]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
* rs6000-tdep.c (rs6000_gdbarch_init): Delete variable 'power';
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40
41 #include "libbfd.h" /* for bfd_default_set_arch_mach */
42 #include "coff/internal.h" /* for libcoff.h */
43 #include "libcoff.h" /* for xcoff_data */
44 #include "coff/xcoff.h"
45 #include "libxcoff.h"
46
47 #include "elf-bfd.h"
48
49 #include "solib-svr4.h"
50 #include "ppc-tdep.h"
51
52 #include "gdb_assert.h"
53 #include "dis-asm.h"
54
55 #include "trad-frame.h"
56 #include "frame-unwind.h"
57 #include "frame-base.h"
58
59 /* If the kernel has to deliver a signal, it pushes a sigcontext
60 structure on the stack and then calls the signal handler, passing
61 the address of the sigcontext in an argument register. Usually
62 the signal handler doesn't save this register, so we have to
63 access the sigcontext structure via an offset from the signal handler
64 frame.
65 The following constants were determined by experimentation on AIX 3.2. */
66 #define SIG_FRAME_PC_OFFSET 96
67 #define SIG_FRAME_LR_OFFSET 108
68 #define SIG_FRAME_FP_OFFSET 284
69
70 /* To be used by skip_prologue. */
71
72 struct rs6000_framedata
73 {
74 int offset; /* total size of frame --- the distance
75 by which we decrement sp to allocate
76 the frame */
77 int saved_gpr; /* smallest # of saved gpr */
78 int saved_fpr; /* smallest # of saved fpr */
79 int saved_vr; /* smallest # of saved vr */
80 int saved_ev; /* smallest # of saved ev */
81 int alloca_reg; /* alloca register number (frame ptr) */
82 char frameless; /* true if frameless functions. */
83 char nosavedpc; /* true if pc not saved. */
84 int gpr_offset; /* offset of saved gprs from prev sp */
85 int fpr_offset; /* offset of saved fprs from prev sp */
86 int vr_offset; /* offset of saved vrs from prev sp */
87 int ev_offset; /* offset of saved evs from prev sp */
88 int lr_offset; /* offset of saved lr */
89 int cr_offset; /* offset of saved cr */
90 int vrsave_offset; /* offset of saved vrsave register */
91 };
92
93 /* Description of a single register. */
94
95 struct reg
96 {
97 char *name; /* name of register */
98 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
99 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
100 unsigned char fpr; /* whether register is floating-point */
101 unsigned char pseudo; /* whether register is pseudo */
102 };
103
104 /* Breakpoint shadows for the single step instructions will be kept here. */
105
106 static struct sstep_breaks
107 {
108 /* Address, or 0 if this is not in use. */
109 CORE_ADDR address;
110 /* Shadow contents. */
111 char data[4];
112 }
113 stepBreaks[2];
114
115 /* Hook for determining the TOC address when calling functions in the
116 inferior under AIX. The initialization code in rs6000-nat.c sets
117 this hook to point to find_toc_address. */
118
119 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
120
121 /* Hook to set the current architecture when starting a child process.
122 rs6000-nat.c sets this. */
123
124 void (*rs6000_set_host_arch_hook) (int) = NULL;
125
126 /* Static function prototypes */
127
128 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
129 CORE_ADDR safety);
130 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
131 struct rs6000_framedata *);
132
133 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
134 int
135 altivec_register_p (int regno)
136 {
137 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
138 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
139 return 0;
140 else
141 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
142 }
143
144
145 /* Return true if REGNO is an SPE register, false otherwise. */
146 int
147 spe_register_p (int regno)
148 {
149 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
150
151 /* Is it a reference to EV0 -- EV31, and do we have those? */
152 if (tdep->ppc_ev0_regnum >= 0
153 && tdep->ppc_ev31_regnum >= 0
154 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
155 return 1;
156
157 /* Is it a reference to the 64-bit accumulator, and do we have that? */
158 if (tdep->ppc_acc_regnum >= 0
159 && tdep->ppc_acc_regnum == regno)
160 return 1;
161
162 /* Is it a reference to the SPE floating-point status and control register,
163 and do we have that? */
164 if (tdep->ppc_spefscr_regnum >= 0
165 && tdep->ppc_spefscr_regnum == regno)
166 return 1;
167
168 return 0;
169 }
170
171
172 /* Return non-zero if the architecture described by GDBARCH has
173 floating-point registers (f0 --- f31 and fpscr). */
174 int
175 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
176 {
177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
178
179 return (tdep->ppc_fp0_regnum >= 0
180 && tdep->ppc_fpscr_regnum >= 0);
181 }
182 \f
183
184 /* Register set support functions. */
185
186 static void
187 ppc_supply_reg (struct regcache *regcache, int regnum,
188 const char *regs, size_t offset)
189 {
190 if (regnum != -1 && offset != -1)
191 regcache_raw_supply (regcache, regnum, regs + offset);
192 }
193
194 static void
195 ppc_collect_reg (const struct regcache *regcache, int regnum,
196 char *regs, size_t offset)
197 {
198 if (regnum != -1 && offset != -1)
199 regcache_raw_collect (regcache, regnum, regs + offset);
200 }
201
202 /* Supply register REGNUM in the general-purpose register set REGSET
203 from the buffer specified by GREGS and LEN to register cache
204 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
205
206 void
207 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
208 int regnum, const void *gregs, size_t len)
209 {
210 struct gdbarch *gdbarch = get_regcache_arch (regcache);
211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
212 const struct ppc_reg_offsets *offsets = regset->descr;
213 size_t offset;
214 int i;
215
216 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
217 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
218 i++, offset += 4)
219 {
220 if (regnum == -1 || regnum == i)
221 ppc_supply_reg (regcache, i, gregs, offset);
222 }
223
224 if (regnum == -1 || regnum == PC_REGNUM)
225 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
226 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
227 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
228 gregs, offsets->ps_offset);
229 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
230 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
231 gregs, offsets->cr_offset);
232 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
233 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
234 gregs, offsets->lr_offset);
235 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
236 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
237 gregs, offsets->ctr_offset);
238 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
239 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
240 gregs, offsets->cr_offset);
241 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
242 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
243 }
244
245 /* Supply register REGNUM in the floating-point register set REGSET
246 from the buffer specified by FPREGS and LEN to register cache
247 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
248
249 void
250 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
251 int regnum, const void *fpregs, size_t len)
252 {
253 struct gdbarch *gdbarch = get_regcache_arch (regcache);
254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255 const struct ppc_reg_offsets *offsets = regset->descr;
256 size_t offset;
257 int i;
258
259 gdb_assert (ppc_floating_point_unit_p (gdbarch));
260
261 offset = offsets->f0_offset;
262 for (i = tdep->ppc_fp0_regnum;
263 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
264 i++, offset += 4)
265 {
266 if (regnum == -1 || regnum == i)
267 ppc_supply_reg (regcache, i, fpregs, offset);
268 }
269
270 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
271 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
272 fpregs, offsets->fpscr_offset);
273 }
274
275 /* Collect register REGNUM in the general-purpose register set
276 REGSET. from register cache REGCACHE into the buffer specified by
277 GREGS and LEN. If REGNUM is -1, do this for all registers in
278 REGSET. */
279
280 void
281 ppc_collect_gregset (const struct regset *regset,
282 const struct regcache *regcache,
283 int regnum, void *gregs, size_t len)
284 {
285 struct gdbarch *gdbarch = get_regcache_arch (regcache);
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 const struct ppc_reg_offsets *offsets = regset->descr;
288 size_t offset;
289 int i;
290
291 offset = offsets->r0_offset;
292 for (i = tdep->ppc_gp0_regnum;
293 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
294 i++, offset += 4)
295 {
296 if (regnum == -1 || regnum == i)
297 ppc_collect_reg (regcache, i, gregs, offset);
298 }
299
300 if (regnum == -1 || regnum == PC_REGNUM)
301 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
302 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
303 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
304 gregs, offsets->ps_offset);
305 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
306 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
307 gregs, offsets->cr_offset);
308 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
309 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
310 gregs, offsets->lr_offset);
311 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
312 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
313 gregs, offsets->ctr_offset);
314 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
315 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
316 gregs, offsets->xer_offset);
317 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
318 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
319 gregs, offsets->mq_offset);
320 }
321
322 /* Collect register REGNUM in the floating-point register set
323 REGSET. from register cache REGCACHE into the buffer specified by
324 FPREGS and LEN. If REGNUM is -1, do this for all registers in
325 REGSET. */
326
327 void
328 ppc_collect_fpregset (const struct regset *regset,
329 const struct regcache *regcache,
330 int regnum, void *fpregs, size_t len)
331 {
332 struct gdbarch *gdbarch = get_regcache_arch (regcache);
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 const struct ppc_reg_offsets *offsets = regset->descr;
335 size_t offset;
336 int i;
337
338 gdb_assert (ppc_floating_point_unit_p (gdbarch));
339
340 offset = offsets->f0_offset;
341 for (i = tdep->ppc_fp0_regnum;
342 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
343 i++, offset += 4)
344 {
345 if (regnum == -1 || regnum == i)
346 ppc_collect_reg (regcache, regnum, fpregs, offset);
347 }
348
349 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
350 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
351 fpregs, offsets->fpscr_offset);
352 }
353 \f
354
355 /* Read a LEN-byte address from debugged memory address MEMADDR. */
356
357 static CORE_ADDR
358 read_memory_addr (CORE_ADDR memaddr, int len)
359 {
360 return read_memory_unsigned_integer (memaddr, len);
361 }
362
363 static CORE_ADDR
364 rs6000_skip_prologue (CORE_ADDR pc)
365 {
366 struct rs6000_framedata frame;
367 pc = skip_prologue (pc, 0, &frame);
368 return pc;
369 }
370
371
372 /* Fill in fi->saved_regs */
373
374 struct frame_extra_info
375 {
376 /* Functions calling alloca() change the value of the stack
377 pointer. We need to use initial stack pointer (which is saved in
378 r31 by gcc) in such cases. If a compiler emits traceback table,
379 then we should use the alloca register specified in traceback
380 table. FIXME. */
381 CORE_ADDR initial_sp; /* initial stack pointer. */
382 };
383
384 /* Get the ith function argument for the current function. */
385 static CORE_ADDR
386 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
387 struct type *type)
388 {
389 CORE_ADDR addr;
390 get_frame_register (frame, 3 + argi, &addr);
391 return addr;
392 }
393
394 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
395
396 static CORE_ADDR
397 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
398 {
399 CORE_ADDR dest;
400 int immediate;
401 int absolute;
402 int ext_op;
403
404 absolute = (int) ((instr >> 1) & 1);
405
406 switch (opcode)
407 {
408 case 18:
409 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
410 if (absolute)
411 dest = immediate;
412 else
413 dest = pc + immediate;
414 break;
415
416 case 16:
417 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
418 if (absolute)
419 dest = immediate;
420 else
421 dest = pc + immediate;
422 break;
423
424 case 19:
425 ext_op = (instr >> 1) & 0x3ff;
426
427 if (ext_op == 16) /* br conditional register */
428 {
429 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
430
431 /* If we are about to return from a signal handler, dest is
432 something like 0x3c90. The current frame is a signal handler
433 caller frame, upon completion of the sigreturn system call
434 execution will return to the saved PC in the frame. */
435 if (dest < TEXT_SEGMENT_BASE)
436 {
437 struct frame_info *fi;
438
439 fi = get_current_frame ();
440 if (fi != NULL)
441 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
442 gdbarch_tdep (current_gdbarch)->wordsize);
443 }
444 }
445
446 else if (ext_op == 528) /* br cond to count reg */
447 {
448 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
449
450 /* If we are about to execute a system call, dest is something
451 like 0x22fc or 0x3b00. Upon completion the system call
452 will return to the address in the link register. */
453 if (dest < TEXT_SEGMENT_BASE)
454 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
455 }
456 else
457 return -1;
458 break;
459
460 default:
461 return -1;
462 }
463 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
464 }
465
466
467 /* Sequence of bytes for breakpoint instruction. */
468
469 const static unsigned char *
470 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
471 {
472 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
473 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
474 *bp_size = 4;
475 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
476 return big_breakpoint;
477 else
478 return little_breakpoint;
479 }
480
481
482 /* AIX does not support PT_STEP. Simulate it. */
483
484 void
485 rs6000_software_single_step (enum target_signal signal,
486 int insert_breakpoints_p)
487 {
488 CORE_ADDR dummy;
489 int breakp_sz;
490 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
491 int ii, insn;
492 CORE_ADDR loc;
493 CORE_ADDR breaks[2];
494 int opcode;
495
496 if (insert_breakpoints_p)
497 {
498
499 loc = read_pc ();
500
501 insn = read_memory_integer (loc, 4);
502
503 breaks[0] = loc + breakp_sz;
504 opcode = insn >> 26;
505 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
506
507 /* Don't put two breakpoints on the same address. */
508 if (breaks[1] == breaks[0])
509 breaks[1] = -1;
510
511 stepBreaks[1].address = 0;
512
513 for (ii = 0; ii < 2; ++ii)
514 {
515
516 /* ignore invalid breakpoint. */
517 if (breaks[ii] == -1)
518 continue;
519 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
520 stepBreaks[ii].address = breaks[ii];
521 }
522
523 }
524 else
525 {
526
527 /* remove step breakpoints. */
528 for (ii = 0; ii < 2; ++ii)
529 if (stepBreaks[ii].address != 0)
530 target_remove_breakpoint (stepBreaks[ii].address,
531 stepBreaks[ii].data);
532 }
533 errno = 0; /* FIXME, don't ignore errors! */
534 /* What errors? {read,write}_memory call error(). */
535 }
536
537
538 /* return pc value after skipping a function prologue and also return
539 information about a function frame.
540
541 in struct rs6000_framedata fdata:
542 - frameless is TRUE, if function does not have a frame.
543 - nosavedpc is TRUE, if function does not save %pc value in its frame.
544 - offset is the initial size of this stack frame --- the amount by
545 which we decrement the sp to allocate the frame.
546 - saved_gpr is the number of the first saved gpr.
547 - saved_fpr is the number of the first saved fpr.
548 - saved_vr is the number of the first saved vr.
549 - saved_ev is the number of the first saved ev.
550 - alloca_reg is the number of the register used for alloca() handling.
551 Otherwise -1.
552 - gpr_offset is the offset of the first saved gpr from the previous frame.
553 - fpr_offset is the offset of the first saved fpr from the previous frame.
554 - vr_offset is the offset of the first saved vr from the previous frame.
555 - ev_offset is the offset of the first saved ev from the previous frame.
556 - lr_offset is the offset of the saved lr
557 - cr_offset is the offset of the saved cr
558 - vrsave_offset is the offset of the saved vrsave register
559 */
560
561 #define SIGNED_SHORT(x) \
562 ((sizeof (short) == 2) \
563 ? ((int)(short)(x)) \
564 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
565
566 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
567
568 /* Limit the number of skipped non-prologue instructions, as the examining
569 of the prologue is expensive. */
570 static int max_skip_non_prologue_insns = 10;
571
572 /* Given PC representing the starting address of a function, and
573 LIM_PC which is the (sloppy) limit to which to scan when looking
574 for a prologue, attempt to further refine this limit by using
575 the line data in the symbol table. If successful, a better guess
576 on where the prologue ends is returned, otherwise the previous
577 value of lim_pc is returned. */
578
579 /* FIXME: cagney/2004-02-14: This function and logic have largely been
580 superseded by skip_prologue_using_sal. */
581
582 static CORE_ADDR
583 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
584 {
585 struct symtab_and_line prologue_sal;
586
587 prologue_sal = find_pc_line (pc, 0);
588 if (prologue_sal.line != 0)
589 {
590 int i;
591 CORE_ADDR addr = prologue_sal.end;
592
593 /* Handle the case in which compiler's optimizer/scheduler
594 has moved instructions into the prologue. We scan ahead
595 in the function looking for address ranges whose corresponding
596 line number is less than or equal to the first one that we
597 found for the function. (It can be less than when the
598 scheduler puts a body instruction before the first prologue
599 instruction.) */
600 for (i = 2 * max_skip_non_prologue_insns;
601 i > 0 && (lim_pc == 0 || addr < lim_pc);
602 i--)
603 {
604 struct symtab_and_line sal;
605
606 sal = find_pc_line (addr, 0);
607 if (sal.line == 0)
608 break;
609 if (sal.line <= prologue_sal.line
610 && sal.symtab == prologue_sal.symtab)
611 {
612 prologue_sal = sal;
613 }
614 addr = sal.end;
615 }
616
617 if (lim_pc == 0 || prologue_sal.end < lim_pc)
618 lim_pc = prologue_sal.end;
619 }
620 return lim_pc;
621 }
622
623 /* Return nonzero if the given instruction OP can be part of the prologue
624 of a function and saves a parameter on the stack. FRAMEP should be
625 set if one of the previous instructions in the function has set the
626 Frame Pointer. */
627
628 static int
629 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
630 {
631 /* Move parameters from argument registers to temporary register. */
632 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
633 {
634 /* Rx must be scratch register r0. */
635 const int rx_regno = (op >> 16) & 31;
636 /* Ry: Only r3 - r10 are used for parameter passing. */
637 const int ry_regno = GET_SRC_REG (op);
638
639 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
640 {
641 *r0_contains_arg = 1;
642 return 1;
643 }
644 else
645 return 0;
646 }
647
648 /* Save a General Purpose Register on stack. */
649
650 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
651 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
652 {
653 /* Rx: Only r3 - r10 are used for parameter passing. */
654 const int rx_regno = GET_SRC_REG (op);
655
656 return (rx_regno >= 3 && rx_regno <= 10);
657 }
658
659 /* Save a General Purpose Register on stack via the Frame Pointer. */
660
661 if (framep &&
662 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
663 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
664 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
665 {
666 /* Rx: Usually, only r3 - r10 are used for parameter passing.
667 However, the compiler sometimes uses r0 to hold an argument. */
668 const int rx_regno = GET_SRC_REG (op);
669
670 return ((rx_regno >= 3 && rx_regno <= 10)
671 || (rx_regno == 0 && *r0_contains_arg));
672 }
673
674 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
675 {
676 /* Only f2 - f8 are used for parameter passing. */
677 const int src_regno = GET_SRC_REG (op);
678
679 return (src_regno >= 2 && src_regno <= 8);
680 }
681
682 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
683 {
684 /* Only f2 - f8 are used for parameter passing. */
685 const int src_regno = GET_SRC_REG (op);
686
687 return (src_regno >= 2 && src_regno <= 8);
688 }
689
690 /* Not an insn that saves a parameter on stack. */
691 return 0;
692 }
693
694 static CORE_ADDR
695 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
696 {
697 CORE_ADDR orig_pc = pc;
698 CORE_ADDR last_prologue_pc = pc;
699 CORE_ADDR li_found_pc = 0;
700 char buf[4];
701 unsigned long op;
702 long offset = 0;
703 long vr_saved_offset = 0;
704 int lr_reg = -1;
705 int cr_reg = -1;
706 int vr_reg = -1;
707 int ev_reg = -1;
708 long ev_offset = 0;
709 int vrsave_reg = -1;
710 int reg;
711 int framep = 0;
712 int minimal_toc_loaded = 0;
713 int prev_insn_was_prologue_insn = 1;
714 int num_skip_non_prologue_insns = 0;
715 int r0_contains_arg = 0;
716 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
717 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
718
719 /* Attempt to find the end of the prologue when no limit is specified.
720 Note that refine_prologue_limit() has been written so that it may
721 be used to "refine" the limits of non-zero PC values too, but this
722 is only safe if we 1) trust the line information provided by the
723 compiler and 2) iterate enough to actually find the end of the
724 prologue.
725
726 It may become a good idea at some point (for both performance and
727 accuracy) to unconditionally call refine_prologue_limit(). But,
728 until we can make a clear determination that this is beneficial,
729 we'll play it safe and only use it to obtain a limit when none
730 has been specified. */
731 if (lim_pc == 0)
732 lim_pc = refine_prologue_limit (pc, lim_pc);
733
734 memset (fdata, 0, sizeof (struct rs6000_framedata));
735 fdata->saved_gpr = -1;
736 fdata->saved_fpr = -1;
737 fdata->saved_vr = -1;
738 fdata->saved_ev = -1;
739 fdata->alloca_reg = -1;
740 fdata->frameless = 1;
741 fdata->nosavedpc = 1;
742
743 for (;; pc += 4)
744 {
745 /* Sometimes it isn't clear if an instruction is a prologue
746 instruction or not. When we encounter one of these ambiguous
747 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
748 Otherwise, we'll assume that it really is a prologue instruction. */
749 if (prev_insn_was_prologue_insn)
750 last_prologue_pc = pc;
751
752 /* Stop scanning if we've hit the limit. */
753 if (lim_pc != 0 && pc >= lim_pc)
754 break;
755
756 prev_insn_was_prologue_insn = 1;
757
758 /* Fetch the instruction and convert it to an integer. */
759 if (target_read_memory (pc, buf, 4))
760 break;
761 op = extract_signed_integer (buf, 4);
762
763 if ((op & 0xfc1fffff) == 0x7c0802a6)
764 { /* mflr Rx */
765 /* Since shared library / PIC code, which needs to get its
766 address at runtime, can appear to save more than one link
767 register vis:
768
769 *INDENT-OFF*
770 stwu r1,-304(r1)
771 mflr r3
772 bl 0xff570d0 (blrl)
773 stw r30,296(r1)
774 mflr r30
775 stw r31,300(r1)
776 stw r3,308(r1);
777 ...
778 *INDENT-ON*
779
780 remember just the first one, but skip over additional
781 ones. */
782 if (lr_reg < 0)
783 lr_reg = (op & 0x03e00000);
784 if (lr_reg == 0)
785 r0_contains_arg = 0;
786 continue;
787 }
788 else if ((op & 0xfc1fffff) == 0x7c000026)
789 { /* mfcr Rx */
790 cr_reg = (op & 0x03e00000);
791 if (cr_reg == 0)
792 r0_contains_arg = 0;
793 continue;
794
795 }
796 else if ((op & 0xfc1f0000) == 0xd8010000)
797 { /* stfd Rx,NUM(r1) */
798 reg = GET_SRC_REG (op);
799 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
800 {
801 fdata->saved_fpr = reg;
802 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
803 }
804 continue;
805
806 }
807 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
808 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
809 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
810 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
811 {
812
813 reg = GET_SRC_REG (op);
814 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
815 {
816 fdata->saved_gpr = reg;
817 if ((op & 0xfc1f0003) == 0xf8010000)
818 op &= ~3UL;
819 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
820 }
821 continue;
822
823 }
824 else if ((op & 0xffff0000) == 0x60000000)
825 {
826 /* nop */
827 /* Allow nops in the prologue, but do not consider them to
828 be part of the prologue unless followed by other prologue
829 instructions. */
830 prev_insn_was_prologue_insn = 0;
831 continue;
832
833 }
834 else if ((op & 0xffff0000) == 0x3c000000)
835 { /* addis 0,0,NUM, used
836 for >= 32k frames */
837 fdata->offset = (op & 0x0000ffff) << 16;
838 fdata->frameless = 0;
839 r0_contains_arg = 0;
840 continue;
841
842 }
843 else if ((op & 0xffff0000) == 0x60000000)
844 { /* ori 0,0,NUM, 2nd ha
845 lf of >= 32k frames */
846 fdata->offset |= (op & 0x0000ffff);
847 fdata->frameless = 0;
848 r0_contains_arg = 0;
849 continue;
850
851 }
852 else if (lr_reg != -1 &&
853 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
854 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
855 /* stw Rx, NUM(r1) */
856 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
857 /* stwu Rx, NUM(r1) */
858 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
859 { /* where Rx == lr */
860 fdata->lr_offset = offset;
861 fdata->nosavedpc = 0;
862 lr_reg = 0;
863 if ((op & 0xfc000003) == 0xf8000000 || /* std */
864 (op & 0xfc000000) == 0x90000000) /* stw */
865 {
866 /* Does not update r1, so add displacement to lr_offset. */
867 fdata->lr_offset += SIGNED_SHORT (op);
868 }
869 continue;
870
871 }
872 else if (cr_reg != -1 &&
873 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
874 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
875 /* stw Rx, NUM(r1) */
876 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
877 /* stwu Rx, NUM(r1) */
878 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
879 { /* where Rx == cr */
880 fdata->cr_offset = offset;
881 cr_reg = 0;
882 if ((op & 0xfc000003) == 0xf8000000 ||
883 (op & 0xfc000000) == 0x90000000)
884 {
885 /* Does not update r1, so add displacement to cr_offset. */
886 fdata->cr_offset += SIGNED_SHORT (op);
887 }
888 continue;
889
890 }
891 else if (op == 0x48000005)
892 { /* bl .+4 used in
893 -mrelocatable */
894 continue;
895
896 }
897 else if (op == 0x48000004)
898 { /* b .+4 (xlc) */
899 break;
900
901 }
902 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
903 in V.4 -mminimal-toc */
904 (op & 0xffff0000) == 0x3bde0000)
905 { /* addi 30,30,foo@l */
906 continue;
907
908 }
909 else if ((op & 0xfc000001) == 0x48000001)
910 { /* bl foo,
911 to save fprs??? */
912
913 fdata->frameless = 0;
914 /* Don't skip over the subroutine call if it is not within
915 the first three instructions of the prologue. */
916 if ((pc - orig_pc) > 8)
917 break;
918
919 op = read_memory_integer (pc + 4, 4);
920
921 /* At this point, make sure this is not a trampoline
922 function (a function that simply calls another functions,
923 and nothing else). If the next is not a nop, this branch
924 was part of the function prologue. */
925
926 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
927 break; /* don't skip over
928 this branch */
929 continue;
930
931 }
932 /* update stack pointer */
933 else if ((op & 0xfc1f0000) == 0x94010000)
934 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
935 fdata->frameless = 0;
936 fdata->offset = SIGNED_SHORT (op);
937 offset = fdata->offset;
938 continue;
939 }
940 else if ((op & 0xfc1f016a) == 0x7c01016e)
941 { /* stwux rX,r1,rY */
942 /* no way to figure out what r1 is going to be */
943 fdata->frameless = 0;
944 offset = fdata->offset;
945 continue;
946 }
947 else if ((op & 0xfc1f0003) == 0xf8010001)
948 { /* stdu rX,NUM(r1) */
949 fdata->frameless = 0;
950 fdata->offset = SIGNED_SHORT (op & ~3UL);
951 offset = fdata->offset;
952 continue;
953 }
954 else if ((op & 0xfc1f016a) == 0x7c01016a)
955 { /* stdux rX,r1,rY */
956 /* no way to figure out what r1 is going to be */
957 fdata->frameless = 0;
958 offset = fdata->offset;
959 continue;
960 }
961 /* Load up minimal toc pointer */
962 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
963 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
964 && !minimal_toc_loaded)
965 {
966 minimal_toc_loaded = 1;
967 continue;
968
969 /* move parameters from argument registers to local variable
970 registers */
971 }
972 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
973 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
974 (((op >> 21) & 31) <= 10) &&
975 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
976 {
977 continue;
978
979 /* store parameters in stack */
980 }
981 /* Move parameters from argument registers to temporary register. */
982 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
983 {
984 continue;
985
986 /* Set up frame pointer */
987 }
988 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
989 || op == 0x7c3f0b78)
990 { /* mr r31, r1 */
991 fdata->frameless = 0;
992 framep = 1;
993 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
994 continue;
995
996 /* Another way to set up the frame pointer. */
997 }
998 else if ((op & 0xfc1fffff) == 0x38010000)
999 { /* addi rX, r1, 0x0 */
1000 fdata->frameless = 0;
1001 framep = 1;
1002 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1003 + ((op & ~0x38010000) >> 21));
1004 continue;
1005 }
1006 /* AltiVec related instructions. */
1007 /* Store the vrsave register (spr 256) in another register for
1008 later manipulation, or load a register into the vrsave
1009 register. 2 instructions are used: mfvrsave and
1010 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1011 and mtspr SPR256, Rn. */
1012 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1013 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1014 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1015 {
1016 vrsave_reg = GET_SRC_REG (op);
1017 continue;
1018 }
1019 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1020 {
1021 continue;
1022 }
1023 /* Store the register where vrsave was saved to onto the stack:
1024 rS is the register where vrsave was stored in a previous
1025 instruction. */
1026 /* 100100 sssss 00001 dddddddd dddddddd */
1027 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1028 {
1029 if (vrsave_reg == GET_SRC_REG (op))
1030 {
1031 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1032 vrsave_reg = -1;
1033 }
1034 continue;
1035 }
1036 /* Compute the new value of vrsave, by modifying the register
1037 where vrsave was saved to. */
1038 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1039 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1040 {
1041 continue;
1042 }
1043 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1044 in a pair of insns to save the vector registers on the
1045 stack. */
1046 /* 001110 00000 00000 iiii iiii iiii iiii */
1047 /* 001110 01110 00000 iiii iiii iiii iiii */
1048 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1049 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1050 {
1051 if ((op & 0xffff0000) == 0x38000000)
1052 r0_contains_arg = 0;
1053 li_found_pc = pc;
1054 vr_saved_offset = SIGNED_SHORT (op);
1055
1056 /* This insn by itself is not part of the prologue, unless
1057 if part of the pair of insns mentioned above. So do not
1058 record this insn as part of the prologue yet. */
1059 prev_insn_was_prologue_insn = 0;
1060 }
1061 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1062 /* 011111 sssss 11111 00000 00111001110 */
1063 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1064 {
1065 if (pc == (li_found_pc + 4))
1066 {
1067 vr_reg = GET_SRC_REG (op);
1068 /* If this is the first vector reg to be saved, or if
1069 it has a lower number than others previously seen,
1070 reupdate the frame info. */
1071 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1072 {
1073 fdata->saved_vr = vr_reg;
1074 fdata->vr_offset = vr_saved_offset + offset;
1075 }
1076 vr_saved_offset = -1;
1077 vr_reg = -1;
1078 li_found_pc = 0;
1079 }
1080 }
1081 /* End AltiVec related instructions. */
1082
1083 /* Start BookE related instructions. */
1084 /* Store gen register S at (r31+uimm).
1085 Any register less than r13 is volatile, so we don't care. */
1086 /* 000100 sssss 11111 iiiii 01100100001 */
1087 else if (arch_info->mach == bfd_mach_ppc_e500
1088 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1089 {
1090 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1091 {
1092 unsigned int imm;
1093 ev_reg = GET_SRC_REG (op);
1094 imm = (op >> 11) & 0x1f;
1095 ev_offset = imm * 8;
1096 /* If this is the first vector reg to be saved, or if
1097 it has a lower number than others previously seen,
1098 reupdate the frame info. */
1099 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1100 {
1101 fdata->saved_ev = ev_reg;
1102 fdata->ev_offset = ev_offset + offset;
1103 }
1104 }
1105 continue;
1106 }
1107 /* Store gen register rS at (r1+rB). */
1108 /* 000100 sssss 00001 bbbbb 01100100000 */
1109 else if (arch_info->mach == bfd_mach_ppc_e500
1110 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1111 {
1112 if (pc == (li_found_pc + 4))
1113 {
1114 ev_reg = GET_SRC_REG (op);
1115 /* If this is the first vector reg to be saved, or if
1116 it has a lower number than others previously seen,
1117 reupdate the frame info. */
1118 /* We know the contents of rB from the previous instruction. */
1119 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1120 {
1121 fdata->saved_ev = ev_reg;
1122 fdata->ev_offset = vr_saved_offset + offset;
1123 }
1124 vr_saved_offset = -1;
1125 ev_reg = -1;
1126 li_found_pc = 0;
1127 }
1128 continue;
1129 }
1130 /* Store gen register r31 at (rA+uimm). */
1131 /* 000100 11111 aaaaa iiiii 01100100001 */
1132 else if (arch_info->mach == bfd_mach_ppc_e500
1133 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1134 {
1135 /* Wwe know that the source register is 31 already, but
1136 it can't hurt to compute it. */
1137 ev_reg = GET_SRC_REG (op);
1138 ev_offset = ((op >> 11) & 0x1f) * 8;
1139 /* If this is the first vector reg to be saved, or if
1140 it has a lower number than others previously seen,
1141 reupdate the frame info. */
1142 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1143 {
1144 fdata->saved_ev = ev_reg;
1145 fdata->ev_offset = ev_offset + offset;
1146 }
1147
1148 continue;
1149 }
1150 /* Store gen register S at (r31+r0).
1151 Store param on stack when offset from SP bigger than 4 bytes. */
1152 /* 000100 sssss 11111 00000 01100100000 */
1153 else if (arch_info->mach == bfd_mach_ppc_e500
1154 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1155 {
1156 if (pc == (li_found_pc + 4))
1157 {
1158 if ((op & 0x03e00000) >= 0x01a00000)
1159 {
1160 ev_reg = GET_SRC_REG (op);
1161 /* If this is the first vector reg to be saved, or if
1162 it has a lower number than others previously seen,
1163 reupdate the frame info. */
1164 /* We know the contents of r0 from the previous
1165 instruction. */
1166 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1167 {
1168 fdata->saved_ev = ev_reg;
1169 fdata->ev_offset = vr_saved_offset + offset;
1170 }
1171 ev_reg = -1;
1172 }
1173 vr_saved_offset = -1;
1174 li_found_pc = 0;
1175 continue;
1176 }
1177 }
1178 /* End BookE related instructions. */
1179
1180 else
1181 {
1182 /* Not a recognized prologue instruction.
1183 Handle optimizer code motions into the prologue by continuing
1184 the search if we have no valid frame yet or if the return
1185 address is not yet saved in the frame. */
1186 if (fdata->frameless == 0
1187 && (lr_reg == -1 || fdata->nosavedpc == 0))
1188 break;
1189
1190 if (op == 0x4e800020 /* blr */
1191 || op == 0x4e800420) /* bctr */
1192 /* Do not scan past epilogue in frameless functions or
1193 trampolines. */
1194 break;
1195 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1196 /* Never skip branches. */
1197 break;
1198
1199 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1200 /* Do not scan too many insns, scanning insns is expensive with
1201 remote targets. */
1202 break;
1203
1204 /* Continue scanning. */
1205 prev_insn_was_prologue_insn = 0;
1206 continue;
1207 }
1208 }
1209
1210 #if 0
1211 /* I have problems with skipping over __main() that I need to address
1212 * sometime. Previously, I used to use misc_function_vector which
1213 * didn't work as well as I wanted to be. -MGO */
1214
1215 /* If the first thing after skipping a prolog is a branch to a function,
1216 this might be a call to an initializer in main(), introduced by gcc2.
1217 We'd like to skip over it as well. Fortunately, xlc does some extra
1218 work before calling a function right after a prologue, thus we can
1219 single out such gcc2 behaviour. */
1220
1221
1222 if ((op & 0xfc000001) == 0x48000001)
1223 { /* bl foo, an initializer function? */
1224 op = read_memory_integer (pc + 4, 4);
1225
1226 if (op == 0x4def7b82)
1227 { /* cror 0xf, 0xf, 0xf (nop) */
1228
1229 /* Check and see if we are in main. If so, skip over this
1230 initializer function as well. */
1231
1232 tmp = find_pc_misc_function (pc);
1233 if (tmp >= 0
1234 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1235 return pc + 8;
1236 }
1237 }
1238 #endif /* 0 */
1239
1240 fdata->offset = -fdata->offset;
1241 return last_prologue_pc;
1242 }
1243
1244
1245 /*************************************************************************
1246 Support for creating pushing a dummy frame into the stack, and popping
1247 frames, etc.
1248 *************************************************************************/
1249
1250
1251 /* All the ABI's require 16 byte alignment. */
1252 static CORE_ADDR
1253 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1254 {
1255 return (addr & -16);
1256 }
1257
1258 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1259 the first eight words of the argument list (that might be less than
1260 eight parameters if some parameters occupy more than one word) are
1261 passed in r3..r10 registers. float and double parameters are
1262 passed in fpr's, in addition to that. Rest of the parameters if any
1263 are passed in user stack. There might be cases in which half of the
1264 parameter is copied into registers, the other half is pushed into
1265 stack.
1266
1267 Stack must be aligned on 64-bit boundaries when synthesizing
1268 function calls.
1269
1270 If the function is returning a structure, then the return address is passed
1271 in r3, then the first 7 words of the parameters can be passed in registers,
1272 starting from r4. */
1273
1274 static CORE_ADDR
1275 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1276 struct regcache *regcache, CORE_ADDR bp_addr,
1277 int nargs, struct value **args, CORE_ADDR sp,
1278 int struct_return, CORE_ADDR struct_addr)
1279 {
1280 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1281 int ii;
1282 int len = 0;
1283 int argno; /* current argument number */
1284 int argbytes; /* current argument byte */
1285 char tmp_buffer[50];
1286 int f_argno = 0; /* current floating point argno */
1287 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1288 CORE_ADDR func_addr = find_function_addr (function, NULL);
1289
1290 struct value *arg = 0;
1291 struct type *type;
1292
1293 CORE_ADDR saved_sp;
1294
1295 /* The calling convention this function implements assumes the
1296 processor has floating-point registers. We shouldn't be using it
1297 on PPC variants that lack them. */
1298 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1299
1300 /* The first eight words of ther arguments are passed in registers.
1301 Copy them appropriately. */
1302 ii = 0;
1303
1304 /* If the function is returning a `struct', then the first word
1305 (which will be passed in r3) is used for struct return address.
1306 In that case we should advance one word and start from r4
1307 register to copy parameters. */
1308 if (struct_return)
1309 {
1310 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1311 struct_addr);
1312 ii++;
1313 }
1314
1315 /*
1316 effectively indirect call... gcc does...
1317
1318 return_val example( float, int);
1319
1320 eabi:
1321 float in fp0, int in r3
1322 offset of stack on overflow 8/16
1323 for varargs, must go by type.
1324 power open:
1325 float in r3&r4, int in r5
1326 offset of stack on overflow different
1327 both:
1328 return in r3 or f0. If no float, must study how gcc emulates floats;
1329 pay attention to arg promotion.
1330 User may have to cast\args to handle promotion correctly
1331 since gdb won't know if prototype supplied or not.
1332 */
1333
1334 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1335 {
1336 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1337
1338 arg = args[argno];
1339 type = check_typedef (VALUE_TYPE (arg));
1340 len = TYPE_LENGTH (type);
1341
1342 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1343 {
1344
1345 /* Floating point arguments are passed in fpr's, as well as gpr's.
1346 There are 13 fpr's reserved for passing parameters. At this point
1347 there is no way we would run out of them. */
1348
1349 if (len > 8)
1350 printf_unfiltered ("Fatal Error: a floating point parameter "
1351 "#%d with a size > 8 is found!\n", argno);
1352
1353 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE
1354 (tdep->ppc_fp0_regnum + 1 + f_argno)],
1355 VALUE_CONTENTS (arg),
1356 len);
1357 ++f_argno;
1358 }
1359
1360 if (len > reg_size)
1361 {
1362
1363 /* Argument takes more than one register. */
1364 while (argbytes < len)
1365 {
1366 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1367 reg_size);
1368 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1369 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1370 (len - argbytes) > reg_size
1371 ? reg_size : len - argbytes);
1372 ++ii, argbytes += reg_size;
1373
1374 if (ii >= 8)
1375 goto ran_out_of_registers_for_arguments;
1376 }
1377 argbytes = 0;
1378 --ii;
1379 }
1380 else
1381 {
1382 /* Argument can fit in one register. No problem. */
1383 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1384 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1385 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1386 VALUE_CONTENTS (arg), len);
1387 }
1388 ++argno;
1389 }
1390
1391 ran_out_of_registers_for_arguments:
1392
1393 saved_sp = read_sp ();
1394
1395 /* Location for 8 parameters are always reserved. */
1396 sp -= wordsize * 8;
1397
1398 /* Another six words for back chain, TOC register, link register, etc. */
1399 sp -= wordsize * 6;
1400
1401 /* Stack pointer must be quadword aligned. */
1402 sp &= -16;
1403
1404 /* If there are more arguments, allocate space for them in
1405 the stack, then push them starting from the ninth one. */
1406
1407 if ((argno < nargs) || argbytes)
1408 {
1409 int space = 0, jj;
1410
1411 if (argbytes)
1412 {
1413 space += ((len - argbytes + 3) & -4);
1414 jj = argno + 1;
1415 }
1416 else
1417 jj = argno;
1418
1419 for (; jj < nargs; ++jj)
1420 {
1421 struct value *val = args[jj];
1422 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1423 }
1424
1425 /* Add location required for the rest of the parameters. */
1426 space = (space + 15) & -16;
1427 sp -= space;
1428
1429 /* This is another instance we need to be concerned about
1430 securing our stack space. If we write anything underneath %sp
1431 (r1), we might conflict with the kernel who thinks he is free
1432 to use this area. So, update %sp first before doing anything
1433 else. */
1434
1435 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1436
1437 /* If the last argument copied into the registers didn't fit there
1438 completely, push the rest of it into stack. */
1439
1440 if (argbytes)
1441 {
1442 write_memory (sp + 24 + (ii * 4),
1443 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1444 len - argbytes);
1445 ++argno;
1446 ii += ((len - argbytes + 3) & -4) / 4;
1447 }
1448
1449 /* Push the rest of the arguments into stack. */
1450 for (; argno < nargs; ++argno)
1451 {
1452
1453 arg = args[argno];
1454 type = check_typedef (VALUE_TYPE (arg));
1455 len = TYPE_LENGTH (type);
1456
1457
1458 /* Float types should be passed in fpr's, as well as in the
1459 stack. */
1460 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1461 {
1462
1463 if (len > 8)
1464 printf_unfiltered ("Fatal Error: a floating point parameter"
1465 " #%d with a size > 8 is found!\n", argno);
1466
1467 memcpy (&(deprecated_registers
1468 [DEPRECATED_REGISTER_BYTE
1469 (tdep->ppc_fp0_regnum + 1 + f_argno)]),
1470 VALUE_CONTENTS (arg),
1471 len);
1472 ++f_argno;
1473 }
1474
1475 write_memory (sp + 24 + (ii * 4),
1476 (char *) VALUE_CONTENTS (arg),
1477 len);
1478 ii += ((len + 3) & -4) / 4;
1479 }
1480 }
1481
1482 /* Set the stack pointer. According to the ABI, the SP is meant to
1483 be set _before_ the corresponding stack space is used. On AIX,
1484 this even applies when the target has been completely stopped!
1485 Not doing this can lead to conflicts with the kernel which thinks
1486 that it still has control over this not-yet-allocated stack
1487 region. */
1488 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1489
1490 /* Set back chain properly. */
1491 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1492 write_memory (sp, tmp_buffer, 4);
1493
1494 /* Point the inferior function call's return address at the dummy's
1495 breakpoint. */
1496 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1497
1498 /* Set the TOC register, get the value from the objfile reader
1499 which, in turn, gets it from the VMAP table. */
1500 if (rs6000_find_toc_address_hook != NULL)
1501 {
1502 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1503 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1504 }
1505
1506 target_store_registers (-1);
1507 return sp;
1508 }
1509
1510 /* PowerOpen always puts structures in memory. Vectors, which were
1511 added later, do get returned in a register though. */
1512
1513 static int
1514 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1515 {
1516 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1517 && TYPE_VECTOR (value_type))
1518 return 0;
1519 return 1;
1520 }
1521
1522 static void
1523 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1524 {
1525 int offset = 0;
1526 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1527
1528 /* The calling convention this function implements assumes the
1529 processor has floating-point registers. We shouldn't be using it
1530 on PPC variants that lack them. */
1531 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1532
1533 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1534 {
1535
1536 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1537 We need to truncate the return value into float size (4 byte) if
1538 necessary. */
1539
1540 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1541 (tdep->ppc_fp0_regnum + 1)],
1542 builtin_type_double,
1543 valbuf,
1544 valtype);
1545 }
1546 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1547 && TYPE_LENGTH (valtype) == 16
1548 && TYPE_VECTOR (valtype))
1549 {
1550 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1551 TYPE_LENGTH (valtype));
1552 }
1553 else
1554 {
1555 /* return value is copied starting from r3. */
1556 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1557 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1558 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1559
1560 memcpy (valbuf,
1561 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1562 TYPE_LENGTH (valtype));
1563 }
1564 }
1565
1566 /* Return whether handle_inferior_event() should proceed through code
1567 starting at PC in function NAME when stepping.
1568
1569 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1570 handle memory references that are too distant to fit in instructions
1571 generated by the compiler. For example, if 'foo' in the following
1572 instruction:
1573
1574 lwz r9,foo(r2)
1575
1576 is greater than 32767, the linker might replace the lwz with a branch to
1577 somewhere in @FIX1 that does the load in 2 instructions and then branches
1578 back to where execution should continue.
1579
1580 GDB should silently step over @FIX code, just like AIX dbx does.
1581 Unfortunately, the linker uses the "b" instruction for the branches,
1582 meaning that the link register doesn't get set. Therefore, GDB's usual
1583 step_over_function() mechanism won't work.
1584
1585 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1586 in handle_inferior_event() to skip past @FIX code. */
1587
1588 int
1589 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1590 {
1591 return name && !strncmp (name, "@FIX", 4);
1592 }
1593
1594 /* Skip code that the user doesn't want to see when stepping:
1595
1596 1. Indirect function calls use a piece of trampoline code to do context
1597 switching, i.e. to set the new TOC table. Skip such code if we are on
1598 its first instruction (as when we have single-stepped to here).
1599
1600 2. Skip shared library trampoline code (which is different from
1601 indirect function call trampolines).
1602
1603 3. Skip bigtoc fixup code.
1604
1605 Result is desired PC to step until, or NULL if we are not in
1606 code that should be skipped. */
1607
1608 CORE_ADDR
1609 rs6000_skip_trampoline_code (CORE_ADDR pc)
1610 {
1611 unsigned int ii, op;
1612 int rel;
1613 CORE_ADDR solib_target_pc;
1614 struct minimal_symbol *msymbol;
1615
1616 static unsigned trampoline_code[] =
1617 {
1618 0x800b0000, /* l r0,0x0(r11) */
1619 0x90410014, /* st r2,0x14(r1) */
1620 0x7c0903a6, /* mtctr r0 */
1621 0x804b0004, /* l r2,0x4(r11) */
1622 0x816b0008, /* l r11,0x8(r11) */
1623 0x4e800420, /* bctr */
1624 0x4e800020, /* br */
1625 0
1626 };
1627
1628 /* Check for bigtoc fixup code. */
1629 msymbol = lookup_minimal_symbol_by_pc (pc);
1630 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1631 {
1632 /* Double-check that the third instruction from PC is relative "b". */
1633 op = read_memory_integer (pc + 8, 4);
1634 if ((op & 0xfc000003) == 0x48000000)
1635 {
1636 /* Extract bits 6-29 as a signed 24-bit relative word address and
1637 add it to the containing PC. */
1638 rel = ((int)(op << 6) >> 6);
1639 return pc + 8 + rel;
1640 }
1641 }
1642
1643 /* If pc is in a shared library trampoline, return its target. */
1644 solib_target_pc = find_solib_trampoline_target (pc);
1645 if (solib_target_pc)
1646 return solib_target_pc;
1647
1648 for (ii = 0; trampoline_code[ii]; ++ii)
1649 {
1650 op = read_memory_integer (pc + (ii * 4), 4);
1651 if (op != trampoline_code[ii])
1652 return 0;
1653 }
1654 ii = read_register (11); /* r11 holds destination addr */
1655 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1656 return pc;
1657 }
1658
1659 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1660 isn't available with that word size, return 0. */
1661
1662 static int
1663 regsize (const struct reg *reg, int wordsize)
1664 {
1665 return wordsize == 8 ? reg->sz64 : reg->sz32;
1666 }
1667
1668 /* Return the name of register number N, or null if no such register exists
1669 in the current architecture. */
1670
1671 static const char *
1672 rs6000_register_name (int n)
1673 {
1674 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1675 const struct reg *reg = tdep->regs + n;
1676
1677 if (!regsize (reg, tdep->wordsize))
1678 return NULL;
1679 return reg->name;
1680 }
1681
1682 /* Return the GDB type object for the "standard" data type
1683 of data in register N. */
1684
1685 static struct type *
1686 rs6000_register_type (struct gdbarch *gdbarch, int n)
1687 {
1688 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1689 const struct reg *reg = tdep->regs + n;
1690
1691 if (reg->fpr)
1692 return builtin_type_double;
1693 else
1694 {
1695 int size = regsize (reg, tdep->wordsize);
1696 switch (size)
1697 {
1698 case 0:
1699 return builtin_type_int0;
1700 case 4:
1701 return builtin_type_uint32;
1702 case 8:
1703 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1704 return builtin_type_vec64;
1705 else
1706 return builtin_type_uint64;
1707 break;
1708 case 16:
1709 return builtin_type_vec128;
1710 break;
1711 default:
1712 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1713 n, size);
1714 }
1715 }
1716 }
1717
1718 /* The register format for RS/6000 floating point registers is always
1719 double, we need a conversion if the memory format is float. */
1720
1721 static int
1722 rs6000_convert_register_p (int regnum, struct type *type)
1723 {
1724 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1725
1726 return (reg->fpr
1727 && TYPE_CODE (type) == TYPE_CODE_FLT
1728 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
1729 }
1730
1731 static void
1732 rs6000_register_to_value (struct frame_info *frame,
1733 int regnum,
1734 struct type *type,
1735 void *to)
1736 {
1737 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1738 char from[MAX_REGISTER_SIZE];
1739
1740 gdb_assert (reg->fpr);
1741 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1742
1743 get_frame_register (frame, regnum, from);
1744 convert_typed_floating (from, builtin_type_double, to, type);
1745 }
1746
1747 static void
1748 rs6000_value_to_register (struct frame_info *frame,
1749 int regnum,
1750 struct type *type,
1751 const void *from)
1752 {
1753 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1754 char to[MAX_REGISTER_SIZE];
1755
1756 gdb_assert (reg->fpr);
1757 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1758
1759 convert_typed_floating (from, type, to, builtin_type_double);
1760 put_frame_register (frame, regnum, to);
1761 }
1762
1763 static void
1764 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1765 int reg_nr, void *buffer)
1766 {
1767 int base_regnum;
1768 int offset = 0;
1769 char temp_buffer[MAX_REGISTER_SIZE];
1770 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1771
1772 if (reg_nr >= tdep->ppc_gp0_regnum
1773 && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs)
1774 {
1775 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1776
1777 /* Build the value in the provided buffer. */
1778 /* Read the raw register of which this one is the lower portion. */
1779 regcache_raw_read (regcache, base_regnum, temp_buffer);
1780 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1781 offset = 4;
1782 memcpy ((char *) buffer, temp_buffer + offset, 4);
1783 }
1784 }
1785
1786 static void
1787 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1788 int reg_nr, const void *buffer)
1789 {
1790 int base_regnum;
1791 int offset = 0;
1792 char temp_buffer[MAX_REGISTER_SIZE];
1793 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1794
1795 if (reg_nr >= tdep->ppc_gp0_regnum
1796 && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs)
1797 {
1798 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1799 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1800 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1801 offset = 4;
1802
1803 /* Let's read the value of the base register into a temporary
1804 buffer, so that overwriting the last four bytes with the new
1805 value of the pseudo will leave the upper 4 bytes unchanged. */
1806 regcache_raw_read (regcache, base_regnum, temp_buffer);
1807
1808 /* Write as an 8 byte quantity. */
1809 memcpy (temp_buffer + offset, (char *) buffer, 4);
1810 regcache_raw_write (regcache, base_regnum, temp_buffer);
1811 }
1812 }
1813
1814 /* Convert a DBX STABS register number to a GDB register number. */
1815 static int
1816 rs6000_stab_reg_to_regnum (int num)
1817 {
1818 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1819
1820 if (0 <= num && num <= 31)
1821 return tdep->ppc_gp0_regnum + num;
1822 else if (32 <= num && num <= 63)
1823 /* FIXME: jimb/2004-05-05: What should we do when the debug info
1824 specifies registers the architecture doesn't have? Our
1825 callers don't check the value we return. */
1826 return tdep->ppc_fp0_regnum + (num - 32);
1827 else if (77 <= num && num <= 108)
1828 return tdep->ppc_vr0_regnum + (num - 77);
1829 else if (1200 <= num && num < 1200 + 32)
1830 return tdep->ppc_ev0_regnum + (num - 1200);
1831 else
1832 switch (num)
1833 {
1834 case 64:
1835 return tdep->ppc_mq_regnum;
1836 case 65:
1837 return tdep->ppc_lr_regnum;
1838 case 66:
1839 return tdep->ppc_ctr_regnum;
1840 case 76:
1841 return tdep->ppc_xer_regnum;
1842 case 109:
1843 return tdep->ppc_vrsave_regnum;
1844 case 110:
1845 return tdep->ppc_vrsave_regnum - 1; /* vscr */
1846 case 111:
1847 return tdep->ppc_acc_regnum;
1848 case 112:
1849 return tdep->ppc_spefscr_regnum;
1850 default:
1851 return num;
1852 }
1853 }
1854
1855
1856 /* Convert a Dwarf 2 register number to a GDB register number. */
1857 static int
1858 rs6000_dwarf2_reg_to_regnum (int num)
1859 {
1860 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1861
1862 if (0 <= num && num <= 31)
1863 return tdep->ppc_gp0_regnum + num;
1864 else if (32 <= num && num <= 63)
1865 /* FIXME: jimb/2004-05-05: What should we do when the debug info
1866 specifies registers the architecture doesn't have? Our
1867 callers don't check the value we return. */
1868 return tdep->ppc_fp0_regnum + (num - 32);
1869 else if (1124 <= num && num < 1124 + 32)
1870 return tdep->ppc_vr0_regnum + (num - 1124);
1871 else if (1200 <= num && num < 1200 + 32)
1872 return tdep->ppc_ev0_regnum + (num - 1200);
1873 else
1874 switch (num)
1875 {
1876 case 67:
1877 return tdep->ppc_vrsave_regnum - 1; /* vscr */
1878 case 99:
1879 return tdep->ppc_acc_regnum;
1880 case 100:
1881 return tdep->ppc_mq_regnum;
1882 case 101:
1883 return tdep->ppc_xer_regnum;
1884 case 108:
1885 return tdep->ppc_lr_regnum;
1886 case 109:
1887 return tdep->ppc_ctr_regnum;
1888 case 356:
1889 return tdep->ppc_vrsave_regnum;
1890 case 612:
1891 return tdep->ppc_spefscr_regnum;
1892 default:
1893 return num;
1894 }
1895 }
1896
1897
1898 static void
1899 rs6000_store_return_value (struct type *type,
1900 struct regcache *regcache,
1901 const void *valbuf)
1902 {
1903 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1904 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1905 int regnum = -1;
1906
1907 /* The calling convention this function implements assumes the
1908 processor has floating-point registers. We shouldn't be using it
1909 on PPC variants that lack them. */
1910 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1911
1912 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1913 /* Floating point values are returned starting from FPR1 and up.
1914 Say a double_double_double type could be returned in
1915 FPR1/FPR2/FPR3 triple. */
1916 regnum = tdep->ppc_fp0_regnum + 1;
1917 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1918 {
1919 if (TYPE_LENGTH (type) == 16
1920 && TYPE_VECTOR (type))
1921 regnum = tdep->ppc_vr0_regnum + 2;
1922 else
1923 gdb_assert (0);
1924 }
1925 else
1926 /* Everything else is returned in GPR3 and up. */
1927 regnum = tdep->ppc_gp0_regnum + 3;
1928
1929 {
1930 size_t bytes_written = 0;
1931
1932 while (bytes_written < TYPE_LENGTH (type))
1933 {
1934 /* How much of this value can we write to this register? */
1935 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
1936 register_size (gdbarch, regnum));
1937 regcache_cooked_write_part (regcache, regnum,
1938 0, bytes_to_write,
1939 (char *) valbuf + bytes_written);
1940 regnum++;
1941 bytes_written += bytes_to_write;
1942 }
1943 }
1944 }
1945
1946
1947 /* Extract from an array REGBUF containing the (raw) register state
1948 the address in which a function should return its structure value,
1949 as a CORE_ADDR (or an expression that can be used as one). */
1950
1951 static CORE_ADDR
1952 rs6000_extract_struct_value_address (struct regcache *regcache)
1953 {
1954 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
1955 function call GDB knows the address of the struct return value
1956 and hence, should not need to call this function. Unfortunately,
1957 the current call_function_by_hand() code only saves the most
1958 recent struct address leading to occasional calls. The code
1959 should instead maintain a stack of such addresses (in the dummy
1960 frame object). */
1961 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
1962 really got no idea where the return value is being stored. While
1963 r3, on function entry, contained the address it will have since
1964 been reused (scratch) and hence wouldn't be valid */
1965 return 0;
1966 }
1967
1968 /* Hook called when a new child process is started. */
1969
1970 void
1971 rs6000_create_inferior (int pid)
1972 {
1973 if (rs6000_set_host_arch_hook)
1974 rs6000_set_host_arch_hook (pid);
1975 }
1976 \f
1977 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
1978
1979 Usually a function pointer's representation is simply the address
1980 of the function. On the RS/6000 however, a function pointer is
1981 represented by a pointer to a TOC entry. This TOC entry contains
1982 three words, the first word is the address of the function, the
1983 second word is the TOC pointer (r2), and the third word is the
1984 static chain value. Throughout GDB it is currently assumed that a
1985 function pointer contains the address of the function, which is not
1986 easy to fix. In addition, the conversion of a function address to
1987 a function pointer would require allocation of a TOC entry in the
1988 inferior's memory space, with all its drawbacks. To be able to
1989 call C++ virtual methods in the inferior (which are called via
1990 function pointers), find_function_addr uses this function to get the
1991 function address from a function pointer. */
1992
1993 /* Return real function address if ADDR (a function pointer) is in the data
1994 space and is therefore a special function pointer. */
1995
1996 static CORE_ADDR
1997 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1998 CORE_ADDR addr,
1999 struct target_ops *targ)
2000 {
2001 struct obj_section *s;
2002
2003 s = find_pc_section (addr);
2004 if (s && s->the_bfd_section->flags & SEC_CODE)
2005 return addr;
2006
2007 /* ADDR is in the data space, so it's a special function pointer. */
2008 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2009 }
2010 \f
2011
2012 /* Handling the various POWER/PowerPC variants. */
2013
2014
2015 /* The arrays here called registers_MUMBLE hold information about available
2016 registers.
2017
2018 For each family of PPC variants, I've tried to isolate out the
2019 common registers and put them up front, so that as long as you get
2020 the general family right, GDB will correctly identify the registers
2021 common to that family. The common register sets are:
2022
2023 For the 60x family: hid0 hid1 iabr dabr pir
2024
2025 For the 505 and 860 family: eie eid nri
2026
2027 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2028 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2029 pbu1 pbl2 pbu2
2030
2031 Most of these register groups aren't anything formal. I arrived at
2032 them by looking at the registers that occurred in more than one
2033 processor.
2034
2035 Note: kevinb/2002-04-30: Support for the fpscr register was added
2036 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2037 for Power. For PowerPC, slot 70 was unused and was already in the
2038 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2039 slot 70 was being used for "mq", so the next available slot (71)
2040 was chosen. It would have been nice to be able to make the
2041 register numbers the same across processor cores, but this wasn't
2042 possible without either 1) renumbering some registers for some
2043 processors or 2) assigning fpscr to a really high slot that's
2044 larger than any current register number. Doing (1) is bad because
2045 existing stubs would break. Doing (2) is undesirable because it
2046 would introduce a really large gap between fpscr and the rest of
2047 the registers for most processors. */
2048
2049 /* Convenience macros for populating register arrays. */
2050
2051 /* Within another macro, convert S to a string. */
2052
2053 #define STR(s) #s
2054
2055 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2056 and 64 bits on 64-bit systems. */
2057 #define R(name) { STR(name), 4, 8, 0, 0 }
2058
2059 /* Return a struct reg defining register NAME that's 32 bits on all
2060 systems. */
2061 #define R4(name) { STR(name), 4, 4, 0, 0 }
2062
2063 /* Return a struct reg defining register NAME that's 64 bits on all
2064 systems. */
2065 #define R8(name) { STR(name), 8, 8, 0, 0 }
2066
2067 /* Return a struct reg defining register NAME that's 128 bits on all
2068 systems. */
2069 #define R16(name) { STR(name), 16, 16, 0, 0 }
2070
2071 /* Return a struct reg defining floating-point register NAME. */
2072 #define F(name) { STR(name), 8, 8, 1, 0 }
2073
2074 /* Return a struct reg defining a pseudo register NAME. */
2075 #define P(name) { STR(name), 4, 8, 0, 1}
2076
2077 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2078 systems and that doesn't exist on 64-bit systems. */
2079 #define R32(name) { STR(name), 4, 0, 0, 0 }
2080
2081 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2082 systems and that doesn't exist on 32-bit systems. */
2083 #define R64(name) { STR(name), 0, 8, 0, 0 }
2084
2085 /* Return a struct reg placeholder for a register that doesn't exist. */
2086 #define R0 { 0, 0, 0, 0, 0 }
2087
2088 /* UISA registers common across all architectures, including POWER. */
2089
2090 #define COMMON_UISA_REGS \
2091 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2092 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2093 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2094 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2095 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2096 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2097 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2098 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2099 /* 64 */ R(pc), R(ps)
2100
2101 /* UISA-level SPRs for PowerPC. */
2102 #define PPC_UISA_SPRS \
2103 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2104
2105 /* UISA-level SPRs for PowerPC without floating point support. */
2106 #define PPC_UISA_NOFP_SPRS \
2107 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2108
2109 /* Segment registers, for PowerPC. */
2110 #define PPC_SEGMENT_REGS \
2111 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2112 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2113 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2114 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2115
2116 /* OEA SPRs for PowerPC. */
2117 #define PPC_OEA_SPRS \
2118 /* 87 */ R4(pvr), \
2119 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2120 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2121 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2122 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2123 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2124 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2125 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2126 /* 116 */ R4(dec), R(dabr), R4(ear)
2127
2128 /* AltiVec registers. */
2129 #define PPC_ALTIVEC_REGS \
2130 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2131 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2132 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2133 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2134 /*151*/R4(vscr), R4(vrsave)
2135
2136 /* Vectors of hi-lo general purpose registers. */
2137 #define PPC_EV_REGS \
2138 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2139 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2140 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2141 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2142
2143 /* Lower half of the EV registers. */
2144 #define PPC_GPRS_PSEUDO_REGS \
2145 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2146 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2147 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2148 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2149
2150 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2151 user-level SPR's. */
2152 static const struct reg registers_power[] =
2153 {
2154 COMMON_UISA_REGS,
2155 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2156 /* 71 */ R4(fpscr)
2157 };
2158
2159 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2160 view of the PowerPC. */
2161 static const struct reg registers_powerpc[] =
2162 {
2163 COMMON_UISA_REGS,
2164 PPC_UISA_SPRS,
2165 PPC_ALTIVEC_REGS
2166 };
2167
2168 /* IBM PowerPC 403. */
2169 static const struct reg registers_403[] =
2170 {
2171 COMMON_UISA_REGS,
2172 PPC_UISA_SPRS,
2173 PPC_SEGMENT_REGS,
2174 PPC_OEA_SPRS,
2175 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2176 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2177 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2178 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2179 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2180 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2181 };
2182
2183 /* IBM PowerPC 403GC. */
2184 static const struct reg registers_403GC[] =
2185 {
2186 COMMON_UISA_REGS,
2187 PPC_UISA_SPRS,
2188 PPC_SEGMENT_REGS,
2189 PPC_OEA_SPRS,
2190 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2191 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2192 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2193 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2194 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2195 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2196 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2197 /* 147 */ R(tbhu), R(tblu)
2198 };
2199
2200 /* Motorola PowerPC 505. */
2201 static const struct reg registers_505[] =
2202 {
2203 COMMON_UISA_REGS,
2204 PPC_UISA_SPRS,
2205 PPC_SEGMENT_REGS,
2206 PPC_OEA_SPRS,
2207 /* 119 */ R(eie), R(eid), R(nri)
2208 };
2209
2210 /* Motorola PowerPC 860 or 850. */
2211 static const struct reg registers_860[] =
2212 {
2213 COMMON_UISA_REGS,
2214 PPC_UISA_SPRS,
2215 PPC_SEGMENT_REGS,
2216 PPC_OEA_SPRS,
2217 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2218 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2219 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2220 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2221 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2222 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2223 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2224 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2225 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2226 /* 155 */ R(md_epn), R(m_twb), R(md_twc), R(md_rpn),
2227 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2228 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2229 };
2230
2231 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2232 for reading and writing RTCU and RTCL. However, how one reads and writes a
2233 register is the stub's problem. */
2234 static const struct reg registers_601[] =
2235 {
2236 COMMON_UISA_REGS,
2237 PPC_UISA_SPRS,
2238 PPC_SEGMENT_REGS,
2239 PPC_OEA_SPRS,
2240 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2241 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2242 };
2243
2244 /* Motorola PowerPC 602. */
2245 static const struct reg registers_602[] =
2246 {
2247 COMMON_UISA_REGS,
2248 PPC_UISA_SPRS,
2249 PPC_SEGMENT_REGS,
2250 PPC_OEA_SPRS,
2251 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2252 /* 123 */ R0, R(tcr), R(ibr), R(esasrr),
2253 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2254 };
2255
2256 /* Motorola/IBM PowerPC 603 or 603e. */
2257 static const struct reg registers_603[] =
2258 {
2259 COMMON_UISA_REGS,
2260 PPC_UISA_SPRS,
2261 PPC_SEGMENT_REGS,
2262 PPC_OEA_SPRS,
2263 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2264 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2265 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2266 };
2267
2268 /* Motorola PowerPC 604 or 604e. */
2269 static const struct reg registers_604[] =
2270 {
2271 COMMON_UISA_REGS,
2272 PPC_UISA_SPRS,
2273 PPC_SEGMENT_REGS,
2274 PPC_OEA_SPRS,
2275 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2276 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2277 /* 127 */ R(sia), R(sda)
2278 };
2279
2280 /* Motorola/IBM PowerPC 750 or 740. */
2281 static const struct reg registers_750[] =
2282 {
2283 COMMON_UISA_REGS,
2284 PPC_UISA_SPRS,
2285 PPC_SEGMENT_REGS,
2286 PPC_OEA_SPRS,
2287 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2288 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2289 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2290 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2291 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2292 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2293 };
2294
2295
2296 /* Motorola PowerPC 7400. */
2297 static const struct reg registers_7400[] =
2298 {
2299 /* gpr0-gpr31, fpr0-fpr31 */
2300 COMMON_UISA_REGS,
2301 /* cr, lr, ctr, xer, fpscr */
2302 PPC_UISA_SPRS,
2303 /* sr0-sr15 */
2304 PPC_SEGMENT_REGS,
2305 PPC_OEA_SPRS,
2306 /* vr0-vr31, vrsave, vscr */
2307 PPC_ALTIVEC_REGS
2308 /* FIXME? Add more registers? */
2309 };
2310
2311 /* Motorola e500. */
2312 static const struct reg registers_e500[] =
2313 {
2314 R(pc), R(ps),
2315 /* cr, lr, ctr, xer, "" */
2316 PPC_UISA_NOFP_SPRS,
2317 /* 7...38 */
2318 PPC_EV_REGS,
2319 R8(acc), R(spefscr),
2320 /* NOTE: Add new registers here the end of the raw register
2321 list and just before the first pseudo register. */
2322 /* 41...72 */
2323 PPC_GPRS_PSEUDO_REGS
2324 };
2325
2326 /* Information about a particular processor variant. */
2327
2328 struct variant
2329 {
2330 /* Name of this variant. */
2331 char *name;
2332
2333 /* English description of the variant. */
2334 char *description;
2335
2336 /* bfd_arch_info.arch corresponding to variant. */
2337 enum bfd_architecture arch;
2338
2339 /* bfd_arch_info.mach corresponding to variant. */
2340 unsigned long mach;
2341
2342 /* Number of real registers. */
2343 int nregs;
2344
2345 /* Number of pseudo registers. */
2346 int npregs;
2347
2348 /* Number of total registers (the sum of nregs and npregs). */
2349 int num_tot_regs;
2350
2351 /* Table of register names; registers[R] is the name of the register
2352 number R. */
2353 const struct reg *regs;
2354 };
2355
2356 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2357
2358 static int
2359 num_registers (const struct reg *reg_list, int num_tot_regs)
2360 {
2361 int i;
2362 int nregs = 0;
2363
2364 for (i = 0; i < num_tot_regs; i++)
2365 if (!reg_list[i].pseudo)
2366 nregs++;
2367
2368 return nregs;
2369 }
2370
2371 static int
2372 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2373 {
2374 int i;
2375 int npregs = 0;
2376
2377 for (i = 0; i < num_tot_regs; i++)
2378 if (reg_list[i].pseudo)
2379 npregs ++;
2380
2381 return npregs;
2382 }
2383
2384 /* Information in this table comes from the following web sites:
2385 IBM: http://www.chips.ibm.com:80/products/embedded/
2386 Motorola: http://www.mot.com/SPS/PowerPC/
2387
2388 I'm sure I've got some of the variant descriptions not quite right.
2389 Please report any inaccuracies you find to GDB's maintainer.
2390
2391 If you add entries to this table, please be sure to allow the new
2392 value as an argument to the --with-cpu flag, in configure.in. */
2393
2394 static struct variant variants[] =
2395 {
2396
2397 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2398 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2399 registers_powerpc},
2400 {"power", "POWER user-level", bfd_arch_rs6000,
2401 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2402 registers_power},
2403 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2404 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2405 registers_403},
2406 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2407 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2408 registers_601},
2409 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2410 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2411 registers_602},
2412 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2413 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2414 registers_603},
2415 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2416 604, -1, -1, tot_num_registers (registers_604),
2417 registers_604},
2418 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2419 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2420 registers_403GC},
2421 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2422 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2423 registers_505},
2424 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2425 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2426 registers_860},
2427 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2428 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2429 registers_750},
2430 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2431 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2432 registers_7400},
2433 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2434 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2435 registers_e500},
2436
2437 /* 64-bit */
2438 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2439 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2440 registers_powerpc},
2441 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2442 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2443 registers_powerpc},
2444 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2445 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2446 registers_powerpc},
2447 {"a35", "PowerPC A35", bfd_arch_powerpc,
2448 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2449 registers_powerpc},
2450 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2451 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2452 registers_powerpc},
2453 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2454 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2455 registers_powerpc},
2456
2457 /* FIXME: I haven't checked the register sets of the following. */
2458 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2459 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2460 registers_power},
2461 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2462 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2463 registers_power},
2464 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2465 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2466 registers_power},
2467
2468 {0, 0, 0, 0, 0, 0, 0, 0}
2469 };
2470
2471 /* Initialize the number of registers and pseudo registers in each variant. */
2472
2473 static void
2474 init_variants (void)
2475 {
2476 struct variant *v;
2477
2478 for (v = variants; v->name; v++)
2479 {
2480 if (v->nregs == -1)
2481 v->nregs = num_registers (v->regs, v->num_tot_regs);
2482 if (v->npregs == -1)
2483 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2484 }
2485 }
2486
2487 /* Return the variant corresponding to architecture ARCH and machine number
2488 MACH. If no such variant exists, return null. */
2489
2490 static const struct variant *
2491 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2492 {
2493 const struct variant *v;
2494
2495 for (v = variants; v->name; v++)
2496 if (arch == v->arch && mach == v->mach)
2497 return v;
2498
2499 return NULL;
2500 }
2501
2502 static int
2503 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2504 {
2505 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2506 return print_insn_big_powerpc (memaddr, info);
2507 else
2508 return print_insn_little_powerpc (memaddr, info);
2509 }
2510 \f
2511 static CORE_ADDR
2512 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2513 {
2514 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2515 }
2516
2517 static struct frame_id
2518 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2519 {
2520 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2521 SP_REGNUM),
2522 frame_pc_unwind (next_frame));
2523 }
2524
2525 struct rs6000_frame_cache
2526 {
2527 CORE_ADDR base;
2528 CORE_ADDR initial_sp;
2529 struct trad_frame_saved_reg *saved_regs;
2530 };
2531
2532 static struct rs6000_frame_cache *
2533 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2534 {
2535 struct rs6000_frame_cache *cache;
2536 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2537 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2538 struct rs6000_framedata fdata;
2539 int wordsize = tdep->wordsize;
2540
2541 if ((*this_cache) != NULL)
2542 return (*this_cache);
2543 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2544 (*this_cache) = cache;
2545 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2546
2547 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2548 &fdata);
2549
2550 /* If there were any saved registers, figure out parent's stack
2551 pointer. */
2552 /* The following is true only if the frame doesn't have a call to
2553 alloca(), FIXME. */
2554
2555 if (fdata.saved_fpr == 0
2556 && fdata.saved_gpr == 0
2557 && fdata.saved_vr == 0
2558 && fdata.saved_ev == 0
2559 && fdata.lr_offset == 0
2560 && fdata.cr_offset == 0
2561 && fdata.vr_offset == 0
2562 && fdata.ev_offset == 0)
2563 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2564 else
2565 {
2566 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2567 address of the current frame. Things might be easier if the
2568 ->frame pointed to the outer-most address of the frame. In
2569 the mean time, the address of the prev frame is used as the
2570 base address of this frame. */
2571 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2572 if (!fdata.frameless)
2573 /* Frameless really means stackless. */
2574 cache->base = read_memory_addr (cache->base, wordsize);
2575 }
2576 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2577
2578 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2579 All fpr's from saved_fpr to fp31 are saved. */
2580
2581 if (fdata.saved_fpr >= 0)
2582 {
2583 int i;
2584 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2585
2586 /* If skip_prologue says floating-point registers were saved,
2587 but the current architecture has no floating-point registers,
2588 then that's strange. But we have no indices to even record
2589 the addresses under, so we just ignore it. */
2590 if (ppc_floating_point_unit_p (gdbarch))
2591 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2592 {
2593 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2594 fpr_addr += 8;
2595 }
2596 }
2597
2598 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2599 All gpr's from saved_gpr to gpr31 are saved. */
2600
2601 if (fdata.saved_gpr >= 0)
2602 {
2603 int i;
2604 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2605 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2606 {
2607 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2608 gpr_addr += wordsize;
2609 }
2610 }
2611
2612 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2613 All vr's from saved_vr to vr31 are saved. */
2614 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2615 {
2616 if (fdata.saved_vr >= 0)
2617 {
2618 int i;
2619 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2620 for (i = fdata.saved_vr; i < 32; i++)
2621 {
2622 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2623 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2624 }
2625 }
2626 }
2627
2628 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2629 All vr's from saved_ev to ev31 are saved. ????? */
2630 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2631 {
2632 if (fdata.saved_ev >= 0)
2633 {
2634 int i;
2635 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2636 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2637 {
2638 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2639 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2640 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2641 }
2642 }
2643 }
2644
2645 /* If != 0, fdata.cr_offset is the offset from the frame that
2646 holds the CR. */
2647 if (fdata.cr_offset != 0)
2648 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2649
2650 /* If != 0, fdata.lr_offset is the offset from the frame that
2651 holds the LR. */
2652 if (fdata.lr_offset != 0)
2653 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2654 /* The PC is found in the link register. */
2655 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2656
2657 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2658 holds the VRSAVE. */
2659 if (fdata.vrsave_offset != 0)
2660 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2661
2662 if (fdata.alloca_reg < 0)
2663 /* If no alloca register used, then fi->frame is the value of the
2664 %sp for this frame, and it is good enough. */
2665 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2666 else
2667 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2668 fdata.alloca_reg);
2669
2670 return cache;
2671 }
2672
2673 static void
2674 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2675 struct frame_id *this_id)
2676 {
2677 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2678 this_cache);
2679 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2680 }
2681
2682 static void
2683 rs6000_frame_prev_register (struct frame_info *next_frame,
2684 void **this_cache,
2685 int regnum, int *optimizedp,
2686 enum lval_type *lvalp, CORE_ADDR *addrp,
2687 int *realnump, void *valuep)
2688 {
2689 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2690 this_cache);
2691 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
2692 optimizedp, lvalp, addrp, realnump, valuep);
2693 }
2694
2695 static const struct frame_unwind rs6000_frame_unwind =
2696 {
2697 NORMAL_FRAME,
2698 rs6000_frame_this_id,
2699 rs6000_frame_prev_register
2700 };
2701
2702 static const struct frame_unwind *
2703 rs6000_frame_sniffer (struct frame_info *next_frame)
2704 {
2705 return &rs6000_frame_unwind;
2706 }
2707
2708 \f
2709
2710 static CORE_ADDR
2711 rs6000_frame_base_address (struct frame_info *next_frame,
2712 void **this_cache)
2713 {
2714 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2715 this_cache);
2716 return info->initial_sp;
2717 }
2718
2719 static const struct frame_base rs6000_frame_base = {
2720 &rs6000_frame_unwind,
2721 rs6000_frame_base_address,
2722 rs6000_frame_base_address,
2723 rs6000_frame_base_address
2724 };
2725
2726 static const struct frame_base *
2727 rs6000_frame_base_sniffer (struct frame_info *next_frame)
2728 {
2729 return &rs6000_frame_base;
2730 }
2731
2732 /* Initialize the current architecture based on INFO. If possible, re-use an
2733 architecture from ARCHES, which is a list of architectures already created
2734 during this debugging session.
2735
2736 Called e.g. at program startup, when reading a core file, and when reading
2737 a binary file. */
2738
2739 static struct gdbarch *
2740 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2741 {
2742 struct gdbarch *gdbarch;
2743 struct gdbarch_tdep *tdep;
2744 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
2745 struct reg *regs;
2746 const struct variant *v;
2747 enum bfd_architecture arch;
2748 unsigned long mach;
2749 bfd abfd;
2750 int sysv_abi;
2751 asection *sect;
2752
2753 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2754 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2755
2756 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2757 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2758
2759 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2760
2761 /* Check word size. If INFO is from a binary file, infer it from
2762 that, else choose a likely default. */
2763 if (from_xcoff_exec)
2764 {
2765 if (bfd_xcoff_is_xcoff64 (info.abfd))
2766 wordsize = 8;
2767 else
2768 wordsize = 4;
2769 }
2770 else if (from_elf_exec)
2771 {
2772 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2773 wordsize = 8;
2774 else
2775 wordsize = 4;
2776 }
2777 else
2778 {
2779 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2780 wordsize = info.bfd_arch_info->bits_per_word /
2781 info.bfd_arch_info->bits_per_byte;
2782 else
2783 wordsize = 4;
2784 }
2785
2786 /* Find a candidate among extant architectures. */
2787 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2788 arches != NULL;
2789 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2790 {
2791 /* Word size in the various PowerPC bfd_arch_info structs isn't
2792 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2793 separate word size check. */
2794 tdep = gdbarch_tdep (arches->gdbarch);
2795 if (tdep && tdep->wordsize == wordsize)
2796 return arches->gdbarch;
2797 }
2798
2799 /* None found, create a new architecture from INFO, whose bfd_arch_info
2800 validity depends on the source:
2801 - executable useless
2802 - rs6000_host_arch() good
2803 - core file good
2804 - "set arch" trust blindly
2805 - GDB startup useless but harmless */
2806
2807 if (!from_xcoff_exec)
2808 {
2809 arch = info.bfd_arch_info->arch;
2810 mach = info.bfd_arch_info->mach;
2811 }
2812 else
2813 {
2814 arch = bfd_arch_powerpc;
2815 bfd_default_set_arch_mach (&abfd, arch, 0);
2816 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2817 mach = info.bfd_arch_info->mach;
2818 }
2819 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2820 tdep->wordsize = wordsize;
2821
2822 /* For e500 executables, the apuinfo section is of help here. Such
2823 section contains the identifier and revision number of each
2824 Application-specific Processing Unit that is present on the
2825 chip. The content of the section is determined by the assembler
2826 which looks at each instruction and determines which unit (and
2827 which version of it) can execute it. In our case we just look for
2828 the existance of the section. */
2829
2830 if (info.abfd)
2831 {
2832 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2833 if (sect)
2834 {
2835 arch = info.bfd_arch_info->arch;
2836 mach = bfd_mach_ppc_e500;
2837 bfd_default_set_arch_mach (&abfd, arch, mach);
2838 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2839 }
2840 }
2841
2842 gdbarch = gdbarch_alloc (&info, tdep);
2843
2844 /* Initialize the number of real and pseudo registers in each variant. */
2845 init_variants ();
2846
2847 /* Choose variant. */
2848 v = find_variant_by_arch (arch, mach);
2849 if (!v)
2850 return NULL;
2851
2852 tdep->regs = v->regs;
2853
2854 tdep->ppc_gp0_regnum = 0;
2855 tdep->ppc_gprs_pseudo_p = 0;
2856 tdep->ppc_toc_regnum = 2;
2857 tdep->ppc_ps_regnum = 65;
2858 tdep->ppc_cr_regnum = 66;
2859 tdep->ppc_lr_regnum = 67;
2860 tdep->ppc_ctr_regnum = 68;
2861 tdep->ppc_xer_regnum = 69;
2862 if (v->mach == bfd_mach_ppc_601)
2863 tdep->ppc_mq_regnum = 124;
2864 else if (arch == bfd_arch_rs6000)
2865 tdep->ppc_mq_regnum = 70;
2866 else
2867 tdep->ppc_mq_regnum = -1;
2868 tdep->ppc_fp0_regnum = 32;
2869 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
2870 tdep->ppc_sr0_regnum = 71;
2871 tdep->ppc_vr0_regnum = -1;
2872 tdep->ppc_vrsave_regnum = -1;
2873 tdep->ppc_ev0_regnum = -1;
2874 tdep->ppc_ev31_regnum = -1;
2875 tdep->ppc_acc_regnum = -1;
2876 tdep->ppc_spefscr_regnum = -1;
2877
2878 set_gdbarch_pc_regnum (gdbarch, 64);
2879 set_gdbarch_sp_regnum (gdbarch, 1);
2880 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2881 if (sysv_abi && wordsize == 8)
2882 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
2883 else if (sysv_abi && wordsize == 4)
2884 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
2885 else
2886 {
2887 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2888 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2889 }
2890
2891 /* Set lr_frame_offset. */
2892 if (wordsize == 8)
2893 tdep->lr_frame_offset = 16;
2894 else if (sysv_abi)
2895 tdep->lr_frame_offset = 4;
2896 else
2897 tdep->lr_frame_offset = 8;
2898
2899 if (v->arch == bfd_arch_rs6000)
2900 tdep->ppc_sr0_regnum = -1;
2901 else if (v->arch == bfd_arch_powerpc)
2902 switch (v->mach)
2903 {
2904 case bfd_mach_ppc:
2905 tdep->ppc_vr0_regnum = 71;
2906 tdep->ppc_vrsave_regnum = 104;
2907 break;
2908 case bfd_mach_ppc_7400:
2909 tdep->ppc_vr0_regnum = 119;
2910 tdep->ppc_vrsave_regnum = 152;
2911 break;
2912 case bfd_mach_ppc_e500:
2913 tdep->ppc_gp0_regnum = 41;
2914 tdep->ppc_gprs_pseudo_p = 1;
2915 tdep->ppc_toc_regnum = -1;
2916 tdep->ppc_ps_regnum = 1;
2917 tdep->ppc_cr_regnum = 2;
2918 tdep->ppc_lr_regnum = 3;
2919 tdep->ppc_ctr_regnum = 4;
2920 tdep->ppc_xer_regnum = 5;
2921 tdep->ppc_ev0_regnum = 7;
2922 tdep->ppc_ev31_regnum = 38;
2923 tdep->ppc_fp0_regnum = -1;
2924 tdep->ppc_fpscr_regnum = -1;
2925 tdep->ppc_sr0_regnum = -1;
2926 tdep->ppc_acc_regnum = 39;
2927 tdep->ppc_spefscr_regnum = 40;
2928 set_gdbarch_pc_regnum (gdbarch, 0);
2929 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2930 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2931 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2932 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2933 break;
2934
2935 case bfd_mach_ppc64:
2936 case bfd_mach_ppc_620:
2937 case bfd_mach_ppc_630:
2938 case bfd_mach_ppc_a35:
2939 case bfd_mach_ppc_rs64ii:
2940 case bfd_mach_ppc_rs64iii:
2941 /* These processor's register sets don't have segment registers. */
2942 tdep->ppc_sr0_regnum = -1;
2943 break;
2944 }
2945 else
2946 internal_error (__FILE__, __LINE__,
2947 "rs6000_gdbarch_init: "
2948 "received unexpected BFD 'arch' value");
2949
2950 /* Sanity check on registers. */
2951 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2952
2953 /* Select instruction printer. */
2954 if (arch == bfd_arch_rs6000)
2955 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2956 else
2957 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2958
2959 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2960
2961 set_gdbarch_num_regs (gdbarch, v->nregs);
2962 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2963 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2964 set_gdbarch_register_type (gdbarch, rs6000_register_type);
2965
2966 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2967 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2968 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2969 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2970 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2971 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2972 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2973 if (sysv_abi)
2974 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2975 else
2976 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2977 set_gdbarch_char_signed (gdbarch, 0);
2978
2979 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2980 if (sysv_abi && wordsize == 8)
2981 /* PPC64 SYSV. */
2982 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2983 else if (!sysv_abi && wordsize == 4)
2984 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2985 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2986 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2987 224. */
2988 set_gdbarch_frame_red_zone_size (gdbarch, 224);
2989
2990 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
2991 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
2992 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
2993
2994 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2995 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
2996 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2997 is correct for the SysV ABI when the wordsize is 8, but I'm also
2998 fairly certain that ppc_sysv_abi_push_arguments() will give even
2999 worse results since it only works for 32-bit code. So, for the moment,
3000 we're better off calling rs6000_push_arguments() since it works for
3001 64-bit code. At some point in the future, this matter needs to be
3002 revisited. */
3003 if (sysv_abi && wordsize == 4)
3004 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3005 else if (sysv_abi && wordsize == 8)
3006 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3007 else
3008 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3009
3010 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3011
3012 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3013 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3014 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3015
3016 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3017 for the descriptor and ".FN" for the entry-point -- a user
3018 specifying "break FN" will unexpectedly end up with a breakpoint
3019 on the descriptor and not the function. This architecture method
3020 transforms any breakpoints on descriptors into breakpoints on the
3021 corresponding entry point. */
3022 if (sysv_abi && wordsize == 8)
3023 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3024
3025 /* Not sure on this. FIXMEmgo */
3026 set_gdbarch_frame_args_skip (gdbarch, 8);
3027
3028 if (!sysv_abi)
3029 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3030
3031 if (!sysv_abi)
3032 {
3033 /* Handle RS/6000 function pointers (which are really function
3034 descriptors). */
3035 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3036 rs6000_convert_from_func_ptr_addr);
3037 }
3038
3039 /* Helpers for function argument information. */
3040 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3041
3042 /* Hook in ABI-specific overrides, if they have been registered. */
3043 gdbarch_init_osabi (info, gdbarch);
3044
3045 switch (info.osabi)
3046 {
3047 case GDB_OSABI_NETBSD_AOUT:
3048 case GDB_OSABI_NETBSD_ELF:
3049 case GDB_OSABI_UNKNOWN:
3050 case GDB_OSABI_LINUX:
3051 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3052 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3053 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3054 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3055 break;
3056 default:
3057 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3058
3059 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3060 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3061 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3062 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3063 }
3064
3065 if (from_xcoff_exec)
3066 {
3067 /* NOTE: jimix/2003-06-09: This test should really check for
3068 GDB_OSABI_AIX when that is defined and becomes
3069 available. (Actually, once things are properly split apart,
3070 the test goes away.) */
3071 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3072 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3073 }
3074
3075 return gdbarch;
3076 }
3077
3078 static void
3079 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3080 {
3081 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3082
3083 if (tdep == NULL)
3084 return;
3085
3086 /* FIXME: Dump gdbarch_tdep. */
3087 }
3088
3089 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3090
3091 static void
3092 rs6000_info_powerpc_command (char *args, int from_tty)
3093 {
3094 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3095 }
3096
3097 /* Initialization code. */
3098
3099 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3100
3101 void
3102 _initialize_rs6000_tdep (void)
3103 {
3104 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3105 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3106
3107 /* Add root prefix command for "info powerpc" commands */
3108 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3109 "Various POWERPC info specific commands.",
3110 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3111 }