]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
2004-01-13 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51 #include "dis-asm.h"
52
53 /* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60 #define SIG_FRAME_PC_OFFSET 96
61 #define SIG_FRAME_LR_OFFSET 108
62 #define SIG_FRAME_FP_OFFSET 284
63
64 /* To be used by skip_prologue. */
65
66 struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
73 int saved_vr; /* smallest # of saved vr */
74 int saved_ev; /* smallest # of saved ev */
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
80 int vr_offset; /* offset of saved vrs from prev sp */
81 int ev_offset; /* offset of saved evs from prev sp */
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
84 int vrsave_offset; /* offset of saved vrsave register */
85 };
86
87 /* Description of a single register. */
88
89 struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
95 unsigned char pseudo; /* whether register is pseudo */
96 };
97
98 /* Breakpoint shadows for the single step instructions will be kept here. */
99
100 static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107 stepBreaks[2];
108
109 /* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
113 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115 /* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118 void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120 /* Static function prototypes */
121
122 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
124 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
126 static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141 /* Use the architectures FP registers? */
142 int
143 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144 {
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151 }
152
153 /* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155 static CORE_ADDR
156 read_memory_addr (CORE_ADDR memaddr, int len)
157 {
158 return read_memory_unsigned_integer (memaddr, len);
159 }
160
161 static CORE_ADDR
162 rs6000_skip_prologue (CORE_ADDR pc)
163 {
164 struct rs6000_framedata frame;
165 pc = skip_prologue (pc, 0, &frame);
166 return pc;
167 }
168
169
170 /* Fill in fi->saved_regs */
171
172 struct frame_extra_info
173 {
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
179 CORE_ADDR initial_sp; /* initial stack pointer. */
180 };
181
182 void
183 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184 {
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190 /* We're in get_prev_frame */
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195 }
196
197 /* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
202
203 /* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
207 void
208 rs6000_frame_init_saved_regs (struct frame_info *fi)
209 {
210 frame_get_saved_regs (fi, NULL);
211 }
212
213 static CORE_ADDR
214 rs6000_frame_args_address (struct frame_info *fi)
215 {
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
219 else
220 return frame_initial_stack_address (fi);
221 }
222
223 /* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228 static CORE_ADDR
229 rs6000_saved_pc_after_call (struct frame_info *fi)
230 {
231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
232 }
233
234 /* Get the ith function argument for the current function. */
235 static CORE_ADDR
236 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238 {
239 CORE_ADDR addr;
240 get_frame_register (frame, 3 + argi, &addr);
241 return addr;
242 }
243
244 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246 static CORE_ADDR
247 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
248 {
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
292 gdbarch_tdep (current_gdbarch)->wordsize);
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
305 }
306 else
307 return -1;
308 break;
309
310 default:
311 return -1;
312 }
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314 }
315
316
317 /* Sequence of bytes for breakpoint instruction. */
318
319 const static unsigned char *
320 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
321 {
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
324 *bp_size = 4;
325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329 }
330
331
332 /* AIX does not support PT_STEP. Simulate it. */
333
334 void
335 rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
337 {
338 CORE_ADDR dummy;
339 int breakp_sz;
340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
346 if (insert_breakpoints_p)
347 {
348
349 loc = read_pc ();
350
351 insn = read_memory_integer (loc, 4);
352
353 breaks[0] = loc + breakp_sz;
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
356
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
360
361 stepBreaks[1].address = 0;
362
363 for (ii = 0; ii < 2; ++ii)
364 {
365
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
370 stepBreaks[ii].address = breaks[ii];
371 }
372
373 }
374 else
375 {
376
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
382 }
383 errno = 0; /* FIXME, don't ignore errors! */
384 /* What errors? {read,write}_memory call error(). */
385 }
386
387
388 /* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
398 - saved_vr is the number of the first saved vr.
399 - saved_ev is the number of the first saved ev.
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
404 - vr_offset is the offset of the first saved vr from the previous frame.
405 - ev_offset is the offset of the first saved ev from the previous frame.
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
408 - vrsave_offset is the offset of the saved vrsave register
409 */
410
411 #define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
418 /* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420 static int max_skip_non_prologue_insns = 10;
421
422 /* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428 static CORE_ADDR
429 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430 {
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467 }
468
469
470 static CORE_ADDR
471 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
472 {
473 CORE_ADDR orig_pc = pc;
474 CORE_ADDR last_prologue_pc = pc;
475 CORE_ADDR li_found_pc = 0;
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
479 long vr_saved_offset = 0;
480 int lr_reg = -1;
481 int cr_reg = -1;
482 int vr_reg = -1;
483 int ev_reg = -1;
484 long ev_offset = 0;
485 int vrsave_reg = -1;
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
489 int prev_insn_was_prologue_insn = 1;
490 int num_skip_non_prologue_insns = 0;
491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
493
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
508
509 memset (fdata, 0, sizeof (struct rs6000_framedata));
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
512 fdata->saved_vr = -1;
513 fdata->saved_ev = -1;
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
518 for (;; pc += 4)
519 {
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
531 prev_insn_was_prologue_insn = 1;
532
533 /* Fetch the instruction and convert it to an integer. */
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
537
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
540 lr_reg = (op & 0x03e00000);
541 continue;
542
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
546 cr_reg = (op & 0x03e00000);
547 continue;
548
549 }
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
559
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
571 if ((op & 0xfc1f0003) == 0xf8010000)
572 op &= ~3UL;
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
576
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
580 /* nop */
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
621 continue;
622
623 }
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
633 cr_reg = 0;
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
653 }
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
659
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
664
665 fdata->frameless = 0;
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
683 }
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
691 }
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
712 }
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
716 && !minimal_toc_loaded)
717 {
718 minimal_toc_loaded = 1;
719 continue;
720
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
728 {
729 continue;
730
731 /* store parameters in stack */
732 }
733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
737 continue;
738
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
766 continue;
767 }
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
935 else
936 {
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
951 /* Never skip branches. */
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
962 }
963 }
964
965 #if 0
966 /* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
972 We'd like to skip over it as well. Fortunately, xlc does some extra
973 work before calling a function right after a prologue, thus we can
974 single out such gcc2 behaviour. */
975
976
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
983
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
986
987 tmp = find_pc_misc_function (pc);
988 if (tmp >= 0
989 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
990 return pc + 8;
991 }
992 }
993 #endif /* 0 */
994
995 fdata->offset = -fdata->offset;
996 return last_prologue_pc;
997 }
998
999
1000 /*************************************************************************
1001 Support for creating pushing a dummy frame into the stack, and popping
1002 frames, etc.
1003 *************************************************************************/
1004
1005
1006 /* Pop the innermost frame, go back to the caller. */
1007
1008 static void
1009 rs6000_pop_frame (void)
1010 {
1011 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1012 struct rs6000_framedata fdata;
1013 struct frame_info *frame = get_current_frame ();
1014 int ii, wordsize;
1015
1016 pc = read_pc ();
1017 sp = get_frame_base (frame);
1018
1019 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1020 get_frame_base (frame),
1021 get_frame_base (frame)))
1022 {
1023 generic_pop_dummy_frame ();
1024 flush_cached_frames ();
1025 return;
1026 }
1027
1028 /* Make sure that all registers are valid. */
1029 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1030
1031 /* Figure out previous %pc value. If the function is frameless, it is
1032 still in the link register, otherwise walk the frames and retrieve the
1033 saved %pc value in the previous frame. */
1034
1035 addr = get_frame_func (frame);
1036 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1037
1038 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1039 if (fdata.frameless)
1040 prev_sp = sp;
1041 else
1042 prev_sp = read_memory_addr (sp, wordsize);
1043 if (fdata.lr_offset == 0)
1044 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1045 else
1046 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1047
1048 /* reset %pc value. */
1049 write_register (PC_REGNUM, lr);
1050
1051 /* reset register values if any was saved earlier. */
1052
1053 if (fdata.saved_gpr != -1)
1054 {
1055 addr = prev_sp + fdata.gpr_offset;
1056 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1057 {
1058 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
1059 wordsize);
1060 addr += wordsize;
1061 }
1062 }
1063
1064 if (fdata.saved_fpr != -1)
1065 {
1066 addr = prev_sp + fdata.fpr_offset;
1067 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1068 {
1069 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1070 addr += 8;
1071 }
1072 }
1073
1074 write_register (SP_REGNUM, prev_sp);
1075 target_store_registers (-1);
1076 flush_cached_frames ();
1077 }
1078
1079 /* All the ABI's require 16 byte alignment. */
1080 static CORE_ADDR
1081 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1082 {
1083 return (addr & -16);
1084 }
1085
1086 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1087 the first eight words of the argument list (that might be less than
1088 eight parameters if some parameters occupy more than one word) are
1089 passed in r3..r10 registers. float and double parameters are
1090 passed in fpr's, in addition to that. Rest of the parameters if any
1091 are passed in user stack. There might be cases in which half of the
1092 parameter is copied into registers, the other half is pushed into
1093 stack.
1094
1095 Stack must be aligned on 64-bit boundaries when synthesizing
1096 function calls.
1097
1098 If the function is returning a structure, then the return address is passed
1099 in r3, then the first 7 words of the parameters can be passed in registers,
1100 starting from r4. */
1101
1102 static CORE_ADDR
1103 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1104 struct regcache *regcache, CORE_ADDR bp_addr,
1105 int nargs, struct value **args, CORE_ADDR sp,
1106 int struct_return, CORE_ADDR struct_addr)
1107 {
1108 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1109 int ii;
1110 int len = 0;
1111 int argno; /* current argument number */
1112 int argbytes; /* current argument byte */
1113 char tmp_buffer[50];
1114 int f_argno = 0; /* current floating point argno */
1115 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1116
1117 struct value *arg = 0;
1118 struct type *type;
1119
1120 CORE_ADDR saved_sp;
1121
1122 /* The first eight words of ther arguments are passed in registers.
1123 Copy them appropriately. */
1124 ii = 0;
1125
1126 /* If the function is returning a `struct', then the first word
1127 (which will be passed in r3) is used for struct return address.
1128 In that case we should advance one word and start from r4
1129 register to copy parameters. */
1130 if (struct_return)
1131 {
1132 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1133 struct_addr);
1134 ii++;
1135 }
1136
1137 /*
1138 effectively indirect call... gcc does...
1139
1140 return_val example( float, int);
1141
1142 eabi:
1143 float in fp0, int in r3
1144 offset of stack on overflow 8/16
1145 for varargs, must go by type.
1146 power open:
1147 float in r3&r4, int in r5
1148 offset of stack on overflow different
1149 both:
1150 return in r3 or f0. If no float, must study how gcc emulates floats;
1151 pay attention to arg promotion.
1152 User may have to cast\args to handle promotion correctly
1153 since gdb won't know if prototype supplied or not.
1154 */
1155
1156 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1157 {
1158 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1159
1160 arg = args[argno];
1161 type = check_typedef (VALUE_TYPE (arg));
1162 len = TYPE_LENGTH (type);
1163
1164 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1165 {
1166
1167 /* Floating point arguments are passed in fpr's, as well as gpr's.
1168 There are 13 fpr's reserved for passing parameters. At this point
1169 there is no way we would run out of them. */
1170
1171 if (len > 8)
1172 printf_unfiltered (
1173 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1174
1175 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1176 VALUE_CONTENTS (arg),
1177 len);
1178 ++f_argno;
1179 }
1180
1181 if (len > reg_size)
1182 {
1183
1184 /* Argument takes more than one register. */
1185 while (argbytes < len)
1186 {
1187 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1188 reg_size);
1189 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1190 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1191 (len - argbytes) > reg_size
1192 ? reg_size : len - argbytes);
1193 ++ii, argbytes += reg_size;
1194
1195 if (ii >= 8)
1196 goto ran_out_of_registers_for_arguments;
1197 }
1198 argbytes = 0;
1199 --ii;
1200 }
1201 else
1202 {
1203 /* Argument can fit in one register. No problem. */
1204 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1205 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1206 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1207 VALUE_CONTENTS (arg), len);
1208 }
1209 ++argno;
1210 }
1211
1212 ran_out_of_registers_for_arguments:
1213
1214 saved_sp = read_sp ();
1215
1216 /* Location for 8 parameters are always reserved. */
1217 sp -= wordsize * 8;
1218
1219 /* Another six words for back chain, TOC register, link register, etc. */
1220 sp -= wordsize * 6;
1221
1222 /* Stack pointer must be quadword aligned. */
1223 sp &= -16;
1224
1225 /* If there are more arguments, allocate space for them in
1226 the stack, then push them starting from the ninth one. */
1227
1228 if ((argno < nargs) || argbytes)
1229 {
1230 int space = 0, jj;
1231
1232 if (argbytes)
1233 {
1234 space += ((len - argbytes + 3) & -4);
1235 jj = argno + 1;
1236 }
1237 else
1238 jj = argno;
1239
1240 for (; jj < nargs; ++jj)
1241 {
1242 struct value *val = args[jj];
1243 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1244 }
1245
1246 /* Add location required for the rest of the parameters. */
1247 space = (space + 15) & -16;
1248 sp -= space;
1249
1250 /* If the last argument copied into the registers didn't fit there
1251 completely, push the rest of it into stack. */
1252
1253 if (argbytes)
1254 {
1255 write_memory (sp + 24 + (ii * 4),
1256 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1257 len - argbytes);
1258 ++argno;
1259 ii += ((len - argbytes + 3) & -4) / 4;
1260 }
1261
1262 /* Push the rest of the arguments into stack. */
1263 for (; argno < nargs; ++argno)
1264 {
1265
1266 arg = args[argno];
1267 type = check_typedef (VALUE_TYPE (arg));
1268 len = TYPE_LENGTH (type);
1269
1270
1271 /* Float types should be passed in fpr's, as well as in the
1272 stack. */
1273 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1274 {
1275
1276 if (len > 8)
1277 printf_unfiltered (
1278 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1279
1280 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1281 VALUE_CONTENTS (arg),
1282 len);
1283 ++f_argno;
1284 }
1285
1286 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1287 ii += ((len + 3) & -4) / 4;
1288 }
1289 }
1290
1291 /* set back chain properly */
1292 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1293 write_memory (sp, tmp_buffer, 4);
1294
1295 /* Set the stack pointer. According to the ABI, the SP is meant to
1296 be set _before_ the corresponding stack space is used. No need
1297 for that here though - the target has been completely stopped -
1298 it isn't possible for an exception handler to stomp on the stack. */
1299 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1300
1301 /* Point the inferior function call's return address at the dummy's
1302 breakpoint. */
1303 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1304
1305 /* Set the TOC register, get the value from the objfile reader
1306 which, in turn, gets it from the VMAP table. */
1307 if (rs6000_find_toc_address_hook != NULL)
1308 {
1309 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1310 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1311 }
1312
1313 target_store_registers (-1);
1314 return sp;
1315 }
1316
1317 /* PowerOpen always puts structures in memory. Vectors, which were
1318 added later, do get returned in a register though. */
1319
1320 static int
1321 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1322 {
1323 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1324 && TYPE_VECTOR (value_type))
1325 return 0;
1326 return 1;
1327 }
1328
1329 static void
1330 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1331 {
1332 int offset = 0;
1333 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1334
1335 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1336 {
1337
1338 double dd;
1339 float ff;
1340 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1341 We need to truncate the return value into float size (4 byte) if
1342 necessary. */
1343
1344 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1345 memcpy (valbuf,
1346 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
1347 TYPE_LENGTH (valtype));
1348 else
1349 { /* float */
1350 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1351 ff = (float) dd;
1352 memcpy (valbuf, &ff, sizeof (float));
1353 }
1354 }
1355 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1356 && TYPE_LENGTH (valtype) == 16
1357 && TYPE_VECTOR (valtype))
1358 {
1359 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1360 TYPE_LENGTH (valtype));
1361 }
1362 else
1363 {
1364 /* return value is copied starting from r3. */
1365 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1366 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1367 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1368
1369 memcpy (valbuf,
1370 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1371 TYPE_LENGTH (valtype));
1372 }
1373 }
1374
1375 /* Return whether handle_inferior_event() should proceed through code
1376 starting at PC in function NAME when stepping.
1377
1378 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1379 handle memory references that are too distant to fit in instructions
1380 generated by the compiler. For example, if 'foo' in the following
1381 instruction:
1382
1383 lwz r9,foo(r2)
1384
1385 is greater than 32767, the linker might replace the lwz with a branch to
1386 somewhere in @FIX1 that does the load in 2 instructions and then branches
1387 back to where execution should continue.
1388
1389 GDB should silently step over @FIX code, just like AIX dbx does.
1390 Unfortunately, the linker uses the "b" instruction for the branches,
1391 meaning that the link register doesn't get set. Therefore, GDB's usual
1392 step_over_function() mechanism won't work.
1393
1394 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1395 in handle_inferior_event() to skip past @FIX code. */
1396
1397 int
1398 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1399 {
1400 return name && !strncmp (name, "@FIX", 4);
1401 }
1402
1403 /* Skip code that the user doesn't want to see when stepping:
1404
1405 1. Indirect function calls use a piece of trampoline code to do context
1406 switching, i.e. to set the new TOC table. Skip such code if we are on
1407 its first instruction (as when we have single-stepped to here).
1408
1409 2. Skip shared library trampoline code (which is different from
1410 indirect function call trampolines).
1411
1412 3. Skip bigtoc fixup code.
1413
1414 Result is desired PC to step until, or NULL if we are not in
1415 code that should be skipped. */
1416
1417 CORE_ADDR
1418 rs6000_skip_trampoline_code (CORE_ADDR pc)
1419 {
1420 unsigned int ii, op;
1421 int rel;
1422 CORE_ADDR solib_target_pc;
1423 struct minimal_symbol *msymbol;
1424
1425 static unsigned trampoline_code[] =
1426 {
1427 0x800b0000, /* l r0,0x0(r11) */
1428 0x90410014, /* st r2,0x14(r1) */
1429 0x7c0903a6, /* mtctr r0 */
1430 0x804b0004, /* l r2,0x4(r11) */
1431 0x816b0008, /* l r11,0x8(r11) */
1432 0x4e800420, /* bctr */
1433 0x4e800020, /* br */
1434 0
1435 };
1436
1437 /* Check for bigtoc fixup code. */
1438 msymbol = lookup_minimal_symbol_by_pc (pc);
1439 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1440 {
1441 /* Double-check that the third instruction from PC is relative "b". */
1442 op = read_memory_integer (pc + 8, 4);
1443 if ((op & 0xfc000003) == 0x48000000)
1444 {
1445 /* Extract bits 6-29 as a signed 24-bit relative word address and
1446 add it to the containing PC. */
1447 rel = ((int)(op << 6) >> 6);
1448 return pc + 8 + rel;
1449 }
1450 }
1451
1452 /* If pc is in a shared library trampoline, return its target. */
1453 solib_target_pc = find_solib_trampoline_target (pc);
1454 if (solib_target_pc)
1455 return solib_target_pc;
1456
1457 for (ii = 0; trampoline_code[ii]; ++ii)
1458 {
1459 op = read_memory_integer (pc + (ii * 4), 4);
1460 if (op != trampoline_code[ii])
1461 return 0;
1462 }
1463 ii = read_register (11); /* r11 holds destination addr */
1464 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1465 return pc;
1466 }
1467
1468 /* Determines whether the function FI has a frame on the stack or not. */
1469
1470 int
1471 rs6000_frameless_function_invocation (struct frame_info *fi)
1472 {
1473 CORE_ADDR func_start;
1474 struct rs6000_framedata fdata;
1475
1476 /* Don't even think about framelessness except on the innermost frame
1477 or if the function was interrupted by a signal. */
1478 if (get_next_frame (fi) != NULL
1479 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1480 return 0;
1481
1482 func_start = get_frame_func (fi);
1483
1484 /* If we failed to find the start of the function, it is a mistake
1485 to inspect the instructions. */
1486
1487 if (!func_start)
1488 {
1489 /* A frame with a zero PC is usually created by dereferencing a NULL
1490 function pointer, normally causing an immediate core dump of the
1491 inferior. Mark function as frameless, as the inferior has no chance
1492 of setting up a stack frame. */
1493 if (get_frame_pc (fi) == 0)
1494 return 1;
1495 else
1496 return 0;
1497 }
1498
1499 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1500 return fdata.frameless;
1501 }
1502
1503 /* Return the PC saved in a frame. */
1504
1505 CORE_ADDR
1506 rs6000_frame_saved_pc (struct frame_info *fi)
1507 {
1508 CORE_ADDR func_start;
1509 struct rs6000_framedata fdata;
1510 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1511 int wordsize = tdep->wordsize;
1512
1513 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1514 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1515 wordsize);
1516
1517 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1518 get_frame_base (fi),
1519 get_frame_base (fi)))
1520 return deprecated_read_register_dummy (get_frame_pc (fi),
1521 get_frame_base (fi), PC_REGNUM);
1522
1523 func_start = get_frame_func (fi);
1524
1525 /* If we failed to find the start of the function, it is a mistake
1526 to inspect the instructions. */
1527 if (!func_start)
1528 return 0;
1529
1530 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1531
1532 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1533 {
1534 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1535 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1536 + SIG_FRAME_LR_OFFSET),
1537 wordsize);
1538 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1539 /* The link register wasn't saved by this frame and the next
1540 (inner, newer) frame is a dummy. Get the link register
1541 value by unwinding it from that [dummy] frame. */
1542 {
1543 ULONGEST lr;
1544 frame_unwind_unsigned_register (get_next_frame (fi),
1545 tdep->ppc_lr_regnum, &lr);
1546 return lr;
1547 }
1548 else
1549 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1550 + tdep->lr_frame_offset,
1551 wordsize);
1552 }
1553
1554 if (fdata.lr_offset == 0)
1555 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1556
1557 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1558 wordsize);
1559 }
1560
1561 /* If saved registers of frame FI are not known yet, read and cache them.
1562 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1563 in which case the framedata are read. */
1564
1565 static void
1566 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1567 {
1568 CORE_ADDR frame_addr;
1569 struct rs6000_framedata work_fdata;
1570 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1571 int wordsize = tdep->wordsize;
1572
1573 if (deprecated_get_frame_saved_regs (fi))
1574 return;
1575
1576 if (fdatap == NULL)
1577 {
1578 fdatap = &work_fdata;
1579 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1580 }
1581
1582 frame_saved_regs_zalloc (fi);
1583
1584 /* If there were any saved registers, figure out parent's stack
1585 pointer. */
1586 /* The following is true only if the frame doesn't have a call to
1587 alloca(), FIXME. */
1588
1589 if (fdatap->saved_fpr == 0
1590 && fdatap->saved_gpr == 0
1591 && fdatap->saved_vr == 0
1592 && fdatap->saved_ev == 0
1593 && fdatap->lr_offset == 0
1594 && fdatap->cr_offset == 0
1595 && fdatap->vr_offset == 0
1596 && fdatap->ev_offset == 0)
1597 frame_addr = 0;
1598 else
1599 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1600 address of the current frame. Things might be easier if the
1601 ->frame pointed to the outer-most address of the frame. In the
1602 mean time, the address of the prev frame is used as the base
1603 address of this frame. */
1604 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1605
1606 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1607 All fpr's from saved_fpr to fp31 are saved. */
1608
1609 if (fdatap->saved_fpr >= 0)
1610 {
1611 int i;
1612 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1613 for (i = fdatap->saved_fpr; i < 32; i++)
1614 {
1615 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1616 fpr_addr += 8;
1617 }
1618 }
1619
1620 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1621 All gpr's from saved_gpr to gpr31 are saved. */
1622
1623 if (fdatap->saved_gpr >= 0)
1624 {
1625 int i;
1626 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1627 for (i = fdatap->saved_gpr; i < 32; i++)
1628 {
1629 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1630 gpr_addr += wordsize;
1631 }
1632 }
1633
1634 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1635 All vr's from saved_vr to vr31 are saved. */
1636 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1637 {
1638 if (fdatap->saved_vr >= 0)
1639 {
1640 int i;
1641 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1642 for (i = fdatap->saved_vr; i < 32; i++)
1643 {
1644 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1645 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1646 }
1647 }
1648 }
1649
1650 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1651 All vr's from saved_ev to ev31 are saved. ????? */
1652 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1653 {
1654 if (fdatap->saved_ev >= 0)
1655 {
1656 int i;
1657 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1658 for (i = fdatap->saved_ev; i < 32; i++)
1659 {
1660 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1661 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1662 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1663 }
1664 }
1665 }
1666
1667 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1668 the CR. */
1669 if (fdatap->cr_offset != 0)
1670 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1671
1672 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1673 the LR. */
1674 if (fdatap->lr_offset != 0)
1675 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1676
1677 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1678 the VRSAVE. */
1679 if (fdatap->vrsave_offset != 0)
1680 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1681 }
1682
1683 /* Return the address of a frame. This is the inital %sp value when the frame
1684 was first allocated. For functions calling alloca(), it might be saved in
1685 an alloca register. */
1686
1687 static CORE_ADDR
1688 frame_initial_stack_address (struct frame_info *fi)
1689 {
1690 CORE_ADDR tmpaddr;
1691 struct rs6000_framedata fdata;
1692 struct frame_info *callee_fi;
1693
1694 /* If the initial stack pointer (frame address) of this frame is known,
1695 just return it. */
1696
1697 if (get_frame_extra_info (fi)->initial_sp)
1698 return get_frame_extra_info (fi)->initial_sp;
1699
1700 /* Find out if this function is using an alloca register. */
1701
1702 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1703
1704 /* If saved registers of this frame are not known yet, read and
1705 cache them. */
1706
1707 if (!deprecated_get_frame_saved_regs (fi))
1708 frame_get_saved_regs (fi, &fdata);
1709
1710 /* If no alloca register used, then fi->frame is the value of the %sp for
1711 this frame, and it is good enough. */
1712
1713 if (fdata.alloca_reg < 0)
1714 {
1715 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1716 return get_frame_extra_info (fi)->initial_sp;
1717 }
1718
1719 /* There is an alloca register, use its value, in the current frame,
1720 as the initial stack pointer. */
1721 {
1722 char tmpbuf[MAX_REGISTER_SIZE];
1723 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1724 {
1725 get_frame_extra_info (fi)->initial_sp
1726 = extract_unsigned_integer (tmpbuf,
1727 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
1728 }
1729 else
1730 /* NOTE: cagney/2002-04-17: At present the only time
1731 frame_register_read will fail is when the register isn't
1732 available. If that does happen, use the frame. */
1733 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1734 }
1735 return get_frame_extra_info (fi)->initial_sp;
1736 }
1737
1738 /* Describe the pointer in each stack frame to the previous stack frame
1739 (its caller). */
1740
1741 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1742 the frame's chain-pointer. */
1743
1744 /* In the case of the RS/6000, the frame's nominal address
1745 is the address of a 4-byte word containing the calling frame's address. */
1746
1747 CORE_ADDR
1748 rs6000_frame_chain (struct frame_info *thisframe)
1749 {
1750 CORE_ADDR fp, fpp, lr;
1751 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1752
1753 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1754 get_frame_base (thisframe),
1755 get_frame_base (thisframe)))
1756 /* A dummy frame always correctly chains back to the previous
1757 frame. */
1758 return read_memory_addr (get_frame_base (thisframe), wordsize);
1759
1760 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
1761 || get_frame_pc (thisframe) == entry_point_address ())
1762 return 0;
1763
1764 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1765 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1766 wordsize);
1767 else if (get_next_frame (thisframe) != NULL
1768 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1769 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1770 /* A frameless function interrupted by a signal did not change the
1771 frame pointer. */
1772 fp = get_frame_base (thisframe);
1773 else
1774 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1775 return fp;
1776 }
1777
1778 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1779 isn't available with that word size, return 0. */
1780
1781 static int
1782 regsize (const struct reg *reg, int wordsize)
1783 {
1784 return wordsize == 8 ? reg->sz64 : reg->sz32;
1785 }
1786
1787 /* Return the name of register number N, or null if no such register exists
1788 in the current architecture. */
1789
1790 static const char *
1791 rs6000_register_name (int n)
1792 {
1793 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1794 const struct reg *reg = tdep->regs + n;
1795
1796 if (!regsize (reg, tdep->wordsize))
1797 return NULL;
1798 return reg->name;
1799 }
1800
1801 /* Index within `registers' of the first byte of the space for
1802 register N. */
1803
1804 static int
1805 rs6000_register_byte (int n)
1806 {
1807 return gdbarch_tdep (current_gdbarch)->regoff[n];
1808 }
1809
1810 /* Return the number of bytes of storage in the actual machine representation
1811 for register N if that register is available, else return 0. */
1812
1813 static int
1814 rs6000_register_raw_size (int n)
1815 {
1816 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1817 const struct reg *reg = tdep->regs + n;
1818 return regsize (reg, tdep->wordsize);
1819 }
1820
1821 /* Return the GDB type object for the "standard" data type
1822 of data in register N. */
1823
1824 static struct type *
1825 rs6000_register_virtual_type (int n)
1826 {
1827 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1828 const struct reg *reg = tdep->regs + n;
1829
1830 if (reg->fpr)
1831 return builtin_type_double;
1832 else
1833 {
1834 int size = regsize (reg, tdep->wordsize);
1835 switch (size)
1836 {
1837 case 0:
1838 return builtin_type_int0;
1839 case 4:
1840 return builtin_type_int32;
1841 case 8:
1842 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1843 return builtin_type_vec64;
1844 else
1845 return builtin_type_int64;
1846 break;
1847 case 16:
1848 return builtin_type_vec128;
1849 break;
1850 default:
1851 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1852 n, size);
1853 }
1854 }
1855 }
1856
1857 /* Return whether register N requires conversion when moving from raw format
1858 to virtual format.
1859
1860 The register format for RS/6000 floating point registers is always
1861 double, we need a conversion if the memory format is float. */
1862
1863 static int
1864 rs6000_register_convertible (int n)
1865 {
1866 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1867 return reg->fpr;
1868 }
1869
1870 /* Convert data from raw format for register N in buffer FROM
1871 to virtual format with type TYPE in buffer TO. */
1872
1873 static void
1874 rs6000_register_convert_to_virtual (int n, struct type *type,
1875 char *from, char *to)
1876 {
1877 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1878 {
1879 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
1880 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1881 }
1882 else
1883 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1884 }
1885
1886 /* Convert data from virtual format with type TYPE in buffer FROM
1887 to raw format for register N in buffer TO. */
1888
1889 static void
1890 rs6000_register_convert_to_raw (struct type *type, int n,
1891 const char *from, char *to)
1892 {
1893 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1894 {
1895 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1896 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
1897 }
1898 else
1899 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1900 }
1901
1902 static void
1903 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1904 int reg_nr, void *buffer)
1905 {
1906 int base_regnum;
1907 int offset = 0;
1908 char temp_buffer[MAX_REGISTER_SIZE];
1909 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1910
1911 if (reg_nr >= tdep->ppc_gp0_regnum
1912 && reg_nr <= tdep->ppc_gplast_regnum)
1913 {
1914 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1915
1916 /* Build the value in the provided buffer. */
1917 /* Read the raw register of which this one is the lower portion. */
1918 regcache_raw_read (regcache, base_regnum, temp_buffer);
1919 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1920 offset = 4;
1921 memcpy ((char *) buffer, temp_buffer + offset, 4);
1922 }
1923 }
1924
1925 static void
1926 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1927 int reg_nr, const void *buffer)
1928 {
1929 int base_regnum;
1930 int offset = 0;
1931 char temp_buffer[MAX_REGISTER_SIZE];
1932 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1933
1934 if (reg_nr >= tdep->ppc_gp0_regnum
1935 && reg_nr <= tdep->ppc_gplast_regnum)
1936 {
1937 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1938 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1939 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1940 offset = 4;
1941
1942 /* Let's read the value of the base register into a temporary
1943 buffer, so that overwriting the last four bytes with the new
1944 value of the pseudo will leave the upper 4 bytes unchanged. */
1945 regcache_raw_read (regcache, base_regnum, temp_buffer);
1946
1947 /* Write as an 8 byte quantity. */
1948 memcpy (temp_buffer + offset, (char *) buffer, 4);
1949 regcache_raw_write (regcache, base_regnum, temp_buffer);
1950 }
1951 }
1952
1953 /* Convert a dwarf2 register number to a gdb REGNUM. */
1954 static int
1955 e500_dwarf2_reg_to_regnum (int num)
1956 {
1957 int regnum;
1958 if (0 <= num && num <= 31)
1959 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1960 else
1961 return num;
1962 }
1963
1964 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1965 REGNUM. */
1966 static int
1967 rs6000_stab_reg_to_regnum (int num)
1968 {
1969 int regnum;
1970 switch (num)
1971 {
1972 case 64:
1973 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1974 break;
1975 case 65:
1976 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1977 break;
1978 case 66:
1979 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1980 break;
1981 case 76:
1982 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1983 break;
1984 default:
1985 regnum = num;
1986 break;
1987 }
1988 return regnum;
1989 }
1990
1991 static void
1992 rs6000_store_return_value (struct type *type, char *valbuf)
1993 {
1994 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1995
1996 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1997
1998 /* Floating point values are returned starting from FPR1 and up.
1999 Say a double_double_double type could be returned in
2000 FPR1/FPR2/FPR3 triple. */
2001
2002 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2003 TYPE_LENGTH (type));
2004 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2005 {
2006 if (TYPE_LENGTH (type) == 16
2007 && TYPE_VECTOR (type))
2008 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2009 valbuf, TYPE_LENGTH (type));
2010 }
2011 else
2012 /* Everything else is returned in GPR3 and up. */
2013 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2014 valbuf, TYPE_LENGTH (type));
2015 }
2016
2017 /* Extract from an array REGBUF containing the (raw) register state
2018 the address in which a function should return its structure value,
2019 as a CORE_ADDR (or an expression that can be used as one). */
2020
2021 static CORE_ADDR
2022 rs6000_extract_struct_value_address (struct regcache *regcache)
2023 {
2024 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2025 function call GDB knows the address of the struct return value
2026 and hence, should not need to call this function. Unfortunately,
2027 the current call_function_by_hand() code only saves the most
2028 recent struct address leading to occasional calls. The code
2029 should instead maintain a stack of such addresses (in the dummy
2030 frame object). */
2031 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2032 really got no idea where the return value is being stored. While
2033 r3, on function entry, contained the address it will have since
2034 been reused (scratch) and hence wouldn't be valid */
2035 return 0;
2036 }
2037
2038 /* Return whether PC is in a dummy function call.
2039
2040 FIXME: This just checks for the end of the stack, which is broken
2041 for things like stepping through gcc nested function stubs. */
2042
2043 static int
2044 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2045 {
2046 return sp < pc && pc < fp;
2047 }
2048
2049 /* Hook called when a new child process is started. */
2050
2051 void
2052 rs6000_create_inferior (int pid)
2053 {
2054 if (rs6000_set_host_arch_hook)
2055 rs6000_set_host_arch_hook (pid);
2056 }
2057 \f
2058 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2059
2060 Usually a function pointer's representation is simply the address
2061 of the function. On the RS/6000 however, a function pointer is
2062 represented by a pointer to a TOC entry. This TOC entry contains
2063 three words, the first word is the address of the function, the
2064 second word is the TOC pointer (r2), and the third word is the
2065 static chain value. Throughout GDB it is currently assumed that a
2066 function pointer contains the address of the function, which is not
2067 easy to fix. In addition, the conversion of a function address to
2068 a function pointer would require allocation of a TOC entry in the
2069 inferior's memory space, with all its drawbacks. To be able to
2070 call C++ virtual methods in the inferior (which are called via
2071 function pointers), find_function_addr uses this function to get the
2072 function address from a function pointer. */
2073
2074 /* Return real function address if ADDR (a function pointer) is in the data
2075 space and is therefore a special function pointer. */
2076
2077 static CORE_ADDR
2078 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2079 CORE_ADDR addr,
2080 struct target_ops *targ)
2081 {
2082 struct obj_section *s;
2083
2084 s = find_pc_section (addr);
2085 if (s && s->the_bfd_section->flags & SEC_CODE)
2086 return addr;
2087
2088 /* ADDR is in the data space, so it's a special function pointer. */
2089 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2090 }
2091 \f
2092
2093 /* Handling the various POWER/PowerPC variants. */
2094
2095
2096 /* The arrays here called registers_MUMBLE hold information about available
2097 registers.
2098
2099 For each family of PPC variants, I've tried to isolate out the
2100 common registers and put them up front, so that as long as you get
2101 the general family right, GDB will correctly identify the registers
2102 common to that family. The common register sets are:
2103
2104 For the 60x family: hid0 hid1 iabr dabr pir
2105
2106 For the 505 and 860 family: eie eid nri
2107
2108 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2109 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2110 pbu1 pbl2 pbu2
2111
2112 Most of these register groups aren't anything formal. I arrived at
2113 them by looking at the registers that occurred in more than one
2114 processor.
2115
2116 Note: kevinb/2002-04-30: Support for the fpscr register was added
2117 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2118 for Power. For PowerPC, slot 70 was unused and was already in the
2119 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2120 slot 70 was being used for "mq", so the next available slot (71)
2121 was chosen. It would have been nice to be able to make the
2122 register numbers the same across processor cores, but this wasn't
2123 possible without either 1) renumbering some registers for some
2124 processors or 2) assigning fpscr to a really high slot that's
2125 larger than any current register number. Doing (1) is bad because
2126 existing stubs would break. Doing (2) is undesirable because it
2127 would introduce a really large gap between fpscr and the rest of
2128 the registers for most processors. */
2129
2130 /* Convenience macros for populating register arrays. */
2131
2132 /* Within another macro, convert S to a string. */
2133
2134 #define STR(s) #s
2135
2136 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2137 and 64 bits on 64-bit systems. */
2138 #define R(name) { STR(name), 4, 8, 0, 0 }
2139
2140 /* Return a struct reg defining register NAME that's 32 bits on all
2141 systems. */
2142 #define R4(name) { STR(name), 4, 4, 0, 0 }
2143
2144 /* Return a struct reg defining register NAME that's 64 bits on all
2145 systems. */
2146 #define R8(name) { STR(name), 8, 8, 0, 0 }
2147
2148 /* Return a struct reg defining register NAME that's 128 bits on all
2149 systems. */
2150 #define R16(name) { STR(name), 16, 16, 0, 0 }
2151
2152 /* Return a struct reg defining floating-point register NAME. */
2153 #define F(name) { STR(name), 8, 8, 1, 0 }
2154
2155 /* Return a struct reg defining a pseudo register NAME. */
2156 #define P(name) { STR(name), 4, 8, 0, 1}
2157
2158 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2159 systems and that doesn't exist on 64-bit systems. */
2160 #define R32(name) { STR(name), 4, 0, 0, 0 }
2161
2162 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2163 systems and that doesn't exist on 32-bit systems. */
2164 #define R64(name) { STR(name), 0, 8, 0, 0 }
2165
2166 /* Return a struct reg placeholder for a register that doesn't exist. */
2167 #define R0 { 0, 0, 0, 0, 0 }
2168
2169 /* UISA registers common across all architectures, including POWER. */
2170
2171 #define COMMON_UISA_REGS \
2172 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2173 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2174 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2175 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2176 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2177 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2178 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2179 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2180 /* 64 */ R(pc), R(ps)
2181
2182 #define COMMON_UISA_NOFP_REGS \
2183 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2184 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2185 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2186 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2187 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2188 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2189 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2190 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2191 /* 64 */ R(pc), R(ps)
2192
2193 /* UISA-level SPRs for PowerPC. */
2194 #define PPC_UISA_SPRS \
2195 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2196
2197 /* UISA-level SPRs for PowerPC without floating point support. */
2198 #define PPC_UISA_NOFP_SPRS \
2199 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2200
2201 /* Segment registers, for PowerPC. */
2202 #define PPC_SEGMENT_REGS \
2203 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2204 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2205 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2206 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2207
2208 /* OEA SPRs for PowerPC. */
2209 #define PPC_OEA_SPRS \
2210 /* 87 */ R4(pvr), \
2211 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2212 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2213 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2214 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2215 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2216 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2217 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2218 /* 116 */ R4(dec), R(dabr), R4(ear)
2219
2220 /* AltiVec registers. */
2221 #define PPC_ALTIVEC_REGS \
2222 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2223 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2224 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2225 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2226 /*151*/R4(vscr), R4(vrsave)
2227
2228 /* Vectors of hi-lo general purpose registers. */
2229 #define PPC_EV_REGS \
2230 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2231 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2232 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2233 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2234
2235 /* Lower half of the EV registers. */
2236 #define PPC_GPRS_PSEUDO_REGS \
2237 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2238 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2239 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2240 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2241
2242 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2243 user-level SPR's. */
2244 static const struct reg registers_power[] =
2245 {
2246 COMMON_UISA_REGS,
2247 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2248 /* 71 */ R4(fpscr)
2249 };
2250
2251 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2252 view of the PowerPC. */
2253 static const struct reg registers_powerpc[] =
2254 {
2255 COMMON_UISA_REGS,
2256 PPC_UISA_SPRS,
2257 PPC_ALTIVEC_REGS
2258 };
2259
2260 /* PowerPC UISA - a PPC processor as viewed by user-level
2261 code, but without floating point registers. */
2262 static const struct reg registers_powerpc_nofp[] =
2263 {
2264 COMMON_UISA_NOFP_REGS,
2265 PPC_UISA_SPRS
2266 };
2267
2268 /* IBM PowerPC 403. */
2269 static const struct reg registers_403[] =
2270 {
2271 COMMON_UISA_REGS,
2272 PPC_UISA_SPRS,
2273 PPC_SEGMENT_REGS,
2274 PPC_OEA_SPRS,
2275 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2276 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2277 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2278 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2279 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2280 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2281 };
2282
2283 /* IBM PowerPC 403GC. */
2284 static const struct reg registers_403GC[] =
2285 {
2286 COMMON_UISA_REGS,
2287 PPC_UISA_SPRS,
2288 PPC_SEGMENT_REGS,
2289 PPC_OEA_SPRS,
2290 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2291 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2292 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2293 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2294 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2295 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2296 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2297 /* 147 */ R(tbhu), R(tblu)
2298 };
2299
2300 /* Motorola PowerPC 505. */
2301 static const struct reg registers_505[] =
2302 {
2303 COMMON_UISA_REGS,
2304 PPC_UISA_SPRS,
2305 PPC_SEGMENT_REGS,
2306 PPC_OEA_SPRS,
2307 /* 119 */ R(eie), R(eid), R(nri)
2308 };
2309
2310 /* Motorola PowerPC 860 or 850. */
2311 static const struct reg registers_860[] =
2312 {
2313 COMMON_UISA_REGS,
2314 PPC_UISA_SPRS,
2315 PPC_SEGMENT_REGS,
2316 PPC_OEA_SPRS,
2317 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2318 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2319 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2320 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2321 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2322 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2323 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2324 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2325 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2326 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2327 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2328 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2329 };
2330
2331 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2332 for reading and writing RTCU and RTCL. However, how one reads and writes a
2333 register is the stub's problem. */
2334 static const struct reg registers_601[] =
2335 {
2336 COMMON_UISA_REGS,
2337 PPC_UISA_SPRS,
2338 PPC_SEGMENT_REGS,
2339 PPC_OEA_SPRS,
2340 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2341 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2342 };
2343
2344 /* Motorola PowerPC 602. */
2345 static const struct reg registers_602[] =
2346 {
2347 COMMON_UISA_REGS,
2348 PPC_UISA_SPRS,
2349 PPC_SEGMENT_REGS,
2350 PPC_OEA_SPRS,
2351 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2352 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2353 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2354 };
2355
2356 /* Motorola/IBM PowerPC 603 or 603e. */
2357 static const struct reg registers_603[] =
2358 {
2359 COMMON_UISA_REGS,
2360 PPC_UISA_SPRS,
2361 PPC_SEGMENT_REGS,
2362 PPC_OEA_SPRS,
2363 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2364 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2365 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2366 };
2367
2368 /* Motorola PowerPC 604 or 604e. */
2369 static const struct reg registers_604[] =
2370 {
2371 COMMON_UISA_REGS,
2372 PPC_UISA_SPRS,
2373 PPC_SEGMENT_REGS,
2374 PPC_OEA_SPRS,
2375 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2376 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2377 /* 127 */ R(sia), R(sda)
2378 };
2379
2380 /* Motorola/IBM PowerPC 750 or 740. */
2381 static const struct reg registers_750[] =
2382 {
2383 COMMON_UISA_REGS,
2384 PPC_UISA_SPRS,
2385 PPC_SEGMENT_REGS,
2386 PPC_OEA_SPRS,
2387 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2388 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2389 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2390 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2391 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2392 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2393 };
2394
2395
2396 /* Motorola PowerPC 7400. */
2397 static const struct reg registers_7400[] =
2398 {
2399 /* gpr0-gpr31, fpr0-fpr31 */
2400 COMMON_UISA_REGS,
2401 /* ctr, xre, lr, cr */
2402 PPC_UISA_SPRS,
2403 /* sr0-sr15 */
2404 PPC_SEGMENT_REGS,
2405 PPC_OEA_SPRS,
2406 /* vr0-vr31, vrsave, vscr */
2407 PPC_ALTIVEC_REGS
2408 /* FIXME? Add more registers? */
2409 };
2410
2411 /* Motorola e500. */
2412 static const struct reg registers_e500[] =
2413 {
2414 R(pc), R(ps),
2415 /* cr, lr, ctr, xer, "" */
2416 PPC_UISA_NOFP_SPRS,
2417 /* 7...38 */
2418 PPC_EV_REGS,
2419 R8(acc), R(spefscr),
2420 /* NOTE: Add new registers here the end of the raw register
2421 list and just before the first pseudo register. */
2422 /* 39...70 */
2423 PPC_GPRS_PSEUDO_REGS
2424 };
2425
2426 /* Information about a particular processor variant. */
2427
2428 struct variant
2429 {
2430 /* Name of this variant. */
2431 char *name;
2432
2433 /* English description of the variant. */
2434 char *description;
2435
2436 /* bfd_arch_info.arch corresponding to variant. */
2437 enum bfd_architecture arch;
2438
2439 /* bfd_arch_info.mach corresponding to variant. */
2440 unsigned long mach;
2441
2442 /* Number of real registers. */
2443 int nregs;
2444
2445 /* Number of pseudo registers. */
2446 int npregs;
2447
2448 /* Number of total registers (the sum of nregs and npregs). */
2449 int num_tot_regs;
2450
2451 /* Table of register names; registers[R] is the name of the register
2452 number R. */
2453 const struct reg *regs;
2454 };
2455
2456 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2457
2458 static int
2459 num_registers (const struct reg *reg_list, int num_tot_regs)
2460 {
2461 int i;
2462 int nregs = 0;
2463
2464 for (i = 0; i < num_tot_regs; i++)
2465 if (!reg_list[i].pseudo)
2466 nregs++;
2467
2468 return nregs;
2469 }
2470
2471 static int
2472 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2473 {
2474 int i;
2475 int npregs = 0;
2476
2477 for (i = 0; i < num_tot_regs; i++)
2478 if (reg_list[i].pseudo)
2479 npregs ++;
2480
2481 return npregs;
2482 }
2483
2484 /* Information in this table comes from the following web sites:
2485 IBM: http://www.chips.ibm.com:80/products/embedded/
2486 Motorola: http://www.mot.com/SPS/PowerPC/
2487
2488 I'm sure I've got some of the variant descriptions not quite right.
2489 Please report any inaccuracies you find to GDB's maintainer.
2490
2491 If you add entries to this table, please be sure to allow the new
2492 value as an argument to the --with-cpu flag, in configure.in. */
2493
2494 static struct variant variants[] =
2495 {
2496
2497 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2498 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2499 registers_powerpc},
2500 {"power", "POWER user-level", bfd_arch_rs6000,
2501 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2502 registers_power},
2503 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2504 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2505 registers_403},
2506 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2507 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2508 registers_601},
2509 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2510 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2511 registers_602},
2512 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2513 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2514 registers_603},
2515 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2516 604, -1, -1, tot_num_registers (registers_604),
2517 registers_604},
2518 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2519 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2520 registers_403GC},
2521 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2522 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2523 registers_505},
2524 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2525 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2526 registers_860},
2527 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2528 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2529 registers_750},
2530 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2531 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2532 registers_7400},
2533 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2534 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2535 registers_e500},
2536
2537 /* 64-bit */
2538 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2539 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2540 registers_powerpc},
2541 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2542 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2543 registers_powerpc},
2544 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2545 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2546 registers_powerpc},
2547 {"a35", "PowerPC A35", bfd_arch_powerpc,
2548 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2549 registers_powerpc},
2550 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2551 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2552 registers_powerpc},
2553 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2554 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2555 registers_powerpc},
2556
2557 /* FIXME: I haven't checked the register sets of the following. */
2558 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2559 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2560 registers_power},
2561 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2562 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2563 registers_power},
2564 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2565 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2566 registers_power},
2567
2568 {0, 0, 0, 0, 0, 0, 0, 0}
2569 };
2570
2571 /* Initialize the number of registers and pseudo registers in each variant. */
2572
2573 static void
2574 init_variants (void)
2575 {
2576 struct variant *v;
2577
2578 for (v = variants; v->name; v++)
2579 {
2580 if (v->nregs == -1)
2581 v->nregs = num_registers (v->regs, v->num_tot_regs);
2582 if (v->npregs == -1)
2583 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2584 }
2585 }
2586
2587 /* Return the variant corresponding to architecture ARCH and machine number
2588 MACH. If no such variant exists, return null. */
2589
2590 static const struct variant *
2591 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2592 {
2593 const struct variant *v;
2594
2595 for (v = variants; v->name; v++)
2596 if (arch == v->arch && mach == v->mach)
2597 return v;
2598
2599 return NULL;
2600 }
2601
2602 static int
2603 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2604 {
2605 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2606 return print_insn_big_powerpc (memaddr, info);
2607 else
2608 return print_insn_little_powerpc (memaddr, info);
2609 }
2610 \f
2611 /* Initialize the current architecture based on INFO. If possible, re-use an
2612 architecture from ARCHES, which is a list of architectures already created
2613 during this debugging session.
2614
2615 Called e.g. at program startup, when reading a core file, and when reading
2616 a binary file. */
2617
2618 static struct gdbarch *
2619 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2620 {
2621 struct gdbarch *gdbarch;
2622 struct gdbarch_tdep *tdep;
2623 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2624 struct reg *regs;
2625 const struct variant *v;
2626 enum bfd_architecture arch;
2627 unsigned long mach;
2628 bfd abfd;
2629 int sysv_abi;
2630 asection *sect;
2631
2632 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2633 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2634
2635 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2636 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2637
2638 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2639
2640 /* Check word size. If INFO is from a binary file, infer it from
2641 that, else choose a likely default. */
2642 if (from_xcoff_exec)
2643 {
2644 if (bfd_xcoff_is_xcoff64 (info.abfd))
2645 wordsize = 8;
2646 else
2647 wordsize = 4;
2648 }
2649 else if (from_elf_exec)
2650 {
2651 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2652 wordsize = 8;
2653 else
2654 wordsize = 4;
2655 }
2656 else
2657 {
2658 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2659 wordsize = info.bfd_arch_info->bits_per_word /
2660 info.bfd_arch_info->bits_per_byte;
2661 else
2662 wordsize = 4;
2663 }
2664
2665 /* Find a candidate among extant architectures. */
2666 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2667 arches != NULL;
2668 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2669 {
2670 /* Word size in the various PowerPC bfd_arch_info structs isn't
2671 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2672 separate word size check. */
2673 tdep = gdbarch_tdep (arches->gdbarch);
2674 if (tdep && tdep->wordsize == wordsize)
2675 return arches->gdbarch;
2676 }
2677
2678 /* None found, create a new architecture from INFO, whose bfd_arch_info
2679 validity depends on the source:
2680 - executable useless
2681 - rs6000_host_arch() good
2682 - core file good
2683 - "set arch" trust blindly
2684 - GDB startup useless but harmless */
2685
2686 if (!from_xcoff_exec)
2687 {
2688 arch = info.bfd_arch_info->arch;
2689 mach = info.bfd_arch_info->mach;
2690 }
2691 else
2692 {
2693 arch = bfd_arch_powerpc;
2694 bfd_default_set_arch_mach (&abfd, arch, 0);
2695 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2696 mach = info.bfd_arch_info->mach;
2697 }
2698 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2699 tdep->wordsize = wordsize;
2700
2701 /* For e500 executables, the apuinfo section is of help here. Such
2702 section contains the identifier and revision number of each
2703 Application-specific Processing Unit that is present on the
2704 chip. The content of the section is determined by the assembler
2705 which looks at each instruction and determines which unit (and
2706 which version of it) can execute it. In our case we just look for
2707 the existance of the section. */
2708
2709 if (info.abfd)
2710 {
2711 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2712 if (sect)
2713 {
2714 arch = info.bfd_arch_info->arch;
2715 mach = bfd_mach_ppc_e500;
2716 bfd_default_set_arch_mach (&abfd, arch, mach);
2717 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2718 }
2719 }
2720
2721 gdbarch = gdbarch_alloc (&info, tdep);
2722 power = arch == bfd_arch_rs6000;
2723
2724 /* Initialize the number of real and pseudo registers in each variant. */
2725 init_variants ();
2726
2727 /* Choose variant. */
2728 v = find_variant_by_arch (arch, mach);
2729 if (!v)
2730 return NULL;
2731
2732 tdep->regs = v->regs;
2733
2734 tdep->ppc_gp0_regnum = 0;
2735 tdep->ppc_gplast_regnum = 31;
2736 tdep->ppc_toc_regnum = 2;
2737 tdep->ppc_ps_regnum = 65;
2738 tdep->ppc_cr_regnum = 66;
2739 tdep->ppc_lr_regnum = 67;
2740 tdep->ppc_ctr_regnum = 68;
2741 tdep->ppc_xer_regnum = 69;
2742 if (v->mach == bfd_mach_ppc_601)
2743 tdep->ppc_mq_regnum = 124;
2744 else if (power)
2745 tdep->ppc_mq_regnum = 70;
2746 else
2747 tdep->ppc_mq_regnum = -1;
2748 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2749
2750 set_gdbarch_pc_regnum (gdbarch, 64);
2751 set_gdbarch_sp_regnum (gdbarch, 1);
2752 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2753 if (sysv_abi && wordsize == 8)
2754 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
2755 else if (sysv_abi && wordsize == 4)
2756 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
2757 else
2758 {
2759 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2760 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2761 }
2762
2763 if (v->arch == bfd_arch_powerpc)
2764 switch (v->mach)
2765 {
2766 case bfd_mach_ppc:
2767 tdep->ppc_vr0_regnum = 71;
2768 tdep->ppc_vrsave_regnum = 104;
2769 tdep->ppc_ev0_regnum = -1;
2770 tdep->ppc_ev31_regnum = -1;
2771 break;
2772 case bfd_mach_ppc_7400:
2773 tdep->ppc_vr0_regnum = 119;
2774 tdep->ppc_vrsave_regnum = 152;
2775 tdep->ppc_ev0_regnum = -1;
2776 tdep->ppc_ev31_regnum = -1;
2777 break;
2778 case bfd_mach_ppc_e500:
2779 tdep->ppc_gp0_regnum = 41;
2780 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2781 tdep->ppc_toc_regnum = -1;
2782 tdep->ppc_ps_regnum = 1;
2783 tdep->ppc_cr_regnum = 2;
2784 tdep->ppc_lr_regnum = 3;
2785 tdep->ppc_ctr_regnum = 4;
2786 tdep->ppc_xer_regnum = 5;
2787 tdep->ppc_ev0_regnum = 7;
2788 tdep->ppc_ev31_regnum = 38;
2789 set_gdbarch_pc_regnum (gdbarch, 0);
2790 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2791 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2792 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2793 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2794 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2795 break;
2796 default:
2797 tdep->ppc_vr0_regnum = -1;
2798 tdep->ppc_vrsave_regnum = -1;
2799 tdep->ppc_ev0_regnum = -1;
2800 tdep->ppc_ev31_regnum = -1;
2801 break;
2802 }
2803
2804 /* Sanity check on registers. */
2805 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2806
2807 /* Set lr_frame_offset. */
2808 if (wordsize == 8)
2809 tdep->lr_frame_offset = 16;
2810 else if (sysv_abi)
2811 tdep->lr_frame_offset = 4;
2812 else
2813 tdep->lr_frame_offset = 8;
2814
2815 /* Calculate byte offsets in raw register array. */
2816 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2817 for (i = off = 0; i < v->num_tot_regs; i++)
2818 {
2819 tdep->regoff[i] = off;
2820 off += regsize (v->regs + i, wordsize);
2821 }
2822
2823 /* Select instruction printer. */
2824 if (arch == power)
2825 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2826 else
2827 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2828
2829 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2830
2831 set_gdbarch_num_regs (gdbarch, v->nregs);
2832 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2833 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2834 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2835 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2836 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2837 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2838 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2839
2840 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2841 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2842 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2843 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2844 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2845 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2846 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2847 if (sysv_abi)
2848 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2849 else
2850 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2851 set_gdbarch_char_signed (gdbarch, 0);
2852
2853 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2854 if (sysv_abi && wordsize == 8)
2855 /* PPC64 SYSV. */
2856 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2857 else if (!sysv_abi && wordsize == 4)
2858 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2859 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2860 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2861 224. */
2862 set_gdbarch_frame_red_zone_size (gdbarch, 224);
2863 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2864 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2865
2866 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2867 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2868 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2869 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2870 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2871 is correct for the SysV ABI when the wordsize is 8, but I'm also
2872 fairly certain that ppc_sysv_abi_push_arguments() will give even
2873 worse results since it only works for 32-bit code. So, for the moment,
2874 we're better off calling rs6000_push_arguments() since it works for
2875 64-bit code. At some point in the future, this matter needs to be
2876 revisited. */
2877 if (sysv_abi && wordsize == 4)
2878 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2879 else if (sysv_abi && wordsize == 8)
2880 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
2881 else
2882 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2883
2884 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2885 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2886
2887 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2888 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2889 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2890 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2891
2892 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2893 for the descriptor and ".FN" for the entry-point -- a user
2894 specifying "break FN" will unexpectedly end up with a breakpoint
2895 on the descriptor and not the function. This architecture method
2896 transforms any breakpoints on descriptors into breakpoints on the
2897 corresponding entry point. */
2898 if (sysv_abi && wordsize == 8)
2899 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2900
2901 /* Not sure on this. FIXMEmgo */
2902 set_gdbarch_frame_args_skip (gdbarch, 8);
2903
2904 if (!sysv_abi)
2905 set_gdbarch_use_struct_convention (gdbarch,
2906 rs6000_use_struct_convention);
2907
2908 set_gdbarch_frameless_function_invocation (gdbarch,
2909 rs6000_frameless_function_invocation);
2910 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2911 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2912
2913 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2914 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2915
2916 if (!sysv_abi)
2917 {
2918 /* Handle RS/6000 function pointers (which are really function
2919 descriptors). */
2920 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2921 rs6000_convert_from_func_ptr_addr);
2922 }
2923 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2924 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
2925 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2926
2927 /* Helpers for function argument information. */
2928 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2929
2930 /* Hook in ABI-specific overrides, if they have been registered. */
2931 gdbarch_init_osabi (info, gdbarch);
2932
2933 if (from_xcoff_exec)
2934 {
2935 /* NOTE: jimix/2003-06-09: This test should really check for
2936 GDB_OSABI_AIX when that is defined and becomes
2937 available. (Actually, once things are properly split apart,
2938 the test goes away.) */
2939 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2940 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2941 }
2942
2943 return gdbarch;
2944 }
2945
2946 static void
2947 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2948 {
2949 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2950
2951 if (tdep == NULL)
2952 return;
2953
2954 /* FIXME: Dump gdbarch_tdep. */
2955 }
2956
2957 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2958
2959 static void
2960 rs6000_info_powerpc_command (char *args, int from_tty)
2961 {
2962 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2963 }
2964
2965 /* Initialization code. */
2966
2967 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
2968
2969 void
2970 _initialize_rs6000_tdep (void)
2971 {
2972 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2973 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2974
2975 /* Add root prefix command for "info powerpc" commands */
2976 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2977 "Various POWERPC info specific commands.",
2978 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2979 }