]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
2011-01-11 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "objfiles.h"
30 #include "arch-utils.h"
31 #include "regcache.h"
32 #include "regset.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "parser-defs.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "sim-regno.h"
39 #include "gdb/sim-ppc.h"
40 #include "reggroups.h"
41 #include "dwarf2-frame.h"
42 #include "target-descriptions.h"
43 #include "user-regs.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53
54 #include "solib-svr4.h"
55 #include "ppc-tdep.h"
56
57 #include "gdb_assert.h"
58 #include "dis-asm.h"
59
60 #include "trad-frame.h"
61 #include "frame-unwind.h"
62 #include "frame-base.h"
63
64 #include "features/rs6000/powerpc-32.c"
65 #include "features/rs6000/powerpc-altivec32.c"
66 #include "features/rs6000/powerpc-vsx32.c"
67 #include "features/rs6000/powerpc-403.c"
68 #include "features/rs6000/powerpc-403gc.c"
69 #include "features/rs6000/powerpc-405.c"
70 #include "features/rs6000/powerpc-505.c"
71 #include "features/rs6000/powerpc-601.c"
72 #include "features/rs6000/powerpc-602.c"
73 #include "features/rs6000/powerpc-603.c"
74 #include "features/rs6000/powerpc-604.c"
75 #include "features/rs6000/powerpc-64.c"
76 #include "features/rs6000/powerpc-altivec64.c"
77 #include "features/rs6000/powerpc-vsx64.c"
78 #include "features/rs6000/powerpc-7400.c"
79 #include "features/rs6000/powerpc-750.c"
80 #include "features/rs6000/powerpc-860.c"
81 #include "features/rs6000/powerpc-e500.c"
82 #include "features/rs6000/rs6000.c"
83
84 /* Determine if regnum is an SPE pseudo-register. */
85 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
86 && (regnum) >= (tdep)->ppc_ev0_regnum \
87 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
88
89 /* Determine if regnum is a decimal float pseudo-register. */
90 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_dl0_regnum \
92 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
93
94 /* Determine if regnum is a POWER7 VSX register. */
95 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_vsr0_regnum \
97 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
98
99 /* Determine if regnum is a POWER7 Extended FP register. */
100 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_efpr0_regnum \
102 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_fprs)
103
104 /* The list of available "set powerpc ..." and "show powerpc ..."
105 commands. */
106 static struct cmd_list_element *setpowerpccmdlist = NULL;
107 static struct cmd_list_element *showpowerpccmdlist = NULL;
108
109 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
110
111 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
112 static const char *powerpc_vector_strings[] =
113 {
114 "auto",
115 "generic",
116 "altivec",
117 "spe",
118 NULL
119 };
120
121 /* A variable that can be configured by the user. */
122 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
123 static const char *powerpc_vector_abi_string = "auto";
124
125 /* To be used by skip_prologue. */
126
127 struct rs6000_framedata
128 {
129 int offset; /* total size of frame --- the distance
130 by which we decrement sp to allocate
131 the frame */
132 int saved_gpr; /* smallest # of saved gpr */
133 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
134 int saved_fpr; /* smallest # of saved fpr */
135 int saved_vr; /* smallest # of saved vr */
136 int saved_ev; /* smallest # of saved ev */
137 int alloca_reg; /* alloca register number (frame ptr) */
138 char frameless; /* true if frameless functions. */
139 char nosavedpc; /* true if pc not saved. */
140 char used_bl; /* true if link register clobbered */
141 int gpr_offset; /* offset of saved gprs from prev sp */
142 int fpr_offset; /* offset of saved fprs from prev sp */
143 int vr_offset; /* offset of saved vrs from prev sp */
144 int ev_offset; /* offset of saved evs from prev sp */
145 int lr_offset; /* offset of saved lr */
146 int lr_register; /* register of saved lr, if trustworthy */
147 int cr_offset; /* offset of saved cr */
148 int vrsave_offset; /* offset of saved vrsave register */
149 };
150
151
152 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
153 int
154 vsx_register_p (struct gdbarch *gdbarch, int regno)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157 if (tdep->ppc_vsr0_regnum < 0)
158 return 0;
159 else
160 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
161 <= tdep->ppc_vsr0_upper_regnum + 31);
162 }
163
164 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
165 int
166 altivec_register_p (struct gdbarch *gdbarch, int regno)
167 {
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
170 return 0;
171 else
172 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
173 }
174
175
176 /* Return true if REGNO is an SPE register, false otherwise. */
177 int
178 spe_register_p (struct gdbarch *gdbarch, int regno)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 /* Is it a reference to EV0 -- EV31, and do we have those? */
183 if (IS_SPE_PSEUDOREG (tdep, regno))
184 return 1;
185
186 /* Is it a reference to one of the raw upper GPR halves? */
187 if (tdep->ppc_ev0_upper_regnum >= 0
188 && tdep->ppc_ev0_upper_regnum <= regno
189 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
190 return 1;
191
192 /* Is it a reference to the 64-bit accumulator, and do we have that? */
193 if (tdep->ppc_acc_regnum >= 0
194 && tdep->ppc_acc_regnum == regno)
195 return 1;
196
197 /* Is it a reference to the SPE floating-point status and control register,
198 and do we have that? */
199 if (tdep->ppc_spefscr_regnum >= 0
200 && tdep->ppc_spefscr_regnum == regno)
201 return 1;
202
203 return 0;
204 }
205
206
207 /* Return non-zero if the architecture described by GDBARCH has
208 floating-point registers (f0 --- f31 and fpscr). */
209 int
210 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
211 {
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213
214 return (tdep->ppc_fp0_regnum >= 0
215 && tdep->ppc_fpscr_regnum >= 0);
216 }
217
218 /* Return non-zero if the architecture described by GDBARCH has
219 VSX registers (vsr0 --- vsr63). */
220 static int
221 ppc_vsx_support_p (struct gdbarch *gdbarch)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224
225 return tdep->ppc_vsr0_regnum >= 0;
226 }
227
228 /* Return non-zero if the architecture described by GDBARCH has
229 Altivec registers (vr0 --- vr31, vrsave and vscr). */
230 int
231 ppc_altivec_support_p (struct gdbarch *gdbarch)
232 {
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234
235 return (tdep->ppc_vr0_regnum >= 0
236 && tdep->ppc_vrsave_regnum >= 0);
237 }
238
239 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
240 set it to SIM_REGNO.
241
242 This is a helper function for init_sim_regno_table, constructing
243 the table mapping GDB register numbers to sim register numbers; we
244 initialize every element in that table to -1 before we start
245 filling it in. */
246 static void
247 set_sim_regno (int *table, int gdb_regno, int sim_regno)
248 {
249 /* Make sure we don't try to assign any given GDB register a sim
250 register number more than once. */
251 gdb_assert (table[gdb_regno] == -1);
252 table[gdb_regno] = sim_regno;
253 }
254
255
256 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
257 numbers to simulator register numbers, based on the values placed
258 in the ARCH->tdep->ppc_foo_regnum members. */
259 static void
260 init_sim_regno_table (struct gdbarch *arch)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
263 int total_regs = gdbarch_num_regs (arch);
264 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
265 int i;
266 static const char *const segment_regs[] = {
267 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
268 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
269 };
270
271 /* Presume that all registers not explicitly mentioned below are
272 unavailable from the sim. */
273 for (i = 0; i < total_regs; i++)
274 sim_regno[i] = -1;
275
276 /* General-purpose registers. */
277 for (i = 0; i < ppc_num_gprs; i++)
278 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
279
280 /* Floating-point registers. */
281 if (tdep->ppc_fp0_regnum >= 0)
282 for (i = 0; i < ppc_num_fprs; i++)
283 set_sim_regno (sim_regno,
284 tdep->ppc_fp0_regnum + i,
285 sim_ppc_f0_regnum + i);
286 if (tdep->ppc_fpscr_regnum >= 0)
287 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
288
289 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
290 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
291 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
292
293 /* Segment registers. */
294 for (i = 0; i < ppc_num_srs; i++)
295 {
296 int gdb_regno;
297
298 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
299 if (gdb_regno >= 0)
300 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
301 }
302
303 /* Altivec registers. */
304 if (tdep->ppc_vr0_regnum >= 0)
305 {
306 for (i = 0; i < ppc_num_vrs; i++)
307 set_sim_regno (sim_regno,
308 tdep->ppc_vr0_regnum + i,
309 sim_ppc_vr0_regnum + i);
310
311 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
312 we can treat this more like the other cases. */
313 set_sim_regno (sim_regno,
314 tdep->ppc_vr0_regnum + ppc_num_vrs,
315 sim_ppc_vscr_regnum);
316 }
317 /* vsave is a special-purpose register, so the code below handles it. */
318
319 /* SPE APU (E500) registers. */
320 if (tdep->ppc_ev0_upper_regnum >= 0)
321 for (i = 0; i < ppc_num_gprs; i++)
322 set_sim_regno (sim_regno,
323 tdep->ppc_ev0_upper_regnum + i,
324 sim_ppc_rh0_regnum + i);
325 if (tdep->ppc_acc_regnum >= 0)
326 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
327 /* spefscr is a special-purpose register, so the code below handles it. */
328
329 #ifdef WITH_SIM
330 /* Now handle all special-purpose registers. Verify that they
331 haven't mistakenly been assigned numbers by any of the above
332 code. */
333 for (i = 0; i < sim_ppc_num_sprs; i++)
334 {
335 const char *spr_name = sim_spr_register_name (i);
336 int gdb_regno = -1;
337
338 if (spr_name != NULL)
339 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
340
341 if (gdb_regno != -1)
342 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
343 }
344 #endif
345
346 /* Drop the initialized array into place. */
347 tdep->sim_regno = sim_regno;
348 }
349
350
351 /* Given a GDB register number REG, return the corresponding SIM
352 register number. */
353 static int
354 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 int sim_regno;
358
359 if (tdep->sim_regno == NULL)
360 init_sim_regno_table (gdbarch);
361
362 gdb_assert (0 <= reg
363 && reg <= gdbarch_num_regs (gdbarch)
364 + gdbarch_num_pseudo_regs (gdbarch));
365 sim_regno = tdep->sim_regno[reg];
366
367 if (sim_regno >= 0)
368 return sim_regno;
369 else
370 return LEGACY_SIM_REGNO_IGNORE;
371 }
372
373 \f
374
375 /* Register set support functions. */
376
377 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
378 Write the register to REGCACHE. */
379
380 void
381 ppc_supply_reg (struct regcache *regcache, int regnum,
382 const gdb_byte *regs, size_t offset, int regsize)
383 {
384 if (regnum != -1 && offset != -1)
385 {
386 if (regsize > 4)
387 {
388 struct gdbarch *gdbarch = get_regcache_arch (regcache);
389 int gdb_regsize = register_size (gdbarch, regnum);
390 if (gdb_regsize < regsize
391 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
392 offset += regsize - gdb_regsize;
393 }
394 regcache_raw_supply (regcache, regnum, regs + offset);
395 }
396 }
397
398 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
399 in a field REGSIZE wide. Zero pad as necessary. */
400
401 void
402 ppc_collect_reg (const struct regcache *regcache, int regnum,
403 gdb_byte *regs, size_t offset, int regsize)
404 {
405 if (regnum != -1 && offset != -1)
406 {
407 if (regsize > 4)
408 {
409 struct gdbarch *gdbarch = get_regcache_arch (regcache);
410 int gdb_regsize = register_size (gdbarch, regnum);
411 if (gdb_regsize < regsize)
412 {
413 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
414 {
415 memset (regs + offset, 0, regsize - gdb_regsize);
416 offset += regsize - gdb_regsize;
417 }
418 else
419 memset (regs + offset + regsize - gdb_regsize, 0,
420 regsize - gdb_regsize);
421 }
422 }
423 regcache_raw_collect (regcache, regnum, regs + offset);
424 }
425 }
426
427 static int
428 ppc_greg_offset (struct gdbarch *gdbarch,
429 struct gdbarch_tdep *tdep,
430 const struct ppc_reg_offsets *offsets,
431 int regnum,
432 int *regsize)
433 {
434 *regsize = offsets->gpr_size;
435 if (regnum >= tdep->ppc_gp0_regnum
436 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
437 return (offsets->r0_offset
438 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
439
440 if (regnum == gdbarch_pc_regnum (gdbarch))
441 return offsets->pc_offset;
442
443 if (regnum == tdep->ppc_ps_regnum)
444 return offsets->ps_offset;
445
446 if (regnum == tdep->ppc_lr_regnum)
447 return offsets->lr_offset;
448
449 if (regnum == tdep->ppc_ctr_regnum)
450 return offsets->ctr_offset;
451
452 *regsize = offsets->xr_size;
453 if (regnum == tdep->ppc_cr_regnum)
454 return offsets->cr_offset;
455
456 if (regnum == tdep->ppc_xer_regnum)
457 return offsets->xer_offset;
458
459 if (regnum == tdep->ppc_mq_regnum)
460 return offsets->mq_offset;
461
462 return -1;
463 }
464
465 static int
466 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
467 const struct ppc_reg_offsets *offsets,
468 int regnum)
469 {
470 if (regnum >= tdep->ppc_fp0_regnum
471 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
472 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
473
474 if (regnum == tdep->ppc_fpscr_regnum)
475 return offsets->fpscr_offset;
476
477 return -1;
478 }
479
480 static int
481 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
482 const struct ppc_reg_offsets *offsets,
483 int regnum)
484 {
485 if (regnum >= tdep->ppc_vr0_regnum
486 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
487 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
488
489 if (regnum == tdep->ppc_vrsave_regnum - 1)
490 return offsets->vscr_offset;
491
492 if (regnum == tdep->ppc_vrsave_regnum)
493 return offsets->vrsave_offset;
494
495 return -1;
496 }
497
498 /* Supply register REGNUM in the general-purpose register set REGSET
499 from the buffer specified by GREGS and LEN to register cache
500 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
501
502 void
503 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
504 int regnum, const void *gregs, size_t len)
505 {
506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508 const struct ppc_reg_offsets *offsets = regset->descr;
509 size_t offset;
510 int regsize;
511
512 if (regnum == -1)
513 {
514 int i;
515 int gpr_size = offsets->gpr_size;
516
517 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
518 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
519 i++, offset += gpr_size)
520 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
521
522 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
523 gregs, offsets->pc_offset, gpr_size);
524 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
525 gregs, offsets->ps_offset, gpr_size);
526 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
527 gregs, offsets->lr_offset, gpr_size);
528 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
529 gregs, offsets->ctr_offset, gpr_size);
530 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
531 gregs, offsets->cr_offset, offsets->xr_size);
532 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
533 gregs, offsets->xer_offset, offsets->xr_size);
534 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
535 gregs, offsets->mq_offset, offsets->xr_size);
536 return;
537 }
538
539 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
540 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
541 }
542
543 /* Supply register REGNUM in the floating-point register set REGSET
544 from the buffer specified by FPREGS and LEN to register cache
545 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
546
547 void
548 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
549 int regnum, const void *fpregs, size_t len)
550 {
551 struct gdbarch *gdbarch = get_regcache_arch (regcache);
552 struct gdbarch_tdep *tdep;
553 const struct ppc_reg_offsets *offsets;
554 size_t offset;
555
556 if (!ppc_floating_point_unit_p (gdbarch))
557 return;
558
559 tdep = gdbarch_tdep (gdbarch);
560 offsets = regset->descr;
561 if (regnum == -1)
562 {
563 int i;
564
565 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
566 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
567 i++, offset += 8)
568 ppc_supply_reg (regcache, i, fpregs, offset, 8);
569
570 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
571 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
572 return;
573 }
574
575 offset = ppc_fpreg_offset (tdep, offsets, regnum);
576 ppc_supply_reg (regcache, regnum, fpregs, offset,
577 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
578 }
579
580 /* Supply register REGNUM in the VSX register set REGSET
581 from the buffer specified by VSXREGS and LEN to register cache
582 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
583
584 void
585 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
586 int regnum, const void *vsxregs, size_t len)
587 {
588 struct gdbarch *gdbarch = get_regcache_arch (regcache);
589 struct gdbarch_tdep *tdep;
590
591 if (!ppc_vsx_support_p (gdbarch))
592 return;
593
594 tdep = gdbarch_tdep (gdbarch);
595
596 if (regnum == -1)
597 {
598 int i;
599
600 for (i = tdep->ppc_vsr0_upper_regnum;
601 i < tdep->ppc_vsr0_upper_regnum + 32;
602 i++)
603 ppc_supply_reg (regcache, i, vsxregs, 0, 8);
604
605 return;
606 }
607 else
608 ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
609 }
610
611 /* Supply register REGNUM in the Altivec register set REGSET
612 from the buffer specified by VRREGS and LEN to register cache
613 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
614
615 void
616 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
617 int regnum, const void *vrregs, size_t len)
618 {
619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
620 struct gdbarch_tdep *tdep;
621 const struct ppc_reg_offsets *offsets;
622 size_t offset;
623
624 if (!ppc_altivec_support_p (gdbarch))
625 return;
626
627 tdep = gdbarch_tdep (gdbarch);
628 offsets = regset->descr;
629 if (regnum == -1)
630 {
631 int i;
632
633 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
634 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
635 i++, offset += 16)
636 ppc_supply_reg (regcache, i, vrregs, offset, 16);
637
638 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
639 vrregs, offsets->vscr_offset, 4);
640
641 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
642 vrregs, offsets->vrsave_offset, 4);
643 return;
644 }
645
646 offset = ppc_vrreg_offset (tdep, offsets, regnum);
647 if (regnum != tdep->ppc_vrsave_regnum
648 && regnum != tdep->ppc_vrsave_regnum - 1)
649 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
650 else
651 ppc_supply_reg (regcache, regnum,
652 vrregs, offset, 4);
653 }
654
655 /* Collect register REGNUM in the general-purpose register set
656 REGSET from register cache REGCACHE into the buffer specified by
657 GREGS and LEN. If REGNUM is -1, do this for all registers in
658 REGSET. */
659
660 void
661 ppc_collect_gregset (const struct regset *regset,
662 const struct regcache *regcache,
663 int regnum, void *gregs, size_t len)
664 {
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
667 const struct ppc_reg_offsets *offsets = regset->descr;
668 size_t offset;
669 int regsize;
670
671 if (regnum == -1)
672 {
673 int i;
674 int gpr_size = offsets->gpr_size;
675
676 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
677 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
678 i++, offset += gpr_size)
679 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
680
681 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
682 gregs, offsets->pc_offset, gpr_size);
683 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
684 gregs, offsets->ps_offset, gpr_size);
685 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
686 gregs, offsets->lr_offset, gpr_size);
687 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
688 gregs, offsets->ctr_offset, gpr_size);
689 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
690 gregs, offsets->cr_offset, offsets->xr_size);
691 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
692 gregs, offsets->xer_offset, offsets->xr_size);
693 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
694 gregs, offsets->mq_offset, offsets->xr_size);
695 return;
696 }
697
698 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
699 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
700 }
701
702 /* Collect register REGNUM in the floating-point register set
703 REGSET from register cache REGCACHE into the buffer specified by
704 FPREGS and LEN. If REGNUM is -1, do this for all registers in
705 REGSET. */
706
707 void
708 ppc_collect_fpregset (const struct regset *regset,
709 const struct regcache *regcache,
710 int regnum, void *fpregs, size_t len)
711 {
712 struct gdbarch *gdbarch = get_regcache_arch (regcache);
713 struct gdbarch_tdep *tdep;
714 const struct ppc_reg_offsets *offsets;
715 size_t offset;
716
717 if (!ppc_floating_point_unit_p (gdbarch))
718 return;
719
720 tdep = gdbarch_tdep (gdbarch);
721 offsets = regset->descr;
722 if (regnum == -1)
723 {
724 int i;
725
726 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
727 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
728 i++, offset += 8)
729 ppc_collect_reg (regcache, i, fpregs, offset, 8);
730
731 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
732 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
733 return;
734 }
735
736 offset = ppc_fpreg_offset (tdep, offsets, regnum);
737 ppc_collect_reg (regcache, regnum, fpregs, offset,
738 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
739 }
740
741 /* Collect register REGNUM in the VSX register set
742 REGSET from register cache REGCACHE into the buffer specified by
743 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
744 REGSET. */
745
746 void
747 ppc_collect_vsxregset (const struct regset *regset,
748 const struct regcache *regcache,
749 int regnum, void *vsxregs, size_t len)
750 {
751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
752 struct gdbarch_tdep *tdep;
753
754 if (!ppc_vsx_support_p (gdbarch))
755 return;
756
757 tdep = gdbarch_tdep (gdbarch);
758
759 if (regnum == -1)
760 {
761 int i;
762
763 for (i = tdep->ppc_vsr0_upper_regnum;
764 i < tdep->ppc_vsr0_upper_regnum + 32;
765 i++)
766 ppc_collect_reg (regcache, i, vsxregs, 0, 8);
767
768 return;
769 }
770 else
771 ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
772 }
773
774
775 /* Collect register REGNUM in the Altivec register set
776 REGSET from register cache REGCACHE into the buffer specified by
777 VRREGS and LEN. If REGNUM is -1, do this for all registers in
778 REGSET. */
779
780 void
781 ppc_collect_vrregset (const struct regset *regset,
782 const struct regcache *regcache,
783 int regnum, void *vrregs, size_t len)
784 {
785 struct gdbarch *gdbarch = get_regcache_arch (regcache);
786 struct gdbarch_tdep *tdep;
787 const struct ppc_reg_offsets *offsets;
788 size_t offset;
789
790 if (!ppc_altivec_support_p (gdbarch))
791 return;
792
793 tdep = gdbarch_tdep (gdbarch);
794 offsets = regset->descr;
795 if (regnum == -1)
796 {
797 int i;
798
799 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
800 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
801 i++, offset += 16)
802 ppc_collect_reg (regcache, i, vrregs, offset, 16);
803
804 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
805 vrregs, offsets->vscr_offset, 4);
806
807 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
808 vrregs, offsets->vrsave_offset, 4);
809 return;
810 }
811
812 offset = ppc_vrreg_offset (tdep, offsets, regnum);
813 if (regnum != tdep->ppc_vrsave_regnum
814 && regnum != tdep->ppc_vrsave_regnum - 1)
815 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
816 else
817 ppc_collect_reg (regcache, regnum,
818 vrregs, offset, 4);
819 }
820 \f
821
822 static int
823 insn_changes_sp_or_jumps (unsigned long insn)
824 {
825 int opcode = (insn >> 26) & 0x03f;
826 int sd = (insn >> 21) & 0x01f;
827 int a = (insn >> 16) & 0x01f;
828 int subcode = (insn >> 1) & 0x3ff;
829
830 /* Changes the stack pointer. */
831
832 /* NOTE: There are many ways to change the value of a given register.
833 The ways below are those used when the register is R1, the SP,
834 in a funtion's epilogue. */
835
836 if (opcode == 31 && subcode == 444 && a == 1)
837 return 1; /* mr R1,Rn */
838 if (opcode == 14 && sd == 1)
839 return 1; /* addi R1,Rn,simm */
840 if (opcode == 58 && sd == 1)
841 return 1; /* ld R1,ds(Rn) */
842
843 /* Transfers control. */
844
845 if (opcode == 18)
846 return 1; /* b */
847 if (opcode == 16)
848 return 1; /* bc */
849 if (opcode == 19 && subcode == 16)
850 return 1; /* bclr */
851 if (opcode == 19 && subcode == 528)
852 return 1; /* bcctr */
853
854 return 0;
855 }
856
857 /* Return true if we are in the function's epilogue, i.e. after the
858 instruction that destroyed the function's stack frame.
859
860 1) scan forward from the point of execution:
861 a) If you find an instruction that modifies the stack pointer
862 or transfers control (except a return), execution is not in
863 an epilogue, return.
864 b) Stop scanning if you find a return instruction or reach the
865 end of the function or reach the hard limit for the size of
866 an epilogue.
867 2) scan backward from the point of execution:
868 a) If you find an instruction that modifies the stack pointer,
869 execution *is* in an epilogue, return.
870 b) Stop scanning if you reach an instruction that transfers
871 control or the beginning of the function or reach the hard
872 limit for the size of an epilogue. */
873
874 static int
875 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
876 {
877 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
878 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
879 bfd_byte insn_buf[PPC_INSN_SIZE];
880 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
881 unsigned long insn;
882 struct frame_info *curfrm;
883
884 /* Find the search limits based on function boundaries and hard limit. */
885
886 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
887 return 0;
888
889 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
890 if (epilogue_start < func_start) epilogue_start = func_start;
891
892 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
893 if (epilogue_end > func_end) epilogue_end = func_end;
894
895 curfrm = get_current_frame ();
896
897 /* Scan forward until next 'blr'. */
898
899 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
900 {
901 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
902 return 0;
903 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
904 if (insn == 0x4e800020)
905 break;
906 /* Assume a bctr is a tail call unless it points strictly within
907 this function. */
908 if (insn == 0x4e800420)
909 {
910 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
911 tdep->ppc_ctr_regnum);
912 if (ctr > func_start && ctr < func_end)
913 return 0;
914 else
915 break;
916 }
917 if (insn_changes_sp_or_jumps (insn))
918 return 0;
919 }
920
921 /* Scan backward until adjustment to stack pointer (R1). */
922
923 for (scan_pc = pc - PPC_INSN_SIZE;
924 scan_pc >= epilogue_start;
925 scan_pc -= PPC_INSN_SIZE)
926 {
927 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
928 return 0;
929 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
930 if (insn_changes_sp_or_jumps (insn))
931 return 1;
932 }
933
934 return 0;
935 }
936
937 /* Get the ith function argument for the current function. */
938 static CORE_ADDR
939 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
940 struct type *type)
941 {
942 return get_frame_register_unsigned (frame, 3 + argi);
943 }
944
945 /* Sequence of bytes for breakpoint instruction. */
946
947 const static unsigned char *
948 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
949 int *bp_size)
950 {
951 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
952 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
953 *bp_size = 4;
954 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
955 return big_breakpoint;
956 else
957 return little_breakpoint;
958 }
959
960 /* Instruction masks for displaced stepping. */
961 #define BRANCH_MASK 0xfc000000
962 #define BP_MASK 0xFC0007FE
963 #define B_INSN 0x48000000
964 #define BC_INSN 0x40000000
965 #define BXL_INSN 0x4c000000
966 #define BP_INSN 0x7C000008
967
968 /* Fix up the state of registers and memory after having single-stepped
969 a displaced instruction. */
970 static void
971 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
972 struct displaced_step_closure *closure,
973 CORE_ADDR from, CORE_ADDR to,
974 struct regcache *regs)
975 {
976 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
977 /* Since we use simple_displaced_step_copy_insn, our closure is a
978 copy of the instruction. */
979 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
980 PPC_INSN_SIZE, byte_order);
981 ULONGEST opcode = 0;
982 /* Offset for non PC-relative instructions. */
983 LONGEST offset = PPC_INSN_SIZE;
984
985 opcode = insn & BRANCH_MASK;
986
987 if (debug_displaced)
988 fprintf_unfiltered (gdb_stdlog,
989 "displaced: (ppc) fixup (%s, %s)\n",
990 paddress (gdbarch, from), paddress (gdbarch, to));
991
992
993 /* Handle PC-relative branch instructions. */
994 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
995 {
996 ULONGEST current_pc;
997
998 /* Read the current PC value after the instruction has been executed
999 in a displaced location. Calculate the offset to be applied to the
1000 original PC value before the displaced stepping. */
1001 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1002 &current_pc);
1003 offset = current_pc - to;
1004
1005 if (opcode != BXL_INSN)
1006 {
1007 /* Check for AA bit indicating whether this is an absolute
1008 addressing or PC-relative (1: absolute, 0: relative). */
1009 if (!(insn & 0x2))
1010 {
1011 /* PC-relative addressing is being used in the branch. */
1012 if (debug_displaced)
1013 fprintf_unfiltered
1014 (gdb_stdlog,
1015 "displaced: (ppc) branch instruction: %s\n"
1016 "displaced: (ppc) adjusted PC from %s to %s\n",
1017 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1018 paddress (gdbarch, from + offset));
1019
1020 regcache_cooked_write_unsigned (regs,
1021 gdbarch_pc_regnum (gdbarch),
1022 from + offset);
1023 }
1024 }
1025 else
1026 {
1027 /* If we're here, it means we have a branch to LR or CTR. If the
1028 branch was taken, the offset is probably greater than 4 (the next
1029 instruction), so it's safe to assume that an offset of 4 means we
1030 did not take the branch. */
1031 if (offset == PPC_INSN_SIZE)
1032 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1033 from + PPC_INSN_SIZE);
1034 }
1035
1036 /* Check for LK bit indicating whether we should set the link
1037 register to point to the next instruction
1038 (1: Set, 0: Don't set). */
1039 if (insn & 0x1)
1040 {
1041 /* Link register needs to be set to the next instruction's PC. */
1042 regcache_cooked_write_unsigned (regs,
1043 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1044 from + PPC_INSN_SIZE);
1045 if (debug_displaced)
1046 fprintf_unfiltered (gdb_stdlog,
1047 "displaced: (ppc) adjusted LR to %s\n",
1048 paddress (gdbarch, from + PPC_INSN_SIZE));
1049
1050 }
1051 }
1052 /* Check for breakpoints in the inferior. If we've found one, place the PC
1053 right at the breakpoint instruction. */
1054 else if ((insn & BP_MASK) == BP_INSN)
1055 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1056 else
1057 /* Handle any other instructions that do not fit in the categories above. */
1058 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1059 from + offset);
1060 }
1061
1062 /* Always use hardware single-stepping to execute the
1063 displaced instruction. */
1064 static int
1065 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1066 struct displaced_step_closure *closure)
1067 {
1068 return 1;
1069 }
1070
1071 /* Instruction masks used during single-stepping of atomic sequences. */
1072 #define LWARX_MASK 0xfc0007fe
1073 #define LWARX_INSTRUCTION 0x7c000028
1074 #define LDARX_INSTRUCTION 0x7c0000A8
1075 #define STWCX_MASK 0xfc0007ff
1076 #define STWCX_INSTRUCTION 0x7c00012d
1077 #define STDCX_INSTRUCTION 0x7c0001ad
1078
1079 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1080 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1081 is found, attempt to step through it. A breakpoint is placed at the end of
1082 the sequence. */
1083
1084 int
1085 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1086 {
1087 struct gdbarch *gdbarch = get_frame_arch (frame);
1088 struct address_space *aspace = get_frame_address_space (frame);
1089 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1090 CORE_ADDR pc = get_frame_pc (frame);
1091 CORE_ADDR breaks[2] = {-1, -1};
1092 CORE_ADDR loc = pc;
1093 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1094 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1095 int insn_count;
1096 int index;
1097 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1098 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1099 int opcode; /* Branch instruction's OPcode. */
1100 int bc_insn_count = 0; /* Conditional branch instruction count. */
1101
1102 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1103 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1104 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1105 return 0;
1106
1107 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1108 instructions. */
1109 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1110 {
1111 loc += PPC_INSN_SIZE;
1112 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1113
1114 /* Assume that there is at most one conditional branch in the atomic
1115 sequence. If a conditional branch is found, put a breakpoint in
1116 its destination address. */
1117 if ((insn & BRANCH_MASK) == BC_INSN)
1118 {
1119 int immediate = ((insn & ~3) << 16) >> 16;
1120 int absolute = ((insn >> 1) & 1);
1121
1122 if (bc_insn_count >= 1)
1123 return 0; /* More than one conditional branch found, fallback
1124 to the standard single-step code. */
1125
1126 if (absolute)
1127 breaks[1] = immediate;
1128 else
1129 breaks[1] = pc + immediate;
1130
1131 bc_insn_count++;
1132 last_breakpoint++;
1133 }
1134
1135 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1136 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1137 break;
1138 }
1139
1140 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1141 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1142 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1143 return 0;
1144
1145 closing_insn = loc;
1146 loc += PPC_INSN_SIZE;
1147 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1148
1149 /* Insert a breakpoint right after the end of the atomic sequence. */
1150 breaks[0] = loc;
1151
1152 /* Check for duplicated breakpoints. Check also for a breakpoint
1153 placed (branch instruction's destination) at the stwcx/stdcx
1154 instruction, this resets the reservation and take us back to the
1155 lwarx/ldarx instruction at the beginning of the atomic sequence. */
1156 if (last_breakpoint && ((breaks[1] == breaks[0])
1157 || (breaks[1] == closing_insn)))
1158 last_breakpoint = 0;
1159
1160 /* Effectively inserts the breakpoints. */
1161 for (index = 0; index <= last_breakpoint; index++)
1162 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1163
1164 return 1;
1165 }
1166
1167
1168 #define SIGNED_SHORT(x) \
1169 ((sizeof (short) == 2) \
1170 ? ((int)(short)(x)) \
1171 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1172
1173 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1174
1175 /* Limit the number of skipped non-prologue instructions, as the examining
1176 of the prologue is expensive. */
1177 static int max_skip_non_prologue_insns = 10;
1178
1179 /* Return nonzero if the given instruction OP can be part of the prologue
1180 of a function and saves a parameter on the stack. FRAMEP should be
1181 set if one of the previous instructions in the function has set the
1182 Frame Pointer. */
1183
1184 static int
1185 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1186 {
1187 /* Move parameters from argument registers to temporary register. */
1188 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1189 {
1190 /* Rx must be scratch register r0. */
1191 const int rx_regno = (op >> 16) & 31;
1192 /* Ry: Only r3 - r10 are used for parameter passing. */
1193 const int ry_regno = GET_SRC_REG (op);
1194
1195 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1196 {
1197 *r0_contains_arg = 1;
1198 return 1;
1199 }
1200 else
1201 return 0;
1202 }
1203
1204 /* Save a General Purpose Register on stack. */
1205
1206 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1207 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1208 {
1209 /* Rx: Only r3 - r10 are used for parameter passing. */
1210 const int rx_regno = GET_SRC_REG (op);
1211
1212 return (rx_regno >= 3 && rx_regno <= 10);
1213 }
1214
1215 /* Save a General Purpose Register on stack via the Frame Pointer. */
1216
1217 if (framep &&
1218 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1219 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1220 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1221 {
1222 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1223 However, the compiler sometimes uses r0 to hold an argument. */
1224 const int rx_regno = GET_SRC_REG (op);
1225
1226 return ((rx_regno >= 3 && rx_regno <= 10)
1227 || (rx_regno == 0 && *r0_contains_arg));
1228 }
1229
1230 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1231 {
1232 /* Only f2 - f8 are used for parameter passing. */
1233 const int src_regno = GET_SRC_REG (op);
1234
1235 return (src_regno >= 2 && src_regno <= 8);
1236 }
1237
1238 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1239 {
1240 /* Only f2 - f8 are used for parameter passing. */
1241 const int src_regno = GET_SRC_REG (op);
1242
1243 return (src_regno >= 2 && src_regno <= 8);
1244 }
1245
1246 /* Not an insn that saves a parameter on stack. */
1247 return 0;
1248 }
1249
1250 /* Assuming that INSN is a "bl" instruction located at PC, return
1251 nonzero if the destination of the branch is a "blrl" instruction.
1252
1253 This sequence is sometimes found in certain function prologues.
1254 It allows the function to load the LR register with a value that
1255 they can use to access PIC data using PC-relative offsets. */
1256
1257 static int
1258 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1259 {
1260 CORE_ADDR dest;
1261 int immediate;
1262 int absolute;
1263 int dest_insn;
1264
1265 absolute = (int) ((insn >> 1) & 1);
1266 immediate = ((insn & ~3) << 6) >> 6;
1267 if (absolute)
1268 dest = immediate;
1269 else
1270 dest = pc + immediate;
1271
1272 dest_insn = read_memory_integer (dest, 4, byte_order);
1273 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1274 return 1;
1275
1276 return 0;
1277 }
1278
1279 /* Masks for decoding a branch-and-link (bl) instruction.
1280
1281 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1282 The former is anded with the opcode in question; if the result of
1283 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1284 question is a ``bl'' instruction.
1285
1286 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1287 the branch displacement. */
1288
1289 #define BL_MASK 0xfc000001
1290 #define BL_INSTRUCTION 0x48000001
1291 #define BL_DISPLACEMENT_MASK 0x03fffffc
1292
1293 static unsigned long
1294 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1295 {
1296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1297 gdb_byte buf[4];
1298 unsigned long op;
1299
1300 /* Fetch the instruction and convert it to an integer. */
1301 if (target_read_memory (pc, buf, 4))
1302 return 0;
1303 op = extract_unsigned_integer (buf, 4, byte_order);
1304
1305 return op;
1306 }
1307
1308 /* GCC generates several well-known sequences of instructions at the begining
1309 of each function prologue when compiling with -fstack-check. If one of
1310 such sequences starts at START_PC, then return the address of the
1311 instruction immediately past this sequence. Otherwise, return START_PC. */
1312
1313 static CORE_ADDR
1314 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1315 {
1316 CORE_ADDR pc = start_pc;
1317 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1318
1319 /* First possible sequence: A small number of probes.
1320 stw 0, -<some immediate>(1)
1321 [repeat this instruction any (small) number of times]. */
1322
1323 if ((op & 0xffff0000) == 0x90010000)
1324 {
1325 while ((op & 0xffff0000) == 0x90010000)
1326 {
1327 pc = pc + 4;
1328 op = rs6000_fetch_instruction (gdbarch, pc);
1329 }
1330 return pc;
1331 }
1332
1333 /* Second sequence: A probing loop.
1334 addi 12,1,-<some immediate>
1335 lis 0,-<some immediate>
1336 [possibly ori 0,0,<some immediate>]
1337 add 0,12,0
1338 cmpw 0,12,0
1339 beq 0,<disp>
1340 addi 12,12,-<some immediate>
1341 stw 0,0(12)
1342 b <disp>
1343 [possibly one last probe: stw 0,<some immediate>(12)]. */
1344
1345 while (1)
1346 {
1347 /* addi 12,1,-<some immediate> */
1348 if ((op & 0xffff0000) != 0x39810000)
1349 break;
1350
1351 /* lis 0,-<some immediate> */
1352 pc = pc + 4;
1353 op = rs6000_fetch_instruction (gdbarch, pc);
1354 if ((op & 0xffff0000) != 0x3c000000)
1355 break;
1356
1357 pc = pc + 4;
1358 op = rs6000_fetch_instruction (gdbarch, pc);
1359 /* [possibly ori 0,0,<some immediate>] */
1360 if ((op & 0xffff0000) == 0x60000000)
1361 {
1362 pc = pc + 4;
1363 op = rs6000_fetch_instruction (gdbarch, pc);
1364 }
1365 /* add 0,12,0 */
1366 if (op != 0x7c0c0214)
1367 break;
1368
1369 /* cmpw 0,12,0 */
1370 pc = pc + 4;
1371 op = rs6000_fetch_instruction (gdbarch, pc);
1372 if (op != 0x7c0c0000)
1373 break;
1374
1375 /* beq 0,<disp> */
1376 pc = pc + 4;
1377 op = rs6000_fetch_instruction (gdbarch, pc);
1378 if ((op & 0xff9f0001) != 0x41820000)
1379 break;
1380
1381 /* addi 12,12,-<some immediate> */
1382 pc = pc + 4;
1383 op = rs6000_fetch_instruction (gdbarch, pc);
1384 if ((op & 0xffff0000) != 0x398c0000)
1385 break;
1386
1387 /* stw 0,0(12) */
1388 pc = pc + 4;
1389 op = rs6000_fetch_instruction (gdbarch, pc);
1390 if (op != 0x900c0000)
1391 break;
1392
1393 /* b <disp> */
1394 pc = pc + 4;
1395 op = rs6000_fetch_instruction (gdbarch, pc);
1396 if ((op & 0xfc000001) != 0x48000000)
1397 break;
1398
1399 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1400 pc = pc + 4;
1401 op = rs6000_fetch_instruction (gdbarch, pc);
1402 if ((op & 0xffff0000) == 0x900c0000)
1403 {
1404 pc = pc + 4;
1405 op = rs6000_fetch_instruction (gdbarch, pc);
1406 }
1407
1408 /* We found a valid stack-check sequence, return the new PC. */
1409 return pc;
1410 }
1411
1412 /* Third sequence: No probe; instead, a comparizon between the stack size
1413 limit (saved in a run-time global variable) and the current stack
1414 pointer:
1415
1416 addi 0,1,-<some immediate>
1417 lis 12,__gnat_stack_limit@ha
1418 lwz 12,__gnat_stack_limit@l(12)
1419 twllt 0,12
1420
1421 or, with a small variant in the case of a bigger stack frame:
1422 addis 0,1,<some immediate>
1423 addic 0,0,-<some immediate>
1424 lis 12,__gnat_stack_limit@ha
1425 lwz 12,__gnat_stack_limit@l(12)
1426 twllt 0,12
1427 */
1428 while (1)
1429 {
1430 /* addi 0,1,-<some immediate> */
1431 if ((op & 0xffff0000) != 0x38010000)
1432 {
1433 /* small stack frame variant not recognized; try the
1434 big stack frame variant: */
1435
1436 /* addis 0,1,<some immediate> */
1437 if ((op & 0xffff0000) != 0x3c010000)
1438 break;
1439
1440 /* addic 0,0,-<some immediate> */
1441 pc = pc + 4;
1442 op = rs6000_fetch_instruction (gdbarch, pc);
1443 if ((op & 0xffff0000) != 0x30000000)
1444 break;
1445 }
1446
1447 /* lis 12,<some immediate> */
1448 pc = pc + 4;
1449 op = rs6000_fetch_instruction (gdbarch, pc);
1450 if ((op & 0xffff0000) != 0x3d800000)
1451 break;
1452
1453 /* lwz 12,<some immediate>(12) */
1454 pc = pc + 4;
1455 op = rs6000_fetch_instruction (gdbarch, pc);
1456 if ((op & 0xffff0000) != 0x818c0000)
1457 break;
1458
1459 /* twllt 0,12 */
1460 pc = pc + 4;
1461 op = rs6000_fetch_instruction (gdbarch, pc);
1462 if ((op & 0xfffffffe) != 0x7c406008)
1463 break;
1464
1465 /* We found a valid stack-check sequence, return the new PC. */
1466 return pc;
1467 }
1468
1469 /* No stack check code in our prologue, return the start_pc. */
1470 return start_pc;
1471 }
1472
1473 /* return pc value after skipping a function prologue and also return
1474 information about a function frame.
1475
1476 in struct rs6000_framedata fdata:
1477 - frameless is TRUE, if function does not have a frame.
1478 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1479 - offset is the initial size of this stack frame --- the amount by
1480 which we decrement the sp to allocate the frame.
1481 - saved_gpr is the number of the first saved gpr.
1482 - saved_fpr is the number of the first saved fpr.
1483 - saved_vr is the number of the first saved vr.
1484 - saved_ev is the number of the first saved ev.
1485 - alloca_reg is the number of the register used for alloca() handling.
1486 Otherwise -1.
1487 - gpr_offset is the offset of the first saved gpr from the previous frame.
1488 - fpr_offset is the offset of the first saved fpr from the previous frame.
1489 - vr_offset is the offset of the first saved vr from the previous frame.
1490 - ev_offset is the offset of the first saved ev from the previous frame.
1491 - lr_offset is the offset of the saved lr
1492 - cr_offset is the offset of the saved cr
1493 - vrsave_offset is the offset of the saved vrsave register. */
1494
1495 static CORE_ADDR
1496 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1497 struct rs6000_framedata *fdata)
1498 {
1499 CORE_ADDR orig_pc = pc;
1500 CORE_ADDR last_prologue_pc = pc;
1501 CORE_ADDR li_found_pc = 0;
1502 gdb_byte buf[4];
1503 unsigned long op;
1504 long offset = 0;
1505 long vr_saved_offset = 0;
1506 int lr_reg = -1;
1507 int cr_reg = -1;
1508 int vr_reg = -1;
1509 int ev_reg = -1;
1510 long ev_offset = 0;
1511 int vrsave_reg = -1;
1512 int reg;
1513 int framep = 0;
1514 int minimal_toc_loaded = 0;
1515 int prev_insn_was_prologue_insn = 1;
1516 int num_skip_non_prologue_insns = 0;
1517 int r0_contains_arg = 0;
1518 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1519 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1521
1522 memset (fdata, 0, sizeof (struct rs6000_framedata));
1523 fdata->saved_gpr = -1;
1524 fdata->saved_fpr = -1;
1525 fdata->saved_vr = -1;
1526 fdata->saved_ev = -1;
1527 fdata->alloca_reg = -1;
1528 fdata->frameless = 1;
1529 fdata->nosavedpc = 1;
1530 fdata->lr_register = -1;
1531
1532 pc = rs6000_skip_stack_check (gdbarch, pc);
1533 if (pc >= lim_pc)
1534 pc = lim_pc;
1535
1536 for (;; pc += 4)
1537 {
1538 /* Sometimes it isn't clear if an instruction is a prologue
1539 instruction or not. When we encounter one of these ambiguous
1540 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1541 Otherwise, we'll assume that it really is a prologue instruction. */
1542 if (prev_insn_was_prologue_insn)
1543 last_prologue_pc = pc;
1544
1545 /* Stop scanning if we've hit the limit. */
1546 if (pc >= lim_pc)
1547 break;
1548
1549 prev_insn_was_prologue_insn = 1;
1550
1551 /* Fetch the instruction and convert it to an integer. */
1552 if (target_read_memory (pc, buf, 4))
1553 break;
1554 op = extract_unsigned_integer (buf, 4, byte_order);
1555
1556 if ((op & 0xfc1fffff) == 0x7c0802a6)
1557 { /* mflr Rx */
1558 /* Since shared library / PIC code, which needs to get its
1559 address at runtime, can appear to save more than one link
1560 register vis:
1561
1562 *INDENT-OFF*
1563 stwu r1,-304(r1)
1564 mflr r3
1565 bl 0xff570d0 (blrl)
1566 stw r30,296(r1)
1567 mflr r30
1568 stw r31,300(r1)
1569 stw r3,308(r1);
1570 ...
1571 *INDENT-ON*
1572
1573 remember just the first one, but skip over additional
1574 ones. */
1575 if (lr_reg == -1)
1576 lr_reg = (op & 0x03e00000) >> 21;
1577 if (lr_reg == 0)
1578 r0_contains_arg = 0;
1579 continue;
1580 }
1581 else if ((op & 0xfc1fffff) == 0x7c000026)
1582 { /* mfcr Rx */
1583 cr_reg = (op & 0x03e00000);
1584 if (cr_reg == 0)
1585 r0_contains_arg = 0;
1586 continue;
1587
1588 }
1589 else if ((op & 0xfc1f0000) == 0xd8010000)
1590 { /* stfd Rx,NUM(r1) */
1591 reg = GET_SRC_REG (op);
1592 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1593 {
1594 fdata->saved_fpr = reg;
1595 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1596 }
1597 continue;
1598
1599 }
1600 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1601 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1602 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1603 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1604 {
1605
1606 reg = GET_SRC_REG (op);
1607 if ((op & 0xfc1f0000) == 0xbc010000)
1608 fdata->gpr_mask |= ~((1U << reg) - 1);
1609 else
1610 fdata->gpr_mask |= 1U << reg;
1611 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1612 {
1613 fdata->saved_gpr = reg;
1614 if ((op & 0xfc1f0003) == 0xf8010000)
1615 op &= ~3UL;
1616 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1617 }
1618 continue;
1619
1620 }
1621 else if ((op & 0xffff0000) == 0x60000000)
1622 {
1623 /* nop */
1624 /* Allow nops in the prologue, but do not consider them to
1625 be part of the prologue unless followed by other prologue
1626 instructions. */
1627 prev_insn_was_prologue_insn = 0;
1628 continue;
1629
1630 }
1631 else if ((op & 0xffff0000) == 0x3c000000)
1632 { /* addis 0,0,NUM, used
1633 for >= 32k frames */
1634 fdata->offset = (op & 0x0000ffff) << 16;
1635 fdata->frameless = 0;
1636 r0_contains_arg = 0;
1637 continue;
1638
1639 }
1640 else if ((op & 0xffff0000) == 0x60000000)
1641 { /* ori 0,0,NUM, 2nd ha
1642 lf of >= 32k frames */
1643 fdata->offset |= (op & 0x0000ffff);
1644 fdata->frameless = 0;
1645 r0_contains_arg = 0;
1646 continue;
1647
1648 }
1649 else if (lr_reg >= 0 &&
1650 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1651 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1652 /* stw Rx, NUM(r1) */
1653 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1654 /* stwu Rx, NUM(r1) */
1655 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1656 { /* where Rx == lr */
1657 fdata->lr_offset = offset;
1658 fdata->nosavedpc = 0;
1659 /* Invalidate lr_reg, but don't set it to -1.
1660 That would mean that it had never been set. */
1661 lr_reg = -2;
1662 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1663 (op & 0xfc000000) == 0x90000000) /* stw */
1664 {
1665 /* Does not update r1, so add displacement to lr_offset. */
1666 fdata->lr_offset += SIGNED_SHORT (op);
1667 }
1668 continue;
1669
1670 }
1671 else if (cr_reg >= 0 &&
1672 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1673 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1674 /* stw Rx, NUM(r1) */
1675 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1676 /* stwu Rx, NUM(r1) */
1677 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1678 { /* where Rx == cr */
1679 fdata->cr_offset = offset;
1680 /* Invalidate cr_reg, but don't set it to -1.
1681 That would mean that it had never been set. */
1682 cr_reg = -2;
1683 if ((op & 0xfc000003) == 0xf8000000 ||
1684 (op & 0xfc000000) == 0x90000000)
1685 {
1686 /* Does not update r1, so add displacement to cr_offset. */
1687 fdata->cr_offset += SIGNED_SHORT (op);
1688 }
1689 continue;
1690
1691 }
1692 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1693 {
1694 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1695 prediction bits. If the LR has already been saved, we can
1696 skip it. */
1697 continue;
1698 }
1699 else if (op == 0x48000005)
1700 { /* bl .+4 used in
1701 -mrelocatable */
1702 fdata->used_bl = 1;
1703 continue;
1704
1705 }
1706 else if (op == 0x48000004)
1707 { /* b .+4 (xlc) */
1708 break;
1709
1710 }
1711 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1712 in V.4 -mminimal-toc */
1713 (op & 0xffff0000) == 0x3bde0000)
1714 { /* addi 30,30,foo@l */
1715 continue;
1716
1717 }
1718 else if ((op & 0xfc000001) == 0x48000001)
1719 { /* bl foo,
1720 to save fprs??? */
1721
1722 fdata->frameless = 0;
1723
1724 /* If the return address has already been saved, we can skip
1725 calls to blrl (for PIC). */
1726 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1727 {
1728 fdata->used_bl = 1;
1729 continue;
1730 }
1731
1732 /* Don't skip over the subroutine call if it is not within
1733 the first three instructions of the prologue and either
1734 we have no line table information or the line info tells
1735 us that the subroutine call is not part of the line
1736 associated with the prologue. */
1737 if ((pc - orig_pc) > 8)
1738 {
1739 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1740 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1741
1742 if ((prologue_sal.line == 0)
1743 || (prologue_sal.line != this_sal.line))
1744 break;
1745 }
1746
1747 op = read_memory_integer (pc + 4, 4, byte_order);
1748
1749 /* At this point, make sure this is not a trampoline
1750 function (a function that simply calls another functions,
1751 and nothing else). If the next is not a nop, this branch
1752 was part of the function prologue. */
1753
1754 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1755 break; /* Don't skip over
1756 this branch. */
1757
1758 fdata->used_bl = 1;
1759 continue;
1760 }
1761 /* update stack pointer */
1762 else if ((op & 0xfc1f0000) == 0x94010000)
1763 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1764 fdata->frameless = 0;
1765 fdata->offset = SIGNED_SHORT (op);
1766 offset = fdata->offset;
1767 continue;
1768 }
1769 else if ((op & 0xfc1f016a) == 0x7c01016e)
1770 { /* stwux rX,r1,rY */
1771 /* No way to figure out what r1 is going to be. */
1772 fdata->frameless = 0;
1773 offset = fdata->offset;
1774 continue;
1775 }
1776 else if ((op & 0xfc1f0003) == 0xf8010001)
1777 { /* stdu rX,NUM(r1) */
1778 fdata->frameless = 0;
1779 fdata->offset = SIGNED_SHORT (op & ~3UL);
1780 offset = fdata->offset;
1781 continue;
1782 }
1783 else if ((op & 0xfc1f016a) == 0x7c01016a)
1784 { /* stdux rX,r1,rY */
1785 /* No way to figure out what r1 is going to be. */
1786 fdata->frameless = 0;
1787 offset = fdata->offset;
1788 continue;
1789 }
1790 else if ((op & 0xffff0000) == 0x38210000)
1791 { /* addi r1,r1,SIMM */
1792 fdata->frameless = 0;
1793 fdata->offset += SIGNED_SHORT (op);
1794 offset = fdata->offset;
1795 continue;
1796 }
1797 /* Load up minimal toc pointer. Do not treat an epilogue restore
1798 of r31 as a minimal TOC load. */
1799 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1800 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1801 && !framep
1802 && !minimal_toc_loaded)
1803 {
1804 minimal_toc_loaded = 1;
1805 continue;
1806
1807 /* move parameters from argument registers to local variable
1808 registers */
1809 }
1810 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1811 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1812 (((op >> 21) & 31) <= 10) &&
1813 ((long) ((op >> 16) & 31)
1814 >= fdata->saved_gpr)) /* Rx: local var reg */
1815 {
1816 continue;
1817
1818 /* store parameters in stack */
1819 }
1820 /* Move parameters from argument registers to temporary register. */
1821 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1822 {
1823 continue;
1824
1825 /* Set up frame pointer */
1826 }
1827 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1828 || op == 0x7c3f0b78)
1829 { /* mr r31, r1 */
1830 fdata->frameless = 0;
1831 framep = 1;
1832 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1833 continue;
1834
1835 /* Another way to set up the frame pointer. */
1836 }
1837 else if ((op & 0xfc1fffff) == 0x38010000)
1838 { /* addi rX, r1, 0x0 */
1839 fdata->frameless = 0;
1840 framep = 1;
1841 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1842 + ((op & ~0x38010000) >> 21));
1843 continue;
1844 }
1845 /* AltiVec related instructions. */
1846 /* Store the vrsave register (spr 256) in another register for
1847 later manipulation, or load a register into the vrsave
1848 register. 2 instructions are used: mfvrsave and
1849 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1850 and mtspr SPR256, Rn. */
1851 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1852 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1853 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1854 {
1855 vrsave_reg = GET_SRC_REG (op);
1856 continue;
1857 }
1858 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1859 {
1860 continue;
1861 }
1862 /* Store the register where vrsave was saved to onto the stack:
1863 rS is the register where vrsave was stored in a previous
1864 instruction. */
1865 /* 100100 sssss 00001 dddddddd dddddddd */
1866 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1867 {
1868 if (vrsave_reg == GET_SRC_REG (op))
1869 {
1870 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1871 vrsave_reg = -1;
1872 }
1873 continue;
1874 }
1875 /* Compute the new value of vrsave, by modifying the register
1876 where vrsave was saved to. */
1877 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1878 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1879 {
1880 continue;
1881 }
1882 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1883 in a pair of insns to save the vector registers on the
1884 stack. */
1885 /* 001110 00000 00000 iiii iiii iiii iiii */
1886 /* 001110 01110 00000 iiii iiii iiii iiii */
1887 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1888 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1889 {
1890 if ((op & 0xffff0000) == 0x38000000)
1891 r0_contains_arg = 0;
1892 li_found_pc = pc;
1893 vr_saved_offset = SIGNED_SHORT (op);
1894
1895 /* This insn by itself is not part of the prologue, unless
1896 if part of the pair of insns mentioned above. So do not
1897 record this insn as part of the prologue yet. */
1898 prev_insn_was_prologue_insn = 0;
1899 }
1900 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1901 /* 011111 sssss 11111 00000 00111001110 */
1902 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1903 {
1904 if (pc == (li_found_pc + 4))
1905 {
1906 vr_reg = GET_SRC_REG (op);
1907 /* If this is the first vector reg to be saved, or if
1908 it has a lower number than others previously seen,
1909 reupdate the frame info. */
1910 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1911 {
1912 fdata->saved_vr = vr_reg;
1913 fdata->vr_offset = vr_saved_offset + offset;
1914 }
1915 vr_saved_offset = -1;
1916 vr_reg = -1;
1917 li_found_pc = 0;
1918 }
1919 }
1920 /* End AltiVec related instructions. */
1921
1922 /* Start BookE related instructions. */
1923 /* Store gen register S at (r31+uimm).
1924 Any register less than r13 is volatile, so we don't care. */
1925 /* 000100 sssss 11111 iiiii 01100100001 */
1926 else if (arch_info->mach == bfd_mach_ppc_e500
1927 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1928 {
1929 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1930 {
1931 unsigned int imm;
1932 ev_reg = GET_SRC_REG (op);
1933 imm = (op >> 11) & 0x1f;
1934 ev_offset = imm * 8;
1935 /* If this is the first vector reg to be saved, or if
1936 it has a lower number than others previously seen,
1937 reupdate the frame info. */
1938 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1939 {
1940 fdata->saved_ev = ev_reg;
1941 fdata->ev_offset = ev_offset + offset;
1942 }
1943 }
1944 continue;
1945 }
1946 /* Store gen register rS at (r1+rB). */
1947 /* 000100 sssss 00001 bbbbb 01100100000 */
1948 else if (arch_info->mach == bfd_mach_ppc_e500
1949 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1950 {
1951 if (pc == (li_found_pc + 4))
1952 {
1953 ev_reg = GET_SRC_REG (op);
1954 /* If this is the first vector reg to be saved, or if
1955 it has a lower number than others previously seen,
1956 reupdate the frame info. */
1957 /* We know the contents of rB from the previous instruction. */
1958 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1959 {
1960 fdata->saved_ev = ev_reg;
1961 fdata->ev_offset = vr_saved_offset + offset;
1962 }
1963 vr_saved_offset = -1;
1964 ev_reg = -1;
1965 li_found_pc = 0;
1966 }
1967 continue;
1968 }
1969 /* Store gen register r31 at (rA+uimm). */
1970 /* 000100 11111 aaaaa iiiii 01100100001 */
1971 else if (arch_info->mach == bfd_mach_ppc_e500
1972 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1973 {
1974 /* Wwe know that the source register is 31 already, but
1975 it can't hurt to compute it. */
1976 ev_reg = GET_SRC_REG (op);
1977 ev_offset = ((op >> 11) & 0x1f) * 8;
1978 /* If this is the first vector reg to be saved, or if
1979 it has a lower number than others previously seen,
1980 reupdate the frame info. */
1981 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1982 {
1983 fdata->saved_ev = ev_reg;
1984 fdata->ev_offset = ev_offset + offset;
1985 }
1986
1987 continue;
1988 }
1989 /* Store gen register S at (r31+r0).
1990 Store param on stack when offset from SP bigger than 4 bytes. */
1991 /* 000100 sssss 11111 00000 01100100000 */
1992 else if (arch_info->mach == bfd_mach_ppc_e500
1993 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1994 {
1995 if (pc == (li_found_pc + 4))
1996 {
1997 if ((op & 0x03e00000) >= 0x01a00000)
1998 {
1999 ev_reg = GET_SRC_REG (op);
2000 /* If this is the first vector reg to be saved, or if
2001 it has a lower number than others previously seen,
2002 reupdate the frame info. */
2003 /* We know the contents of r0 from the previous
2004 instruction. */
2005 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2006 {
2007 fdata->saved_ev = ev_reg;
2008 fdata->ev_offset = vr_saved_offset + offset;
2009 }
2010 ev_reg = -1;
2011 }
2012 vr_saved_offset = -1;
2013 li_found_pc = 0;
2014 continue;
2015 }
2016 }
2017 /* End BookE related instructions. */
2018
2019 else
2020 {
2021 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2022
2023 /* Not a recognized prologue instruction.
2024 Handle optimizer code motions into the prologue by continuing
2025 the search if we have no valid frame yet or if the return
2026 address is not yet saved in the frame. Also skip instructions
2027 if some of the GPRs expected to be saved are not yet saved. */
2028 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2029 && (fdata->gpr_mask & all_mask) == all_mask)
2030 break;
2031
2032 if (op == 0x4e800020 /* blr */
2033 || op == 0x4e800420) /* bctr */
2034 /* Do not scan past epilogue in frameless functions or
2035 trampolines. */
2036 break;
2037 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2038 /* Never skip branches. */
2039 break;
2040
2041 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2042 /* Do not scan too many insns, scanning insns is expensive with
2043 remote targets. */
2044 break;
2045
2046 /* Continue scanning. */
2047 prev_insn_was_prologue_insn = 0;
2048 continue;
2049 }
2050 }
2051
2052 #if 0
2053 /* I have problems with skipping over __main() that I need to address
2054 * sometime. Previously, I used to use misc_function_vector which
2055 * didn't work as well as I wanted to be. -MGO */
2056
2057 /* If the first thing after skipping a prolog is a branch to a function,
2058 this might be a call to an initializer in main(), introduced by gcc2.
2059 We'd like to skip over it as well. Fortunately, xlc does some extra
2060 work before calling a function right after a prologue, thus we can
2061 single out such gcc2 behaviour. */
2062
2063
2064 if ((op & 0xfc000001) == 0x48000001)
2065 { /* bl foo, an initializer function? */
2066 op = read_memory_integer (pc + 4, 4, byte_order);
2067
2068 if (op == 0x4def7b82)
2069 { /* cror 0xf, 0xf, 0xf (nop) */
2070
2071 /* Check and see if we are in main. If so, skip over this
2072 initializer function as well. */
2073
2074 tmp = find_pc_misc_function (pc);
2075 if (tmp >= 0
2076 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2077 return pc + 8;
2078 }
2079 }
2080 #endif /* 0 */
2081
2082 if (pc == lim_pc && lr_reg >= 0)
2083 fdata->lr_register = lr_reg;
2084
2085 fdata->offset = -fdata->offset;
2086 return last_prologue_pc;
2087 }
2088
2089 static CORE_ADDR
2090 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2091 {
2092 struct rs6000_framedata frame;
2093 CORE_ADDR limit_pc, func_addr;
2094
2095 /* See if we can determine the end of the prologue via the symbol table.
2096 If so, then return either PC, or the PC after the prologue, whichever
2097 is greater. */
2098 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
2099 {
2100 CORE_ADDR post_prologue_pc
2101 = skip_prologue_using_sal (gdbarch, func_addr);
2102 if (post_prologue_pc != 0)
2103 return max (pc, post_prologue_pc);
2104 }
2105
2106 /* Can't determine prologue from the symbol table, need to examine
2107 instructions. */
2108
2109 /* Find an upper limit on the function prologue using the debug
2110 information. If the debug information could not be used to provide
2111 that bound, then use an arbitrary large number as the upper bound. */
2112 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2113 if (limit_pc == 0)
2114 limit_pc = pc + 100; /* Magic. */
2115
2116 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2117 return pc;
2118 }
2119
2120 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2121 in the prologue of main().
2122
2123 The function below examines the code pointed at by PC and checks to
2124 see if it corresponds to a call to __eabi. If so, it returns the
2125 address of the instruction following that call. Otherwise, it simply
2126 returns PC. */
2127
2128 static CORE_ADDR
2129 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2130 {
2131 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2132 gdb_byte buf[4];
2133 unsigned long op;
2134
2135 if (target_read_memory (pc, buf, 4))
2136 return pc;
2137 op = extract_unsigned_integer (buf, 4, byte_order);
2138
2139 if ((op & BL_MASK) == BL_INSTRUCTION)
2140 {
2141 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2142 CORE_ADDR call_dest = pc + 4 + displ;
2143 struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);
2144
2145 /* We check for ___eabi (three leading underscores) in addition
2146 to __eabi in case the GCC option "-fleading-underscore" was
2147 used to compile the program. */
2148 if (s != NULL
2149 && SYMBOL_LINKAGE_NAME (s) != NULL
2150 && (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
2151 || strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
2152 pc += 4;
2153 }
2154 return pc;
2155 }
2156
2157 /* All the ABI's require 16 byte alignment. */
2158 static CORE_ADDR
2159 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2160 {
2161 return (addr & -16);
2162 }
2163
2164 /* Return whether handle_inferior_event() should proceed through code
2165 starting at PC in function NAME when stepping.
2166
2167 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2168 handle memory references that are too distant to fit in instructions
2169 generated by the compiler. For example, if 'foo' in the following
2170 instruction:
2171
2172 lwz r9,foo(r2)
2173
2174 is greater than 32767, the linker might replace the lwz with a branch to
2175 somewhere in @FIX1 that does the load in 2 instructions and then branches
2176 back to where execution should continue.
2177
2178 GDB should silently step over @FIX code, just like AIX dbx does.
2179 Unfortunately, the linker uses the "b" instruction for the
2180 branches, meaning that the link register doesn't get set.
2181 Therefore, GDB's usual step_over_function () mechanism won't work.
2182
2183 Instead, use the gdbarch_skip_trampoline_code and
2184 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2185 @FIX code. */
2186
2187 static int
2188 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2189 CORE_ADDR pc, char *name)
2190 {
2191 return name && !strncmp (name, "@FIX", 4);
2192 }
2193
2194 /* Skip code that the user doesn't want to see when stepping:
2195
2196 1. Indirect function calls use a piece of trampoline code to do context
2197 switching, i.e. to set the new TOC table. Skip such code if we are on
2198 its first instruction (as when we have single-stepped to here).
2199
2200 2. Skip shared library trampoline code (which is different from
2201 indirect function call trampolines).
2202
2203 3. Skip bigtoc fixup code.
2204
2205 Result is desired PC to step until, or NULL if we are not in
2206 code that should be skipped. */
2207
2208 static CORE_ADDR
2209 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2210 {
2211 struct gdbarch *gdbarch = get_frame_arch (frame);
2212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2213 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2214 unsigned int ii, op;
2215 int rel;
2216 CORE_ADDR solib_target_pc;
2217 struct minimal_symbol *msymbol;
2218
2219 static unsigned trampoline_code[] =
2220 {
2221 0x800b0000, /* l r0,0x0(r11) */
2222 0x90410014, /* st r2,0x14(r1) */
2223 0x7c0903a6, /* mtctr r0 */
2224 0x804b0004, /* l r2,0x4(r11) */
2225 0x816b0008, /* l r11,0x8(r11) */
2226 0x4e800420, /* bctr */
2227 0x4e800020, /* br */
2228 0
2229 };
2230
2231 /* Check for bigtoc fixup code. */
2232 msymbol = lookup_minimal_symbol_by_pc (pc);
2233 if (msymbol
2234 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2235 SYMBOL_LINKAGE_NAME (msymbol)))
2236 {
2237 /* Double-check that the third instruction from PC is relative "b". */
2238 op = read_memory_integer (pc + 8, 4, byte_order);
2239 if ((op & 0xfc000003) == 0x48000000)
2240 {
2241 /* Extract bits 6-29 as a signed 24-bit relative word address and
2242 add it to the containing PC. */
2243 rel = ((int)(op << 6) >> 6);
2244 return pc + 8 + rel;
2245 }
2246 }
2247
2248 /* If pc is in a shared library trampoline, return its target. */
2249 solib_target_pc = find_solib_trampoline_target (frame, pc);
2250 if (solib_target_pc)
2251 return solib_target_pc;
2252
2253 for (ii = 0; trampoline_code[ii]; ++ii)
2254 {
2255 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2256 if (op != trampoline_code[ii])
2257 return 0;
2258 }
2259 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2260 addr. */
2261 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2262 return pc;
2263 }
2264
2265 /* ISA-specific vector types. */
2266
2267 static struct type *
2268 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2269 {
2270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2271
2272 if (!tdep->ppc_builtin_type_vec64)
2273 {
2274 const struct builtin_type *bt = builtin_type (gdbarch);
2275
2276 /* The type we're building is this: */
2277 #if 0
2278 union __gdb_builtin_type_vec64
2279 {
2280 int64_t uint64;
2281 float v2_float[2];
2282 int32_t v2_int32[2];
2283 int16_t v4_int16[4];
2284 int8_t v8_int8[8];
2285 };
2286 #endif
2287
2288 struct type *t;
2289
2290 t = arch_composite_type (gdbarch,
2291 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2292 append_composite_type_field (t, "uint64", bt->builtin_int64);
2293 append_composite_type_field (t, "v2_float",
2294 init_vector_type (bt->builtin_float, 2));
2295 append_composite_type_field (t, "v2_int32",
2296 init_vector_type (bt->builtin_int32, 2));
2297 append_composite_type_field (t, "v4_int16",
2298 init_vector_type (bt->builtin_int16, 4));
2299 append_composite_type_field (t, "v8_int8",
2300 init_vector_type (bt->builtin_int8, 8));
2301
2302 TYPE_VECTOR (t) = 1;
2303 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2304 tdep->ppc_builtin_type_vec64 = t;
2305 }
2306
2307 return tdep->ppc_builtin_type_vec64;
2308 }
2309
2310 /* Vector 128 type. */
2311
2312 static struct type *
2313 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2314 {
2315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2316
2317 if (!tdep->ppc_builtin_type_vec128)
2318 {
2319 const struct builtin_type *bt = builtin_type (gdbarch);
2320
2321 /* The type we're building is this
2322
2323 type = union __ppc_builtin_type_vec128 {
2324 uint128_t uint128;
2325 double v2_double[2];
2326 float v4_float[4];
2327 int32_t v4_int32[4];
2328 int16_t v8_int16[8];
2329 int8_t v16_int8[16];
2330 }
2331 */
2332
2333 struct type *t;
2334
2335 t = arch_composite_type (gdbarch,
2336 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2337 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2338 append_composite_type_field (t, "v2_double",
2339 init_vector_type (bt->builtin_double, 2));
2340 append_composite_type_field (t, "v4_float",
2341 init_vector_type (bt->builtin_float, 4));
2342 append_composite_type_field (t, "v4_int32",
2343 init_vector_type (bt->builtin_int32, 4));
2344 append_composite_type_field (t, "v8_int16",
2345 init_vector_type (bt->builtin_int16, 8));
2346 append_composite_type_field (t, "v16_int8",
2347 init_vector_type (bt->builtin_int8, 16));
2348
2349 TYPE_VECTOR (t) = 1;
2350 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2351 tdep->ppc_builtin_type_vec128 = t;
2352 }
2353
2354 return tdep->ppc_builtin_type_vec128;
2355 }
2356
2357 /* Return the name of register number REGNO, or the empty string if it
2358 is an anonymous register. */
2359
2360 static const char *
2361 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2362 {
2363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2364
2365 /* The upper half "registers" have names in the XML description,
2366 but we present only the low GPRs and the full 64-bit registers
2367 to the user. */
2368 if (tdep->ppc_ev0_upper_regnum >= 0
2369 && tdep->ppc_ev0_upper_regnum <= regno
2370 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2371 return "";
2372
2373 /* Hide the upper halves of the vs0~vs31 registers. */
2374 if (tdep->ppc_vsr0_regnum >= 0
2375 && tdep->ppc_vsr0_upper_regnum <= regno
2376 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2377 return "";
2378
2379 /* Check if the SPE pseudo registers are available. */
2380 if (IS_SPE_PSEUDOREG (tdep, regno))
2381 {
2382 static const char *const spe_regnames[] = {
2383 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2384 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2385 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2386 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2387 };
2388 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2389 }
2390
2391 /* Check if the decimal128 pseudo-registers are available. */
2392 if (IS_DFP_PSEUDOREG (tdep, regno))
2393 {
2394 static const char *const dfp128_regnames[] = {
2395 "dl0", "dl1", "dl2", "dl3",
2396 "dl4", "dl5", "dl6", "dl7",
2397 "dl8", "dl9", "dl10", "dl11",
2398 "dl12", "dl13", "dl14", "dl15"
2399 };
2400 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2401 }
2402
2403 /* Check if this is a VSX pseudo-register. */
2404 if (IS_VSX_PSEUDOREG (tdep, regno))
2405 {
2406 static const char *const vsx_regnames[] = {
2407 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2408 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2409 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2410 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2411 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2412 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2413 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2414 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2415 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2416 };
2417 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2418 }
2419
2420 /* Check if the this is a Extended FP pseudo-register. */
2421 if (IS_EFP_PSEUDOREG (tdep, regno))
2422 {
2423 static const char *const efpr_regnames[] = {
2424 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2425 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2426 "f46", "f47", "f48", "f49", "f50", "f51",
2427 "f52", "f53", "f54", "f55", "f56", "f57",
2428 "f58", "f59", "f60", "f61", "f62", "f63"
2429 };
2430 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2431 }
2432
2433 return tdesc_register_name (gdbarch, regno);
2434 }
2435
2436 /* Return the GDB type object for the "standard" data type of data in
2437 register N. */
2438
2439 static struct type *
2440 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2441 {
2442 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2443
2444 /* These are the only pseudo-registers we support. */
2445 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2446 || IS_DFP_PSEUDOREG (tdep, regnum)
2447 || IS_VSX_PSEUDOREG (tdep, regnum)
2448 || IS_EFP_PSEUDOREG (tdep, regnum));
2449
2450 /* These are the e500 pseudo-registers. */
2451 if (IS_SPE_PSEUDOREG (tdep, regnum))
2452 return rs6000_builtin_type_vec64 (gdbarch);
2453 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2454 /* PPC decimal128 pseudo-registers. */
2455 return builtin_type (gdbarch)->builtin_declong;
2456 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2457 /* POWER7 VSX pseudo-registers. */
2458 return rs6000_builtin_type_vec128 (gdbarch);
2459 else
2460 /* POWER7 Extended FP pseudo-registers. */
2461 return builtin_type (gdbarch)->builtin_double;
2462 }
2463
2464 /* Is REGNUM a member of REGGROUP? */
2465 static int
2466 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2467 struct reggroup *group)
2468 {
2469 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2470
2471 /* These are the only pseudo-registers we support. */
2472 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2473 || IS_DFP_PSEUDOREG (tdep, regnum)
2474 || IS_VSX_PSEUDOREG (tdep, regnum)
2475 || IS_EFP_PSEUDOREG (tdep, regnum));
2476
2477 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2478 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2479 return group == all_reggroup || group == vector_reggroup;
2480 else
2481 /* PPC decimal128 or Extended FP pseudo-registers. */
2482 return group == all_reggroup || group == float_reggroup;
2483 }
2484
2485 /* The register format for RS/6000 floating point registers is always
2486 double, we need a conversion if the memory format is float. */
2487
2488 static int
2489 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2490 struct type *type)
2491 {
2492 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2493
2494 return (tdep->ppc_fp0_regnum >= 0
2495 && regnum >= tdep->ppc_fp0_regnum
2496 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2497 && TYPE_CODE (type) == TYPE_CODE_FLT
2498 && TYPE_LENGTH (type)
2499 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2500 }
2501
2502 static void
2503 rs6000_register_to_value (struct frame_info *frame,
2504 int regnum,
2505 struct type *type,
2506 gdb_byte *to)
2507 {
2508 struct gdbarch *gdbarch = get_frame_arch (frame);
2509 gdb_byte from[MAX_REGISTER_SIZE];
2510
2511 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2512
2513 get_frame_register (frame, regnum, from);
2514 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2515 to, type);
2516 }
2517
2518 static void
2519 rs6000_value_to_register (struct frame_info *frame,
2520 int regnum,
2521 struct type *type,
2522 const gdb_byte *from)
2523 {
2524 struct gdbarch *gdbarch = get_frame_arch (frame);
2525 gdb_byte to[MAX_REGISTER_SIZE];
2526
2527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2528
2529 convert_typed_floating (from, type,
2530 to, builtin_type (gdbarch)->builtin_double);
2531 put_frame_register (frame, regnum, to);
2532 }
2533
2534 /* Move SPE vector register values between a 64-bit buffer and the two
2535 32-bit raw register halves in a regcache. This function handles
2536 both splitting a 64-bit value into two 32-bit halves, and joining
2537 two halves into a whole 64-bit value, depending on the function
2538 passed as the MOVE argument.
2539
2540 EV_REG must be the number of an SPE evN vector register --- a
2541 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2542 64-bit buffer.
2543
2544 Call MOVE once for each 32-bit half of that register, passing
2545 REGCACHE, the number of the raw register corresponding to that
2546 half, and the address of the appropriate half of BUFFER.
2547
2548 For example, passing 'regcache_raw_read' as the MOVE function will
2549 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2550 'regcache_raw_supply' will supply the contents of BUFFER to the
2551 appropriate pair of raw registers in REGCACHE.
2552
2553 You may need to cast away some 'const' qualifiers when passing
2554 MOVE, since this function can't tell at compile-time which of
2555 REGCACHE or BUFFER is acting as the source of the data. If C had
2556 co-variant type qualifiers, ... */
2557 static void
2558 e500_move_ev_register (void (*move) (struct regcache *regcache,
2559 int regnum, gdb_byte *buf),
2560 struct regcache *regcache, int ev_reg,
2561 gdb_byte *buffer)
2562 {
2563 struct gdbarch *arch = get_regcache_arch (regcache);
2564 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2565 int reg_index;
2566 gdb_byte *byte_buffer = buffer;
2567
2568 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2569
2570 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2571
2572 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2573 {
2574 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2575 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2576 }
2577 else
2578 {
2579 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2580 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2581 }
2582 }
2583
2584 static void
2585 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2586 int reg_nr, gdb_byte *buffer)
2587 {
2588 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2589 }
2590
2591 static void
2592 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2593 int reg_nr, const gdb_byte *buffer)
2594 {
2595 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2596 regcache_raw_write,
2597 regcache, reg_nr, (gdb_byte *) buffer);
2598 }
2599
2600 /* Read method for DFP pseudo-registers. */
2601 static void
2602 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2603 int reg_nr, gdb_byte *buffer)
2604 {
2605 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2606 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2607
2608 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2609 {
2610 /* Read two FP registers to form a whole dl register. */
2611 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2612 2 * reg_index, buffer);
2613 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2614 2 * reg_index + 1, buffer + 8);
2615 }
2616 else
2617 {
2618 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2619 2 * reg_index + 1, buffer + 8);
2620 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2621 2 * reg_index, buffer);
2622 }
2623 }
2624
2625 /* Write method for DFP pseudo-registers. */
2626 static void
2627 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2628 int reg_nr, const gdb_byte *buffer)
2629 {
2630 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2631 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2632
2633 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2634 {
2635 /* Write each half of the dl register into a separate
2636 FP register. */
2637 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2638 2 * reg_index, buffer);
2639 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2640 2 * reg_index + 1, buffer + 8);
2641 }
2642 else
2643 {
2644 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2645 2 * reg_index + 1, buffer + 8);
2646 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2647 2 * reg_index, buffer);
2648 }
2649 }
2650
2651 /* Read method for POWER7 VSX pseudo-registers. */
2652 static void
2653 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2654 int reg_nr, gdb_byte *buffer)
2655 {
2656 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2657 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2658
2659 /* Read the portion that overlaps the VMX registers. */
2660 if (reg_index > 31)
2661 regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2662 reg_index - 32, buffer);
2663 else
2664 /* Read the portion that overlaps the FPR registers. */
2665 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2666 {
2667 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2668 reg_index, buffer);
2669 regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2670 reg_index, buffer + 8);
2671 }
2672 else
2673 {
2674 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2675 reg_index, buffer + 8);
2676 regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2677 reg_index, buffer);
2678 }
2679 }
2680
2681 /* Write method for POWER7 VSX pseudo-registers. */
2682 static void
2683 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2684 int reg_nr, const gdb_byte *buffer)
2685 {
2686 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2687 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2688
2689 /* Write the portion that overlaps the VMX registers. */
2690 if (reg_index > 31)
2691 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2692 reg_index - 32, buffer);
2693 else
2694 /* Write the portion that overlaps the FPR registers. */
2695 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2696 {
2697 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2698 reg_index, buffer);
2699 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2700 reg_index, buffer + 8);
2701 }
2702 else
2703 {
2704 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2705 reg_index, buffer + 8);
2706 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2707 reg_index, buffer);
2708 }
2709 }
2710
2711 /* Read method for POWER7 Extended FP pseudo-registers. */
2712 static void
2713 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2714 int reg_nr, gdb_byte *buffer)
2715 {
2716 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2717 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2718
2719 /* Read the portion that overlaps the VMX registers. */
2720 regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2721 reg_index, buffer);
2722 }
2723
2724 /* Write method for POWER7 Extended FP pseudo-registers. */
2725 static void
2726 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2727 int reg_nr, const gdb_byte *buffer)
2728 {
2729 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2730 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2731
2732 /* Write the portion that overlaps the VMX registers. */
2733 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2734 reg_index, buffer);
2735 }
2736
2737 static void
2738 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2739 struct regcache *regcache,
2740 int reg_nr, gdb_byte *buffer)
2741 {
2742 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2744
2745 gdb_assert (regcache_arch == gdbarch);
2746
2747 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2748 e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2749 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2750 dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2751 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2752 vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2753 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2754 efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2755 else
2756 internal_error (__FILE__, __LINE__,
2757 _("rs6000_pseudo_register_read: "
2758 "called on unexpected register '%s' (%d)"),
2759 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2760 }
2761
2762 static void
2763 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2764 struct regcache *regcache,
2765 int reg_nr, const gdb_byte *buffer)
2766 {
2767 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2768 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2769
2770 gdb_assert (regcache_arch == gdbarch);
2771
2772 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2773 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2774 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2775 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2776 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2777 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2778 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2779 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2780 else
2781 internal_error (__FILE__, __LINE__,
2782 _("rs6000_pseudo_register_write: "
2783 "called on unexpected register '%s' (%d)"),
2784 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2785 }
2786
2787 /* Convert a DBX STABS register number to a GDB register number. */
2788 static int
2789 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2790 {
2791 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2792
2793 if (0 <= num && num <= 31)
2794 return tdep->ppc_gp0_regnum + num;
2795 else if (32 <= num && num <= 63)
2796 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2797 specifies registers the architecture doesn't have? Our
2798 callers don't check the value we return. */
2799 return tdep->ppc_fp0_regnum + (num - 32);
2800 else if (77 <= num && num <= 108)
2801 return tdep->ppc_vr0_regnum + (num - 77);
2802 else if (1200 <= num && num < 1200 + 32)
2803 return tdep->ppc_ev0_regnum + (num - 1200);
2804 else
2805 switch (num)
2806 {
2807 case 64:
2808 return tdep->ppc_mq_regnum;
2809 case 65:
2810 return tdep->ppc_lr_regnum;
2811 case 66:
2812 return tdep->ppc_ctr_regnum;
2813 case 76:
2814 return tdep->ppc_xer_regnum;
2815 case 109:
2816 return tdep->ppc_vrsave_regnum;
2817 case 110:
2818 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2819 case 111:
2820 return tdep->ppc_acc_regnum;
2821 case 112:
2822 return tdep->ppc_spefscr_regnum;
2823 default:
2824 return num;
2825 }
2826 }
2827
2828
2829 /* Convert a Dwarf 2 register number to a GDB register number. */
2830 static int
2831 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2832 {
2833 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2834
2835 if (0 <= num && num <= 31)
2836 return tdep->ppc_gp0_regnum + num;
2837 else if (32 <= num && num <= 63)
2838 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2839 specifies registers the architecture doesn't have? Our
2840 callers don't check the value we return. */
2841 return tdep->ppc_fp0_regnum + (num - 32);
2842 else if (1124 <= num && num < 1124 + 32)
2843 return tdep->ppc_vr0_regnum + (num - 1124);
2844 else if (1200 <= num && num < 1200 + 32)
2845 return tdep->ppc_ev0_regnum + (num - 1200);
2846 else
2847 switch (num)
2848 {
2849 case 64:
2850 return tdep->ppc_cr_regnum;
2851 case 67:
2852 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2853 case 99:
2854 return tdep->ppc_acc_regnum;
2855 case 100:
2856 return tdep->ppc_mq_regnum;
2857 case 101:
2858 return tdep->ppc_xer_regnum;
2859 case 108:
2860 return tdep->ppc_lr_regnum;
2861 case 109:
2862 return tdep->ppc_ctr_regnum;
2863 case 356:
2864 return tdep->ppc_vrsave_regnum;
2865 case 612:
2866 return tdep->ppc_spefscr_regnum;
2867 default:
2868 return num;
2869 }
2870 }
2871
2872 /* Translate a .eh_frame register to DWARF register, or adjust a
2873 .debug_frame register. */
2874
2875 static int
2876 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2877 {
2878 /* GCC releases before 3.4 use GCC internal register numbering in
2879 .debug_frame (and .debug_info, et cetera). The numbering is
2880 different from the standard SysV numbering for everything except
2881 for GPRs and FPRs. We can not detect this problem in most cases
2882 - to get accurate debug info for variables living in lr, ctr, v0,
2883 et cetera, use a newer version of GCC. But we must detect
2884 one important case - lr is in column 65 in .debug_frame output,
2885 instead of 108.
2886
2887 GCC 3.4, and the "hammer" branch, have a related problem. They
2888 record lr register saves in .debug_frame as 108, but still record
2889 the return column as 65. We fix that up too.
2890
2891 We can do this because 65 is assigned to fpsr, and GCC never
2892 generates debug info referring to it. To add support for
2893 handwritten debug info that restores fpsr, we would need to add a
2894 producer version check to this. */
2895 if (!eh_frame_p)
2896 {
2897 if (num == 65)
2898 return 108;
2899 else
2900 return num;
2901 }
2902
2903 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2904 internal register numbering; translate that to the standard DWARF2
2905 register numbering. */
2906 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2907 return num;
2908 else if (68 <= num && num <= 75) /* cr0-cr8 */
2909 return num - 68 + 86;
2910 else if (77 <= num && num <= 108) /* vr0-vr31 */
2911 return num - 77 + 1124;
2912 else
2913 switch (num)
2914 {
2915 case 64: /* mq */
2916 return 100;
2917 case 65: /* lr */
2918 return 108;
2919 case 66: /* ctr */
2920 return 109;
2921 case 76: /* xer */
2922 return 101;
2923 case 109: /* vrsave */
2924 return 356;
2925 case 110: /* vscr */
2926 return 67;
2927 case 111: /* spe_acc */
2928 return 99;
2929 case 112: /* spefscr */
2930 return 612;
2931 default:
2932 return num;
2933 }
2934 }
2935 \f
2936
2937 /* Handling the various POWER/PowerPC variants. */
2938
2939 /* Information about a particular processor variant. */
2940
2941 struct variant
2942 {
2943 /* Name of this variant. */
2944 char *name;
2945
2946 /* English description of the variant. */
2947 char *description;
2948
2949 /* bfd_arch_info.arch corresponding to variant. */
2950 enum bfd_architecture arch;
2951
2952 /* bfd_arch_info.mach corresponding to variant. */
2953 unsigned long mach;
2954
2955 /* Target description for this variant. */
2956 struct target_desc **tdesc;
2957 };
2958
2959 static struct variant variants[] =
2960 {
2961 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2962 bfd_mach_ppc, &tdesc_powerpc_altivec32},
2963 {"power", "POWER user-level", bfd_arch_rs6000,
2964 bfd_mach_rs6k, &tdesc_rs6000},
2965 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2966 bfd_mach_ppc_403, &tdesc_powerpc_403},
2967 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
2968 bfd_mach_ppc_405, &tdesc_powerpc_405},
2969 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2970 bfd_mach_ppc_601, &tdesc_powerpc_601},
2971 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2972 bfd_mach_ppc_602, &tdesc_powerpc_602},
2973 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2974 bfd_mach_ppc_603, &tdesc_powerpc_603},
2975 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2976 604, &tdesc_powerpc_604},
2977 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2978 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
2979 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2980 bfd_mach_ppc_505, &tdesc_powerpc_505},
2981 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2982 bfd_mach_ppc_860, &tdesc_powerpc_860},
2983 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2984 bfd_mach_ppc_750, &tdesc_powerpc_750},
2985 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2986 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
2987 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2988 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
2989
2990 /* 64-bit */
2991 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2992 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
2993 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2994 bfd_mach_ppc_620, &tdesc_powerpc_64},
2995 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2996 bfd_mach_ppc_630, &tdesc_powerpc_64},
2997 {"a35", "PowerPC A35", bfd_arch_powerpc,
2998 bfd_mach_ppc_a35, &tdesc_powerpc_64},
2999 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3000 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3001 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3002 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3003
3004 /* FIXME: I haven't checked the register sets of the following. */
3005 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3006 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3007 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3008 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3009 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3010 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3011
3012 {0, 0, 0, 0, 0}
3013 };
3014
3015 /* Return the variant corresponding to architecture ARCH and machine number
3016 MACH. If no such variant exists, return null. */
3017
3018 static const struct variant *
3019 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3020 {
3021 const struct variant *v;
3022
3023 for (v = variants; v->name; v++)
3024 if (arch == v->arch && mach == v->mach)
3025 return v;
3026
3027 return NULL;
3028 }
3029
3030 static int
3031 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3032 {
3033 if (!info->disassembler_options)
3034 {
3035 /* When debugging E500 binaries and disassembling code containing
3036 E500-specific (SPE) instructions, one sometimes sees AltiVec
3037 instructions instead. The opcode spaces for SPE instructions
3038 and AltiVec instructions overlap, and specifiying the "any" cpu
3039 looks for AltiVec instructions first. If we know we're
3040 debugging an E500 binary, however, we can specify the "e500x2"
3041 cpu and get much more sane disassembly output. */
3042 if (info->mach == bfd_mach_ppc_e500)
3043 info->disassembler_options = "e500x2";
3044 else
3045 info->disassembler_options = "any";
3046 }
3047
3048 if (info->endian == BFD_ENDIAN_BIG)
3049 return print_insn_big_powerpc (memaddr, info);
3050 else
3051 return print_insn_little_powerpc (memaddr, info);
3052 }
3053 \f
3054 static CORE_ADDR
3055 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3056 {
3057 return frame_unwind_register_unsigned (next_frame,
3058 gdbarch_pc_regnum (gdbarch));
3059 }
3060
3061 static struct frame_id
3062 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3063 {
3064 return frame_id_build (get_frame_register_unsigned
3065 (this_frame, gdbarch_sp_regnum (gdbarch)),
3066 get_frame_pc (this_frame));
3067 }
3068
3069 struct rs6000_frame_cache
3070 {
3071 CORE_ADDR base;
3072 CORE_ADDR initial_sp;
3073 struct trad_frame_saved_reg *saved_regs;
3074 };
3075
3076 static struct rs6000_frame_cache *
3077 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3078 {
3079 struct rs6000_frame_cache *cache;
3080 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3081 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3082 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3083 struct rs6000_framedata fdata;
3084 int wordsize = tdep->wordsize;
3085 CORE_ADDR func, pc;
3086
3087 if ((*this_cache) != NULL)
3088 return (*this_cache);
3089 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3090 (*this_cache) = cache;
3091 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3092
3093 func = get_frame_func (this_frame);
3094 pc = get_frame_pc (this_frame);
3095 skip_prologue (gdbarch, func, pc, &fdata);
3096
3097 /* Figure out the parent's stack pointer. */
3098
3099 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3100 address of the current frame. Things might be easier if the
3101 ->frame pointed to the outer-most address of the frame. In
3102 the mean time, the address of the prev frame is used as the
3103 base address of this frame. */
3104 cache->base = get_frame_register_unsigned
3105 (this_frame, gdbarch_sp_regnum (gdbarch));
3106
3107 /* If the function appears to be frameless, check a couple of likely
3108 indicators that we have simply failed to find the frame setup.
3109 Two common cases of this are missing symbols (i.e.
3110 get_frame_func returns the wrong address or 0), and assembly
3111 stubs which have a fast exit path but set up a frame on the slow
3112 path.
3113
3114 If the LR appears to return to this function, then presume that
3115 we have an ABI compliant frame that we failed to find. */
3116 if (fdata.frameless && fdata.lr_offset == 0)
3117 {
3118 CORE_ADDR saved_lr;
3119 int make_frame = 0;
3120
3121 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3122 if (func == 0 && saved_lr == pc)
3123 make_frame = 1;
3124 else if (func != 0)
3125 {
3126 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3127 if (func == saved_func)
3128 make_frame = 1;
3129 }
3130
3131 if (make_frame)
3132 {
3133 fdata.frameless = 0;
3134 fdata.lr_offset = tdep->lr_frame_offset;
3135 }
3136 }
3137
3138 if (!fdata.frameless)
3139 /* Frameless really means stackless. */
3140 cache->base
3141 = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
3142
3143 trad_frame_set_value (cache->saved_regs,
3144 gdbarch_sp_regnum (gdbarch), cache->base);
3145
3146 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3147 All fpr's from saved_fpr to fp31 are saved. */
3148
3149 if (fdata.saved_fpr >= 0)
3150 {
3151 int i;
3152 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3153
3154 /* If skip_prologue says floating-point registers were saved,
3155 but the current architecture has no floating-point registers,
3156 then that's strange. But we have no indices to even record
3157 the addresses under, so we just ignore it. */
3158 if (ppc_floating_point_unit_p (gdbarch))
3159 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3160 {
3161 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3162 fpr_addr += 8;
3163 }
3164 }
3165
3166 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3167 All gpr's from saved_gpr to gpr31 are saved (except during the
3168 prologue). */
3169
3170 if (fdata.saved_gpr >= 0)
3171 {
3172 int i;
3173 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3174 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3175 {
3176 if (fdata.gpr_mask & (1U << i))
3177 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3178 gpr_addr += wordsize;
3179 }
3180 }
3181
3182 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3183 All vr's from saved_vr to vr31 are saved. */
3184 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3185 {
3186 if (fdata.saved_vr >= 0)
3187 {
3188 int i;
3189 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3190 for (i = fdata.saved_vr; i < 32; i++)
3191 {
3192 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3193 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3194 }
3195 }
3196 }
3197
3198 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3199 All vr's from saved_ev to ev31 are saved. ????? */
3200 if (tdep->ppc_ev0_regnum != -1)
3201 {
3202 if (fdata.saved_ev >= 0)
3203 {
3204 int i;
3205 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3206 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3207 {
3208 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3209 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3210 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3211 }
3212 }
3213 }
3214
3215 /* If != 0, fdata.cr_offset is the offset from the frame that
3216 holds the CR. */
3217 if (fdata.cr_offset != 0)
3218 cache->saved_regs[tdep->ppc_cr_regnum].addr
3219 = cache->base + fdata.cr_offset;
3220
3221 /* If != 0, fdata.lr_offset is the offset from the frame that
3222 holds the LR. */
3223 if (fdata.lr_offset != 0)
3224 cache->saved_regs[tdep->ppc_lr_regnum].addr
3225 = cache->base + fdata.lr_offset;
3226 else if (fdata.lr_register != -1)
3227 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3228 /* The PC is found in the link register. */
3229 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3230 cache->saved_regs[tdep->ppc_lr_regnum];
3231
3232 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3233 holds the VRSAVE. */
3234 if (fdata.vrsave_offset != 0)
3235 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3236 = cache->base + fdata.vrsave_offset;
3237
3238 if (fdata.alloca_reg < 0)
3239 /* If no alloca register used, then fi->frame is the value of the
3240 %sp for this frame, and it is good enough. */
3241 cache->initial_sp
3242 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3243 else
3244 cache->initial_sp
3245 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3246
3247 return cache;
3248 }
3249
3250 static void
3251 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3252 struct frame_id *this_id)
3253 {
3254 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3255 this_cache);
3256 /* This marks the outermost frame. */
3257 if (info->base == 0)
3258 return;
3259
3260 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3261 }
3262
3263 static struct value *
3264 rs6000_frame_prev_register (struct frame_info *this_frame,
3265 void **this_cache, int regnum)
3266 {
3267 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3268 this_cache);
3269 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3270 }
3271
3272 static const struct frame_unwind rs6000_frame_unwind =
3273 {
3274 NORMAL_FRAME,
3275 rs6000_frame_this_id,
3276 rs6000_frame_prev_register,
3277 NULL,
3278 default_frame_sniffer
3279 };
3280 \f
3281
3282 static CORE_ADDR
3283 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3284 {
3285 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3286 this_cache);
3287 return info->initial_sp;
3288 }
3289
3290 static const struct frame_base rs6000_frame_base = {
3291 &rs6000_frame_unwind,
3292 rs6000_frame_base_address,
3293 rs6000_frame_base_address,
3294 rs6000_frame_base_address
3295 };
3296
3297 static const struct frame_base *
3298 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3299 {
3300 return &rs6000_frame_base;
3301 }
3302
3303 /* DWARF-2 frame support. Used to handle the detection of
3304 clobbered registers during function calls. */
3305
3306 static void
3307 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3308 struct dwarf2_frame_state_reg *reg,
3309 struct frame_info *this_frame)
3310 {
3311 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3312
3313 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3314 non-volatile registers. We will use the same code for both. */
3315
3316 /* Call-saved GP registers. */
3317 if ((regnum >= tdep->ppc_gp0_regnum + 14
3318 && regnum <= tdep->ppc_gp0_regnum + 31)
3319 || (regnum == tdep->ppc_gp0_regnum + 1))
3320 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3321
3322 /* Call-clobbered GP registers. */
3323 if ((regnum >= tdep->ppc_gp0_regnum + 3
3324 && regnum <= tdep->ppc_gp0_regnum + 12)
3325 || (regnum == tdep->ppc_gp0_regnum))
3326 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3327
3328 /* Deal with FP registers, if supported. */
3329 if (tdep->ppc_fp0_regnum >= 0)
3330 {
3331 /* Call-saved FP registers. */
3332 if ((regnum >= tdep->ppc_fp0_regnum + 14
3333 && regnum <= tdep->ppc_fp0_regnum + 31))
3334 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3335
3336 /* Call-clobbered FP registers. */
3337 if ((regnum >= tdep->ppc_fp0_regnum
3338 && regnum <= tdep->ppc_fp0_regnum + 13))
3339 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3340 }
3341
3342 /* Deal with ALTIVEC registers, if supported. */
3343 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3344 {
3345 /* Call-saved Altivec registers. */
3346 if ((regnum >= tdep->ppc_vr0_regnum + 20
3347 && regnum <= tdep->ppc_vr0_regnum + 31)
3348 || regnum == tdep->ppc_vrsave_regnum)
3349 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3350
3351 /* Call-clobbered Altivec registers. */
3352 if ((regnum >= tdep->ppc_vr0_regnum
3353 && regnum <= tdep->ppc_vr0_regnum + 19))
3354 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3355 }
3356
3357 /* Handle PC register and Stack Pointer correctly. */
3358 if (regnum == gdbarch_pc_regnum (gdbarch))
3359 reg->how = DWARF2_FRAME_REG_RA;
3360 else if (regnum == gdbarch_sp_regnum (gdbarch))
3361 reg->how = DWARF2_FRAME_REG_CFA;
3362 }
3363
3364
3365 /* Return true if a .gnu_attributes section exists in BFD and it
3366 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3367 section exists in BFD and it indicates that SPE extensions are in
3368 use. Check the .gnu.attributes section first, as the binary might be
3369 compiled for SPE, but not actually using SPE instructions. */
3370
3371 static int
3372 bfd_uses_spe_extensions (bfd *abfd)
3373 {
3374 asection *sect;
3375 gdb_byte *contents = NULL;
3376 bfd_size_type size;
3377 gdb_byte *ptr;
3378 int success = 0;
3379 int vector_abi;
3380
3381 if (!abfd)
3382 return 0;
3383
3384 #ifdef HAVE_ELF
3385 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3386 could be using the SPE vector abi without actually using any spe
3387 bits whatsoever. But it's close enough for now. */
3388 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3389 Tag_GNU_Power_ABI_Vector);
3390 if (vector_abi == 3)
3391 return 1;
3392 #endif
3393
3394 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3395 if (!sect)
3396 return 0;
3397
3398 size = bfd_get_section_size (sect);
3399 contents = xmalloc (size);
3400 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3401 {
3402 xfree (contents);
3403 return 0;
3404 }
3405
3406 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3407
3408 struct {
3409 uint32 name_len;
3410 uint32 data_len;
3411 uint32 type;
3412 char name[name_len rounded up to 4-byte alignment];
3413 char data[data_len];
3414 };
3415
3416 Technically, there's only supposed to be one such structure in a
3417 given apuinfo section, but the linker is not always vigilant about
3418 merging apuinfo sections from input files. Just go ahead and parse
3419 them all, exiting early when we discover the binary uses SPE
3420 insns.
3421
3422 It's not specified in what endianness the information in this
3423 section is stored. Assume that it's the endianness of the BFD. */
3424 ptr = contents;
3425 while (1)
3426 {
3427 unsigned int name_len;
3428 unsigned int data_len;
3429 unsigned int type;
3430
3431 /* If we can't read the first three fields, we're done. */
3432 if (size < 12)
3433 break;
3434
3435 name_len = bfd_get_32 (abfd, ptr);
3436 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3437 data_len = bfd_get_32 (abfd, ptr + 4);
3438 type = bfd_get_32 (abfd, ptr + 8);
3439 ptr += 12;
3440
3441 /* The name must be "APUinfo\0". */
3442 if (name_len != 8
3443 && strcmp ((const char *) ptr, "APUinfo") != 0)
3444 break;
3445 ptr += name_len;
3446
3447 /* The type must be 2. */
3448 if (type != 2)
3449 break;
3450
3451 /* The data is stored as a series of uint32. The upper half of
3452 each uint32 indicates the particular APU used and the lower
3453 half indicates the revision of that APU. We just care about
3454 the upper half. */
3455
3456 /* Not 4-byte quantities. */
3457 if (data_len & 3U)
3458 break;
3459
3460 while (data_len)
3461 {
3462 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3463 unsigned int apu = apuinfo >> 16;
3464 ptr += 4;
3465 data_len -= 4;
3466
3467 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3468 either. */
3469 if (apu == 0x100 || apu == 0x101)
3470 {
3471 success = 1;
3472 data_len = 0;
3473 }
3474 }
3475
3476 if (success)
3477 break;
3478 }
3479
3480 xfree (contents);
3481 return success;
3482 }
3483
3484 /* Initialize the current architecture based on INFO. If possible, re-use an
3485 architecture from ARCHES, which is a list of architectures already created
3486 during this debugging session.
3487
3488 Called e.g. at program startup, when reading a core file, and when reading
3489 a binary file. */
3490
3491 static struct gdbarch *
3492 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3493 {
3494 struct gdbarch *gdbarch;
3495 struct gdbarch_tdep *tdep;
3496 int wordsize, from_xcoff_exec, from_elf_exec;
3497 enum bfd_architecture arch;
3498 unsigned long mach;
3499 bfd abfd;
3500 asection *sect;
3501 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3502 int soft_float;
3503 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3504 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
3505 have_vsx = 0;
3506 int tdesc_wordsize = -1;
3507 const struct target_desc *tdesc = info.target_desc;
3508 struct tdesc_arch_data *tdesc_data = NULL;
3509 int num_pseudoregs = 0;
3510 int cur_reg;
3511
3512 /* INFO may refer to a binary that is not of the PowerPC architecture,
3513 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
3514 In this case, we must not attempt to infer properties of the (PowerPC
3515 side) of the target system from properties of that executable. Trust
3516 the target description instead. */
3517 if (info.abfd
3518 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
3519 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
3520 info.abfd = NULL;
3521
3522 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3523 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3524
3525 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3526 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3527
3528 /* Check word size. If INFO is from a binary file, infer it from
3529 that, else choose a likely default. */
3530 if (from_xcoff_exec)
3531 {
3532 if (bfd_xcoff_is_xcoff64 (info.abfd))
3533 wordsize = 8;
3534 else
3535 wordsize = 4;
3536 }
3537 else if (from_elf_exec)
3538 {
3539 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3540 wordsize = 8;
3541 else
3542 wordsize = 4;
3543 }
3544 else if (tdesc_has_registers (tdesc))
3545 wordsize = -1;
3546 else
3547 {
3548 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3549 wordsize = info.bfd_arch_info->bits_per_word /
3550 info.bfd_arch_info->bits_per_byte;
3551 else
3552 wordsize = 4;
3553 }
3554
3555 /* Get the architecture and machine from the BFD. */
3556 arch = info.bfd_arch_info->arch;
3557 mach = info.bfd_arch_info->mach;
3558
3559 /* For e500 executables, the apuinfo section is of help here. Such
3560 section contains the identifier and revision number of each
3561 Application-specific Processing Unit that is present on the
3562 chip. The content of the section is determined by the assembler
3563 which looks at each instruction and determines which unit (and
3564 which version of it) can execute it. Grovel through the section
3565 looking for relevant e500 APUs. */
3566
3567 if (bfd_uses_spe_extensions (info.abfd))
3568 {
3569 arch = info.bfd_arch_info->arch;
3570 mach = bfd_mach_ppc_e500;
3571 bfd_default_set_arch_mach (&abfd, arch, mach);
3572 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3573 }
3574
3575 /* Find a default target description which describes our register
3576 layout, if we do not already have one. */
3577 if (! tdesc_has_registers (tdesc))
3578 {
3579 const struct variant *v;
3580
3581 /* Choose variant. */
3582 v = find_variant_by_arch (arch, mach);
3583 if (!v)
3584 return NULL;
3585
3586 tdesc = *v->tdesc;
3587 }
3588
3589 gdb_assert (tdesc_has_registers (tdesc));
3590
3591 /* Check any target description for validity. */
3592 if (tdesc_has_registers (tdesc))
3593 {
3594 static const char *const gprs[] = {
3595 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3596 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3597 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3598 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3599 };
3600 static const char *const segment_regs[] = {
3601 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3602 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3603 };
3604 const struct tdesc_feature *feature;
3605 int i, valid_p;
3606 static const char *const msr_names[] = { "msr", "ps" };
3607 static const char *const cr_names[] = { "cr", "cnd" };
3608 static const char *const ctr_names[] = { "ctr", "cnt" };
3609
3610 feature = tdesc_find_feature (tdesc,
3611 "org.gnu.gdb.power.core");
3612 if (feature == NULL)
3613 return NULL;
3614
3615 tdesc_data = tdesc_data_alloc ();
3616
3617 valid_p = 1;
3618 for (i = 0; i < ppc_num_gprs; i++)
3619 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3620 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3621 "pc");
3622 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3623 "lr");
3624 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3625 "xer");
3626
3627 /* Allow alternate names for these registers, to accomodate GDB's
3628 historic naming. */
3629 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3630 PPC_MSR_REGNUM, msr_names);
3631 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3632 PPC_CR_REGNUM, cr_names);
3633 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3634 PPC_CTR_REGNUM, ctr_names);
3635
3636 if (!valid_p)
3637 {
3638 tdesc_data_cleanup (tdesc_data);
3639 return NULL;
3640 }
3641
3642 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3643 "mq");
3644
3645 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3646 if (wordsize == -1)
3647 wordsize = tdesc_wordsize;
3648
3649 feature = tdesc_find_feature (tdesc,
3650 "org.gnu.gdb.power.fpu");
3651 if (feature != NULL)
3652 {
3653 static const char *const fprs[] = {
3654 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3655 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3656 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3657 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3658 };
3659 valid_p = 1;
3660 for (i = 0; i < ppc_num_fprs; i++)
3661 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3662 PPC_F0_REGNUM + i, fprs[i]);
3663 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3664 PPC_FPSCR_REGNUM, "fpscr");
3665
3666 if (!valid_p)
3667 {
3668 tdesc_data_cleanup (tdesc_data);
3669 return NULL;
3670 }
3671 have_fpu = 1;
3672 }
3673 else
3674 have_fpu = 0;
3675
3676 /* The DFP pseudo-registers will be available when there are floating
3677 point registers. */
3678 have_dfp = have_fpu;
3679
3680 feature = tdesc_find_feature (tdesc,
3681 "org.gnu.gdb.power.altivec");
3682 if (feature != NULL)
3683 {
3684 static const char *const vector_regs[] = {
3685 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3686 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3687 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3688 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3689 };
3690
3691 valid_p = 1;
3692 for (i = 0; i < ppc_num_gprs; i++)
3693 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3694 PPC_VR0_REGNUM + i,
3695 vector_regs[i]);
3696 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3697 PPC_VSCR_REGNUM, "vscr");
3698 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3699 PPC_VRSAVE_REGNUM, "vrsave");
3700
3701 if (have_spe || !valid_p)
3702 {
3703 tdesc_data_cleanup (tdesc_data);
3704 return NULL;
3705 }
3706 have_altivec = 1;
3707 }
3708 else
3709 have_altivec = 0;
3710
3711 /* Check for POWER7 VSX registers support. */
3712 feature = tdesc_find_feature (tdesc,
3713 "org.gnu.gdb.power.vsx");
3714
3715 if (feature != NULL)
3716 {
3717 static const char *const vsx_regs[] = {
3718 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3719 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3720 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3721 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3722 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3723 "vs30h", "vs31h"
3724 };
3725
3726 valid_p = 1;
3727
3728 for (i = 0; i < ppc_num_vshrs; i++)
3729 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3730 PPC_VSR0_UPPER_REGNUM + i,
3731 vsx_regs[i]);
3732 if (!valid_p)
3733 {
3734 tdesc_data_cleanup (tdesc_data);
3735 return NULL;
3736 }
3737
3738 have_vsx = 1;
3739 }
3740 else
3741 have_vsx = 0;
3742
3743 /* On machines supporting the SPE APU, the general-purpose registers
3744 are 64 bits long. There are SIMD vector instructions to treat them
3745 as pairs of floats, but the rest of the instruction set treats them
3746 as 32-bit registers, and only operates on their lower halves.
3747
3748 In the GDB regcache, we treat their high and low halves as separate
3749 registers. The low halves we present as the general-purpose
3750 registers, and then we have pseudo-registers that stitch together
3751 the upper and lower halves and present them as pseudo-registers.
3752
3753 Thus, the target description is expected to supply the upper
3754 halves separately. */
3755
3756 feature = tdesc_find_feature (tdesc,
3757 "org.gnu.gdb.power.spe");
3758 if (feature != NULL)
3759 {
3760 static const char *const upper_spe[] = {
3761 "ev0h", "ev1h", "ev2h", "ev3h",
3762 "ev4h", "ev5h", "ev6h", "ev7h",
3763 "ev8h", "ev9h", "ev10h", "ev11h",
3764 "ev12h", "ev13h", "ev14h", "ev15h",
3765 "ev16h", "ev17h", "ev18h", "ev19h",
3766 "ev20h", "ev21h", "ev22h", "ev23h",
3767 "ev24h", "ev25h", "ev26h", "ev27h",
3768 "ev28h", "ev29h", "ev30h", "ev31h"
3769 };
3770
3771 valid_p = 1;
3772 for (i = 0; i < ppc_num_gprs; i++)
3773 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3774 PPC_SPE_UPPER_GP0_REGNUM + i,
3775 upper_spe[i]);
3776 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3777 PPC_SPE_ACC_REGNUM, "acc");
3778 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3779 PPC_SPE_FSCR_REGNUM, "spefscr");
3780
3781 if (have_mq || have_fpu || !valid_p)
3782 {
3783 tdesc_data_cleanup (tdesc_data);
3784 return NULL;
3785 }
3786 have_spe = 1;
3787 }
3788 else
3789 have_spe = 0;
3790 }
3791
3792 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3793 complain for a 32-bit binary on a 64-bit target; we do not yet
3794 support that. For instance, the 32-bit ABI routines expect
3795 32-bit GPRs.
3796
3797 As long as there isn't an explicit target description, we'll
3798 choose one based on the BFD architecture and get a word size
3799 matching the binary (probably powerpc:common or
3800 powerpc:common64). So there is only trouble if a 64-bit target
3801 supplies a 64-bit description while debugging a 32-bit
3802 binary. */
3803 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3804 {
3805 tdesc_data_cleanup (tdesc_data);
3806 return NULL;
3807 }
3808
3809 #ifdef HAVE_ELF
3810 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3811 {
3812 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3813 Tag_GNU_Power_ABI_FP))
3814 {
3815 case 1:
3816 soft_float_flag = AUTO_BOOLEAN_FALSE;
3817 break;
3818 case 2:
3819 soft_float_flag = AUTO_BOOLEAN_TRUE;
3820 break;
3821 default:
3822 break;
3823 }
3824 }
3825
3826 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3827 {
3828 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3829 Tag_GNU_Power_ABI_Vector))
3830 {
3831 case 1:
3832 vector_abi = POWERPC_VEC_GENERIC;
3833 break;
3834 case 2:
3835 vector_abi = POWERPC_VEC_ALTIVEC;
3836 break;
3837 case 3:
3838 vector_abi = POWERPC_VEC_SPE;
3839 break;
3840 default:
3841 break;
3842 }
3843 }
3844 #endif
3845
3846 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3847 soft_float = 1;
3848 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3849 soft_float = 0;
3850 else
3851 soft_float = !have_fpu;
3852
3853 /* If we have a hard float binary or setting but no floating point
3854 registers, downgrade to soft float anyway. We're still somewhat
3855 useful in this scenario. */
3856 if (!soft_float && !have_fpu)
3857 soft_float = 1;
3858
3859 /* Similarly for vector registers. */
3860 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3861 vector_abi = POWERPC_VEC_GENERIC;
3862
3863 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3864 vector_abi = POWERPC_VEC_GENERIC;
3865
3866 if (vector_abi == POWERPC_VEC_AUTO)
3867 {
3868 if (have_altivec)
3869 vector_abi = POWERPC_VEC_ALTIVEC;
3870 else if (have_spe)
3871 vector_abi = POWERPC_VEC_SPE;
3872 else
3873 vector_abi = POWERPC_VEC_GENERIC;
3874 }
3875
3876 /* Do not limit the vector ABI based on available hardware, since we
3877 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3878
3879 /* Find a candidate among extant architectures. */
3880 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3881 arches != NULL;
3882 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3883 {
3884 /* Word size in the various PowerPC bfd_arch_info structs isn't
3885 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3886 separate word size check. */
3887 tdep = gdbarch_tdep (arches->gdbarch);
3888 if (tdep && tdep->soft_float != soft_float)
3889 continue;
3890 if (tdep && tdep->vector_abi != vector_abi)
3891 continue;
3892 if (tdep && tdep->wordsize == wordsize)
3893 {
3894 if (tdesc_data != NULL)
3895 tdesc_data_cleanup (tdesc_data);
3896 return arches->gdbarch;
3897 }
3898 }
3899
3900 /* None found, create a new architecture from INFO, whose bfd_arch_info
3901 validity depends on the source:
3902 - executable useless
3903 - rs6000_host_arch() good
3904 - core file good
3905 - "set arch" trust blindly
3906 - GDB startup useless but harmless */
3907
3908 tdep = XCALLOC (1, struct gdbarch_tdep);
3909 tdep->wordsize = wordsize;
3910 tdep->soft_float = soft_float;
3911 tdep->vector_abi = vector_abi;
3912
3913 gdbarch = gdbarch_alloc (&info, tdep);
3914
3915 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3916 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3917 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3918 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3919 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3920 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3921 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3922 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3923
3924 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3925 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
3926 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
3927 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3928 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3929 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3930 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3931 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3932
3933 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3934 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3935 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3936 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
3937 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3938
3939 /* The XML specification for PowerPC sensibly calls the MSR "msr".
3940 GDB traditionally called it "ps", though, so let GDB add an
3941 alias. */
3942 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3943
3944 if (wordsize == 8)
3945 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3946 else
3947 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3948
3949 /* Set lr_frame_offset. */
3950 if (wordsize == 8)
3951 tdep->lr_frame_offset = 16;
3952 else
3953 tdep->lr_frame_offset = 4;
3954
3955 if (have_spe || have_dfp || have_vsx)
3956 {
3957 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
3958 set_gdbarch_pseudo_register_write (gdbarch,
3959 rs6000_pseudo_register_write);
3960 }
3961
3962 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3963
3964 /* Select instruction printer. */
3965 if (arch == bfd_arch_rs6000)
3966 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3967 else
3968 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3969
3970 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
3971
3972 if (have_spe)
3973 num_pseudoregs += 32;
3974 if (have_dfp)
3975 num_pseudoregs += 16;
3976 if (have_vsx)
3977 /* Include both VSX and Extended FP registers. */
3978 num_pseudoregs += 96;
3979
3980 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
3981
3982 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3983 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3984 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3985 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3986 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3987 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3988 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3989 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3990 set_gdbarch_char_signed (gdbarch, 0);
3991
3992 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3993 if (wordsize == 8)
3994 /* PPC64 SYSV. */
3995 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3996
3997 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3998 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3999 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
4000
4001 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
4002 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
4003
4004 if (wordsize == 4)
4005 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4006 else if (wordsize == 8)
4007 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
4008
4009 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
4010 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
4011 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
4012
4013 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4014 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
4015
4016 /* The value of symbols of type N_SO and N_FUN maybe null when
4017 it shouldn't be. */
4018 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
4019
4020 /* Handles single stepping of atomic sequences. */
4021 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
4022
4023 /* Not sure on this. FIXMEmgo */
4024 set_gdbarch_frame_args_skip (gdbarch, 8);
4025
4026 /* Helpers for function argument information. */
4027 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
4028
4029 /* Trampoline. */
4030 set_gdbarch_in_solib_return_trampoline
4031 (gdbarch, rs6000_in_solib_return_trampoline);
4032 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
4033
4034 /* Hook in the DWARF CFI frame unwinder. */
4035 dwarf2_append_unwinders (gdbarch);
4036 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
4037
4038 /* Frame handling. */
4039 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
4040
4041 /* Setup displaced stepping. */
4042 set_gdbarch_displaced_step_copy_insn (gdbarch,
4043 simple_displaced_step_copy_insn);
4044 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
4045 ppc_displaced_step_hw_singlestep);
4046 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
4047 set_gdbarch_displaced_step_free_closure (gdbarch,
4048 simple_displaced_step_free_closure);
4049 set_gdbarch_displaced_step_location (gdbarch,
4050 displaced_step_at_entry_point);
4051
4052 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
4053
4054 /* Hook in ABI-specific overrides, if they have been registered. */
4055 info.target_desc = tdesc;
4056 info.tdep_info = (void *) tdesc_data;
4057 gdbarch_init_osabi (info, gdbarch);
4058
4059 switch (info.osabi)
4060 {
4061 case GDB_OSABI_LINUX:
4062 case GDB_OSABI_NETBSD_AOUT:
4063 case GDB_OSABI_NETBSD_ELF:
4064 case GDB_OSABI_UNKNOWN:
4065 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4066 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4067 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4068 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4069 break;
4070 default:
4071 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
4072
4073 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4074 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4075 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4076 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4077 }
4078
4079 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
4080 set_tdesc_pseudo_register_reggroup_p (gdbarch,
4081 rs6000_pseudo_register_reggroup_p);
4082 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
4083
4084 /* Override the normal target description method to make the SPE upper
4085 halves anonymous. */
4086 set_gdbarch_register_name (gdbarch, rs6000_register_name);
4087
4088 /* Choose register numbers for all supported pseudo-registers. */
4089 tdep->ppc_ev0_regnum = -1;
4090 tdep->ppc_dl0_regnum = -1;
4091 tdep->ppc_vsr0_regnum = -1;
4092 tdep->ppc_efpr0_regnum = -1;
4093
4094 cur_reg = gdbarch_num_regs (gdbarch);
4095
4096 if (have_spe)
4097 {
4098 tdep->ppc_ev0_regnum = cur_reg;
4099 cur_reg += 32;
4100 }
4101 if (have_dfp)
4102 {
4103 tdep->ppc_dl0_regnum = cur_reg;
4104 cur_reg += 16;
4105 }
4106 if (have_vsx)
4107 {
4108 tdep->ppc_vsr0_regnum = cur_reg;
4109 cur_reg += 64;
4110 tdep->ppc_efpr0_regnum = cur_reg;
4111 cur_reg += 32;
4112 }
4113
4114 gdb_assert (gdbarch_num_regs (gdbarch)
4115 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
4116
4117 return gdbarch;
4118 }
4119
4120 static void
4121 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4122 {
4123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4124
4125 if (tdep == NULL)
4126 return;
4127
4128 /* FIXME: Dump gdbarch_tdep. */
4129 }
4130
4131 /* PowerPC-specific commands. */
4132
4133 static void
4134 set_powerpc_command (char *args, int from_tty)
4135 {
4136 printf_unfiltered (_("\
4137 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
4138 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
4139 }
4140
4141 static void
4142 show_powerpc_command (char *args, int from_tty)
4143 {
4144 cmd_show_list (showpowerpccmdlist, from_tty, "");
4145 }
4146
4147 static void
4148 powerpc_set_soft_float (char *args, int from_tty,
4149 struct cmd_list_element *c)
4150 {
4151 struct gdbarch_info info;
4152
4153 /* Update the architecture. */
4154 gdbarch_info_init (&info);
4155 if (!gdbarch_update_p (info))
4156 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4157 }
4158
4159 static void
4160 powerpc_set_vector_abi (char *args, int from_tty,
4161 struct cmd_list_element *c)
4162 {
4163 struct gdbarch_info info;
4164 enum powerpc_vector_abi vector_abi;
4165
4166 for (vector_abi = POWERPC_VEC_AUTO;
4167 vector_abi != POWERPC_VEC_LAST;
4168 vector_abi++)
4169 if (strcmp (powerpc_vector_abi_string,
4170 powerpc_vector_strings[vector_abi]) == 0)
4171 {
4172 powerpc_vector_abi_global = vector_abi;
4173 break;
4174 }
4175
4176 if (vector_abi == POWERPC_VEC_LAST)
4177 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
4178 powerpc_vector_abi_string);
4179
4180 /* Update the architecture. */
4181 gdbarch_info_init (&info);
4182 if (!gdbarch_update_p (info))
4183 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4184 }
4185
4186 /* Initialization code. */
4187
4188 /* -Wmissing-prototypes */
4189 extern initialize_file_ftype _initialize_rs6000_tdep;
4190
4191 void
4192 _initialize_rs6000_tdep (void)
4193 {
4194 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
4195 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
4196
4197 /* Initialize the standard target descriptions. */
4198 initialize_tdesc_powerpc_32 ();
4199 initialize_tdesc_powerpc_altivec32 ();
4200 initialize_tdesc_powerpc_vsx32 ();
4201 initialize_tdesc_powerpc_403 ();
4202 initialize_tdesc_powerpc_403gc ();
4203 initialize_tdesc_powerpc_405 ();
4204 initialize_tdesc_powerpc_505 ();
4205 initialize_tdesc_powerpc_601 ();
4206 initialize_tdesc_powerpc_602 ();
4207 initialize_tdesc_powerpc_603 ();
4208 initialize_tdesc_powerpc_604 ();
4209 initialize_tdesc_powerpc_64 ();
4210 initialize_tdesc_powerpc_altivec64 ();
4211 initialize_tdesc_powerpc_vsx64 ();
4212 initialize_tdesc_powerpc_7400 ();
4213 initialize_tdesc_powerpc_750 ();
4214 initialize_tdesc_powerpc_860 ();
4215 initialize_tdesc_powerpc_e500 ();
4216 initialize_tdesc_rs6000 ();
4217
4218 /* Add root prefix command for all "set powerpc"/"show powerpc"
4219 commands. */
4220 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
4221 _("Various PowerPC-specific commands."),
4222 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
4223
4224 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
4225 _("Various PowerPC-specific commands."),
4226 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
4227
4228 /* Add a command to allow the user to force the ABI. */
4229 add_setshow_auto_boolean_cmd ("soft-float", class_support,
4230 &powerpc_soft_float_global,
4231 _("Set whether to use a soft-float ABI."),
4232 _("Show whether to use a soft-float ABI."),
4233 NULL,
4234 powerpc_set_soft_float, NULL,
4235 &setpowerpccmdlist, &showpowerpccmdlist);
4236
4237 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
4238 &powerpc_vector_abi_string,
4239 _("Set the vector ABI."),
4240 _("Show the vector ABI."),
4241 NULL, powerpc_set_vector_abi, NULL,
4242 &setpowerpccmdlist, &showpowerpccmdlist);
4243 }