]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
2004-01-26 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39
40 #include "libbfd.h" /* for bfd_default_set_arch_mach */
41 #include "coff/internal.h" /* for libcoff.h */
42 #include "libcoff.h" /* for xcoff_data */
43 #include "coff/xcoff.h"
44 #include "libxcoff.h"
45
46 #include "elf-bfd.h"
47
48 #include "solib-svr4.h"
49 #include "ppc-tdep.h"
50
51 #include "gdb_assert.h"
52 #include "dis-asm.h"
53
54 /* If the kernel has to deliver a signal, it pushes a sigcontext
55 structure on the stack and then calls the signal handler, passing
56 the address of the sigcontext in an argument register. Usually
57 the signal handler doesn't save this register, so we have to
58 access the sigcontext structure via an offset from the signal handler
59 frame.
60 The following constants were determined by experimentation on AIX 3.2. */
61 #define SIG_FRAME_PC_OFFSET 96
62 #define SIG_FRAME_LR_OFFSET 108
63 #define SIG_FRAME_FP_OFFSET 284
64
65 /* To be used by skip_prologue. */
66
67 struct rs6000_framedata
68 {
69 int offset; /* total size of frame --- the distance
70 by which we decrement sp to allocate
71 the frame */
72 int saved_gpr; /* smallest # of saved gpr */
73 int saved_fpr; /* smallest # of saved fpr */
74 int saved_vr; /* smallest # of saved vr */
75 int saved_ev; /* smallest # of saved ev */
76 int alloca_reg; /* alloca register number (frame ptr) */
77 char frameless; /* true if frameless functions. */
78 char nosavedpc; /* true if pc not saved. */
79 int gpr_offset; /* offset of saved gprs from prev sp */
80 int fpr_offset; /* offset of saved fprs from prev sp */
81 int vr_offset; /* offset of saved vrs from prev sp */
82 int ev_offset; /* offset of saved evs from prev sp */
83 int lr_offset; /* offset of saved lr */
84 int cr_offset; /* offset of saved cr */
85 int vrsave_offset; /* offset of saved vrsave register */
86 };
87
88 /* Description of a single register. */
89
90 struct reg
91 {
92 char *name; /* name of register */
93 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
94 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
95 unsigned char fpr; /* whether register is floating-point */
96 unsigned char pseudo; /* whether register is pseudo */
97 };
98
99 /* Breakpoint shadows for the single step instructions will be kept here. */
100
101 static struct sstep_breaks
102 {
103 /* Address, or 0 if this is not in use. */
104 CORE_ADDR address;
105 /* Shadow contents. */
106 char data[4];
107 }
108 stepBreaks[2];
109
110 /* Hook for determining the TOC address when calling functions in the
111 inferior under AIX. The initialization code in rs6000-nat.c sets
112 this hook to point to find_toc_address. */
113
114 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
115
116 /* Hook to set the current architecture when starting a child process.
117 rs6000-nat.c sets this. */
118
119 void (*rs6000_set_host_arch_hook) (int) = NULL;
120
121 /* Static function prototypes */
122
123 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
124 CORE_ADDR safety);
125 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
126 struct rs6000_framedata *);
127 static void frame_get_saved_regs (struct frame_info * fi,
128 struct rs6000_framedata * fdatap);
129 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
130
131 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
132 int
133 altivec_register_p (int regno)
134 {
135 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
136 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
137 return 0;
138 else
139 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
140 }
141
142 /* Use the architectures FP registers? */
143 int
144 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
145 {
146 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
147 if (info->arch == bfd_arch_powerpc)
148 return (info->mach != bfd_mach_ppc_e500);
149 if (info->arch == bfd_arch_rs6000)
150 return 1;
151 return 0;
152 }
153
154 /* Read a LEN-byte address from debugged memory address MEMADDR. */
155
156 static CORE_ADDR
157 read_memory_addr (CORE_ADDR memaddr, int len)
158 {
159 return read_memory_unsigned_integer (memaddr, len);
160 }
161
162 static CORE_ADDR
163 rs6000_skip_prologue (CORE_ADDR pc)
164 {
165 struct rs6000_framedata frame;
166 pc = skip_prologue (pc, 0, &frame);
167 return pc;
168 }
169
170
171 /* Fill in fi->saved_regs */
172
173 struct frame_extra_info
174 {
175 /* Functions calling alloca() change the value of the stack
176 pointer. We need to use initial stack pointer (which is saved in
177 r31 by gcc) in such cases. If a compiler emits traceback table,
178 then we should use the alloca register specified in traceback
179 table. FIXME. */
180 CORE_ADDR initial_sp; /* initial stack pointer. */
181 };
182
183 void
184 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
185 {
186 struct frame_extra_info *extra_info =
187 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
188 extra_info->initial_sp = 0;
189 if (get_next_frame (fi) != NULL
190 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
191 /* We're in get_prev_frame */
192 /* and this is a special signal frame. */
193 /* (fi->pc will be some low address in the kernel, */
194 /* to which the signal handler returns). */
195 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
196 }
197
198 /* Put here the code to store, into a struct frame_saved_regs,
199 the addresses of the saved registers of frame described by FRAME_INFO.
200 This includes special registers such as pc and fp saved in special
201 ways in the stack frame. sp is even more special:
202 the address we return for it IS the sp for the next frame. */
203
204 /* In this implementation for RS/6000, we do *not* save sp. I am
205 not sure if it will be needed. The following function takes care of gpr's
206 and fpr's only. */
207
208 void
209 rs6000_frame_init_saved_regs (struct frame_info *fi)
210 {
211 frame_get_saved_regs (fi, NULL);
212 }
213
214 static CORE_ADDR
215 rs6000_frame_args_address (struct frame_info *fi)
216 {
217 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
218 if (extra_info->initial_sp != 0)
219 return extra_info->initial_sp;
220 else
221 return frame_initial_stack_address (fi);
222 }
223
224 /* Immediately after a function call, return the saved pc.
225 Can't go through the frames for this because on some machines
226 the new frame is not set up until the new function executes
227 some instructions. */
228
229 static CORE_ADDR
230 rs6000_saved_pc_after_call (struct frame_info *fi)
231 {
232 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
233 }
234
235 /* Get the ith function argument for the current function. */
236 static CORE_ADDR
237 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
238 struct type *type)
239 {
240 CORE_ADDR addr;
241 get_frame_register (frame, 3 + argi, &addr);
242 return addr;
243 }
244
245 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
246
247 static CORE_ADDR
248 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
249 {
250 CORE_ADDR dest;
251 int immediate;
252 int absolute;
253 int ext_op;
254
255 absolute = (int) ((instr >> 1) & 1);
256
257 switch (opcode)
258 {
259 case 18:
260 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
261 if (absolute)
262 dest = immediate;
263 else
264 dest = pc + immediate;
265 break;
266
267 case 16:
268 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
269 if (absolute)
270 dest = immediate;
271 else
272 dest = pc + immediate;
273 break;
274
275 case 19:
276 ext_op = (instr >> 1) & 0x3ff;
277
278 if (ext_op == 16) /* br conditional register */
279 {
280 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
281
282 /* If we are about to return from a signal handler, dest is
283 something like 0x3c90. The current frame is a signal handler
284 caller frame, upon completion of the sigreturn system call
285 execution will return to the saved PC in the frame. */
286 if (dest < TEXT_SEGMENT_BASE)
287 {
288 struct frame_info *fi;
289
290 fi = get_current_frame ();
291 if (fi != NULL)
292 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
293 gdbarch_tdep (current_gdbarch)->wordsize);
294 }
295 }
296
297 else if (ext_op == 528) /* br cond to count reg */
298 {
299 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
300
301 /* If we are about to execute a system call, dest is something
302 like 0x22fc or 0x3b00. Upon completion the system call
303 will return to the address in the link register. */
304 if (dest < TEXT_SEGMENT_BASE)
305 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
306 }
307 else
308 return -1;
309 break;
310
311 default:
312 return -1;
313 }
314 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
315 }
316
317
318 /* Sequence of bytes for breakpoint instruction. */
319
320 const static unsigned char *
321 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
322 {
323 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
324 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
325 *bp_size = 4;
326 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
327 return big_breakpoint;
328 else
329 return little_breakpoint;
330 }
331
332
333 /* AIX does not support PT_STEP. Simulate it. */
334
335 void
336 rs6000_software_single_step (enum target_signal signal,
337 int insert_breakpoints_p)
338 {
339 CORE_ADDR dummy;
340 int breakp_sz;
341 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
342 int ii, insn;
343 CORE_ADDR loc;
344 CORE_ADDR breaks[2];
345 int opcode;
346
347 if (insert_breakpoints_p)
348 {
349
350 loc = read_pc ();
351
352 insn = read_memory_integer (loc, 4);
353
354 breaks[0] = loc + breakp_sz;
355 opcode = insn >> 26;
356 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
357
358 /* Don't put two breakpoints on the same address. */
359 if (breaks[1] == breaks[0])
360 breaks[1] = -1;
361
362 stepBreaks[1].address = 0;
363
364 for (ii = 0; ii < 2; ++ii)
365 {
366
367 /* ignore invalid breakpoint. */
368 if (breaks[ii] == -1)
369 continue;
370 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
371 stepBreaks[ii].address = breaks[ii];
372 }
373
374 }
375 else
376 {
377
378 /* remove step breakpoints. */
379 for (ii = 0; ii < 2; ++ii)
380 if (stepBreaks[ii].address != 0)
381 target_remove_breakpoint (stepBreaks[ii].address,
382 stepBreaks[ii].data);
383 }
384 errno = 0; /* FIXME, don't ignore errors! */
385 /* What errors? {read,write}_memory call error(). */
386 }
387
388
389 /* return pc value after skipping a function prologue and also return
390 information about a function frame.
391
392 in struct rs6000_framedata fdata:
393 - frameless is TRUE, if function does not have a frame.
394 - nosavedpc is TRUE, if function does not save %pc value in its frame.
395 - offset is the initial size of this stack frame --- the amount by
396 which we decrement the sp to allocate the frame.
397 - saved_gpr is the number of the first saved gpr.
398 - saved_fpr is the number of the first saved fpr.
399 - saved_vr is the number of the first saved vr.
400 - saved_ev is the number of the first saved ev.
401 - alloca_reg is the number of the register used for alloca() handling.
402 Otherwise -1.
403 - gpr_offset is the offset of the first saved gpr from the previous frame.
404 - fpr_offset is the offset of the first saved fpr from the previous frame.
405 - vr_offset is the offset of the first saved vr from the previous frame.
406 - ev_offset is the offset of the first saved ev from the previous frame.
407 - lr_offset is the offset of the saved lr
408 - cr_offset is the offset of the saved cr
409 - vrsave_offset is the offset of the saved vrsave register
410 */
411
412 #define SIGNED_SHORT(x) \
413 ((sizeof (short) == 2) \
414 ? ((int)(short)(x)) \
415 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
416
417 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
418
419 /* Limit the number of skipped non-prologue instructions, as the examining
420 of the prologue is expensive. */
421 static int max_skip_non_prologue_insns = 10;
422
423 /* Given PC representing the starting address of a function, and
424 LIM_PC which is the (sloppy) limit to which to scan when looking
425 for a prologue, attempt to further refine this limit by using
426 the line data in the symbol table. If successful, a better guess
427 on where the prologue ends is returned, otherwise the previous
428 value of lim_pc is returned. */
429 static CORE_ADDR
430 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
431 {
432 struct symtab_and_line prologue_sal;
433
434 prologue_sal = find_pc_line (pc, 0);
435 if (prologue_sal.line != 0)
436 {
437 int i;
438 CORE_ADDR addr = prologue_sal.end;
439
440 /* Handle the case in which compiler's optimizer/scheduler
441 has moved instructions into the prologue. We scan ahead
442 in the function looking for address ranges whose corresponding
443 line number is less than or equal to the first one that we
444 found for the function. (It can be less than when the
445 scheduler puts a body instruction before the first prologue
446 instruction.) */
447 for (i = 2 * max_skip_non_prologue_insns;
448 i > 0 && (lim_pc == 0 || addr < lim_pc);
449 i--)
450 {
451 struct symtab_and_line sal;
452
453 sal = find_pc_line (addr, 0);
454 if (sal.line == 0)
455 break;
456 if (sal.line <= prologue_sal.line
457 && sal.symtab == prologue_sal.symtab)
458 {
459 prologue_sal = sal;
460 }
461 addr = sal.end;
462 }
463
464 if (lim_pc == 0 || prologue_sal.end < lim_pc)
465 lim_pc = prologue_sal.end;
466 }
467 return lim_pc;
468 }
469
470
471 static CORE_ADDR
472 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
473 {
474 CORE_ADDR orig_pc = pc;
475 CORE_ADDR last_prologue_pc = pc;
476 CORE_ADDR li_found_pc = 0;
477 char buf[4];
478 unsigned long op;
479 long offset = 0;
480 long vr_saved_offset = 0;
481 int lr_reg = -1;
482 int cr_reg = -1;
483 int vr_reg = -1;
484 int ev_reg = -1;
485 long ev_offset = 0;
486 int vrsave_reg = -1;
487 int reg;
488 int framep = 0;
489 int minimal_toc_loaded = 0;
490 int prev_insn_was_prologue_insn = 1;
491 int num_skip_non_prologue_insns = 0;
492 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
493 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
494
495 /* Attempt to find the end of the prologue when no limit is specified.
496 Note that refine_prologue_limit() has been written so that it may
497 be used to "refine" the limits of non-zero PC values too, but this
498 is only safe if we 1) trust the line information provided by the
499 compiler and 2) iterate enough to actually find the end of the
500 prologue.
501
502 It may become a good idea at some point (for both performance and
503 accuracy) to unconditionally call refine_prologue_limit(). But,
504 until we can make a clear determination that this is beneficial,
505 we'll play it safe and only use it to obtain a limit when none
506 has been specified. */
507 if (lim_pc == 0)
508 lim_pc = refine_prologue_limit (pc, lim_pc);
509
510 memset (fdata, 0, sizeof (struct rs6000_framedata));
511 fdata->saved_gpr = -1;
512 fdata->saved_fpr = -1;
513 fdata->saved_vr = -1;
514 fdata->saved_ev = -1;
515 fdata->alloca_reg = -1;
516 fdata->frameless = 1;
517 fdata->nosavedpc = 1;
518
519 for (;; pc += 4)
520 {
521 /* Sometimes it isn't clear if an instruction is a prologue
522 instruction or not. When we encounter one of these ambiguous
523 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
524 Otherwise, we'll assume that it really is a prologue instruction. */
525 if (prev_insn_was_prologue_insn)
526 last_prologue_pc = pc;
527
528 /* Stop scanning if we've hit the limit. */
529 if (lim_pc != 0 && pc >= lim_pc)
530 break;
531
532 prev_insn_was_prologue_insn = 1;
533
534 /* Fetch the instruction and convert it to an integer. */
535 if (target_read_memory (pc, buf, 4))
536 break;
537 op = extract_signed_integer (buf, 4);
538
539 if ((op & 0xfc1fffff) == 0x7c0802a6)
540 { /* mflr Rx */
541 lr_reg = (op & 0x03e00000);
542 continue;
543
544 }
545 else if ((op & 0xfc1fffff) == 0x7c000026)
546 { /* mfcr Rx */
547 cr_reg = (op & 0x03e00000);
548 continue;
549
550 }
551 else if ((op & 0xfc1f0000) == 0xd8010000)
552 { /* stfd Rx,NUM(r1) */
553 reg = GET_SRC_REG (op);
554 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
555 {
556 fdata->saved_fpr = reg;
557 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
558 }
559 continue;
560
561 }
562 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
563 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
564 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
565 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
566 {
567
568 reg = GET_SRC_REG (op);
569 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
570 {
571 fdata->saved_gpr = reg;
572 if ((op & 0xfc1f0003) == 0xf8010000)
573 op &= ~3UL;
574 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
575 }
576 continue;
577
578 }
579 else if ((op & 0xffff0000) == 0x60000000)
580 {
581 /* nop */
582 /* Allow nops in the prologue, but do not consider them to
583 be part of the prologue unless followed by other prologue
584 instructions. */
585 prev_insn_was_prologue_insn = 0;
586 continue;
587
588 }
589 else if ((op & 0xffff0000) == 0x3c000000)
590 { /* addis 0,0,NUM, used
591 for >= 32k frames */
592 fdata->offset = (op & 0x0000ffff) << 16;
593 fdata->frameless = 0;
594 continue;
595
596 }
597 else if ((op & 0xffff0000) == 0x60000000)
598 { /* ori 0,0,NUM, 2nd ha
599 lf of >= 32k frames */
600 fdata->offset |= (op & 0x0000ffff);
601 fdata->frameless = 0;
602 continue;
603
604 }
605 else if (lr_reg != -1 &&
606 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
607 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
608 /* stw Rx, NUM(r1) */
609 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
610 /* stwu Rx, NUM(r1) */
611 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
612 { /* where Rx == lr */
613 fdata->lr_offset = offset;
614 fdata->nosavedpc = 0;
615 lr_reg = 0;
616 if ((op & 0xfc000003) == 0xf8000000 || /* std */
617 (op & 0xfc000000) == 0x90000000) /* stw */
618 {
619 /* Does not update r1, so add displacement to lr_offset. */
620 fdata->lr_offset += SIGNED_SHORT (op);
621 }
622 continue;
623
624 }
625 else if (cr_reg != -1 &&
626 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
627 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
628 /* stw Rx, NUM(r1) */
629 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
630 /* stwu Rx, NUM(r1) */
631 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
632 { /* where Rx == cr */
633 fdata->cr_offset = offset;
634 cr_reg = 0;
635 if ((op & 0xfc000003) == 0xf8000000 ||
636 (op & 0xfc000000) == 0x90000000)
637 {
638 /* Does not update r1, so add displacement to cr_offset. */
639 fdata->cr_offset += SIGNED_SHORT (op);
640 }
641 continue;
642
643 }
644 else if (op == 0x48000005)
645 { /* bl .+4 used in
646 -mrelocatable */
647 continue;
648
649 }
650 else if (op == 0x48000004)
651 { /* b .+4 (xlc) */
652 break;
653
654 }
655 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
656 in V.4 -mminimal-toc */
657 (op & 0xffff0000) == 0x3bde0000)
658 { /* addi 30,30,foo@l */
659 continue;
660
661 }
662 else if ((op & 0xfc000001) == 0x48000001)
663 { /* bl foo,
664 to save fprs??? */
665
666 fdata->frameless = 0;
667 /* Don't skip over the subroutine call if it is not within
668 the first three instructions of the prologue. */
669 if ((pc - orig_pc) > 8)
670 break;
671
672 op = read_memory_integer (pc + 4, 4);
673
674 /* At this point, make sure this is not a trampoline
675 function (a function that simply calls another functions,
676 and nothing else). If the next is not a nop, this branch
677 was part of the function prologue. */
678
679 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
680 break; /* don't skip over
681 this branch */
682 continue;
683
684 }
685 /* update stack pointer */
686 else if ((op & 0xfc1f0000) == 0x94010000)
687 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
688 fdata->frameless = 0;
689 fdata->offset = SIGNED_SHORT (op);
690 offset = fdata->offset;
691 continue;
692 }
693 else if ((op & 0xfc1f016a) == 0x7c01016e)
694 { /* stwux rX,r1,rY */
695 /* no way to figure out what r1 is going to be */
696 fdata->frameless = 0;
697 offset = fdata->offset;
698 continue;
699 }
700 else if ((op & 0xfc1f0003) == 0xf8010001)
701 { /* stdu rX,NUM(r1) */
702 fdata->frameless = 0;
703 fdata->offset = SIGNED_SHORT (op & ~3UL);
704 offset = fdata->offset;
705 continue;
706 }
707 else if ((op & 0xfc1f016a) == 0x7c01016a)
708 { /* stdux rX,r1,rY */
709 /* no way to figure out what r1 is going to be */
710 fdata->frameless = 0;
711 offset = fdata->offset;
712 continue;
713 }
714 /* Load up minimal toc pointer */
715 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
716 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
717 && !minimal_toc_loaded)
718 {
719 minimal_toc_loaded = 1;
720 continue;
721
722 /* move parameters from argument registers to local variable
723 registers */
724 }
725 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
726 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
727 (((op >> 21) & 31) <= 10) &&
728 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
729 {
730 continue;
731
732 /* store parameters in stack */
733 }
734 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
735 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
736 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
737 {
738 continue;
739
740 /* store parameters in stack via frame pointer */
741 }
742 else if (framep &&
743 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
745 (op & 0xfc1f0000) == 0xfc1f0000))
746 { /* frsp, fp?,NUM(r1) */
747 continue;
748
749 /* Set up frame pointer */
750 }
751 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
752 || op == 0x7c3f0b78)
753 { /* mr r31, r1 */
754 fdata->frameless = 0;
755 framep = 1;
756 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
757 continue;
758
759 /* Another way to set up the frame pointer. */
760 }
761 else if ((op & 0xfc1fffff) == 0x38010000)
762 { /* addi rX, r1, 0x0 */
763 fdata->frameless = 0;
764 framep = 1;
765 fdata->alloca_reg = (tdep->ppc_gp0_regnum
766 + ((op & ~0x38010000) >> 21));
767 continue;
768 }
769 /* AltiVec related instructions. */
770 /* Store the vrsave register (spr 256) in another register for
771 later manipulation, or load a register into the vrsave
772 register. 2 instructions are used: mfvrsave and
773 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
774 and mtspr SPR256, Rn. */
775 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
776 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
777 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
778 {
779 vrsave_reg = GET_SRC_REG (op);
780 continue;
781 }
782 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
783 {
784 continue;
785 }
786 /* Store the register where vrsave was saved to onto the stack:
787 rS is the register where vrsave was stored in a previous
788 instruction. */
789 /* 100100 sssss 00001 dddddddd dddddddd */
790 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
791 {
792 if (vrsave_reg == GET_SRC_REG (op))
793 {
794 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
795 vrsave_reg = -1;
796 }
797 continue;
798 }
799 /* Compute the new value of vrsave, by modifying the register
800 where vrsave was saved to. */
801 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
802 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
803 {
804 continue;
805 }
806 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
807 in a pair of insns to save the vector registers on the
808 stack. */
809 /* 001110 00000 00000 iiii iiii iiii iiii */
810 /* 001110 01110 00000 iiii iiii iiii iiii */
811 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
812 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
813 {
814 li_found_pc = pc;
815 vr_saved_offset = SIGNED_SHORT (op);
816 }
817 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
818 /* 011111 sssss 11111 00000 00111001110 */
819 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
820 {
821 if (pc == (li_found_pc + 4))
822 {
823 vr_reg = GET_SRC_REG (op);
824 /* If this is the first vector reg to be saved, or if
825 it has a lower number than others previously seen,
826 reupdate the frame info. */
827 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
828 {
829 fdata->saved_vr = vr_reg;
830 fdata->vr_offset = vr_saved_offset + offset;
831 }
832 vr_saved_offset = -1;
833 vr_reg = -1;
834 li_found_pc = 0;
835 }
836 }
837 /* End AltiVec related instructions. */
838
839 /* Start BookE related instructions. */
840 /* Store gen register S at (r31+uimm).
841 Any register less than r13 is volatile, so we don't care. */
842 /* 000100 sssss 11111 iiiii 01100100001 */
843 else if (arch_info->mach == bfd_mach_ppc_e500
844 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
845 {
846 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
847 {
848 unsigned int imm;
849 ev_reg = GET_SRC_REG (op);
850 imm = (op >> 11) & 0x1f;
851 ev_offset = imm * 8;
852 /* If this is the first vector reg to be saved, or if
853 it has a lower number than others previously seen,
854 reupdate the frame info. */
855 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
856 {
857 fdata->saved_ev = ev_reg;
858 fdata->ev_offset = ev_offset + offset;
859 }
860 }
861 continue;
862 }
863 /* Store gen register rS at (r1+rB). */
864 /* 000100 sssss 00001 bbbbb 01100100000 */
865 else if (arch_info->mach == bfd_mach_ppc_e500
866 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
867 {
868 if (pc == (li_found_pc + 4))
869 {
870 ev_reg = GET_SRC_REG (op);
871 /* If this is the first vector reg to be saved, or if
872 it has a lower number than others previously seen,
873 reupdate the frame info. */
874 /* We know the contents of rB from the previous instruction. */
875 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
876 {
877 fdata->saved_ev = ev_reg;
878 fdata->ev_offset = vr_saved_offset + offset;
879 }
880 vr_saved_offset = -1;
881 ev_reg = -1;
882 li_found_pc = 0;
883 }
884 continue;
885 }
886 /* Store gen register r31 at (rA+uimm). */
887 /* 000100 11111 aaaaa iiiii 01100100001 */
888 else if (arch_info->mach == bfd_mach_ppc_e500
889 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
890 {
891 /* Wwe know that the source register is 31 already, but
892 it can't hurt to compute it. */
893 ev_reg = GET_SRC_REG (op);
894 ev_offset = ((op >> 11) & 0x1f) * 8;
895 /* If this is the first vector reg to be saved, or if
896 it has a lower number than others previously seen,
897 reupdate the frame info. */
898 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
899 {
900 fdata->saved_ev = ev_reg;
901 fdata->ev_offset = ev_offset + offset;
902 }
903
904 continue;
905 }
906 /* Store gen register S at (r31+r0).
907 Store param on stack when offset from SP bigger than 4 bytes. */
908 /* 000100 sssss 11111 00000 01100100000 */
909 else if (arch_info->mach == bfd_mach_ppc_e500
910 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
911 {
912 if (pc == (li_found_pc + 4))
913 {
914 if ((op & 0x03e00000) >= 0x01a00000)
915 {
916 ev_reg = GET_SRC_REG (op);
917 /* If this is the first vector reg to be saved, or if
918 it has a lower number than others previously seen,
919 reupdate the frame info. */
920 /* We know the contents of r0 from the previous
921 instruction. */
922 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
923 {
924 fdata->saved_ev = ev_reg;
925 fdata->ev_offset = vr_saved_offset + offset;
926 }
927 ev_reg = -1;
928 }
929 vr_saved_offset = -1;
930 li_found_pc = 0;
931 continue;
932 }
933 }
934 /* End BookE related instructions. */
935
936 else
937 {
938 /* Not a recognized prologue instruction.
939 Handle optimizer code motions into the prologue by continuing
940 the search if we have no valid frame yet or if the return
941 address is not yet saved in the frame. */
942 if (fdata->frameless == 0
943 && (lr_reg == -1 || fdata->nosavedpc == 0))
944 break;
945
946 if (op == 0x4e800020 /* blr */
947 || op == 0x4e800420) /* bctr */
948 /* Do not scan past epilogue in frameless functions or
949 trampolines. */
950 break;
951 if ((op & 0xf4000000) == 0x40000000) /* bxx */
952 /* Never skip branches. */
953 break;
954
955 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
956 /* Do not scan too many insns, scanning insns is expensive with
957 remote targets. */
958 break;
959
960 /* Continue scanning. */
961 prev_insn_was_prologue_insn = 0;
962 continue;
963 }
964 }
965
966 #if 0
967 /* I have problems with skipping over __main() that I need to address
968 * sometime. Previously, I used to use misc_function_vector which
969 * didn't work as well as I wanted to be. -MGO */
970
971 /* If the first thing after skipping a prolog is a branch to a function,
972 this might be a call to an initializer in main(), introduced by gcc2.
973 We'd like to skip over it as well. Fortunately, xlc does some extra
974 work before calling a function right after a prologue, thus we can
975 single out such gcc2 behaviour. */
976
977
978 if ((op & 0xfc000001) == 0x48000001)
979 { /* bl foo, an initializer function? */
980 op = read_memory_integer (pc + 4, 4);
981
982 if (op == 0x4def7b82)
983 { /* cror 0xf, 0xf, 0xf (nop) */
984
985 /* Check and see if we are in main. If so, skip over this
986 initializer function as well. */
987
988 tmp = find_pc_misc_function (pc);
989 if (tmp >= 0
990 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
991 return pc + 8;
992 }
993 }
994 #endif /* 0 */
995
996 fdata->offset = -fdata->offset;
997 return last_prologue_pc;
998 }
999
1000
1001 /*************************************************************************
1002 Support for creating pushing a dummy frame into the stack, and popping
1003 frames, etc.
1004 *************************************************************************/
1005
1006
1007 /* Pop the innermost frame, go back to the caller. */
1008
1009 static void
1010 rs6000_pop_frame (void)
1011 {
1012 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1013 struct rs6000_framedata fdata;
1014 struct frame_info *frame = get_current_frame ();
1015 int ii, wordsize;
1016
1017 pc = read_pc ();
1018 sp = get_frame_base (frame);
1019
1020 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1021 get_frame_base (frame),
1022 get_frame_base (frame)))
1023 {
1024 generic_pop_dummy_frame ();
1025 flush_cached_frames ();
1026 return;
1027 }
1028
1029 /* Make sure that all registers are valid. */
1030 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1031
1032 /* Figure out previous %pc value. If the function is frameless, it is
1033 still in the link register, otherwise walk the frames and retrieve the
1034 saved %pc value in the previous frame. */
1035
1036 addr = get_frame_func (frame);
1037 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1038
1039 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1040 if (fdata.frameless)
1041 prev_sp = sp;
1042 else
1043 prev_sp = read_memory_addr (sp, wordsize);
1044 if (fdata.lr_offset == 0)
1045 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1046 else
1047 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1048
1049 /* reset %pc value. */
1050 write_register (PC_REGNUM, lr);
1051
1052 /* reset register values if any was saved earlier. */
1053
1054 if (fdata.saved_gpr != -1)
1055 {
1056 addr = prev_sp + fdata.gpr_offset;
1057 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1058 {
1059 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
1060 wordsize);
1061 addr += wordsize;
1062 }
1063 }
1064
1065 if (fdata.saved_fpr != -1)
1066 {
1067 addr = prev_sp + fdata.fpr_offset;
1068 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1069 {
1070 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1071 addr += 8;
1072 }
1073 }
1074
1075 write_register (SP_REGNUM, prev_sp);
1076 target_store_registers (-1);
1077 flush_cached_frames ();
1078 }
1079
1080 /* All the ABI's require 16 byte alignment. */
1081 static CORE_ADDR
1082 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1083 {
1084 return (addr & -16);
1085 }
1086
1087 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1088 the first eight words of the argument list (that might be less than
1089 eight parameters if some parameters occupy more than one word) are
1090 passed in r3..r10 registers. float and double parameters are
1091 passed in fpr's, in addition to that. Rest of the parameters if any
1092 are passed in user stack. There might be cases in which half of the
1093 parameter is copied into registers, the other half is pushed into
1094 stack.
1095
1096 Stack must be aligned on 64-bit boundaries when synthesizing
1097 function calls.
1098
1099 If the function is returning a structure, then the return address is passed
1100 in r3, then the first 7 words of the parameters can be passed in registers,
1101 starting from r4. */
1102
1103 static CORE_ADDR
1104 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1105 struct regcache *regcache, CORE_ADDR bp_addr,
1106 int nargs, struct value **args, CORE_ADDR sp,
1107 int struct_return, CORE_ADDR struct_addr)
1108 {
1109 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1110 int ii;
1111 int len = 0;
1112 int argno; /* current argument number */
1113 int argbytes; /* current argument byte */
1114 char tmp_buffer[50];
1115 int f_argno = 0; /* current floating point argno */
1116 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1117
1118 struct value *arg = 0;
1119 struct type *type;
1120
1121 CORE_ADDR saved_sp;
1122
1123 /* The first eight words of ther arguments are passed in registers.
1124 Copy them appropriately. */
1125 ii = 0;
1126
1127 /* If the function is returning a `struct', then the first word
1128 (which will be passed in r3) is used for struct return address.
1129 In that case we should advance one word and start from r4
1130 register to copy parameters. */
1131 if (struct_return)
1132 {
1133 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1134 struct_addr);
1135 ii++;
1136 }
1137
1138 /*
1139 effectively indirect call... gcc does...
1140
1141 return_val example( float, int);
1142
1143 eabi:
1144 float in fp0, int in r3
1145 offset of stack on overflow 8/16
1146 for varargs, must go by type.
1147 power open:
1148 float in r3&r4, int in r5
1149 offset of stack on overflow different
1150 both:
1151 return in r3 or f0. If no float, must study how gcc emulates floats;
1152 pay attention to arg promotion.
1153 User may have to cast\args to handle promotion correctly
1154 since gdb won't know if prototype supplied or not.
1155 */
1156
1157 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1158 {
1159 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1160
1161 arg = args[argno];
1162 type = check_typedef (VALUE_TYPE (arg));
1163 len = TYPE_LENGTH (type);
1164
1165 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1166 {
1167
1168 /* Floating point arguments are passed in fpr's, as well as gpr's.
1169 There are 13 fpr's reserved for passing parameters. At this point
1170 there is no way we would run out of them. */
1171
1172 if (len > 8)
1173 printf_unfiltered (
1174 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1175
1176 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1177 VALUE_CONTENTS (arg),
1178 len);
1179 ++f_argno;
1180 }
1181
1182 if (len > reg_size)
1183 {
1184
1185 /* Argument takes more than one register. */
1186 while (argbytes < len)
1187 {
1188 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1189 reg_size);
1190 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1191 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1192 (len - argbytes) > reg_size
1193 ? reg_size : len - argbytes);
1194 ++ii, argbytes += reg_size;
1195
1196 if (ii >= 8)
1197 goto ran_out_of_registers_for_arguments;
1198 }
1199 argbytes = 0;
1200 --ii;
1201 }
1202 else
1203 {
1204 /* Argument can fit in one register. No problem. */
1205 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1206 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1207 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1208 VALUE_CONTENTS (arg), len);
1209 }
1210 ++argno;
1211 }
1212
1213 ran_out_of_registers_for_arguments:
1214
1215 saved_sp = read_sp ();
1216
1217 /* Location for 8 parameters are always reserved. */
1218 sp -= wordsize * 8;
1219
1220 /* Another six words for back chain, TOC register, link register, etc. */
1221 sp -= wordsize * 6;
1222
1223 /* Stack pointer must be quadword aligned. */
1224 sp &= -16;
1225
1226 /* If there are more arguments, allocate space for them in
1227 the stack, then push them starting from the ninth one. */
1228
1229 if ((argno < nargs) || argbytes)
1230 {
1231 int space = 0, jj;
1232
1233 if (argbytes)
1234 {
1235 space += ((len - argbytes + 3) & -4);
1236 jj = argno + 1;
1237 }
1238 else
1239 jj = argno;
1240
1241 for (; jj < nargs; ++jj)
1242 {
1243 struct value *val = args[jj];
1244 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1245 }
1246
1247 /* Add location required for the rest of the parameters. */
1248 space = (space + 15) & -16;
1249 sp -= space;
1250
1251 /* This is another instance we need to be concerned about
1252 securing our stack space. If we write anything underneath %sp
1253 (r1), we might conflict with the kernel who thinks he is free
1254 to use this area. So, update %sp first before doing anything
1255 else. */
1256
1257 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1258
1259 /* If the last argument copied into the registers didn't fit there
1260 completely, push the rest of it into stack. */
1261
1262 if (argbytes)
1263 {
1264 write_memory (sp + 24 + (ii * 4),
1265 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1266 len - argbytes);
1267 ++argno;
1268 ii += ((len - argbytes + 3) & -4) / 4;
1269 }
1270
1271 /* Push the rest of the arguments into stack. */
1272 for (; argno < nargs; ++argno)
1273 {
1274
1275 arg = args[argno];
1276 type = check_typedef (VALUE_TYPE (arg));
1277 len = TYPE_LENGTH (type);
1278
1279
1280 /* Float types should be passed in fpr's, as well as in the
1281 stack. */
1282 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1283 {
1284
1285 if (len > 8)
1286 printf_unfiltered (
1287 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1288
1289 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1290 VALUE_CONTENTS (arg),
1291 len);
1292 ++f_argno;
1293 }
1294
1295 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1296 ii += ((len + 3) & -4) / 4;
1297 }
1298 }
1299
1300 /* Set the stack pointer. According to the ABI, the SP is meant to
1301 be set _before_ the corresponding stack space is used. On AIX,
1302 this even applies when the target has been completely stopped!
1303 Not doing this can lead to conflicts with the kernel which thinks
1304 that it still has control over this not-yet-allocated stack
1305 region. */
1306 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1307
1308 /* Set back chain properly. */
1309 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1310 write_memory (sp, tmp_buffer, 4);
1311
1312 /* Point the inferior function call's return address at the dummy's
1313 breakpoint. */
1314 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1315
1316 /* Set the TOC register, get the value from the objfile reader
1317 which, in turn, gets it from the VMAP table. */
1318 if (rs6000_find_toc_address_hook != NULL)
1319 {
1320 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1321 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1322 }
1323
1324 target_store_registers (-1);
1325 return sp;
1326 }
1327
1328 /* PowerOpen always puts structures in memory. Vectors, which were
1329 added later, do get returned in a register though. */
1330
1331 static int
1332 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1333 {
1334 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1335 && TYPE_VECTOR (value_type))
1336 return 0;
1337 return 1;
1338 }
1339
1340 static void
1341 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1342 {
1343 int offset = 0;
1344 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1345
1346 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1347 {
1348
1349 double dd;
1350 float ff;
1351 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1352 We need to truncate the return value into float size (4 byte) if
1353 necessary. */
1354
1355 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1356 memcpy (valbuf,
1357 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
1358 TYPE_LENGTH (valtype));
1359 else
1360 { /* float */
1361 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1362 ff = (float) dd;
1363 memcpy (valbuf, &ff, sizeof (float));
1364 }
1365 }
1366 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1367 && TYPE_LENGTH (valtype) == 16
1368 && TYPE_VECTOR (valtype))
1369 {
1370 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1371 TYPE_LENGTH (valtype));
1372 }
1373 else
1374 {
1375 /* return value is copied starting from r3. */
1376 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1377 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1378 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1379
1380 memcpy (valbuf,
1381 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1382 TYPE_LENGTH (valtype));
1383 }
1384 }
1385
1386 /* Return whether handle_inferior_event() should proceed through code
1387 starting at PC in function NAME when stepping.
1388
1389 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1390 handle memory references that are too distant to fit in instructions
1391 generated by the compiler. For example, if 'foo' in the following
1392 instruction:
1393
1394 lwz r9,foo(r2)
1395
1396 is greater than 32767, the linker might replace the lwz with a branch to
1397 somewhere in @FIX1 that does the load in 2 instructions and then branches
1398 back to where execution should continue.
1399
1400 GDB should silently step over @FIX code, just like AIX dbx does.
1401 Unfortunately, the linker uses the "b" instruction for the branches,
1402 meaning that the link register doesn't get set. Therefore, GDB's usual
1403 step_over_function() mechanism won't work.
1404
1405 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1406 in handle_inferior_event() to skip past @FIX code. */
1407
1408 int
1409 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1410 {
1411 return name && !strncmp (name, "@FIX", 4);
1412 }
1413
1414 /* Skip code that the user doesn't want to see when stepping:
1415
1416 1. Indirect function calls use a piece of trampoline code to do context
1417 switching, i.e. to set the new TOC table. Skip such code if we are on
1418 its first instruction (as when we have single-stepped to here).
1419
1420 2. Skip shared library trampoline code (which is different from
1421 indirect function call trampolines).
1422
1423 3. Skip bigtoc fixup code.
1424
1425 Result is desired PC to step until, or NULL if we are not in
1426 code that should be skipped. */
1427
1428 CORE_ADDR
1429 rs6000_skip_trampoline_code (CORE_ADDR pc)
1430 {
1431 unsigned int ii, op;
1432 int rel;
1433 CORE_ADDR solib_target_pc;
1434 struct minimal_symbol *msymbol;
1435
1436 static unsigned trampoline_code[] =
1437 {
1438 0x800b0000, /* l r0,0x0(r11) */
1439 0x90410014, /* st r2,0x14(r1) */
1440 0x7c0903a6, /* mtctr r0 */
1441 0x804b0004, /* l r2,0x4(r11) */
1442 0x816b0008, /* l r11,0x8(r11) */
1443 0x4e800420, /* bctr */
1444 0x4e800020, /* br */
1445 0
1446 };
1447
1448 /* Check for bigtoc fixup code. */
1449 msymbol = lookup_minimal_symbol_by_pc (pc);
1450 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1451 {
1452 /* Double-check that the third instruction from PC is relative "b". */
1453 op = read_memory_integer (pc + 8, 4);
1454 if ((op & 0xfc000003) == 0x48000000)
1455 {
1456 /* Extract bits 6-29 as a signed 24-bit relative word address and
1457 add it to the containing PC. */
1458 rel = ((int)(op << 6) >> 6);
1459 return pc + 8 + rel;
1460 }
1461 }
1462
1463 /* If pc is in a shared library trampoline, return its target. */
1464 solib_target_pc = find_solib_trampoline_target (pc);
1465 if (solib_target_pc)
1466 return solib_target_pc;
1467
1468 for (ii = 0; trampoline_code[ii]; ++ii)
1469 {
1470 op = read_memory_integer (pc + (ii * 4), 4);
1471 if (op != trampoline_code[ii])
1472 return 0;
1473 }
1474 ii = read_register (11); /* r11 holds destination addr */
1475 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1476 return pc;
1477 }
1478
1479 /* Determines whether the function FI has a frame on the stack or not. */
1480
1481 int
1482 rs6000_frameless_function_invocation (struct frame_info *fi)
1483 {
1484 CORE_ADDR func_start;
1485 struct rs6000_framedata fdata;
1486
1487 /* Don't even think about framelessness except on the innermost frame
1488 or if the function was interrupted by a signal. */
1489 if (get_next_frame (fi) != NULL
1490 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1491 return 0;
1492
1493 func_start = get_frame_func (fi);
1494
1495 /* If we failed to find the start of the function, it is a mistake
1496 to inspect the instructions. */
1497
1498 if (!func_start)
1499 {
1500 /* A frame with a zero PC is usually created by dereferencing a NULL
1501 function pointer, normally causing an immediate core dump of the
1502 inferior. Mark function as frameless, as the inferior has no chance
1503 of setting up a stack frame. */
1504 if (get_frame_pc (fi) == 0)
1505 return 1;
1506 else
1507 return 0;
1508 }
1509
1510 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1511 return fdata.frameless;
1512 }
1513
1514 /* Return the PC saved in a frame. */
1515
1516 CORE_ADDR
1517 rs6000_frame_saved_pc (struct frame_info *fi)
1518 {
1519 CORE_ADDR func_start;
1520 struct rs6000_framedata fdata;
1521 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1522 int wordsize = tdep->wordsize;
1523
1524 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1525 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1526 wordsize);
1527
1528 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1529 get_frame_base (fi),
1530 get_frame_base (fi)))
1531 return deprecated_read_register_dummy (get_frame_pc (fi),
1532 get_frame_base (fi), PC_REGNUM);
1533
1534 func_start = get_frame_func (fi);
1535
1536 /* If we failed to find the start of the function, it is a mistake
1537 to inspect the instructions. */
1538 if (!func_start)
1539 return 0;
1540
1541 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1542
1543 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1544 {
1545 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1546 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1547 + SIG_FRAME_LR_OFFSET),
1548 wordsize);
1549 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1550 /* The link register wasn't saved by this frame and the next
1551 (inner, newer) frame is a dummy. Get the link register
1552 value by unwinding it from that [dummy] frame. */
1553 {
1554 ULONGEST lr;
1555 frame_unwind_unsigned_register (get_next_frame (fi),
1556 tdep->ppc_lr_regnum, &lr);
1557 return lr;
1558 }
1559 else
1560 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1561 + tdep->lr_frame_offset,
1562 wordsize);
1563 }
1564
1565 if (fdata.lr_offset == 0)
1566 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1567
1568 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1569 wordsize);
1570 }
1571
1572 /* If saved registers of frame FI are not known yet, read and cache them.
1573 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1574 in which case the framedata are read. */
1575
1576 static void
1577 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1578 {
1579 CORE_ADDR frame_addr;
1580 struct rs6000_framedata work_fdata;
1581 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1582 int wordsize = tdep->wordsize;
1583
1584 if (deprecated_get_frame_saved_regs (fi))
1585 return;
1586
1587 if (fdatap == NULL)
1588 {
1589 fdatap = &work_fdata;
1590 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1591 }
1592
1593 frame_saved_regs_zalloc (fi);
1594
1595 /* If there were any saved registers, figure out parent's stack
1596 pointer. */
1597 /* The following is true only if the frame doesn't have a call to
1598 alloca(), FIXME. */
1599
1600 if (fdatap->saved_fpr == 0
1601 && fdatap->saved_gpr == 0
1602 && fdatap->saved_vr == 0
1603 && fdatap->saved_ev == 0
1604 && fdatap->lr_offset == 0
1605 && fdatap->cr_offset == 0
1606 && fdatap->vr_offset == 0
1607 && fdatap->ev_offset == 0)
1608 frame_addr = 0;
1609 else
1610 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1611 address of the current frame. Things might be easier if the
1612 ->frame pointed to the outer-most address of the frame. In the
1613 mean time, the address of the prev frame is used as the base
1614 address of this frame. */
1615 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1616
1617 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1618 All fpr's from saved_fpr to fp31 are saved. */
1619
1620 if (fdatap->saved_fpr >= 0)
1621 {
1622 int i;
1623 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1624 for (i = fdatap->saved_fpr; i < 32; i++)
1625 {
1626 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1627 fpr_addr += 8;
1628 }
1629 }
1630
1631 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1632 All gpr's from saved_gpr to gpr31 are saved. */
1633
1634 if (fdatap->saved_gpr >= 0)
1635 {
1636 int i;
1637 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1638 for (i = fdatap->saved_gpr; i < 32; i++)
1639 {
1640 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1641 gpr_addr += wordsize;
1642 }
1643 }
1644
1645 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1646 All vr's from saved_vr to vr31 are saved. */
1647 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1648 {
1649 if (fdatap->saved_vr >= 0)
1650 {
1651 int i;
1652 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1653 for (i = fdatap->saved_vr; i < 32; i++)
1654 {
1655 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1656 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1657 }
1658 }
1659 }
1660
1661 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1662 All vr's from saved_ev to ev31 are saved. ????? */
1663 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1664 {
1665 if (fdatap->saved_ev >= 0)
1666 {
1667 int i;
1668 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1669 for (i = fdatap->saved_ev; i < 32; i++)
1670 {
1671 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1672 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1673 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1674 }
1675 }
1676 }
1677
1678 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1679 the CR. */
1680 if (fdatap->cr_offset != 0)
1681 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1682
1683 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1684 the LR. */
1685 if (fdatap->lr_offset != 0)
1686 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1687
1688 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1689 the VRSAVE. */
1690 if (fdatap->vrsave_offset != 0)
1691 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1692 }
1693
1694 /* Return the address of a frame. This is the inital %sp value when the frame
1695 was first allocated. For functions calling alloca(), it might be saved in
1696 an alloca register. */
1697
1698 static CORE_ADDR
1699 frame_initial_stack_address (struct frame_info *fi)
1700 {
1701 CORE_ADDR tmpaddr;
1702 struct rs6000_framedata fdata;
1703 struct frame_info *callee_fi;
1704
1705 /* If the initial stack pointer (frame address) of this frame is known,
1706 just return it. */
1707
1708 if (get_frame_extra_info (fi)->initial_sp)
1709 return get_frame_extra_info (fi)->initial_sp;
1710
1711 /* Find out if this function is using an alloca register. */
1712
1713 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1714
1715 /* If saved registers of this frame are not known yet, read and
1716 cache them. */
1717
1718 if (!deprecated_get_frame_saved_regs (fi))
1719 frame_get_saved_regs (fi, &fdata);
1720
1721 /* If no alloca register used, then fi->frame is the value of the %sp for
1722 this frame, and it is good enough. */
1723
1724 if (fdata.alloca_reg < 0)
1725 {
1726 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1727 return get_frame_extra_info (fi)->initial_sp;
1728 }
1729
1730 /* There is an alloca register, use its value, in the current frame,
1731 as the initial stack pointer. */
1732 {
1733 char tmpbuf[MAX_REGISTER_SIZE];
1734 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1735 {
1736 get_frame_extra_info (fi)->initial_sp
1737 = extract_unsigned_integer (tmpbuf,
1738 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
1739 }
1740 else
1741 /* NOTE: cagney/2002-04-17: At present the only time
1742 frame_register_read will fail is when the register isn't
1743 available. If that does happen, use the frame. */
1744 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1745 }
1746 return get_frame_extra_info (fi)->initial_sp;
1747 }
1748
1749 /* Describe the pointer in each stack frame to the previous stack frame
1750 (its caller). */
1751
1752 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1753 the frame's chain-pointer. */
1754
1755 /* In the case of the RS/6000, the frame's nominal address
1756 is the address of a 4-byte word containing the calling frame's address. */
1757
1758 CORE_ADDR
1759 rs6000_frame_chain (struct frame_info *thisframe)
1760 {
1761 CORE_ADDR fp, fpp, lr;
1762 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1763
1764 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1765 get_frame_base (thisframe),
1766 get_frame_base (thisframe)))
1767 /* A dummy frame always correctly chains back to the previous
1768 frame. */
1769 return read_memory_addr (get_frame_base (thisframe), wordsize);
1770
1771 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
1772 || get_frame_pc (thisframe) == entry_point_address ())
1773 return 0;
1774
1775 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1776 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1777 wordsize);
1778 else if (get_next_frame (thisframe) != NULL
1779 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1780 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1781 /* A frameless function interrupted by a signal did not change the
1782 frame pointer. */
1783 fp = get_frame_base (thisframe);
1784 else
1785 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1786 return fp;
1787 }
1788
1789 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1790 isn't available with that word size, return 0. */
1791
1792 static int
1793 regsize (const struct reg *reg, int wordsize)
1794 {
1795 return wordsize == 8 ? reg->sz64 : reg->sz32;
1796 }
1797
1798 /* Return the name of register number N, or null if no such register exists
1799 in the current architecture. */
1800
1801 static const char *
1802 rs6000_register_name (int n)
1803 {
1804 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1805 const struct reg *reg = tdep->regs + n;
1806
1807 if (!regsize (reg, tdep->wordsize))
1808 return NULL;
1809 return reg->name;
1810 }
1811
1812 /* Index within `registers' of the first byte of the space for
1813 register N. */
1814
1815 static int
1816 rs6000_register_byte (int n)
1817 {
1818 return gdbarch_tdep (current_gdbarch)->regoff[n];
1819 }
1820
1821 /* Return the number of bytes of storage in the actual machine representation
1822 for register N if that register is available, else return 0. */
1823
1824 static int
1825 rs6000_register_raw_size (int n)
1826 {
1827 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1828 const struct reg *reg = tdep->regs + n;
1829 return regsize (reg, tdep->wordsize);
1830 }
1831
1832 /* Return the GDB type object for the "standard" data type
1833 of data in register N. */
1834
1835 static struct type *
1836 rs6000_register_virtual_type (int n)
1837 {
1838 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1839 const struct reg *reg = tdep->regs + n;
1840
1841 if (reg->fpr)
1842 return builtin_type_double;
1843 else
1844 {
1845 int size = regsize (reg, tdep->wordsize);
1846 switch (size)
1847 {
1848 case 0:
1849 return builtin_type_int0;
1850 case 4:
1851 return builtin_type_int32;
1852 case 8:
1853 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1854 return builtin_type_vec64;
1855 else
1856 return builtin_type_int64;
1857 break;
1858 case 16:
1859 return builtin_type_vec128;
1860 break;
1861 default:
1862 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1863 n, size);
1864 }
1865 }
1866 }
1867
1868 /* Return whether register N requires conversion when moving from raw format
1869 to virtual format.
1870
1871 The register format for RS/6000 floating point registers is always
1872 double, we need a conversion if the memory format is float. */
1873
1874 static int
1875 rs6000_register_convertible (int n)
1876 {
1877 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1878 return reg->fpr;
1879 }
1880
1881 /* Convert data from raw format for register N in buffer FROM
1882 to virtual format with type TYPE in buffer TO. */
1883
1884 static void
1885 rs6000_register_convert_to_virtual (int n, struct type *type,
1886 char *from, char *to)
1887 {
1888 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1889 {
1890 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
1891 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1892 }
1893 else
1894 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1895 }
1896
1897 /* Convert data from virtual format with type TYPE in buffer FROM
1898 to raw format for register N in buffer TO. */
1899
1900 static void
1901 rs6000_register_convert_to_raw (struct type *type, int n,
1902 const char *from, char *to)
1903 {
1904 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1905 {
1906 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1907 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
1908 }
1909 else
1910 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1911 }
1912
1913 static void
1914 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1915 int reg_nr, void *buffer)
1916 {
1917 int base_regnum;
1918 int offset = 0;
1919 char temp_buffer[MAX_REGISTER_SIZE];
1920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1921
1922 if (reg_nr >= tdep->ppc_gp0_regnum
1923 && reg_nr <= tdep->ppc_gplast_regnum)
1924 {
1925 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1926
1927 /* Build the value in the provided buffer. */
1928 /* Read the raw register of which this one is the lower portion. */
1929 regcache_raw_read (regcache, base_regnum, temp_buffer);
1930 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1931 offset = 4;
1932 memcpy ((char *) buffer, temp_buffer + offset, 4);
1933 }
1934 }
1935
1936 static void
1937 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1938 int reg_nr, const void *buffer)
1939 {
1940 int base_regnum;
1941 int offset = 0;
1942 char temp_buffer[MAX_REGISTER_SIZE];
1943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1944
1945 if (reg_nr >= tdep->ppc_gp0_regnum
1946 && reg_nr <= tdep->ppc_gplast_regnum)
1947 {
1948 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1949 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1950 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1951 offset = 4;
1952
1953 /* Let's read the value of the base register into a temporary
1954 buffer, so that overwriting the last four bytes with the new
1955 value of the pseudo will leave the upper 4 bytes unchanged. */
1956 regcache_raw_read (regcache, base_regnum, temp_buffer);
1957
1958 /* Write as an 8 byte quantity. */
1959 memcpy (temp_buffer + offset, (char *) buffer, 4);
1960 regcache_raw_write (regcache, base_regnum, temp_buffer);
1961 }
1962 }
1963
1964 /* Convert a dwarf2 register number to a gdb REGNUM. */
1965 static int
1966 e500_dwarf2_reg_to_regnum (int num)
1967 {
1968 int regnum;
1969 if (0 <= num && num <= 31)
1970 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1971 else
1972 return num;
1973 }
1974
1975 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1976 REGNUM. */
1977 static int
1978 rs6000_stab_reg_to_regnum (int num)
1979 {
1980 int regnum;
1981 switch (num)
1982 {
1983 case 64:
1984 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1985 break;
1986 case 65:
1987 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1988 break;
1989 case 66:
1990 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1991 break;
1992 case 76:
1993 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1994 break;
1995 default:
1996 regnum = num;
1997 break;
1998 }
1999 return regnum;
2000 }
2001
2002 static void
2003 rs6000_store_return_value (struct type *type, char *valbuf)
2004 {
2005 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2006
2007 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2008
2009 /* Floating point values are returned starting from FPR1 and up.
2010 Say a double_double_double type could be returned in
2011 FPR1/FPR2/FPR3 triple. */
2012
2013 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2014 TYPE_LENGTH (type));
2015 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2016 {
2017 if (TYPE_LENGTH (type) == 16
2018 && TYPE_VECTOR (type))
2019 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2020 valbuf, TYPE_LENGTH (type));
2021 }
2022 else
2023 /* Everything else is returned in GPR3 and up. */
2024 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2025 valbuf, TYPE_LENGTH (type));
2026 }
2027
2028 /* Extract from an array REGBUF containing the (raw) register state
2029 the address in which a function should return its structure value,
2030 as a CORE_ADDR (or an expression that can be used as one). */
2031
2032 static CORE_ADDR
2033 rs6000_extract_struct_value_address (struct regcache *regcache)
2034 {
2035 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2036 function call GDB knows the address of the struct return value
2037 and hence, should not need to call this function. Unfortunately,
2038 the current call_function_by_hand() code only saves the most
2039 recent struct address leading to occasional calls. The code
2040 should instead maintain a stack of such addresses (in the dummy
2041 frame object). */
2042 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2043 really got no idea where the return value is being stored. While
2044 r3, on function entry, contained the address it will have since
2045 been reused (scratch) and hence wouldn't be valid */
2046 return 0;
2047 }
2048
2049 /* Return whether PC is in a dummy function call.
2050
2051 FIXME: This just checks for the end of the stack, which is broken
2052 for things like stepping through gcc nested function stubs. */
2053
2054 static int
2055 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2056 {
2057 return sp < pc && pc < fp;
2058 }
2059
2060 /* Hook called when a new child process is started. */
2061
2062 void
2063 rs6000_create_inferior (int pid)
2064 {
2065 if (rs6000_set_host_arch_hook)
2066 rs6000_set_host_arch_hook (pid);
2067 }
2068 \f
2069 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2070
2071 Usually a function pointer's representation is simply the address
2072 of the function. On the RS/6000 however, a function pointer is
2073 represented by a pointer to a TOC entry. This TOC entry contains
2074 three words, the first word is the address of the function, the
2075 second word is the TOC pointer (r2), and the third word is the
2076 static chain value. Throughout GDB it is currently assumed that a
2077 function pointer contains the address of the function, which is not
2078 easy to fix. In addition, the conversion of a function address to
2079 a function pointer would require allocation of a TOC entry in the
2080 inferior's memory space, with all its drawbacks. To be able to
2081 call C++ virtual methods in the inferior (which are called via
2082 function pointers), find_function_addr uses this function to get the
2083 function address from a function pointer. */
2084
2085 /* Return real function address if ADDR (a function pointer) is in the data
2086 space and is therefore a special function pointer. */
2087
2088 static CORE_ADDR
2089 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2090 CORE_ADDR addr,
2091 struct target_ops *targ)
2092 {
2093 struct obj_section *s;
2094
2095 s = find_pc_section (addr);
2096 if (s && s->the_bfd_section->flags & SEC_CODE)
2097 return addr;
2098
2099 /* ADDR is in the data space, so it's a special function pointer. */
2100 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2101 }
2102 \f
2103
2104 /* Handling the various POWER/PowerPC variants. */
2105
2106
2107 /* The arrays here called registers_MUMBLE hold information about available
2108 registers.
2109
2110 For each family of PPC variants, I've tried to isolate out the
2111 common registers and put them up front, so that as long as you get
2112 the general family right, GDB will correctly identify the registers
2113 common to that family. The common register sets are:
2114
2115 For the 60x family: hid0 hid1 iabr dabr pir
2116
2117 For the 505 and 860 family: eie eid nri
2118
2119 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2120 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2121 pbu1 pbl2 pbu2
2122
2123 Most of these register groups aren't anything formal. I arrived at
2124 them by looking at the registers that occurred in more than one
2125 processor.
2126
2127 Note: kevinb/2002-04-30: Support for the fpscr register was added
2128 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2129 for Power. For PowerPC, slot 70 was unused and was already in the
2130 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2131 slot 70 was being used for "mq", so the next available slot (71)
2132 was chosen. It would have been nice to be able to make the
2133 register numbers the same across processor cores, but this wasn't
2134 possible without either 1) renumbering some registers for some
2135 processors or 2) assigning fpscr to a really high slot that's
2136 larger than any current register number. Doing (1) is bad because
2137 existing stubs would break. Doing (2) is undesirable because it
2138 would introduce a really large gap between fpscr and the rest of
2139 the registers for most processors. */
2140
2141 /* Convenience macros for populating register arrays. */
2142
2143 /* Within another macro, convert S to a string. */
2144
2145 #define STR(s) #s
2146
2147 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2148 and 64 bits on 64-bit systems. */
2149 #define R(name) { STR(name), 4, 8, 0, 0 }
2150
2151 /* Return a struct reg defining register NAME that's 32 bits on all
2152 systems. */
2153 #define R4(name) { STR(name), 4, 4, 0, 0 }
2154
2155 /* Return a struct reg defining register NAME that's 64 bits on all
2156 systems. */
2157 #define R8(name) { STR(name), 8, 8, 0, 0 }
2158
2159 /* Return a struct reg defining register NAME that's 128 bits on all
2160 systems. */
2161 #define R16(name) { STR(name), 16, 16, 0, 0 }
2162
2163 /* Return a struct reg defining floating-point register NAME. */
2164 #define F(name) { STR(name), 8, 8, 1, 0 }
2165
2166 /* Return a struct reg defining a pseudo register NAME. */
2167 #define P(name) { STR(name), 4, 8, 0, 1}
2168
2169 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2170 systems and that doesn't exist on 64-bit systems. */
2171 #define R32(name) { STR(name), 4, 0, 0, 0 }
2172
2173 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2174 systems and that doesn't exist on 32-bit systems. */
2175 #define R64(name) { STR(name), 0, 8, 0, 0 }
2176
2177 /* Return a struct reg placeholder for a register that doesn't exist. */
2178 #define R0 { 0, 0, 0, 0, 0 }
2179
2180 /* UISA registers common across all architectures, including POWER. */
2181
2182 #define COMMON_UISA_REGS \
2183 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2184 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2185 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2186 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2187 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2188 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2189 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2190 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2191 /* 64 */ R(pc), R(ps)
2192
2193 #define COMMON_UISA_NOFP_REGS \
2194 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2195 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2196 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2197 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2198 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2199 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2200 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2201 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2202 /* 64 */ R(pc), R(ps)
2203
2204 /* UISA-level SPRs for PowerPC. */
2205 #define PPC_UISA_SPRS \
2206 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2207
2208 /* UISA-level SPRs for PowerPC without floating point support. */
2209 #define PPC_UISA_NOFP_SPRS \
2210 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2211
2212 /* Segment registers, for PowerPC. */
2213 #define PPC_SEGMENT_REGS \
2214 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2215 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2216 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2217 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2218
2219 /* OEA SPRs for PowerPC. */
2220 #define PPC_OEA_SPRS \
2221 /* 87 */ R4(pvr), \
2222 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2223 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2224 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2225 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2226 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2227 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2228 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2229 /* 116 */ R4(dec), R(dabr), R4(ear)
2230
2231 /* AltiVec registers. */
2232 #define PPC_ALTIVEC_REGS \
2233 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2234 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2235 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2236 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2237 /*151*/R4(vscr), R4(vrsave)
2238
2239 /* Vectors of hi-lo general purpose registers. */
2240 #define PPC_EV_REGS \
2241 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2242 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2243 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2244 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2245
2246 /* Lower half of the EV registers. */
2247 #define PPC_GPRS_PSEUDO_REGS \
2248 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2249 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2250 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2251 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2252
2253 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2254 user-level SPR's. */
2255 static const struct reg registers_power[] =
2256 {
2257 COMMON_UISA_REGS,
2258 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2259 /* 71 */ R4(fpscr)
2260 };
2261
2262 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2263 view of the PowerPC. */
2264 static const struct reg registers_powerpc[] =
2265 {
2266 COMMON_UISA_REGS,
2267 PPC_UISA_SPRS,
2268 PPC_ALTIVEC_REGS
2269 };
2270
2271 /* PowerPC UISA - a PPC processor as viewed by user-level
2272 code, but without floating point registers. */
2273 static const struct reg registers_powerpc_nofp[] =
2274 {
2275 COMMON_UISA_NOFP_REGS,
2276 PPC_UISA_SPRS
2277 };
2278
2279 /* IBM PowerPC 403. */
2280 static const struct reg registers_403[] =
2281 {
2282 COMMON_UISA_REGS,
2283 PPC_UISA_SPRS,
2284 PPC_SEGMENT_REGS,
2285 PPC_OEA_SPRS,
2286 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2287 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2288 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2289 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2290 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2291 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2292 };
2293
2294 /* IBM PowerPC 403GC. */
2295 static const struct reg registers_403GC[] =
2296 {
2297 COMMON_UISA_REGS,
2298 PPC_UISA_SPRS,
2299 PPC_SEGMENT_REGS,
2300 PPC_OEA_SPRS,
2301 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2302 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2303 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2304 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2305 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2306 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2307 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2308 /* 147 */ R(tbhu), R(tblu)
2309 };
2310
2311 /* Motorola PowerPC 505. */
2312 static const struct reg registers_505[] =
2313 {
2314 COMMON_UISA_REGS,
2315 PPC_UISA_SPRS,
2316 PPC_SEGMENT_REGS,
2317 PPC_OEA_SPRS,
2318 /* 119 */ R(eie), R(eid), R(nri)
2319 };
2320
2321 /* Motorola PowerPC 860 or 850. */
2322 static const struct reg registers_860[] =
2323 {
2324 COMMON_UISA_REGS,
2325 PPC_UISA_SPRS,
2326 PPC_SEGMENT_REGS,
2327 PPC_OEA_SPRS,
2328 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2329 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2330 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2331 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2332 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2333 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2334 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2335 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2336 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2337 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2338 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2339 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2340 };
2341
2342 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2343 for reading and writing RTCU and RTCL. However, how one reads and writes a
2344 register is the stub's problem. */
2345 static const struct reg registers_601[] =
2346 {
2347 COMMON_UISA_REGS,
2348 PPC_UISA_SPRS,
2349 PPC_SEGMENT_REGS,
2350 PPC_OEA_SPRS,
2351 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2352 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2353 };
2354
2355 /* Motorola PowerPC 602. */
2356 static const struct reg registers_602[] =
2357 {
2358 COMMON_UISA_REGS,
2359 PPC_UISA_SPRS,
2360 PPC_SEGMENT_REGS,
2361 PPC_OEA_SPRS,
2362 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2363 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2364 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2365 };
2366
2367 /* Motorola/IBM PowerPC 603 or 603e. */
2368 static const struct reg registers_603[] =
2369 {
2370 COMMON_UISA_REGS,
2371 PPC_UISA_SPRS,
2372 PPC_SEGMENT_REGS,
2373 PPC_OEA_SPRS,
2374 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2375 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2376 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2377 };
2378
2379 /* Motorola PowerPC 604 or 604e. */
2380 static const struct reg registers_604[] =
2381 {
2382 COMMON_UISA_REGS,
2383 PPC_UISA_SPRS,
2384 PPC_SEGMENT_REGS,
2385 PPC_OEA_SPRS,
2386 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2387 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2388 /* 127 */ R(sia), R(sda)
2389 };
2390
2391 /* Motorola/IBM PowerPC 750 or 740. */
2392 static const struct reg registers_750[] =
2393 {
2394 COMMON_UISA_REGS,
2395 PPC_UISA_SPRS,
2396 PPC_SEGMENT_REGS,
2397 PPC_OEA_SPRS,
2398 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2399 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2400 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2401 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2402 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2403 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2404 };
2405
2406
2407 /* Motorola PowerPC 7400. */
2408 static const struct reg registers_7400[] =
2409 {
2410 /* gpr0-gpr31, fpr0-fpr31 */
2411 COMMON_UISA_REGS,
2412 /* ctr, xre, lr, cr */
2413 PPC_UISA_SPRS,
2414 /* sr0-sr15 */
2415 PPC_SEGMENT_REGS,
2416 PPC_OEA_SPRS,
2417 /* vr0-vr31, vrsave, vscr */
2418 PPC_ALTIVEC_REGS
2419 /* FIXME? Add more registers? */
2420 };
2421
2422 /* Motorola e500. */
2423 static const struct reg registers_e500[] =
2424 {
2425 R(pc), R(ps),
2426 /* cr, lr, ctr, xer, "" */
2427 PPC_UISA_NOFP_SPRS,
2428 /* 7...38 */
2429 PPC_EV_REGS,
2430 R8(acc), R(spefscr),
2431 /* NOTE: Add new registers here the end of the raw register
2432 list and just before the first pseudo register. */
2433 /* 39...70 */
2434 PPC_GPRS_PSEUDO_REGS
2435 };
2436
2437 /* Information about a particular processor variant. */
2438
2439 struct variant
2440 {
2441 /* Name of this variant. */
2442 char *name;
2443
2444 /* English description of the variant. */
2445 char *description;
2446
2447 /* bfd_arch_info.arch corresponding to variant. */
2448 enum bfd_architecture arch;
2449
2450 /* bfd_arch_info.mach corresponding to variant. */
2451 unsigned long mach;
2452
2453 /* Number of real registers. */
2454 int nregs;
2455
2456 /* Number of pseudo registers. */
2457 int npregs;
2458
2459 /* Number of total registers (the sum of nregs and npregs). */
2460 int num_tot_regs;
2461
2462 /* Table of register names; registers[R] is the name of the register
2463 number R. */
2464 const struct reg *regs;
2465 };
2466
2467 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2468
2469 static int
2470 num_registers (const struct reg *reg_list, int num_tot_regs)
2471 {
2472 int i;
2473 int nregs = 0;
2474
2475 for (i = 0; i < num_tot_regs; i++)
2476 if (!reg_list[i].pseudo)
2477 nregs++;
2478
2479 return nregs;
2480 }
2481
2482 static int
2483 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2484 {
2485 int i;
2486 int npregs = 0;
2487
2488 for (i = 0; i < num_tot_regs; i++)
2489 if (reg_list[i].pseudo)
2490 npregs ++;
2491
2492 return npregs;
2493 }
2494
2495 /* Information in this table comes from the following web sites:
2496 IBM: http://www.chips.ibm.com:80/products/embedded/
2497 Motorola: http://www.mot.com/SPS/PowerPC/
2498
2499 I'm sure I've got some of the variant descriptions not quite right.
2500 Please report any inaccuracies you find to GDB's maintainer.
2501
2502 If you add entries to this table, please be sure to allow the new
2503 value as an argument to the --with-cpu flag, in configure.in. */
2504
2505 static struct variant variants[] =
2506 {
2507
2508 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2509 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2510 registers_powerpc},
2511 {"power", "POWER user-level", bfd_arch_rs6000,
2512 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2513 registers_power},
2514 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2515 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2516 registers_403},
2517 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2518 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2519 registers_601},
2520 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2521 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2522 registers_602},
2523 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2524 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2525 registers_603},
2526 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2527 604, -1, -1, tot_num_registers (registers_604),
2528 registers_604},
2529 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2530 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2531 registers_403GC},
2532 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2533 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2534 registers_505},
2535 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2536 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2537 registers_860},
2538 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2539 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2540 registers_750},
2541 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2542 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2543 registers_7400},
2544 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2545 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2546 registers_e500},
2547
2548 /* 64-bit */
2549 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2550 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2551 registers_powerpc},
2552 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2553 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2554 registers_powerpc},
2555 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2556 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2557 registers_powerpc},
2558 {"a35", "PowerPC A35", bfd_arch_powerpc,
2559 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2560 registers_powerpc},
2561 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2562 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2563 registers_powerpc},
2564 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2565 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2566 registers_powerpc},
2567
2568 /* FIXME: I haven't checked the register sets of the following. */
2569 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2570 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2571 registers_power},
2572 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2573 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2574 registers_power},
2575 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2576 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2577 registers_power},
2578
2579 {0, 0, 0, 0, 0, 0, 0, 0}
2580 };
2581
2582 /* Initialize the number of registers and pseudo registers in each variant. */
2583
2584 static void
2585 init_variants (void)
2586 {
2587 struct variant *v;
2588
2589 for (v = variants; v->name; v++)
2590 {
2591 if (v->nregs == -1)
2592 v->nregs = num_registers (v->regs, v->num_tot_regs);
2593 if (v->npregs == -1)
2594 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2595 }
2596 }
2597
2598 /* Return the variant corresponding to architecture ARCH and machine number
2599 MACH. If no such variant exists, return null. */
2600
2601 static const struct variant *
2602 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2603 {
2604 const struct variant *v;
2605
2606 for (v = variants; v->name; v++)
2607 if (arch == v->arch && mach == v->mach)
2608 return v;
2609
2610 return NULL;
2611 }
2612
2613 static int
2614 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2615 {
2616 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2617 return print_insn_big_powerpc (memaddr, info);
2618 else
2619 return print_insn_little_powerpc (memaddr, info);
2620 }
2621 \f
2622 /* Initialize the current architecture based on INFO. If possible, re-use an
2623 architecture from ARCHES, which is a list of architectures already created
2624 during this debugging session.
2625
2626 Called e.g. at program startup, when reading a core file, and when reading
2627 a binary file. */
2628
2629 static struct gdbarch *
2630 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2631 {
2632 struct gdbarch *gdbarch;
2633 struct gdbarch_tdep *tdep;
2634 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2635 struct reg *regs;
2636 const struct variant *v;
2637 enum bfd_architecture arch;
2638 unsigned long mach;
2639 bfd abfd;
2640 int sysv_abi;
2641 asection *sect;
2642
2643 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2644 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2645
2646 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2647 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2648
2649 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2650
2651 /* Check word size. If INFO is from a binary file, infer it from
2652 that, else choose a likely default. */
2653 if (from_xcoff_exec)
2654 {
2655 if (bfd_xcoff_is_xcoff64 (info.abfd))
2656 wordsize = 8;
2657 else
2658 wordsize = 4;
2659 }
2660 else if (from_elf_exec)
2661 {
2662 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2663 wordsize = 8;
2664 else
2665 wordsize = 4;
2666 }
2667 else
2668 {
2669 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2670 wordsize = info.bfd_arch_info->bits_per_word /
2671 info.bfd_arch_info->bits_per_byte;
2672 else
2673 wordsize = 4;
2674 }
2675
2676 /* Find a candidate among extant architectures. */
2677 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2678 arches != NULL;
2679 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2680 {
2681 /* Word size in the various PowerPC bfd_arch_info structs isn't
2682 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2683 separate word size check. */
2684 tdep = gdbarch_tdep (arches->gdbarch);
2685 if (tdep && tdep->wordsize == wordsize)
2686 return arches->gdbarch;
2687 }
2688
2689 /* None found, create a new architecture from INFO, whose bfd_arch_info
2690 validity depends on the source:
2691 - executable useless
2692 - rs6000_host_arch() good
2693 - core file good
2694 - "set arch" trust blindly
2695 - GDB startup useless but harmless */
2696
2697 if (!from_xcoff_exec)
2698 {
2699 arch = info.bfd_arch_info->arch;
2700 mach = info.bfd_arch_info->mach;
2701 }
2702 else
2703 {
2704 arch = bfd_arch_powerpc;
2705 bfd_default_set_arch_mach (&abfd, arch, 0);
2706 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2707 mach = info.bfd_arch_info->mach;
2708 }
2709 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2710 tdep->wordsize = wordsize;
2711
2712 /* For e500 executables, the apuinfo section is of help here. Such
2713 section contains the identifier and revision number of each
2714 Application-specific Processing Unit that is present on the
2715 chip. The content of the section is determined by the assembler
2716 which looks at each instruction and determines which unit (and
2717 which version of it) can execute it. In our case we just look for
2718 the existance of the section. */
2719
2720 if (info.abfd)
2721 {
2722 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2723 if (sect)
2724 {
2725 arch = info.bfd_arch_info->arch;
2726 mach = bfd_mach_ppc_e500;
2727 bfd_default_set_arch_mach (&abfd, arch, mach);
2728 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2729 }
2730 }
2731
2732 gdbarch = gdbarch_alloc (&info, tdep);
2733 power = arch == bfd_arch_rs6000;
2734
2735 /* Initialize the number of real and pseudo registers in each variant. */
2736 init_variants ();
2737
2738 /* Choose variant. */
2739 v = find_variant_by_arch (arch, mach);
2740 if (!v)
2741 return NULL;
2742
2743 tdep->regs = v->regs;
2744
2745 tdep->ppc_gp0_regnum = 0;
2746 tdep->ppc_gplast_regnum = 31;
2747 tdep->ppc_toc_regnum = 2;
2748 tdep->ppc_ps_regnum = 65;
2749 tdep->ppc_cr_regnum = 66;
2750 tdep->ppc_lr_regnum = 67;
2751 tdep->ppc_ctr_regnum = 68;
2752 tdep->ppc_xer_regnum = 69;
2753 if (v->mach == bfd_mach_ppc_601)
2754 tdep->ppc_mq_regnum = 124;
2755 else if (power)
2756 tdep->ppc_mq_regnum = 70;
2757 else
2758 tdep->ppc_mq_regnum = -1;
2759 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2760
2761 set_gdbarch_pc_regnum (gdbarch, 64);
2762 set_gdbarch_sp_regnum (gdbarch, 1);
2763 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2764 if (sysv_abi && wordsize == 8)
2765 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
2766 else if (sysv_abi && wordsize == 4)
2767 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
2768 else
2769 {
2770 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2771 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2772 }
2773
2774 if (v->arch == bfd_arch_powerpc)
2775 switch (v->mach)
2776 {
2777 case bfd_mach_ppc:
2778 tdep->ppc_vr0_regnum = 71;
2779 tdep->ppc_vrsave_regnum = 104;
2780 tdep->ppc_ev0_regnum = -1;
2781 tdep->ppc_ev31_regnum = -1;
2782 break;
2783 case bfd_mach_ppc_7400:
2784 tdep->ppc_vr0_regnum = 119;
2785 tdep->ppc_vrsave_regnum = 152;
2786 tdep->ppc_ev0_regnum = -1;
2787 tdep->ppc_ev31_regnum = -1;
2788 break;
2789 case bfd_mach_ppc_e500:
2790 tdep->ppc_gp0_regnum = 41;
2791 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2792 tdep->ppc_toc_regnum = -1;
2793 tdep->ppc_ps_regnum = 1;
2794 tdep->ppc_cr_regnum = 2;
2795 tdep->ppc_lr_regnum = 3;
2796 tdep->ppc_ctr_regnum = 4;
2797 tdep->ppc_xer_regnum = 5;
2798 tdep->ppc_ev0_regnum = 7;
2799 tdep->ppc_ev31_regnum = 38;
2800 set_gdbarch_pc_regnum (gdbarch, 0);
2801 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2802 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2803 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2804 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2805 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2806 break;
2807 default:
2808 tdep->ppc_vr0_regnum = -1;
2809 tdep->ppc_vrsave_regnum = -1;
2810 tdep->ppc_ev0_regnum = -1;
2811 tdep->ppc_ev31_regnum = -1;
2812 break;
2813 }
2814
2815 /* Sanity check on registers. */
2816 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2817
2818 /* Set lr_frame_offset. */
2819 if (wordsize == 8)
2820 tdep->lr_frame_offset = 16;
2821 else if (sysv_abi)
2822 tdep->lr_frame_offset = 4;
2823 else
2824 tdep->lr_frame_offset = 8;
2825
2826 /* Calculate byte offsets in raw register array. */
2827 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2828 for (i = off = 0; i < v->num_tot_regs; i++)
2829 {
2830 tdep->regoff[i] = off;
2831 off += regsize (v->regs + i, wordsize);
2832 }
2833
2834 /* Select instruction printer. */
2835 if (arch == power)
2836 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2837 else
2838 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2839
2840 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2841
2842 set_gdbarch_num_regs (gdbarch, v->nregs);
2843 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2844 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2845 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2846 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2847 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2848 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2849 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2850
2851 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2852 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2853 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2854 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2855 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2856 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2857 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2858 if (sysv_abi)
2859 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2860 else
2861 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2862 set_gdbarch_char_signed (gdbarch, 0);
2863
2864 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2865 if (sysv_abi && wordsize == 8)
2866 /* PPC64 SYSV. */
2867 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2868 else if (!sysv_abi && wordsize == 4)
2869 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2870 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2871 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2872 224. */
2873 set_gdbarch_frame_red_zone_size (gdbarch, 224);
2874 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2875 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2876
2877 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2878 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2879 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2880 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2881 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2882 is correct for the SysV ABI when the wordsize is 8, but I'm also
2883 fairly certain that ppc_sysv_abi_push_arguments() will give even
2884 worse results since it only works for 32-bit code. So, for the moment,
2885 we're better off calling rs6000_push_arguments() since it works for
2886 64-bit code. At some point in the future, this matter needs to be
2887 revisited. */
2888 if (sysv_abi && wordsize == 4)
2889 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2890 else if (sysv_abi && wordsize == 8)
2891 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
2892 else
2893 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2894
2895 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2896 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2897
2898 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2899 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2900 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2901
2902 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2903 for the descriptor and ".FN" for the entry-point -- a user
2904 specifying "break FN" will unexpectedly end up with a breakpoint
2905 on the descriptor and not the function. This architecture method
2906 transforms any breakpoints on descriptors into breakpoints on the
2907 corresponding entry point. */
2908 if (sysv_abi && wordsize == 8)
2909 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2910
2911 /* Not sure on this. FIXMEmgo */
2912 set_gdbarch_frame_args_skip (gdbarch, 8);
2913
2914 if (!sysv_abi)
2915 set_gdbarch_use_struct_convention (gdbarch,
2916 rs6000_use_struct_convention);
2917
2918 set_gdbarch_frameless_function_invocation (gdbarch,
2919 rs6000_frameless_function_invocation);
2920 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2921 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2922
2923 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2924 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2925
2926 if (!sysv_abi)
2927 {
2928 /* Handle RS/6000 function pointers (which are really function
2929 descriptors). */
2930 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2931 rs6000_convert_from_func_ptr_addr);
2932 }
2933 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2934 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
2935 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2936
2937 /* Helpers for function argument information. */
2938 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2939
2940 /* Hook in ABI-specific overrides, if they have been registered. */
2941 gdbarch_init_osabi (info, gdbarch);
2942
2943 if (from_xcoff_exec)
2944 {
2945 /* NOTE: jimix/2003-06-09: This test should really check for
2946 GDB_OSABI_AIX when that is defined and becomes
2947 available. (Actually, once things are properly split apart,
2948 the test goes away.) */
2949 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2950 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2951 }
2952
2953 return gdbarch;
2954 }
2955
2956 static void
2957 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2958 {
2959 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2960
2961 if (tdep == NULL)
2962 return;
2963
2964 /* FIXME: Dump gdbarch_tdep. */
2965 }
2966
2967 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2968
2969 static void
2970 rs6000_info_powerpc_command (char *args, int from_tty)
2971 {
2972 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2973 }
2974
2975 /* Initialization code. */
2976
2977 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
2978
2979 void
2980 _initialize_rs6000_tdep (void)
2981 {
2982 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2983 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2984
2985 /* Add root prefix command for "info powerpc" commands */
2986 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2987 "Various POWERPC info specific commands.",
2988 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2989 }