]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
2003-10-10 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51 #include "dis-asm.h"
52
53 /* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60 #define SIG_FRAME_PC_OFFSET 96
61 #define SIG_FRAME_LR_OFFSET 108
62 #define SIG_FRAME_FP_OFFSET 284
63
64 /* To be used by skip_prologue. */
65
66 struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
73 int saved_vr; /* smallest # of saved vr */
74 int saved_ev; /* smallest # of saved ev */
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
80 int vr_offset; /* offset of saved vrs from prev sp */
81 int ev_offset; /* offset of saved evs from prev sp */
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
84 int vrsave_offset; /* offset of saved vrsave register */
85 };
86
87 /* Description of a single register. */
88
89 struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
95 unsigned char pseudo; /* whether register is pseudo */
96 };
97
98 /* Breakpoint shadows for the single step instructions will be kept here. */
99
100 static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107 stepBreaks[2];
108
109 /* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
113 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115 /* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118 void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120 /* Static function prototypes */
121
122 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
124 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
126 static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141 /* Use the architectures FP registers? */
142 int
143 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144 {
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151 }
152
153 /* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155 static CORE_ADDR
156 read_memory_addr (CORE_ADDR memaddr, int len)
157 {
158 return read_memory_unsigned_integer (memaddr, len);
159 }
160
161 static CORE_ADDR
162 rs6000_skip_prologue (CORE_ADDR pc)
163 {
164 struct rs6000_framedata frame;
165 pc = skip_prologue (pc, 0, &frame);
166 return pc;
167 }
168
169
170 /* Fill in fi->saved_regs */
171
172 struct frame_extra_info
173 {
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
179 CORE_ADDR initial_sp; /* initial stack pointer. */
180 };
181
182 void
183 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184 {
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190 /* We're in get_prev_frame */
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195 }
196
197 /* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
202
203 /* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
207 void
208 rs6000_frame_init_saved_regs (struct frame_info *fi)
209 {
210 frame_get_saved_regs (fi, NULL);
211 }
212
213 static CORE_ADDR
214 rs6000_frame_args_address (struct frame_info *fi)
215 {
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
219 else
220 return frame_initial_stack_address (fi);
221 }
222
223 /* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228 static CORE_ADDR
229 rs6000_saved_pc_after_call (struct frame_info *fi)
230 {
231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
232 }
233
234 /* Get the ith function argument for the current function. */
235 static CORE_ADDR
236 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238 {
239 CORE_ADDR addr;
240 get_frame_register (frame, 3 + argi, &addr);
241 return addr;
242 }
243
244 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246 static CORE_ADDR
247 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
248 {
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
292 gdbarch_tdep (current_gdbarch)->wordsize);
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
305 }
306 else
307 return -1;
308 break;
309
310 default:
311 return -1;
312 }
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314 }
315
316
317 /* Sequence of bytes for breakpoint instruction. */
318
319 const static unsigned char *
320 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
321 {
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
324 *bp_size = 4;
325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329 }
330
331
332 /* AIX does not support PT_STEP. Simulate it. */
333
334 void
335 rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
337 {
338 CORE_ADDR dummy;
339 int breakp_sz;
340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
346 if (insert_breakpoints_p)
347 {
348
349 loc = read_pc ();
350
351 insn = read_memory_integer (loc, 4);
352
353 breaks[0] = loc + breakp_sz;
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
356
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
360
361 stepBreaks[1].address = 0;
362
363 for (ii = 0; ii < 2; ++ii)
364 {
365
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
370 stepBreaks[ii].address = breaks[ii];
371 }
372
373 }
374 else
375 {
376
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
382 }
383 errno = 0; /* FIXME, don't ignore errors! */
384 /* What errors? {read,write}_memory call error(). */
385 }
386
387
388 /* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
398 - saved_vr is the number of the first saved vr.
399 - saved_ev is the number of the first saved ev.
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
404 - vr_offset is the offset of the first saved vr from the previous frame.
405 - ev_offset is the offset of the first saved ev from the previous frame.
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
408 - vrsave_offset is the offset of the saved vrsave register
409 */
410
411 #define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
418 /* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420 static int max_skip_non_prologue_insns = 10;
421
422 /* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428 static CORE_ADDR
429 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430 {
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467 }
468
469
470 static CORE_ADDR
471 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
472 {
473 CORE_ADDR orig_pc = pc;
474 CORE_ADDR last_prologue_pc = pc;
475 CORE_ADDR li_found_pc = 0;
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
479 long vr_saved_offset = 0;
480 int lr_reg = -1;
481 int cr_reg = -1;
482 int vr_reg = -1;
483 int ev_reg = -1;
484 long ev_offset = 0;
485 int vrsave_reg = -1;
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
489 int prev_insn_was_prologue_insn = 1;
490 int num_skip_non_prologue_insns = 0;
491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
493
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
508
509 memset (fdata, 0, sizeof (struct rs6000_framedata));
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
512 fdata->saved_vr = -1;
513 fdata->saved_ev = -1;
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
518 for (;; pc += 4)
519 {
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
531 prev_insn_was_prologue_insn = 1;
532
533 /* Fetch the instruction and convert it to an integer. */
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
537
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
540 lr_reg = (op & 0x03e00000);
541 continue;
542
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
546 cr_reg = (op & 0x03e00000);
547 continue;
548
549 }
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
559
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
571 if ((op & 0xfc1f0003) == 0xf8010000)
572 op &= ~3UL;
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
576
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
580 /* nop */
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
621 continue;
622
623 }
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
633 cr_reg = 0;
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
653 }
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
659
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
664
665 fdata->frameless = 0;
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
683 }
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
691 }
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
712 }
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
716 && !minimal_toc_loaded)
717 {
718 minimal_toc_loaded = 1;
719 continue;
720
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
728 {
729 continue;
730
731 /* store parameters in stack */
732 }
733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
737 continue;
738
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
766 continue;
767 }
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
935 else
936 {
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
951 /* Never skip branches. */
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
962 }
963 }
964
965 #if 0
966 /* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
972 We'd like to skip over it as well. Fortunately, xlc does some extra
973 work before calling a function right after a prologue, thus we can
974 single out such gcc2 behaviour. */
975
976
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
983
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
986
987 tmp = find_pc_misc_function (pc);
988 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
989 return pc + 8;
990 }
991 }
992 #endif /* 0 */
993
994 fdata->offset = -fdata->offset;
995 return last_prologue_pc;
996 }
997
998
999 /*************************************************************************
1000 Support for creating pushing a dummy frame into the stack, and popping
1001 frames, etc.
1002 *************************************************************************/
1003
1004
1005 /* Pop the innermost frame, go back to the caller. */
1006
1007 static void
1008 rs6000_pop_frame (void)
1009 {
1010 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1011 struct rs6000_framedata fdata;
1012 struct frame_info *frame = get_current_frame ();
1013 int ii, wordsize;
1014
1015 pc = read_pc ();
1016 sp = get_frame_base (frame);
1017
1018 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1019 get_frame_base (frame),
1020 get_frame_base (frame)))
1021 {
1022 generic_pop_dummy_frame ();
1023 flush_cached_frames ();
1024 return;
1025 }
1026
1027 /* Make sure that all registers are valid. */
1028 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1029
1030 /* Figure out previous %pc value. If the function is frameless, it is
1031 still in the link register, otherwise walk the frames and retrieve the
1032 saved %pc value in the previous frame. */
1033
1034 addr = get_frame_func (frame);
1035 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1036
1037 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1038 if (fdata.frameless)
1039 prev_sp = sp;
1040 else
1041 prev_sp = read_memory_addr (sp, wordsize);
1042 if (fdata.lr_offset == 0)
1043 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1044 else
1045 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1046
1047 /* reset %pc value. */
1048 write_register (PC_REGNUM, lr);
1049
1050 /* reset register values if any was saved earlier. */
1051
1052 if (fdata.saved_gpr != -1)
1053 {
1054 addr = prev_sp + fdata.gpr_offset;
1055 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1056 {
1057 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
1058 wordsize);
1059 addr += wordsize;
1060 }
1061 }
1062
1063 if (fdata.saved_fpr != -1)
1064 {
1065 addr = prev_sp + fdata.fpr_offset;
1066 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1067 {
1068 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1069 addr += 8;
1070 }
1071 }
1072
1073 write_register (SP_REGNUM, prev_sp);
1074 target_store_registers (-1);
1075 flush_cached_frames ();
1076 }
1077
1078 /* All the ABI's require 16 byte alignment. */
1079 static CORE_ADDR
1080 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1081 {
1082 return (addr & -16);
1083 }
1084
1085 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1086 the first eight words of the argument list (that might be less than
1087 eight parameters if some parameters occupy more than one word) are
1088 passed in r3..r10 registers. float and double parameters are
1089 passed in fpr's, in addition to that. Rest of the parameters if any
1090 are passed in user stack. There might be cases in which half of the
1091 parameter is copied into registers, the other half is pushed into
1092 stack.
1093
1094 Stack must be aligned on 64-bit boundaries when synthesizing
1095 function calls.
1096
1097 If the function is returning a structure, then the return address is passed
1098 in r3, then the first 7 words of the parameters can be passed in registers,
1099 starting from r4. */
1100
1101 static CORE_ADDR
1102 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1103 struct regcache *regcache, CORE_ADDR bp_addr,
1104 int nargs, struct value **args, CORE_ADDR sp,
1105 int struct_return, CORE_ADDR struct_addr)
1106 {
1107 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1108 int ii;
1109 int len = 0;
1110 int argno; /* current argument number */
1111 int argbytes; /* current argument byte */
1112 char tmp_buffer[50];
1113 int f_argno = 0; /* current floating point argno */
1114 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1115
1116 struct value *arg = 0;
1117 struct type *type;
1118
1119 CORE_ADDR saved_sp;
1120
1121 /* The first eight words of ther arguments are passed in registers.
1122 Copy them appropriately. */
1123 ii = 0;
1124
1125 /* If the function is returning a `struct', then the first word
1126 (which will be passed in r3) is used for struct return address.
1127 In that case we should advance one word and start from r4
1128 register to copy parameters. */
1129 if (struct_return)
1130 {
1131 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1132 struct_addr);
1133 ii++;
1134 }
1135
1136 /*
1137 effectively indirect call... gcc does...
1138
1139 return_val example( float, int);
1140
1141 eabi:
1142 float in fp0, int in r3
1143 offset of stack on overflow 8/16
1144 for varargs, must go by type.
1145 power open:
1146 float in r3&r4, int in r5
1147 offset of stack on overflow different
1148 both:
1149 return in r3 or f0. If no float, must study how gcc emulates floats;
1150 pay attention to arg promotion.
1151 User may have to cast\args to handle promotion correctly
1152 since gdb won't know if prototype supplied or not.
1153 */
1154
1155 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1156 {
1157 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1158
1159 arg = args[argno];
1160 type = check_typedef (VALUE_TYPE (arg));
1161 len = TYPE_LENGTH (type);
1162
1163 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1164 {
1165
1166 /* Floating point arguments are passed in fpr's, as well as gpr's.
1167 There are 13 fpr's reserved for passing parameters. At this point
1168 there is no way we would run out of them. */
1169
1170 if (len > 8)
1171 printf_unfiltered (
1172 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1173
1174 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1175 VALUE_CONTENTS (arg),
1176 len);
1177 ++f_argno;
1178 }
1179
1180 if (len > reg_size)
1181 {
1182
1183 /* Argument takes more than one register. */
1184 while (argbytes < len)
1185 {
1186 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1187 reg_size);
1188 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1189 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1190 (len - argbytes) > reg_size
1191 ? reg_size : len - argbytes);
1192 ++ii, argbytes += reg_size;
1193
1194 if (ii >= 8)
1195 goto ran_out_of_registers_for_arguments;
1196 }
1197 argbytes = 0;
1198 --ii;
1199 }
1200 else
1201 {
1202 /* Argument can fit in one register. No problem. */
1203 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1204 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1205 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1206 VALUE_CONTENTS (arg), len);
1207 }
1208 ++argno;
1209 }
1210
1211 ran_out_of_registers_for_arguments:
1212
1213 saved_sp = read_sp ();
1214
1215 /* Location for 8 parameters are always reserved. */
1216 sp -= wordsize * 8;
1217
1218 /* Another six words for back chain, TOC register, link register, etc. */
1219 sp -= wordsize * 6;
1220
1221 /* Stack pointer must be quadword aligned. */
1222 sp &= -16;
1223
1224 /* If there are more arguments, allocate space for them in
1225 the stack, then push them starting from the ninth one. */
1226
1227 if ((argno < nargs) || argbytes)
1228 {
1229 int space = 0, jj;
1230
1231 if (argbytes)
1232 {
1233 space += ((len - argbytes + 3) & -4);
1234 jj = argno + 1;
1235 }
1236 else
1237 jj = argno;
1238
1239 for (; jj < nargs; ++jj)
1240 {
1241 struct value *val = args[jj];
1242 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1243 }
1244
1245 /* Add location required for the rest of the parameters. */
1246 space = (space + 15) & -16;
1247 sp -= space;
1248
1249 /* If the last argument copied into the registers didn't fit there
1250 completely, push the rest of it into stack. */
1251
1252 if (argbytes)
1253 {
1254 write_memory (sp + 24 + (ii * 4),
1255 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1256 len - argbytes);
1257 ++argno;
1258 ii += ((len - argbytes + 3) & -4) / 4;
1259 }
1260
1261 /* Push the rest of the arguments into stack. */
1262 for (; argno < nargs; ++argno)
1263 {
1264
1265 arg = args[argno];
1266 type = check_typedef (VALUE_TYPE (arg));
1267 len = TYPE_LENGTH (type);
1268
1269
1270 /* Float types should be passed in fpr's, as well as in the
1271 stack. */
1272 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1273 {
1274
1275 if (len > 8)
1276 printf_unfiltered (
1277 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1278
1279 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1280 VALUE_CONTENTS (arg),
1281 len);
1282 ++f_argno;
1283 }
1284
1285 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1286 ii += ((len + 3) & -4) / 4;
1287 }
1288 }
1289
1290 /* set back chain properly */
1291 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1292 write_memory (sp, tmp_buffer, 4);
1293
1294 /* Set the stack pointer. According to the ABI, the SP is meant to
1295 be set _before_ the corresponding stack space is used. No need
1296 for that here though - the target has been completely stopped -
1297 it isn't possible for an exception handler to stomp on the stack. */
1298 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1299
1300 /* Point the inferior function call's return address at the dummy's
1301 breakpoint. */
1302 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1303
1304 /* Set the TOC register, get the value from the objfile reader
1305 which, in turn, gets it from the VMAP table. */
1306 if (rs6000_find_toc_address_hook != NULL)
1307 {
1308 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1309 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1310 }
1311
1312 target_store_registers (-1);
1313 return sp;
1314 }
1315
1316 /* Extract a function return value of type TYPE from raw register array
1317 REGBUF, and copy that return value into VALBUF in virtual format. */
1318 static void
1319 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1320 {
1321 int offset = 0;
1322 int vallen = TYPE_LENGTH (valtype);
1323 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1324
1325 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1326 && vallen == 8
1327 && TYPE_VECTOR (valtype))
1328 {
1329 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1330 }
1331 else
1332 {
1333 /* Return value is copied starting from r3. Note that r3 for us
1334 is a pseudo register. */
1335 int offset = 0;
1336 int return_regnum = tdep->ppc_gp0_regnum + 3;
1337 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (return_regnum);
1338 int reg_part_size;
1339 char *val_buffer;
1340 int copied = 0;
1341 int i = 0;
1342
1343 /* Compute where we will start storing the value from. */
1344 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1345 {
1346 if (vallen <= reg_size)
1347 offset = reg_size - vallen;
1348 else
1349 offset = reg_size + (reg_size - vallen);
1350 }
1351
1352 /* How big does the local buffer need to be? */
1353 if (vallen <= reg_size)
1354 val_buffer = alloca (reg_size);
1355 else
1356 val_buffer = alloca (vallen);
1357
1358 /* Read all we need into our private buffer. We copy it in
1359 chunks that are as long as one register, never shorter, even
1360 if the value is smaller than the register. */
1361 while (copied < vallen)
1362 {
1363 reg_part_size = DEPRECATED_REGISTER_RAW_SIZE (return_regnum + i);
1364 /* It is a pseudo/cooked register. */
1365 regcache_cooked_read (regbuf, return_regnum + i,
1366 val_buffer + copied);
1367 copied += reg_part_size;
1368 i++;
1369 }
1370 /* Put the stuff in the return buffer. */
1371 memcpy (valbuf, val_buffer + offset, vallen);
1372 }
1373 }
1374
1375 /* PowerOpen always puts structures in memory. Vectors, which were
1376 added later, do get returned in a register though. */
1377
1378 static int
1379 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1380 {
1381 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1382 && TYPE_VECTOR (value_type))
1383 return 0;
1384 return 1;
1385 }
1386
1387 static void
1388 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1389 {
1390 int offset = 0;
1391 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1392
1393 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1394 {
1395
1396 double dd;
1397 float ff;
1398 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1399 We need to truncate the return value into float size (4 byte) if
1400 necessary. */
1401
1402 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1403 memcpy (valbuf,
1404 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
1405 TYPE_LENGTH (valtype));
1406 else
1407 { /* float */
1408 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1409 ff = (float) dd;
1410 memcpy (valbuf, &ff, sizeof (float));
1411 }
1412 }
1413 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1414 && TYPE_LENGTH (valtype) == 16
1415 && TYPE_VECTOR (valtype))
1416 {
1417 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1418 TYPE_LENGTH (valtype));
1419 }
1420 else
1421 {
1422 /* return value is copied starting from r3. */
1423 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1424 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1425 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1426
1427 memcpy (valbuf,
1428 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1429 TYPE_LENGTH (valtype));
1430 }
1431 }
1432
1433 /* Return whether handle_inferior_event() should proceed through code
1434 starting at PC in function NAME when stepping.
1435
1436 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1437 handle memory references that are too distant to fit in instructions
1438 generated by the compiler. For example, if 'foo' in the following
1439 instruction:
1440
1441 lwz r9,foo(r2)
1442
1443 is greater than 32767, the linker might replace the lwz with a branch to
1444 somewhere in @FIX1 that does the load in 2 instructions and then branches
1445 back to where execution should continue.
1446
1447 GDB should silently step over @FIX code, just like AIX dbx does.
1448 Unfortunately, the linker uses the "b" instruction for the branches,
1449 meaning that the link register doesn't get set. Therefore, GDB's usual
1450 step_over_function() mechanism won't work.
1451
1452 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1453 in handle_inferior_event() to skip past @FIX code. */
1454
1455 int
1456 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1457 {
1458 return name && !strncmp (name, "@FIX", 4);
1459 }
1460
1461 /* Skip code that the user doesn't want to see when stepping:
1462
1463 1. Indirect function calls use a piece of trampoline code to do context
1464 switching, i.e. to set the new TOC table. Skip such code if we are on
1465 its first instruction (as when we have single-stepped to here).
1466
1467 2. Skip shared library trampoline code (which is different from
1468 indirect function call trampolines).
1469
1470 3. Skip bigtoc fixup code.
1471
1472 Result is desired PC to step until, or NULL if we are not in
1473 code that should be skipped. */
1474
1475 CORE_ADDR
1476 rs6000_skip_trampoline_code (CORE_ADDR pc)
1477 {
1478 unsigned int ii, op;
1479 int rel;
1480 CORE_ADDR solib_target_pc;
1481 struct minimal_symbol *msymbol;
1482
1483 static unsigned trampoline_code[] =
1484 {
1485 0x800b0000, /* l r0,0x0(r11) */
1486 0x90410014, /* st r2,0x14(r1) */
1487 0x7c0903a6, /* mtctr r0 */
1488 0x804b0004, /* l r2,0x4(r11) */
1489 0x816b0008, /* l r11,0x8(r11) */
1490 0x4e800420, /* bctr */
1491 0x4e800020, /* br */
1492 0
1493 };
1494
1495 /* Check for bigtoc fixup code. */
1496 msymbol = lookup_minimal_symbol_by_pc (pc);
1497 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1498 {
1499 /* Double-check that the third instruction from PC is relative "b". */
1500 op = read_memory_integer (pc + 8, 4);
1501 if ((op & 0xfc000003) == 0x48000000)
1502 {
1503 /* Extract bits 6-29 as a signed 24-bit relative word address and
1504 add it to the containing PC. */
1505 rel = ((int)(op << 6) >> 6);
1506 return pc + 8 + rel;
1507 }
1508 }
1509
1510 /* If pc is in a shared library trampoline, return its target. */
1511 solib_target_pc = find_solib_trampoline_target (pc);
1512 if (solib_target_pc)
1513 return solib_target_pc;
1514
1515 for (ii = 0; trampoline_code[ii]; ++ii)
1516 {
1517 op = read_memory_integer (pc + (ii * 4), 4);
1518 if (op != trampoline_code[ii])
1519 return 0;
1520 }
1521 ii = read_register (11); /* r11 holds destination addr */
1522 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1523 return pc;
1524 }
1525
1526 /* Determines whether the function FI has a frame on the stack or not. */
1527
1528 int
1529 rs6000_frameless_function_invocation (struct frame_info *fi)
1530 {
1531 CORE_ADDR func_start;
1532 struct rs6000_framedata fdata;
1533
1534 /* Don't even think about framelessness except on the innermost frame
1535 or if the function was interrupted by a signal. */
1536 if (get_next_frame (fi) != NULL
1537 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1538 return 0;
1539
1540 func_start = get_frame_func (fi);
1541
1542 /* If we failed to find the start of the function, it is a mistake
1543 to inspect the instructions. */
1544
1545 if (!func_start)
1546 {
1547 /* A frame with a zero PC is usually created by dereferencing a NULL
1548 function pointer, normally causing an immediate core dump of the
1549 inferior. Mark function as frameless, as the inferior has no chance
1550 of setting up a stack frame. */
1551 if (get_frame_pc (fi) == 0)
1552 return 1;
1553 else
1554 return 0;
1555 }
1556
1557 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1558 return fdata.frameless;
1559 }
1560
1561 /* Return the PC saved in a frame. */
1562
1563 CORE_ADDR
1564 rs6000_frame_saved_pc (struct frame_info *fi)
1565 {
1566 CORE_ADDR func_start;
1567 struct rs6000_framedata fdata;
1568 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1569 int wordsize = tdep->wordsize;
1570
1571 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1572 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1573 wordsize);
1574
1575 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1576 get_frame_base (fi),
1577 get_frame_base (fi)))
1578 return deprecated_read_register_dummy (get_frame_pc (fi),
1579 get_frame_base (fi), PC_REGNUM);
1580
1581 func_start = get_frame_func (fi);
1582
1583 /* If we failed to find the start of the function, it is a mistake
1584 to inspect the instructions. */
1585 if (!func_start)
1586 return 0;
1587
1588 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1589
1590 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1591 {
1592 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1593 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1594 + SIG_FRAME_LR_OFFSET),
1595 wordsize);
1596 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1597 /* The link register wasn't saved by this frame and the next
1598 (inner, newer) frame is a dummy. Get the link register
1599 value by unwinding it from that [dummy] frame. */
1600 {
1601 ULONGEST lr;
1602 frame_unwind_unsigned_register (get_next_frame (fi),
1603 tdep->ppc_lr_regnum, &lr);
1604 return lr;
1605 }
1606 else
1607 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1608 + tdep->lr_frame_offset,
1609 wordsize);
1610 }
1611
1612 if (fdata.lr_offset == 0)
1613 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1614
1615 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1616 wordsize);
1617 }
1618
1619 /* If saved registers of frame FI are not known yet, read and cache them.
1620 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1621 in which case the framedata are read. */
1622
1623 static void
1624 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1625 {
1626 CORE_ADDR frame_addr;
1627 struct rs6000_framedata work_fdata;
1628 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1629 int wordsize = tdep->wordsize;
1630
1631 if (deprecated_get_frame_saved_regs (fi))
1632 return;
1633
1634 if (fdatap == NULL)
1635 {
1636 fdatap = &work_fdata;
1637 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1638 }
1639
1640 frame_saved_regs_zalloc (fi);
1641
1642 /* If there were any saved registers, figure out parent's stack
1643 pointer. */
1644 /* The following is true only if the frame doesn't have a call to
1645 alloca(), FIXME. */
1646
1647 if (fdatap->saved_fpr == 0
1648 && fdatap->saved_gpr == 0
1649 && fdatap->saved_vr == 0
1650 && fdatap->saved_ev == 0
1651 && fdatap->lr_offset == 0
1652 && fdatap->cr_offset == 0
1653 && fdatap->vr_offset == 0
1654 && fdatap->ev_offset == 0)
1655 frame_addr = 0;
1656 else
1657 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1658 address of the current frame. Things might be easier if the
1659 ->frame pointed to the outer-most address of the frame. In the
1660 mean time, the address of the prev frame is used as the base
1661 address of this frame. */
1662 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1663
1664 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1665 All fpr's from saved_fpr to fp31 are saved. */
1666
1667 if (fdatap->saved_fpr >= 0)
1668 {
1669 int i;
1670 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1671 for (i = fdatap->saved_fpr; i < 32; i++)
1672 {
1673 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1674 fpr_addr += 8;
1675 }
1676 }
1677
1678 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1679 All gpr's from saved_gpr to gpr31 are saved. */
1680
1681 if (fdatap->saved_gpr >= 0)
1682 {
1683 int i;
1684 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1685 for (i = fdatap->saved_gpr; i < 32; i++)
1686 {
1687 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1688 gpr_addr += wordsize;
1689 }
1690 }
1691
1692 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1693 All vr's from saved_vr to vr31 are saved. */
1694 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1695 {
1696 if (fdatap->saved_vr >= 0)
1697 {
1698 int i;
1699 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1700 for (i = fdatap->saved_vr; i < 32; i++)
1701 {
1702 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1703 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1704 }
1705 }
1706 }
1707
1708 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1709 All vr's from saved_ev to ev31 are saved. ????? */
1710 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1711 {
1712 if (fdatap->saved_ev >= 0)
1713 {
1714 int i;
1715 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1716 for (i = fdatap->saved_ev; i < 32; i++)
1717 {
1718 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1719 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1720 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1721 }
1722 }
1723 }
1724
1725 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1726 the CR. */
1727 if (fdatap->cr_offset != 0)
1728 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1729
1730 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1731 the LR. */
1732 if (fdatap->lr_offset != 0)
1733 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1734
1735 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1736 the VRSAVE. */
1737 if (fdatap->vrsave_offset != 0)
1738 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1739 }
1740
1741 /* Return the address of a frame. This is the inital %sp value when the frame
1742 was first allocated. For functions calling alloca(), it might be saved in
1743 an alloca register. */
1744
1745 static CORE_ADDR
1746 frame_initial_stack_address (struct frame_info *fi)
1747 {
1748 CORE_ADDR tmpaddr;
1749 struct rs6000_framedata fdata;
1750 struct frame_info *callee_fi;
1751
1752 /* If the initial stack pointer (frame address) of this frame is known,
1753 just return it. */
1754
1755 if (get_frame_extra_info (fi)->initial_sp)
1756 return get_frame_extra_info (fi)->initial_sp;
1757
1758 /* Find out if this function is using an alloca register. */
1759
1760 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1761
1762 /* If saved registers of this frame are not known yet, read and
1763 cache them. */
1764
1765 if (!deprecated_get_frame_saved_regs (fi))
1766 frame_get_saved_regs (fi, &fdata);
1767
1768 /* If no alloca register used, then fi->frame is the value of the %sp for
1769 this frame, and it is good enough. */
1770
1771 if (fdata.alloca_reg < 0)
1772 {
1773 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1774 return get_frame_extra_info (fi)->initial_sp;
1775 }
1776
1777 /* There is an alloca register, use its value, in the current frame,
1778 as the initial stack pointer. */
1779 {
1780 char tmpbuf[MAX_REGISTER_SIZE];
1781 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1782 {
1783 get_frame_extra_info (fi)->initial_sp
1784 = extract_unsigned_integer (tmpbuf,
1785 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
1786 }
1787 else
1788 /* NOTE: cagney/2002-04-17: At present the only time
1789 frame_register_read will fail is when the register isn't
1790 available. If that does happen, use the frame. */
1791 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1792 }
1793 return get_frame_extra_info (fi)->initial_sp;
1794 }
1795
1796 /* Describe the pointer in each stack frame to the previous stack frame
1797 (its caller). */
1798
1799 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1800 the frame's chain-pointer. */
1801
1802 /* In the case of the RS/6000, the frame's nominal address
1803 is the address of a 4-byte word containing the calling frame's address. */
1804
1805 CORE_ADDR
1806 rs6000_frame_chain (struct frame_info *thisframe)
1807 {
1808 CORE_ADDR fp, fpp, lr;
1809 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1810
1811 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1812 get_frame_base (thisframe),
1813 get_frame_base (thisframe)))
1814 /* A dummy frame always correctly chains back to the previous
1815 frame. */
1816 return read_memory_addr (get_frame_base (thisframe), wordsize);
1817
1818 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
1819 || get_frame_pc (thisframe) == entry_point_address ())
1820 return 0;
1821
1822 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1823 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1824 wordsize);
1825 else if (get_next_frame (thisframe) != NULL
1826 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1827 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1828 /* A frameless function interrupted by a signal did not change the
1829 frame pointer. */
1830 fp = get_frame_base (thisframe);
1831 else
1832 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1833 return fp;
1834 }
1835
1836 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1837 isn't available with that word size, return 0. */
1838
1839 static int
1840 regsize (const struct reg *reg, int wordsize)
1841 {
1842 return wordsize == 8 ? reg->sz64 : reg->sz32;
1843 }
1844
1845 /* Return the name of register number N, or null if no such register exists
1846 in the current architecture. */
1847
1848 static const char *
1849 rs6000_register_name (int n)
1850 {
1851 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1852 const struct reg *reg = tdep->regs + n;
1853
1854 if (!regsize (reg, tdep->wordsize))
1855 return NULL;
1856 return reg->name;
1857 }
1858
1859 /* Index within `registers' of the first byte of the space for
1860 register N. */
1861
1862 static int
1863 rs6000_register_byte (int n)
1864 {
1865 return gdbarch_tdep (current_gdbarch)->regoff[n];
1866 }
1867
1868 /* Return the number of bytes of storage in the actual machine representation
1869 for register N if that register is available, else return 0. */
1870
1871 static int
1872 rs6000_register_raw_size (int n)
1873 {
1874 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1875 const struct reg *reg = tdep->regs + n;
1876 return regsize (reg, tdep->wordsize);
1877 }
1878
1879 /* Return the GDB type object for the "standard" data type
1880 of data in register N. */
1881
1882 static struct type *
1883 rs6000_register_virtual_type (int n)
1884 {
1885 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1886 const struct reg *reg = tdep->regs + n;
1887
1888 if (reg->fpr)
1889 return builtin_type_double;
1890 else
1891 {
1892 int size = regsize (reg, tdep->wordsize);
1893 switch (size)
1894 {
1895 case 0:
1896 return builtin_type_int0;
1897 case 4:
1898 return builtin_type_int32;
1899 case 8:
1900 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1901 return builtin_type_vec64;
1902 else
1903 return builtin_type_int64;
1904 break;
1905 case 16:
1906 return builtin_type_vec128;
1907 break;
1908 default:
1909 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1910 n, size);
1911 }
1912 }
1913 }
1914
1915 /* Return whether register N requires conversion when moving from raw format
1916 to virtual format.
1917
1918 The register format for RS/6000 floating point registers is always
1919 double, we need a conversion if the memory format is float. */
1920
1921 static int
1922 rs6000_register_convertible (int n)
1923 {
1924 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1925 return reg->fpr;
1926 }
1927
1928 /* Convert data from raw format for register N in buffer FROM
1929 to virtual format with type TYPE in buffer TO. */
1930
1931 static void
1932 rs6000_register_convert_to_virtual (int n, struct type *type,
1933 char *from, char *to)
1934 {
1935 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1936 {
1937 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
1938 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1939 }
1940 else
1941 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1942 }
1943
1944 /* Convert data from virtual format with type TYPE in buffer FROM
1945 to raw format for register N in buffer TO. */
1946
1947 static void
1948 rs6000_register_convert_to_raw (struct type *type, int n,
1949 const char *from, char *to)
1950 {
1951 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1952 {
1953 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1954 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
1955 }
1956 else
1957 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1958 }
1959
1960 static void
1961 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1962 int reg_nr, void *buffer)
1963 {
1964 int base_regnum;
1965 int offset = 0;
1966 char temp_buffer[MAX_REGISTER_SIZE];
1967 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1968
1969 if (reg_nr >= tdep->ppc_gp0_regnum
1970 && reg_nr <= tdep->ppc_gplast_regnum)
1971 {
1972 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1973
1974 /* Build the value in the provided buffer. */
1975 /* Read the raw register of which this one is the lower portion. */
1976 regcache_raw_read (regcache, base_regnum, temp_buffer);
1977 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1978 offset = 4;
1979 memcpy ((char *) buffer, temp_buffer + offset, 4);
1980 }
1981 }
1982
1983 static void
1984 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1985 int reg_nr, const void *buffer)
1986 {
1987 int base_regnum;
1988 int offset = 0;
1989 char temp_buffer[MAX_REGISTER_SIZE];
1990 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1991
1992 if (reg_nr >= tdep->ppc_gp0_regnum
1993 && reg_nr <= tdep->ppc_gplast_regnum)
1994 {
1995 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1996 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1997 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1998 offset = 4;
1999
2000 /* Let's read the value of the base register into a temporary
2001 buffer, so that overwriting the last four bytes with the new
2002 value of the pseudo will leave the upper 4 bytes unchanged. */
2003 regcache_raw_read (regcache, base_regnum, temp_buffer);
2004
2005 /* Write as an 8 byte quantity. */
2006 memcpy (temp_buffer + offset, (char *) buffer, 4);
2007 regcache_raw_write (regcache, base_regnum, temp_buffer);
2008 }
2009 }
2010
2011 /* Convert a dwarf2 register number to a gdb REGNUM. */
2012 static int
2013 e500_dwarf2_reg_to_regnum (int num)
2014 {
2015 int regnum;
2016 if (0 <= num && num <= 31)
2017 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
2018 else
2019 return num;
2020 }
2021
2022 /* Convert a dbx stab register number (from `r' declaration) to a gdb
2023 REGNUM. */
2024 static int
2025 rs6000_stab_reg_to_regnum (int num)
2026 {
2027 int regnum;
2028 switch (num)
2029 {
2030 case 64:
2031 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
2032 break;
2033 case 65:
2034 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2035 break;
2036 case 66:
2037 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2038 break;
2039 case 76:
2040 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2041 break;
2042 default:
2043 regnum = num;
2044 break;
2045 }
2046 return regnum;
2047 }
2048
2049 /* Write into appropriate registers a function return value
2050 of type TYPE, given in virtual format. */
2051 static void
2052 e500_store_return_value (struct type *type, char *valbuf)
2053 {
2054 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2055
2056 /* Everything is returned in GPR3 and up. */
2057 int copied = 0;
2058 int i = 0;
2059 int len = TYPE_LENGTH (type);
2060 while (copied < len)
2061 {
2062 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2063 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (regnum);
2064 char *reg_val_buf = alloca (reg_size);
2065
2066 memcpy (reg_val_buf, valbuf + copied, reg_size);
2067 copied += reg_size;
2068 deprecated_write_register_gen (regnum, reg_val_buf);
2069 i++;
2070 }
2071 }
2072
2073 static void
2074 rs6000_store_return_value (struct type *type, char *valbuf)
2075 {
2076 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2077
2078 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2079
2080 /* Floating point values are returned starting from FPR1 and up.
2081 Say a double_double_double type could be returned in
2082 FPR1/FPR2/FPR3 triple. */
2083
2084 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2085 TYPE_LENGTH (type));
2086 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2087 {
2088 if (TYPE_LENGTH (type) == 16
2089 && TYPE_VECTOR (type))
2090 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2091 valbuf, TYPE_LENGTH (type));
2092 }
2093 else
2094 /* Everything else is returned in GPR3 and up. */
2095 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2096 valbuf, TYPE_LENGTH (type));
2097 }
2098
2099 /* Extract from an array REGBUF containing the (raw) register state
2100 the address in which a function should return its structure value,
2101 as a CORE_ADDR (or an expression that can be used as one). */
2102
2103 static CORE_ADDR
2104 rs6000_extract_struct_value_address (struct regcache *regcache)
2105 {
2106 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2107 function call GDB knows the address of the struct return value
2108 and hence, should not need to call this function. Unfortunately,
2109 the current call_function_by_hand() code only saves the most
2110 recent struct address leading to occasional calls. The code
2111 should instead maintain a stack of such addresses (in the dummy
2112 frame object). */
2113 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2114 really got no idea where the return value is being stored. While
2115 r3, on function entry, contained the address it will have since
2116 been reused (scratch) and hence wouldn't be valid */
2117 return 0;
2118 }
2119
2120 /* Return whether PC is in a dummy function call.
2121
2122 FIXME: This just checks for the end of the stack, which is broken
2123 for things like stepping through gcc nested function stubs. */
2124
2125 static int
2126 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2127 {
2128 return sp < pc && pc < fp;
2129 }
2130
2131 /* Hook called when a new child process is started. */
2132
2133 void
2134 rs6000_create_inferior (int pid)
2135 {
2136 if (rs6000_set_host_arch_hook)
2137 rs6000_set_host_arch_hook (pid);
2138 }
2139 \f
2140 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2141
2142 Usually a function pointer's representation is simply the address
2143 of the function. On the RS/6000 however, a function pointer is
2144 represented by a pointer to a TOC entry. This TOC entry contains
2145 three words, the first word is the address of the function, the
2146 second word is the TOC pointer (r2), and the third word is the
2147 static chain value. Throughout GDB it is currently assumed that a
2148 function pointer contains the address of the function, which is not
2149 easy to fix. In addition, the conversion of a function address to
2150 a function pointer would require allocation of a TOC entry in the
2151 inferior's memory space, with all its drawbacks. To be able to
2152 call C++ virtual methods in the inferior (which are called via
2153 function pointers), find_function_addr uses this function to get the
2154 function address from a function pointer. */
2155
2156 /* Return real function address if ADDR (a function pointer) is in the data
2157 space and is therefore a special function pointer. */
2158
2159 static CORE_ADDR
2160 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2161 {
2162 struct obj_section *s;
2163
2164 s = find_pc_section (addr);
2165 if (s && s->the_bfd_section->flags & SEC_CODE)
2166 return addr;
2167
2168 /* ADDR is in the data space, so it's a special function pointer. */
2169 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2170 }
2171 \f
2172
2173 /* Handling the various POWER/PowerPC variants. */
2174
2175
2176 /* The arrays here called registers_MUMBLE hold information about available
2177 registers.
2178
2179 For each family of PPC variants, I've tried to isolate out the
2180 common registers and put them up front, so that as long as you get
2181 the general family right, GDB will correctly identify the registers
2182 common to that family. The common register sets are:
2183
2184 For the 60x family: hid0 hid1 iabr dabr pir
2185
2186 For the 505 and 860 family: eie eid nri
2187
2188 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2189 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2190 pbu1 pbl2 pbu2
2191
2192 Most of these register groups aren't anything formal. I arrived at
2193 them by looking at the registers that occurred in more than one
2194 processor.
2195
2196 Note: kevinb/2002-04-30: Support for the fpscr register was added
2197 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2198 for Power. For PowerPC, slot 70 was unused and was already in the
2199 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2200 slot 70 was being used for "mq", so the next available slot (71)
2201 was chosen. It would have been nice to be able to make the
2202 register numbers the same across processor cores, but this wasn't
2203 possible without either 1) renumbering some registers for some
2204 processors or 2) assigning fpscr to a really high slot that's
2205 larger than any current register number. Doing (1) is bad because
2206 existing stubs would break. Doing (2) is undesirable because it
2207 would introduce a really large gap between fpscr and the rest of
2208 the registers for most processors. */
2209
2210 /* Convenience macros for populating register arrays. */
2211
2212 /* Within another macro, convert S to a string. */
2213
2214 #define STR(s) #s
2215
2216 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2217 and 64 bits on 64-bit systems. */
2218 #define R(name) { STR(name), 4, 8, 0, 0 }
2219
2220 /* Return a struct reg defining register NAME that's 32 bits on all
2221 systems. */
2222 #define R4(name) { STR(name), 4, 4, 0, 0 }
2223
2224 /* Return a struct reg defining register NAME that's 64 bits on all
2225 systems. */
2226 #define R8(name) { STR(name), 8, 8, 0, 0 }
2227
2228 /* Return a struct reg defining register NAME that's 128 bits on all
2229 systems. */
2230 #define R16(name) { STR(name), 16, 16, 0, 0 }
2231
2232 /* Return a struct reg defining floating-point register NAME. */
2233 #define F(name) { STR(name), 8, 8, 1, 0 }
2234
2235 /* Return a struct reg defining a pseudo register NAME. */
2236 #define P(name) { STR(name), 4, 8, 0, 1}
2237
2238 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2239 systems and that doesn't exist on 64-bit systems. */
2240 #define R32(name) { STR(name), 4, 0, 0, 0 }
2241
2242 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2243 systems and that doesn't exist on 32-bit systems. */
2244 #define R64(name) { STR(name), 0, 8, 0, 0 }
2245
2246 /* Return a struct reg placeholder for a register that doesn't exist. */
2247 #define R0 { 0, 0, 0, 0, 0 }
2248
2249 /* UISA registers common across all architectures, including POWER. */
2250
2251 #define COMMON_UISA_REGS \
2252 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2253 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2254 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2255 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2256 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2257 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2258 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2259 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2260 /* 64 */ R(pc), R(ps)
2261
2262 #define COMMON_UISA_NOFP_REGS \
2263 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2264 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2265 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2266 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2267 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2268 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2269 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2270 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2271 /* 64 */ R(pc), R(ps)
2272
2273 /* UISA-level SPRs for PowerPC. */
2274 #define PPC_UISA_SPRS \
2275 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2276
2277 /* UISA-level SPRs for PowerPC without floating point support. */
2278 #define PPC_UISA_NOFP_SPRS \
2279 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2280
2281 /* Segment registers, for PowerPC. */
2282 #define PPC_SEGMENT_REGS \
2283 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2284 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2285 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2286 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2287
2288 /* OEA SPRs for PowerPC. */
2289 #define PPC_OEA_SPRS \
2290 /* 87 */ R4(pvr), \
2291 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2292 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2293 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2294 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2295 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2296 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2297 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2298 /* 116 */ R4(dec), R(dabr), R4(ear)
2299
2300 /* AltiVec registers. */
2301 #define PPC_ALTIVEC_REGS \
2302 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2303 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2304 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2305 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2306 /*151*/R4(vscr), R4(vrsave)
2307
2308 /* Vectors of hi-lo general purpose registers. */
2309 #define PPC_EV_REGS \
2310 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2311 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2312 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2313 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2314
2315 /* Lower half of the EV registers. */
2316 #define PPC_GPRS_PSEUDO_REGS \
2317 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2318 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2319 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2320 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2321
2322 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2323 user-level SPR's. */
2324 static const struct reg registers_power[] =
2325 {
2326 COMMON_UISA_REGS,
2327 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2328 /* 71 */ R4(fpscr)
2329 };
2330
2331 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2332 view of the PowerPC. */
2333 static const struct reg registers_powerpc[] =
2334 {
2335 COMMON_UISA_REGS,
2336 PPC_UISA_SPRS,
2337 PPC_ALTIVEC_REGS
2338 };
2339
2340 /* PowerPC UISA - a PPC processor as viewed by user-level
2341 code, but without floating point registers. */
2342 static const struct reg registers_powerpc_nofp[] =
2343 {
2344 COMMON_UISA_NOFP_REGS,
2345 PPC_UISA_SPRS
2346 };
2347
2348 /* IBM PowerPC 403. */
2349 static const struct reg registers_403[] =
2350 {
2351 COMMON_UISA_REGS,
2352 PPC_UISA_SPRS,
2353 PPC_SEGMENT_REGS,
2354 PPC_OEA_SPRS,
2355 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2356 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2357 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2358 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2359 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2360 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2361 };
2362
2363 /* IBM PowerPC 403GC. */
2364 static const struct reg registers_403GC[] =
2365 {
2366 COMMON_UISA_REGS,
2367 PPC_UISA_SPRS,
2368 PPC_SEGMENT_REGS,
2369 PPC_OEA_SPRS,
2370 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2371 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2372 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2373 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2374 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2375 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2376 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2377 /* 147 */ R(tbhu), R(tblu)
2378 };
2379
2380 /* Motorola PowerPC 505. */
2381 static const struct reg registers_505[] =
2382 {
2383 COMMON_UISA_REGS,
2384 PPC_UISA_SPRS,
2385 PPC_SEGMENT_REGS,
2386 PPC_OEA_SPRS,
2387 /* 119 */ R(eie), R(eid), R(nri)
2388 };
2389
2390 /* Motorola PowerPC 860 or 850. */
2391 static const struct reg registers_860[] =
2392 {
2393 COMMON_UISA_REGS,
2394 PPC_UISA_SPRS,
2395 PPC_SEGMENT_REGS,
2396 PPC_OEA_SPRS,
2397 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2398 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2399 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2400 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2401 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2402 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2403 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2404 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2405 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2406 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2407 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2408 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2409 };
2410
2411 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2412 for reading and writing RTCU and RTCL. However, how one reads and writes a
2413 register is the stub's problem. */
2414 static const struct reg registers_601[] =
2415 {
2416 COMMON_UISA_REGS,
2417 PPC_UISA_SPRS,
2418 PPC_SEGMENT_REGS,
2419 PPC_OEA_SPRS,
2420 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2421 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2422 };
2423
2424 /* Motorola PowerPC 602. */
2425 static const struct reg registers_602[] =
2426 {
2427 COMMON_UISA_REGS,
2428 PPC_UISA_SPRS,
2429 PPC_SEGMENT_REGS,
2430 PPC_OEA_SPRS,
2431 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2432 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2433 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2434 };
2435
2436 /* Motorola/IBM PowerPC 603 or 603e. */
2437 static const struct reg registers_603[] =
2438 {
2439 COMMON_UISA_REGS,
2440 PPC_UISA_SPRS,
2441 PPC_SEGMENT_REGS,
2442 PPC_OEA_SPRS,
2443 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2444 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2445 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2446 };
2447
2448 /* Motorola PowerPC 604 or 604e. */
2449 static const struct reg registers_604[] =
2450 {
2451 COMMON_UISA_REGS,
2452 PPC_UISA_SPRS,
2453 PPC_SEGMENT_REGS,
2454 PPC_OEA_SPRS,
2455 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2456 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2457 /* 127 */ R(sia), R(sda)
2458 };
2459
2460 /* Motorola/IBM PowerPC 750 or 740. */
2461 static const struct reg registers_750[] =
2462 {
2463 COMMON_UISA_REGS,
2464 PPC_UISA_SPRS,
2465 PPC_SEGMENT_REGS,
2466 PPC_OEA_SPRS,
2467 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2468 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2469 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2470 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2471 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2472 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2473 };
2474
2475
2476 /* Motorola PowerPC 7400. */
2477 static const struct reg registers_7400[] =
2478 {
2479 /* gpr0-gpr31, fpr0-fpr31 */
2480 COMMON_UISA_REGS,
2481 /* ctr, xre, lr, cr */
2482 PPC_UISA_SPRS,
2483 /* sr0-sr15 */
2484 PPC_SEGMENT_REGS,
2485 PPC_OEA_SPRS,
2486 /* vr0-vr31, vrsave, vscr */
2487 PPC_ALTIVEC_REGS
2488 /* FIXME? Add more registers? */
2489 };
2490
2491 /* Motorola e500. */
2492 static const struct reg registers_e500[] =
2493 {
2494 R(pc), R(ps),
2495 /* cr, lr, ctr, xer, "" */
2496 PPC_UISA_NOFP_SPRS,
2497 /* 7...38 */
2498 PPC_EV_REGS,
2499 R8(acc), R(spefscr),
2500 /* NOTE: Add new registers here the end of the raw register
2501 list and just before the first pseudo register. */
2502 /* 39...70 */
2503 PPC_GPRS_PSEUDO_REGS
2504 };
2505
2506 /* Information about a particular processor variant. */
2507
2508 struct variant
2509 {
2510 /* Name of this variant. */
2511 char *name;
2512
2513 /* English description of the variant. */
2514 char *description;
2515
2516 /* bfd_arch_info.arch corresponding to variant. */
2517 enum bfd_architecture arch;
2518
2519 /* bfd_arch_info.mach corresponding to variant. */
2520 unsigned long mach;
2521
2522 /* Number of real registers. */
2523 int nregs;
2524
2525 /* Number of pseudo registers. */
2526 int npregs;
2527
2528 /* Number of total registers (the sum of nregs and npregs). */
2529 int num_tot_regs;
2530
2531 /* Table of register names; registers[R] is the name of the register
2532 number R. */
2533 const struct reg *regs;
2534 };
2535
2536 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2537
2538 static int
2539 num_registers (const struct reg *reg_list, int num_tot_regs)
2540 {
2541 int i;
2542 int nregs = 0;
2543
2544 for (i = 0; i < num_tot_regs; i++)
2545 if (!reg_list[i].pseudo)
2546 nregs++;
2547
2548 return nregs;
2549 }
2550
2551 static int
2552 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2553 {
2554 int i;
2555 int npregs = 0;
2556
2557 for (i = 0; i < num_tot_regs; i++)
2558 if (reg_list[i].pseudo)
2559 npregs ++;
2560
2561 return npregs;
2562 }
2563
2564 /* Information in this table comes from the following web sites:
2565 IBM: http://www.chips.ibm.com:80/products/embedded/
2566 Motorola: http://www.mot.com/SPS/PowerPC/
2567
2568 I'm sure I've got some of the variant descriptions not quite right.
2569 Please report any inaccuracies you find to GDB's maintainer.
2570
2571 If you add entries to this table, please be sure to allow the new
2572 value as an argument to the --with-cpu flag, in configure.in. */
2573
2574 static struct variant variants[] =
2575 {
2576
2577 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2578 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2579 registers_powerpc},
2580 {"power", "POWER user-level", bfd_arch_rs6000,
2581 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2582 registers_power},
2583 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2584 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2585 registers_403},
2586 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2587 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2588 registers_601},
2589 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2590 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2591 registers_602},
2592 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2593 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2594 registers_603},
2595 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2596 604, -1, -1, tot_num_registers (registers_604),
2597 registers_604},
2598 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2599 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2600 registers_403GC},
2601 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2602 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2603 registers_505},
2604 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2605 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2606 registers_860},
2607 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2608 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2609 registers_750},
2610 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2611 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2612 registers_7400},
2613 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2614 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2615 registers_e500},
2616
2617 /* 64-bit */
2618 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2619 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2620 registers_powerpc},
2621 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2622 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2623 registers_powerpc},
2624 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2625 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2626 registers_powerpc},
2627 {"a35", "PowerPC A35", bfd_arch_powerpc,
2628 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2629 registers_powerpc},
2630 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2631 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2632 registers_powerpc},
2633 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2634 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2635 registers_powerpc},
2636
2637 /* FIXME: I haven't checked the register sets of the following. */
2638 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2639 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2640 registers_power},
2641 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2642 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2643 registers_power},
2644 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2645 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2646 registers_power},
2647
2648 {0, 0, 0, 0, 0, 0, 0, 0}
2649 };
2650
2651 /* Initialize the number of registers and pseudo registers in each variant. */
2652
2653 static void
2654 init_variants (void)
2655 {
2656 struct variant *v;
2657
2658 for (v = variants; v->name; v++)
2659 {
2660 if (v->nregs == -1)
2661 v->nregs = num_registers (v->regs, v->num_tot_regs);
2662 if (v->npregs == -1)
2663 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2664 }
2665 }
2666
2667 /* Return the variant corresponding to architecture ARCH and machine number
2668 MACH. If no such variant exists, return null. */
2669
2670 static const struct variant *
2671 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2672 {
2673 const struct variant *v;
2674
2675 for (v = variants; v->name; v++)
2676 if (arch == v->arch && mach == v->mach)
2677 return v;
2678
2679 return NULL;
2680 }
2681
2682 static int
2683 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2684 {
2685 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2686 return print_insn_big_powerpc (memaddr, info);
2687 else
2688 return print_insn_little_powerpc (memaddr, info);
2689 }
2690 \f
2691 /* Initialize the current architecture based on INFO. If possible, re-use an
2692 architecture from ARCHES, which is a list of architectures already created
2693 during this debugging session.
2694
2695 Called e.g. at program startup, when reading a core file, and when reading
2696 a binary file. */
2697
2698 static struct gdbarch *
2699 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2700 {
2701 struct gdbarch *gdbarch;
2702 struct gdbarch_tdep *tdep;
2703 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2704 struct reg *regs;
2705 const struct variant *v;
2706 enum bfd_architecture arch;
2707 unsigned long mach;
2708 bfd abfd;
2709 int sysv_abi;
2710 asection *sect;
2711
2712 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2713 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2714
2715 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2716 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2717
2718 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2719
2720 /* Check word size. If INFO is from a binary file, infer it from
2721 that, else choose a likely default. */
2722 if (from_xcoff_exec)
2723 {
2724 if (bfd_xcoff_is_xcoff64 (info.abfd))
2725 wordsize = 8;
2726 else
2727 wordsize = 4;
2728 }
2729 else if (from_elf_exec)
2730 {
2731 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2732 wordsize = 8;
2733 else
2734 wordsize = 4;
2735 }
2736 else
2737 {
2738 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2739 wordsize = info.bfd_arch_info->bits_per_word /
2740 info.bfd_arch_info->bits_per_byte;
2741 else
2742 wordsize = 4;
2743 }
2744
2745 /* Find a candidate among extant architectures. */
2746 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2747 arches != NULL;
2748 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2749 {
2750 /* Word size in the various PowerPC bfd_arch_info structs isn't
2751 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2752 separate word size check. */
2753 tdep = gdbarch_tdep (arches->gdbarch);
2754 if (tdep && tdep->wordsize == wordsize)
2755 return arches->gdbarch;
2756 }
2757
2758 /* None found, create a new architecture from INFO, whose bfd_arch_info
2759 validity depends on the source:
2760 - executable useless
2761 - rs6000_host_arch() good
2762 - core file good
2763 - "set arch" trust blindly
2764 - GDB startup useless but harmless */
2765
2766 if (!from_xcoff_exec)
2767 {
2768 arch = info.bfd_arch_info->arch;
2769 mach = info.bfd_arch_info->mach;
2770 }
2771 else
2772 {
2773 arch = bfd_arch_powerpc;
2774 bfd_default_set_arch_mach (&abfd, arch, 0);
2775 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2776 mach = info.bfd_arch_info->mach;
2777 }
2778 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2779 tdep->wordsize = wordsize;
2780
2781 /* For e500 executables, the apuinfo section is of help here. Such
2782 section contains the identifier and revision number of each
2783 Application-specific Processing Unit that is present on the
2784 chip. The content of the section is determined by the assembler
2785 which looks at each instruction and determines which unit (and
2786 which version of it) can execute it. In our case we just look for
2787 the existance of the section. */
2788
2789 if (info.abfd)
2790 {
2791 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2792 if (sect)
2793 {
2794 arch = info.bfd_arch_info->arch;
2795 mach = bfd_mach_ppc_e500;
2796 bfd_default_set_arch_mach (&abfd, arch, mach);
2797 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2798 }
2799 }
2800
2801 gdbarch = gdbarch_alloc (&info, tdep);
2802 power = arch == bfd_arch_rs6000;
2803
2804 /* Initialize the number of real and pseudo registers in each variant. */
2805 init_variants ();
2806
2807 /* Choose variant. */
2808 v = find_variant_by_arch (arch, mach);
2809 if (!v)
2810 return NULL;
2811
2812 tdep->regs = v->regs;
2813
2814 tdep->ppc_gp0_regnum = 0;
2815 tdep->ppc_gplast_regnum = 31;
2816 tdep->ppc_toc_regnum = 2;
2817 tdep->ppc_ps_regnum = 65;
2818 tdep->ppc_cr_regnum = 66;
2819 tdep->ppc_lr_regnum = 67;
2820 tdep->ppc_ctr_regnum = 68;
2821 tdep->ppc_xer_regnum = 69;
2822 if (v->mach == bfd_mach_ppc_601)
2823 tdep->ppc_mq_regnum = 124;
2824 else if (power)
2825 tdep->ppc_mq_regnum = 70;
2826 else
2827 tdep->ppc_mq_regnum = -1;
2828 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2829
2830 set_gdbarch_pc_regnum (gdbarch, 64);
2831 set_gdbarch_sp_regnum (gdbarch, 1);
2832 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2833 if (sysv_abi && wordsize == 8)
2834 {
2835 set_gdbarch_extract_return_value (gdbarch, ppc64_sysv_abi_extract_return_value);
2836 set_gdbarch_store_return_value (gdbarch, ppc64_sysv_abi_store_return_value);
2837 }
2838 else
2839 {
2840 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2841 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2842 }
2843
2844 if (v->arch == bfd_arch_powerpc)
2845 switch (v->mach)
2846 {
2847 case bfd_mach_ppc:
2848 tdep->ppc_vr0_regnum = 71;
2849 tdep->ppc_vrsave_regnum = 104;
2850 tdep->ppc_ev0_regnum = -1;
2851 tdep->ppc_ev31_regnum = -1;
2852 break;
2853 case bfd_mach_ppc_7400:
2854 tdep->ppc_vr0_regnum = 119;
2855 tdep->ppc_vrsave_regnum = 152;
2856 tdep->ppc_ev0_regnum = -1;
2857 tdep->ppc_ev31_regnum = -1;
2858 break;
2859 case bfd_mach_ppc_e500:
2860 tdep->ppc_gp0_regnum = 41;
2861 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2862 tdep->ppc_toc_regnum = -1;
2863 tdep->ppc_ps_regnum = 1;
2864 tdep->ppc_cr_regnum = 2;
2865 tdep->ppc_lr_regnum = 3;
2866 tdep->ppc_ctr_regnum = 4;
2867 tdep->ppc_xer_regnum = 5;
2868 tdep->ppc_ev0_regnum = 7;
2869 tdep->ppc_ev31_regnum = 38;
2870 set_gdbarch_pc_regnum (gdbarch, 0);
2871 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2872 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2873 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2874 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2875 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2876 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2877 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2878 break;
2879 default:
2880 tdep->ppc_vr0_regnum = -1;
2881 tdep->ppc_vrsave_regnum = -1;
2882 tdep->ppc_ev0_regnum = -1;
2883 tdep->ppc_ev31_regnum = -1;
2884 break;
2885 }
2886
2887 /* Sanity check on registers. */
2888 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2889
2890 /* Set lr_frame_offset. */
2891 if (wordsize == 8)
2892 tdep->lr_frame_offset = 16;
2893 else if (sysv_abi)
2894 tdep->lr_frame_offset = 4;
2895 else
2896 tdep->lr_frame_offset = 8;
2897
2898 /* Calculate byte offsets in raw register array. */
2899 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2900 for (i = off = 0; i < v->num_tot_regs; i++)
2901 {
2902 tdep->regoff[i] = off;
2903 off += regsize (v->regs + i, wordsize);
2904 }
2905
2906 /* Select instruction printer. */
2907 if (arch == power)
2908 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2909 else
2910 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2911
2912 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2913
2914 set_gdbarch_num_regs (gdbarch, v->nregs);
2915 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2916 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2917 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2918 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2919 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2920 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2921 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2922
2923 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2924 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2925 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2926 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2927 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2928 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2929 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2930 if (sysv_abi)
2931 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2932 else
2933 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2934 set_gdbarch_char_signed (gdbarch, 0);
2935
2936 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2937 if (sysv_abi && wordsize == 8)
2938 /* PPC64 SYSV. */
2939 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2940 else if (!sysv_abi && wordsize == 4)
2941 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2942 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2943 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2944 224. */
2945 set_gdbarch_frame_red_zone_size (gdbarch, 224);
2946 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2947 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2948
2949 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2950 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2951 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2952 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2953 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2954 is correct for the SysV ABI when the wordsize is 8, but I'm also
2955 fairly certain that ppc_sysv_abi_push_arguments() will give even
2956 worse results since it only works for 32-bit code. So, for the moment,
2957 we're better off calling rs6000_push_arguments() since it works for
2958 64-bit code. At some point in the future, this matter needs to be
2959 revisited. */
2960 if (sysv_abi && wordsize == 4)
2961 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2962 else if (sysv_abi && wordsize == 8)
2963 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
2964 else
2965 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2966
2967 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2968 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2969
2970 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2971 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2972 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2973 set_gdbarch_function_start_offset (gdbarch, 0);
2974 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2975
2976 /* Not sure on this. FIXMEmgo */
2977 set_gdbarch_frame_args_skip (gdbarch, 8);
2978
2979 if (sysv_abi && wordsize == 4)
2980 set_gdbarch_use_struct_convention (gdbarch,
2981 ppc_sysv_abi_use_struct_convention);
2982 else if (sysv_abi && wordsize == 8)
2983 set_gdbarch_use_struct_convention (gdbarch, ppc64_sysv_abi_use_struct_convention);
2984 else
2985 set_gdbarch_use_struct_convention (gdbarch,
2986 rs6000_use_struct_convention);
2987
2988 set_gdbarch_frameless_function_invocation (gdbarch,
2989 rs6000_frameless_function_invocation);
2990 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2991 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2992
2993 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2994 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2995
2996 if (!sysv_abi)
2997 {
2998 /* Handle RS/6000 function pointers (which are really function
2999 descriptors). */
3000 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3001 rs6000_convert_from_func_ptr_addr);
3002 }
3003 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
3004 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
3005 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
3006
3007 /* Helpers for function argument information. */
3008 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3009
3010 /* Hook in ABI-specific overrides, if they have been registered. */
3011 gdbarch_init_osabi (info, gdbarch);
3012
3013 if (from_xcoff_exec)
3014 {
3015 /* NOTE: jimix/2003-06-09: This test should really check for
3016 GDB_OSABI_AIX when that is defined and becomes
3017 available. (Actually, once things are properly split apart,
3018 the test goes away.) */
3019 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3020 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3021 }
3022
3023 return gdbarch;
3024 }
3025
3026 static void
3027 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3028 {
3029 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3030
3031 if (tdep == NULL)
3032 return;
3033
3034 /* FIXME: Dump gdbarch_tdep. */
3035 }
3036
3037 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3038
3039 static void
3040 rs6000_info_powerpc_command (char *args, int from_tty)
3041 {
3042 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3043 }
3044
3045 /* Initialization code. */
3046
3047 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3048
3049 void
3050 _initialize_rs6000_tdep (void)
3051 {
3052 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3053 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3054
3055 /* Add root prefix command for "info powerpc" commands */
3056 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3057 "Various POWERPC info specific commands.",
3058 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3059 }