S(eid), S(nri)
2732 };
2733
2734 /* Motorola PowerPC 860 or 850. */
2735 static const struct reg registers_860[] =
2736 {
2737 COMMON_UISA_REGS,
2738 PPC_UISA_SPRS,
2739 PPC_SEGMENT_REGS,
2740 PPC_OEA_SPRS,
2741 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2742 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2743 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2744 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2745 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2746 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2747 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2748 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2749 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2750 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2751 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2752 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2753 };
2754
2755 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2756 for reading and writing RTCU and RTCL. However, how one reads and writes a
2757 register is the stub's problem. */
2758 static const struct reg registers_601[] =
2759 {
2760 COMMON_UISA_REGS,
2761 PPC_UISA_SPRS,
2762 PPC_SEGMENT_REGS,
2763 PPC_OEA_SPRS,
2764 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2765 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2766 };
2767
2768 /* Motorola PowerPC 602.
2769 See the notes under the 403 about 'tcr'. */
2770 static const struct reg registers_602[] =
2771 {
2772 COMMON_UISA_REGS,
2773 PPC_UISA_SPRS,
2774 PPC_SEGMENT_REGS,
2775 PPC_OEA_SPRS,
2776 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2777 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2778 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2779 };
2780
2781 /* Motorola/IBM PowerPC 603 or 603e. */
2782 static const struct reg registers_603[] =
2783 {
2784 COMMON_UISA_REGS,
2785 PPC_UISA_SPRS,
2786 PPC_SEGMENT_REGS,
2787 PPC_OEA_SPRS,
2788 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2789 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2790 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2791 };
2792
2793 /* Motorola PowerPC 604 or 604e. */
2794 static const struct reg registers_604[] =
2795 {
2796 COMMON_UISA_REGS,
2797 PPC_UISA_SPRS,
2798 PPC_SEGMENT_REGS,
2799 PPC_OEA_SPRS,
2800 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2801 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2802 /* 127 */ S(sia), S(sda)
2803 };
2804
2805 /* Motorola/IBM PowerPC 750 or 740. */
2806 static const struct reg registers_750[] =
2807 {
2808 COMMON_UISA_REGS,
2809 PPC_UISA_SPRS,
2810 PPC_SEGMENT_REGS,
2811 PPC_OEA_SPRS,
2812 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2813 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2814 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2815 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2816 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2817 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2818 };
2819
2820
2821 /* Motorola PowerPC 7400. */
2822 static const struct reg registers_7400[] =
2823 {
2824 /* gpr0-gpr31, fpr0-fpr31 */
2825 COMMON_UISA_REGS,
2826 /* cr, lr, ctr, xer, fpscr */
2827 PPC_UISA_SPRS,
2828 /* sr0-sr15 */
2829 PPC_SEGMENT_REGS,
2830 PPC_OEA_SPRS,
2831 /* vr0-vr31, vrsave, vscr */
2832 PPC_ALTIVEC_REGS
2833 /* FIXME? Add more registers? */
2834 };
2835
2836 /* Motorola e500. */
2837 static const struct reg registers_e500[] =
2838 {
2839 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2840 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2841 /* 64 .. 65 */ R(pc), R(ps),
2842 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2843 /* 71 .. 72 */ R8(acc), S4(spefscr),
2844 /* NOTE: Add new registers here the end of the raw register
2845 list and just before the first pseudo register. */
2846 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2847 };
2848
2849 /* Information about a particular processor variant. */
2850
2851 struct variant
2852 {
2853 /* Name of this variant. */
2854 char *name;
2855
2856 /* English description of the variant. */
2857 char *description;
2858
2859 /* bfd_arch_info.arch corresponding to variant. */
2860 enum bfd_architecture arch;
2861
2862 /* bfd_arch_info.mach corresponding to variant. */
2863 unsigned long mach;
2864
2865 /* Number of real registers. */
2866 int nregs;
2867
2868 /* Number of pseudo registers. */
2869 int npregs;
2870
2871 /* Number of total registers (the sum of nregs and npregs). */
2872 int num_tot_regs;
2873
2874 /* Table of register names; registers[R] is the name of the register
2875 number R. */
2876 const struct reg *regs;
2877 };
2878
2879 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2880
2881 static int
2882 num_registers (const struct reg *reg_list, int num_tot_regs)
2883 {
2884 int i;
2885 int nregs = 0;
2886
2887 for (i = 0; i < num_tot_regs; i++)
2888 if (!reg_list[i].pseudo)
2889 nregs++;
2890
2891 return nregs;
2892 }
2893
2894 static int
2895 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2896 {
2897 int i;
2898 int npregs = 0;
2899
2900 for (i = 0; i < num_tot_regs; i++)
2901 if (reg_list[i].pseudo)
2902 npregs ++;
2903
2904 return npregs;
2905 }
2906
2907 /* Information in this table comes from the following web sites:
2908 IBM: http://www.chips.ibm.com:80/products/embedded/
2909 Motorola: http://www.mot.com/SPS/PowerPC/
2910
2911 I'm sure I've got some of the variant descriptions not quite right.
2912 Please report any inaccuracies you find to GDB's maintainer.
2913
2914 If you add entries to this table, please be sure to allow the new
2915 value as an argument to the --with-cpu flag, in configure.in. */
2916
2917 static struct variant variants[] =
2918 {
2919
2920 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2921 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2922 registers_powerpc},
2923 {"power", "POWER user-level", bfd_arch_rs6000,
2924 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2925 registers_power},
2926 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2927 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2928 registers_403},
2929 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2930 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2931 registers_601},
2932 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2933 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2934 registers_602},
2935 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2936 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2937 registers_603},
2938 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2939 604, -1, -1, tot_num_registers (registers_604),
2940 registers_604},
2941 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2942 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2943 registers_403GC},
2944 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2945 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2946 registers_505},
2947 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2948 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2949 registers_860},
2950 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2951 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2952 registers_750},
2953 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2954 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2955 registers_7400},
2956 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2957 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2958 registers_e500},
2959
2960 /* 64-bit */
2961 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2962 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2963 registers_powerpc},
2964 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2965 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2966 registers_powerpc},
2967 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2968 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2969 registers_powerpc},
2970 {"a35", "PowerPC A35", bfd_arch_powerpc,
2971 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2972 registers_powerpc},
2973 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2974 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2975 registers_powerpc},
2976 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2977 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2978 registers_powerpc},
2979
2980 /* FIXME: I haven't checked the register sets of the following. */
2981 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2982 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2983 registers_power},
2984 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2985 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2986 registers_power},
2987 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2988 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2989 registers_power},
2990
2991 {0, 0, 0, 0, 0, 0, 0, 0}
2992 };
2993
2994 /* Initialize the number of registers and pseudo registers in each variant. */
2995
2996 static void
2997 init_variants (void)
2998 {
2999 struct variant *v;
3000
3001 for (v = variants; v->name; v++)
3002 {
3003 if (v->nregs == -1)
3004 v->nregs = num_registers (v->regs, v->num_tot_regs);
3005 if (v->npregs == -1)
3006 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
3007 }
3008 }
3009
3010 /* Return the variant corresponding to architecture ARCH and machine number
3011 MACH. If no such variant exists, return null. */
3012
3013 static const struct variant *
3014 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3015 {
3016 const struct variant *v;
3017
3018 for (v = variants; v->name; v++)
3019 if (arch == v->arch && mach == v->mach)
3020 return v;
3021
3022 return NULL;
3023 }
3024
3025 static int
3026 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3027 {
3028 if (!info->disassembler_options)
3029 info->disassembler_options = "any";
3030
3031 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
3032 return print_insn_big_powerpc (memaddr, info);
3033 else
3034 return print_insn_little_powerpc (memaddr, info);
3035 }
3036 \f
3037 static CORE_ADDR
3038 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3039 {
3040 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
3041 }
3042
3043 static struct frame_id
3044 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
3045 {
3046 return frame_id_build (frame_unwind_register_unsigned (next_frame,
3047 SP_REGNUM),
3048 frame_pc_unwind (next_frame));
3049 }
3050
3051 struct rs6000_frame_cache
3052 {
3053 CORE_ADDR base;
3054 CORE_ADDR initial_sp;
3055 struct trad_frame_saved_reg *saved_regs;
3056 };
3057
3058 static struct rs6000_frame_cache *
3059 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
3060 {
3061 struct rs6000_frame_cache *cache;
3062 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3063 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3064 struct rs6000_framedata fdata;
3065 int wordsize = tdep->wordsize;
3066 CORE_ADDR func, pc;
3067
3068 if ((*this_cache) != NULL)
3069 return (*this_cache);
3070 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3071 (*this_cache) = cache;
3072 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
3073
3074 func = frame_func_unwind (next_frame, NORMAL_FRAME);
3075 pc = frame_pc_unwind (next_frame);
3076 skip_prologue (func, pc, &fdata);
3077
3078 /* Figure out the parent's stack pointer. */
3079
3080 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3081 address of the current frame. Things might be easier if the
3082 ->frame pointed to the outer-most address of the frame. In
3083 the mean time, the address of the prev frame is used as the
3084 base address of this frame. */
3085 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3086
3087 /* If the function appears to be frameless, check a couple of likely
3088 indicators that we have simply failed to find the frame setup.
3089 Two common cases of this are missing symbols (i.e.
3090 frame_func_unwind returns the wrong address or 0), and assembly
3091 stubs which have a fast exit path but set up a frame on the slow
3092 path.
3093
3094 If the LR appears to return to this function, then presume that
3095 we have an ABI compliant frame that we failed to find. */
3096 if (fdata.frameless && fdata.lr_offset == 0)
3097 {
3098 CORE_ADDR saved_lr;
3099 int make_frame = 0;
3100
3101 saved_lr = frame_unwind_register_unsigned (next_frame,
3102 tdep->ppc_lr_regnum);
3103 if (func == 0 && saved_lr == pc)
3104 make_frame = 1;
3105 else if (func != 0)
3106 {
3107 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3108 if (func == saved_func)
3109 make_frame = 1;
3110 }
3111
3112 if (make_frame)
3113 {
3114 fdata.frameless = 0;
3115 fdata.lr_offset = tdep->lr_frame_offset;
3116 }
3117 }
3118
3119 if (!fdata.frameless)
3120 /* Frameless really means stackless. */
3121 cache->base = read_memory_addr (cache->base, wordsize);
3122
3123 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3124
3125 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3126 All fpr's from saved_fpr to fp31 are saved. */
3127
3128 if (fdata.saved_fpr >= 0)
3129 {
3130 int i;
3131 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3132
3133 /* If skip_prologue says floating-point registers were saved,
3134 but the current architecture has no floating-point registers,
3135 then that's strange. But we have no indices to even record
3136 the addresses under, so we just ignore it. */
3137 if (ppc_floating_point_unit_p (gdbarch))
3138 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3139 {
3140 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3141 fpr_addr += 8;
3142 }
3143 }
3144
3145 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3146 All gpr's from saved_gpr to gpr31 are saved. */
3147
3148 if (fdata.saved_gpr >= 0)
3149 {
3150 int i;
3151 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3152 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3153 {
3154 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3155 gpr_addr += wordsize;
3156 }
3157 }
3158
3159 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3160 All vr's from saved_vr to vr31 are saved. */
3161 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3162 {
3163 if (fdata.saved_vr >= 0)
3164 {
3165 int i;
3166 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3167 for (i = fdata.saved_vr; i < 32; i++)
3168 {
3169 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3170 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3171 }
3172 }
3173 }
3174
3175 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3176 All vr's from saved_ev to ev31 are saved. ????? */
3177 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3178 {
3179 if (fdata.saved_ev >= 0)
3180 {
3181 int i;
3182 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3183 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3184 {
3185 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3186 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3187 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3188 }
3189 }
3190 }
3191
3192 /* If != 0, fdata.cr_offset is the offset from the frame that
3193 holds the CR. */
3194 if (fdata.cr_offset != 0)
3195 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3196
3197 /* If != 0, fdata.lr_offset is the offset from the frame that
3198 holds the LR. */
3199 if (fdata.lr_offset != 0)
3200 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3201 /* The PC is found in the link register. */
3202 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3203
3204 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3205 holds the VRSAVE. */
3206 if (fdata.vrsave_offset != 0)
3207 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3208
3209 if (fdata.alloca_reg < 0)
3210 /* If no alloca register used, then fi->frame is the value of the
3211 %sp for this frame, and it is good enough. */
3212 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3213 else
3214 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3215 fdata.alloca_reg);
3216
3217 return cache;
3218 }
3219
3220 static void
3221 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3222 struct frame_id *this_id)
3223 {
3224 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3225 this_cache);
3226 (*this_id) = frame_id_build (info->base,
3227 frame_func_unwind (next_frame, NORMAL_FRAME));
3228 }
3229
3230 static void
3231 rs6000_frame_prev_register (struct frame_info *next_frame,
3232 void **this_cache,
3233 int regnum, int *optimizedp,
3234 enum lval_type *lvalp, CORE_ADDR *addrp,
3235 int *realnump, gdb_byte *valuep)
3236 {
3237 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3238 this_cache);
3239 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3240 optimizedp, lvalp, addrp, realnump, valuep);
3241 }
3242
3243 static const struct frame_unwind rs6000_frame_unwind =
3244 {
3245 NORMAL_FRAME,
3246 rs6000_frame_this_id,
3247 rs6000_frame_prev_register
3248 };
3249
3250 static const struct frame_unwind *
3251 rs6000_frame_sniffer (struct frame_info *next_frame)
3252 {
3253 return &rs6000_frame_unwind;
3254 }
3255
3256 \f
3257
3258 static CORE_ADDR
3259 rs6000_frame_base_address (struct frame_info *next_frame,
3260 void **this_cache)
3261 {
3262 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3263 this_cache);
3264 return info->initial_sp;
3265 }
3266
3267 static const struct frame_base rs6000_frame_base = {
3268 &rs6000_frame_unwind,
3269 rs6000_frame_base_address,
3270 rs6000_frame_base_address,
3271 rs6000_frame_base_address
3272 };
3273
3274 static const struct frame_base *
3275 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3276 {
3277 return &rs6000_frame_base;
3278 }
3279
3280 /* Initialize the current architecture based on INFO. If possible, re-use an
3281 architecture from ARCHES, which is a list of architectures already created
3282 during this debugging session.
3283
3284 Called e.g. at program startup, when reading a core file, and when reading
3285 a binary file. */
3286
3287 static struct gdbarch *
3288 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3289 {
3290 struct gdbarch *gdbarch;
3291 struct gdbarch_tdep *tdep;
3292 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3293 struct reg *regs;
3294 const struct variant *v;
3295 enum bfd_architecture arch;
3296 unsigned long mach;
3297 bfd abfd;
3298 int sysv_abi;
3299 asection *sect;
3300
3301 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3302 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3303
3304 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3305 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3306
3307 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3308
3309 /* Check word size. If INFO is from a binary file, infer it from
3310 that, else choose a likely default. */
3311 if (from_xcoff_exec)
3312 {
3313 if (bfd_xcoff_is_xcoff64 (info.abfd))
3314 wordsize = 8;
3315 else
3316 wordsize = 4;
3317 }
3318 else if (from_elf_exec)
3319 {
3320 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3321 wordsize = 8;
3322 else
3323 wordsize = 4;
3324 }
3325 else
3326 {
3327 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3328 wordsize = info.bfd_arch_info->bits_per_word /
3329 info.bfd_arch_info->bits_per_byte;
3330 else
3331 wordsize = 4;
3332 }
3333
3334 /* Find a candidate among extant architectures. */
3335 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3336 arches != NULL;
3337 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3338 {
3339 /* Word size in the various PowerPC bfd_arch_info structs isn't
3340 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3341 separate word size check. */
3342 tdep = gdbarch_tdep (arches->gdbarch);
3343 if (tdep && tdep->wordsize == wordsize)
3344 return arches->gdbarch;
3345 }
3346
3347 /* None found, create a new architecture from INFO, whose bfd_arch_info
3348 validity depends on the source:
3349 - executable useless
3350 - rs6000_host_arch() good
3351 - core file good
3352 - "set arch" trust blindly
3353 - GDB startup useless but harmless */
3354
3355 if (!from_xcoff_exec)
3356 {
3357 arch = info.bfd_arch_info->arch;
3358 mach = info.bfd_arch_info->mach;
3359 }
3360 else
3361 {
3362 arch = bfd_arch_powerpc;
3363 bfd_default_set_arch_mach (&abfd, arch, 0);
3364 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3365 mach = info.bfd_arch_info->mach;
3366 }
3367 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3368 tdep->wordsize = wordsize;
3369
3370 /* For e500 executables, the apuinfo section is of help here. Such
3371 section contains the identifier and revision number of each
3372 Application-specific Processing Unit that is present on the
3373 chip. The content of the section is determined by the assembler
3374 which looks at each instruction and determines which unit (and
3375 which version of it) can execute it. In our case we just look for
3376 the existance of the section. */
3377
3378 if (info.abfd)
3379 {
3380 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3381 if (sect)
3382 {
3383 arch = info.bfd_arch_info->arch;
3384 mach = bfd_mach_ppc_e500;
3385 bfd_default_set_arch_mach (&abfd, arch, mach);
3386 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3387 }
3388 }
3389
3390 gdbarch = gdbarch_alloc (&info, tdep);
3391
3392 /* Initialize the number of real and pseudo registers in each variant. */
3393 init_variants ();
3394
3395 /* Choose variant. */
3396 v = find_variant_by_arch (arch, mach);
3397 if (!v)
3398 return NULL;
3399
3400 tdep->regs = v->regs;
3401
3402 tdep->ppc_gp0_regnum = 0;
3403 tdep->ppc_toc_regnum = 2;
3404 tdep->ppc_ps_regnum = 65;
3405 tdep->ppc_cr_regnum = 66;
3406 tdep->ppc_lr_regnum = 67;
3407 tdep->ppc_ctr_regnum = 68;
3408 tdep->ppc_xer_regnum = 69;
3409 if (v->mach == bfd_mach_ppc_601)
3410 tdep->ppc_mq_regnum = 124;
3411 else if (arch == bfd_arch_rs6000)
3412 tdep->ppc_mq_regnum = 70;
3413 else
3414 tdep->ppc_mq_regnum = -1;
3415 tdep->ppc_fp0_regnum = 32;
3416 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3417 tdep->ppc_sr0_regnum = 71;
3418 tdep->ppc_vr0_regnum = -1;
3419 tdep->ppc_vrsave_regnum = -1;
3420 tdep->ppc_ev0_upper_regnum = -1;
3421 tdep->ppc_ev0_regnum = -1;
3422 tdep->ppc_ev31_regnum = -1;
3423 tdep->ppc_acc_regnum = -1;
3424 tdep->ppc_spefscr_regnum = -1;
3425
3426 set_gdbarch_pc_regnum (gdbarch, 64);
3427 set_gdbarch_sp_regnum (gdbarch, 1);
3428 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3429 set_gdbarch_fp0_regnum (gdbarch, 32);
3430 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3431 if (sysv_abi && wordsize == 8)
3432 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3433 else if (sysv_abi && wordsize == 4)
3434 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3435 else
3436 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3437
3438 /* Set lr_frame_offset. */
3439 if (wordsize == 8)
3440 tdep->lr_frame_offset = 16;
3441 else if (sysv_abi)
3442 tdep->lr_frame_offset = 4;
3443 else
3444 tdep->lr_frame_offset = 8;
3445
3446 if (v->arch == bfd_arch_rs6000)
3447 tdep->ppc_sr0_regnum = -1;
3448 else if (v->arch == bfd_arch_powerpc)
3449 switch (v->mach)
3450 {
3451 case bfd_mach_ppc:
3452 tdep->ppc_sr0_regnum = -1;
3453 tdep->ppc_vr0_regnum = 71;
3454 tdep->ppc_vrsave_regnum = 104;
3455 break;
3456 case bfd_mach_ppc_7400:
3457 tdep->ppc_vr0_regnum = 119;
3458 tdep->ppc_vrsave_regnum = 152;
3459 break;
3460 case bfd_mach_ppc_e500:
3461 tdep->ppc_toc_regnum = -1;
3462 tdep->ppc_ev0_upper_regnum = 32;
3463 tdep->ppc_ev0_regnum = 73;
3464 tdep->ppc_ev31_regnum = 104;
3465 tdep->ppc_acc_regnum = 71;
3466 tdep->ppc_spefscr_regnum = 72;
3467 tdep->ppc_fp0_regnum = -1;
3468 tdep->ppc_fpscr_regnum = -1;
3469 tdep->ppc_sr0_regnum = -1;
3470 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3471 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3472 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3473 break;
3474
3475 case bfd_mach_ppc64:
3476 case bfd_mach_ppc_620:
3477 case bfd_mach_ppc_630:
3478 case bfd_mach_ppc_a35:
3479 case bfd_mach_ppc_rs64ii:
3480 case bfd_mach_ppc_rs64iii:
3481 /* These processor's register sets don't have segment registers. */
3482 tdep->ppc_sr0_regnum = -1;
3483 break;
3484 }
3485 else
3486 internal_error (__FILE__, __LINE__,
3487 _("rs6000_gdbarch_init: "
3488 "received unexpected BFD 'arch' value"));
3489
3490 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3491
3492 /* Sanity check on registers. */
3493 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3494
3495 /* Select instruction printer. */
3496 if (arch == bfd_arch_rs6000)
3497 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3498 else
3499 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3500
3501 set_gdbarch_num_regs (gdbarch, v->nregs);
3502 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3503 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3504 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3505 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3506
3507 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3508 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3509 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3510 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3511 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3512 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3513 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3514 if (sysv_abi)
3515 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3516 else
3517 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3518 set_gdbarch_char_signed (gdbarch, 0);
3519
3520 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3521 if (sysv_abi && wordsize == 8)
3522 /* PPC64 SYSV. */
3523 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3524 else if (!sysv_abi && wordsize == 4)
3525 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3526 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3527 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3528 224. */
3529 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3530
3531 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3532 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3533 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3534
3535 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3536 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3537
3538 if (sysv_abi && wordsize == 4)
3539 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3540 else if (sysv_abi && wordsize == 8)
3541 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3542 else
3543 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3544
3545 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3546 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3547
3548 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3549 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3550
3551 /* Handles single stepping of atomic sequences. */
3552 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3553
3554 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3555 for the descriptor and ".FN" for the entry-point -- a user
3556 specifying "break FN" will unexpectedly end up with a breakpoint
3557 on the descriptor and not the function. This architecture method
3558 transforms any breakpoints on descriptors into breakpoints on the
3559 corresponding entry point. */
3560 if (sysv_abi && wordsize == 8)
3561 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3562
3563 /* Not sure on this. FIXMEmgo */
3564 set_gdbarch_frame_args_skip (gdbarch, 8);
3565
3566 if (!sysv_abi)
3567 {
3568 /* Handle RS/6000 function pointers (which are really function
3569 descriptors). */
3570 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3571 rs6000_convert_from_func_ptr_addr);
3572 }
3573
3574 /* Helpers for function argument information. */
3575 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3576
3577 /* Trampoline. */
3578 set_gdbarch_in_solib_return_trampoline
3579 (gdbarch, rs6000_in_solib_return_trampoline);
3580 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3581
3582 /* Hook in the DWARF CFI frame unwinder. */
3583 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3584 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3585
3586 /* Hook in ABI-specific overrides, if they have been registered. */
3587 gdbarch_init_osabi (info, gdbarch);
3588
3589 switch (info.osabi)
3590 {
3591 case GDB_OSABI_LINUX:
3592 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3593 have altivec registers. If not, ptrace will fail the first time it's
3594 called to access one and will not be called again. This wart will
3595 be removed when Daniel Jacobowitz's proposal for autodetecting target
3596 registers is implemented. */
3597 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3598 {
3599 tdep->ppc_vr0_regnum = 71;
3600 tdep->ppc_vrsave_regnum = 104;
3601 }
3602 /* Fall Thru */
3603 case GDB_OSABI_NETBSD_AOUT:
3604 case GDB_OSABI_NETBSD_ELF:
3605 case GDB_OSABI_UNKNOWN:
3606 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3607 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3608 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3609 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3610 break;
3611 default:
3612 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3613
3614 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3615 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3616 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3617 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3618 }
3619
3620 init_sim_regno_table (gdbarch);
3621
3622 return gdbarch;
3623 }
3624
3625 static void
3626 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3627 {
3628 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3629
3630 if (tdep == NULL)
3631 return;
3632
3633 /* FIXME: Dump gdbarch_tdep. */
3634 }
3635
3636 /* Initialization code. */
3637
3638 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3639
3640 void
3641 _initialize_rs6000_tdep (void)
3642 {
3643 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3644 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3645 }