]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
* alpha-tdep.c (alpha_heuristic_proc_start)
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "objfiles.h"
30 #include "arch-utils.h"
31 #include "regcache.h"
32 #include "regset.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "parser-defs.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "sim-regno.h"
39 #include "gdb/sim-ppc.h"
40 #include "reggroups.h"
41 #include "dwarf2-frame.h"
42 #include "target-descriptions.h"
43 #include "user-regs.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53
54 #include "solib-svr4.h"
55 #include "ppc-tdep.h"
56
57 #include "gdb_assert.h"
58 #include "dis-asm.h"
59
60 #include "trad-frame.h"
61 #include "frame-unwind.h"
62 #include "frame-base.h"
63
64 #include "rs6000-tdep.h"
65
66 #include "features/rs6000/powerpc-32.c"
67 #include "features/rs6000/powerpc-403.c"
68 #include "features/rs6000/powerpc-403gc.c"
69 #include "features/rs6000/powerpc-505.c"
70 #include "features/rs6000/powerpc-601.c"
71 #include "features/rs6000/powerpc-602.c"
72 #include "features/rs6000/powerpc-603.c"
73 #include "features/rs6000/powerpc-604.c"
74 #include "features/rs6000/powerpc-64.c"
75 #include "features/rs6000/powerpc-7400.c"
76 #include "features/rs6000/powerpc-750.c"
77 #include "features/rs6000/powerpc-860.c"
78 #include "features/rs6000/powerpc-e500.c"
79 #include "features/rs6000/rs6000.c"
80
81 /* The list of available "set powerpc ..." and "show powerpc ..."
82 commands. */
83 static struct cmd_list_element *setpowerpccmdlist = NULL;
84 static struct cmd_list_element *showpowerpccmdlist = NULL;
85
86 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
87
88 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
89 static const char *powerpc_vector_strings[] =
90 {
91 "auto",
92 "generic",
93 "altivec",
94 "spe",
95 NULL
96 };
97
98 /* A variable that can be configured by the user. */
99 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
100 static const char *powerpc_vector_abi_string = "auto";
101
102 /* If the kernel has to deliver a signal, it pushes a sigcontext
103 structure on the stack and then calls the signal handler, passing
104 the address of the sigcontext in an argument register. Usually
105 the signal handler doesn't save this register, so we have to
106 access the sigcontext structure via an offset from the signal handler
107 frame.
108 The following constants were determined by experimentation on AIX 3.2. */
109 #define SIG_FRAME_PC_OFFSET 96
110 #define SIG_FRAME_LR_OFFSET 108
111 #define SIG_FRAME_FP_OFFSET 284
112
113 /* To be used by skip_prologue. */
114
115 struct rs6000_framedata
116 {
117 int offset; /* total size of frame --- the distance
118 by which we decrement sp to allocate
119 the frame */
120 int saved_gpr; /* smallest # of saved gpr */
121 int saved_fpr; /* smallest # of saved fpr */
122 int saved_vr; /* smallest # of saved vr */
123 int saved_ev; /* smallest # of saved ev */
124 int alloca_reg; /* alloca register number (frame ptr) */
125 char frameless; /* true if frameless functions. */
126 char nosavedpc; /* true if pc not saved. */
127 int gpr_offset; /* offset of saved gprs from prev sp */
128 int fpr_offset; /* offset of saved fprs from prev sp */
129 int vr_offset; /* offset of saved vrs from prev sp */
130 int ev_offset; /* offset of saved evs from prev sp */
131 int lr_offset; /* offset of saved lr */
132 int cr_offset; /* offset of saved cr */
133 int vrsave_offset; /* offset of saved vrsave register */
134 };
135
136 /* Description of a single register. */
137
138 struct reg
139 {
140 char *name; /* name of register */
141 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
142 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
143 unsigned char fpr; /* whether register is floating-point */
144 unsigned char pseudo; /* whether register is pseudo */
145 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
146 This is an ISA SPR number, not a GDB
147 register number. */
148 };
149
150 /* Hook for determining the TOC address when calling functions in the
151 inferior under AIX. The initialization code in rs6000-nat.c sets
152 this hook to point to find_toc_address. */
153
154 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
155
156 /* Static function prototypes */
157
158 static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
159 int instr, CORE_ADDR pc, CORE_ADDR safety);
160 static CORE_ADDR skip_prologue (struct gdbarch *, CORE_ADDR, CORE_ADDR,
161 struct rs6000_framedata *);
162
163 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
164 int
165 altivec_register_p (struct gdbarch *gdbarch, int regno)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
169 return 0;
170 else
171 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
172 }
173
174
175 /* Return true if REGNO is an SPE register, false otherwise. */
176 int
177 spe_register_p (struct gdbarch *gdbarch, int regno)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180
181 /* Is it a reference to EV0 -- EV31, and do we have those? */
182 if (tdep->ppc_ev0_regnum >= 0
183 && tdep->ppc_ev31_regnum >= 0
184 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
185 return 1;
186
187 /* Is it a reference to one of the raw upper GPR halves? */
188 if (tdep->ppc_ev0_upper_regnum >= 0
189 && tdep->ppc_ev0_upper_regnum <= regno
190 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
191 return 1;
192
193 /* Is it a reference to the 64-bit accumulator, and do we have that? */
194 if (tdep->ppc_acc_regnum >= 0
195 && tdep->ppc_acc_regnum == regno)
196 return 1;
197
198 /* Is it a reference to the SPE floating-point status and control register,
199 and do we have that? */
200 if (tdep->ppc_spefscr_regnum >= 0
201 && tdep->ppc_spefscr_regnum == regno)
202 return 1;
203
204 return 0;
205 }
206
207
208 /* Return non-zero if the architecture described by GDBARCH has
209 floating-point registers (f0 --- f31 and fpscr). */
210 int
211 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
212 {
213 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
214
215 return (tdep->ppc_fp0_regnum >= 0
216 && tdep->ppc_fpscr_regnum >= 0);
217 }
218
219 /* Return non-zero if the architecture described by GDBARCH has
220 Altivec registers (vr0 --- vr31, vrsave and vscr). */
221 int
222 ppc_altivec_support_p (struct gdbarch *gdbarch)
223 {
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225
226 return (tdep->ppc_vr0_regnum >= 0
227 && tdep->ppc_vrsave_regnum >= 0);
228 }
229
230 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
231 set it to SIM_REGNO.
232
233 This is a helper function for init_sim_regno_table, constructing
234 the table mapping GDB register numbers to sim register numbers; we
235 initialize every element in that table to -1 before we start
236 filling it in. */
237 static void
238 set_sim_regno (int *table, int gdb_regno, int sim_regno)
239 {
240 /* Make sure we don't try to assign any given GDB register a sim
241 register number more than once. */
242 gdb_assert (table[gdb_regno] == -1);
243 table[gdb_regno] = sim_regno;
244 }
245
246
247 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
248 numbers to simulator register numbers, based on the values placed
249 in the ARCH->tdep->ppc_foo_regnum members. */
250 static void
251 init_sim_regno_table (struct gdbarch *arch)
252 {
253 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
254 int total_regs = gdbarch_num_regs (arch);
255 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
256 int i;
257 static const char *const segment_regs[] = {
258 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
259 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
260 };
261
262 /* Presume that all registers not explicitly mentioned below are
263 unavailable from the sim. */
264 for (i = 0; i < total_regs; i++)
265 sim_regno[i] = -1;
266
267 /* General-purpose registers. */
268 for (i = 0; i < ppc_num_gprs; i++)
269 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
270
271 /* Floating-point registers. */
272 if (tdep->ppc_fp0_regnum >= 0)
273 for (i = 0; i < ppc_num_fprs; i++)
274 set_sim_regno (sim_regno,
275 tdep->ppc_fp0_regnum + i,
276 sim_ppc_f0_regnum + i);
277 if (tdep->ppc_fpscr_regnum >= 0)
278 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
279
280 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
281 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
282 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
283
284 /* Segment registers. */
285 for (i = 0; i < ppc_num_srs; i++)
286 {
287 int gdb_regno;
288
289 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
290 if (gdb_regno >= 0)
291 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
292 }
293
294 /* Altivec registers. */
295 if (tdep->ppc_vr0_regnum >= 0)
296 {
297 for (i = 0; i < ppc_num_vrs; i++)
298 set_sim_regno (sim_regno,
299 tdep->ppc_vr0_regnum + i,
300 sim_ppc_vr0_regnum + i);
301
302 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
303 we can treat this more like the other cases. */
304 set_sim_regno (sim_regno,
305 tdep->ppc_vr0_regnum + ppc_num_vrs,
306 sim_ppc_vscr_regnum);
307 }
308 /* vsave is a special-purpose register, so the code below handles it. */
309
310 /* SPE APU (E500) registers. */
311 if (tdep->ppc_ev0_upper_regnum >= 0)
312 for (i = 0; i < ppc_num_gprs; i++)
313 set_sim_regno (sim_regno,
314 tdep->ppc_ev0_upper_regnum + i,
315 sim_ppc_rh0_regnum + i);
316 if (tdep->ppc_acc_regnum >= 0)
317 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
318 /* spefscr is a special-purpose register, so the code below handles it. */
319
320 #ifdef WITH_SIM
321 /* Now handle all special-purpose registers. Verify that they
322 haven't mistakenly been assigned numbers by any of the above
323 code. */
324 for (i = 0; i < sim_ppc_num_sprs; i++)
325 {
326 const char *spr_name = sim_spr_register_name (i);
327 int gdb_regno = -1;
328
329 if (spr_name != NULL)
330 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
331
332 if (gdb_regno != -1)
333 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
334 }
335 #endif
336
337 /* Drop the initialized array into place. */
338 tdep->sim_regno = sim_regno;
339 }
340
341
342 /* Given a GDB register number REG, return the corresponding SIM
343 register number. */
344 static int
345 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
346 {
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348 int sim_regno;
349
350 if (tdep->sim_regno == NULL)
351 init_sim_regno_table (gdbarch);
352
353 gdb_assert (0 <= reg
354 && reg <= gdbarch_num_regs (gdbarch)
355 + gdbarch_num_pseudo_regs (gdbarch));
356 sim_regno = tdep->sim_regno[reg];
357
358 if (sim_regno >= 0)
359 return sim_regno;
360 else
361 return LEGACY_SIM_REGNO_IGNORE;
362 }
363
364 \f
365
366 /* Register set support functions. */
367
368 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
369 Write the register to REGCACHE. */
370
371 static void
372 ppc_supply_reg (struct regcache *regcache, int regnum,
373 const gdb_byte *regs, size_t offset, int regsize)
374 {
375 if (regnum != -1 && offset != -1)
376 {
377 if (regsize > 4)
378 {
379 struct gdbarch *gdbarch = get_regcache_arch (regcache);
380 int gdb_regsize = register_size (gdbarch, regnum);
381 if (gdb_regsize < regsize
382 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
383 offset += regsize - gdb_regsize;
384 }
385 regcache_raw_supply (regcache, regnum, regs + offset);
386 }
387 }
388
389 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
390 in a field REGSIZE wide. Zero pad as necessary. */
391
392 static void
393 ppc_collect_reg (const struct regcache *regcache, int regnum,
394 gdb_byte *regs, size_t offset, int regsize)
395 {
396 if (regnum != -1 && offset != -1)
397 {
398 if (regsize > 4)
399 {
400 struct gdbarch *gdbarch = get_regcache_arch (regcache);
401 int gdb_regsize = register_size (gdbarch, regnum);
402 if (gdb_regsize < regsize)
403 {
404 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
405 {
406 memset (regs + offset, 0, regsize - gdb_regsize);
407 offset += regsize - gdb_regsize;
408 }
409 else
410 memset (regs + offset + regsize - gdb_regsize, 0,
411 regsize - gdb_regsize);
412 }
413 }
414 regcache_raw_collect (regcache, regnum, regs + offset);
415 }
416 }
417
418 static int
419 ppc_greg_offset (struct gdbarch *gdbarch,
420 struct gdbarch_tdep *tdep,
421 const struct ppc_reg_offsets *offsets,
422 int regnum,
423 int *regsize)
424 {
425 *regsize = offsets->gpr_size;
426 if (regnum >= tdep->ppc_gp0_regnum
427 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
428 return (offsets->r0_offset
429 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
430
431 if (regnum == gdbarch_pc_regnum (gdbarch))
432 return offsets->pc_offset;
433
434 if (regnum == tdep->ppc_ps_regnum)
435 return offsets->ps_offset;
436
437 if (regnum == tdep->ppc_lr_regnum)
438 return offsets->lr_offset;
439
440 if (regnum == tdep->ppc_ctr_regnum)
441 return offsets->ctr_offset;
442
443 *regsize = offsets->xr_size;
444 if (regnum == tdep->ppc_cr_regnum)
445 return offsets->cr_offset;
446
447 if (regnum == tdep->ppc_xer_regnum)
448 return offsets->xer_offset;
449
450 if (regnum == tdep->ppc_mq_regnum)
451 return offsets->mq_offset;
452
453 return -1;
454 }
455
456 static int
457 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
458 const struct ppc_reg_offsets *offsets,
459 int regnum)
460 {
461 if (regnum >= tdep->ppc_fp0_regnum
462 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
463 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
464
465 if (regnum == tdep->ppc_fpscr_regnum)
466 return offsets->fpscr_offset;
467
468 return -1;
469 }
470
471 static int
472 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
473 const struct ppc_reg_offsets *offsets,
474 int regnum)
475 {
476 if (regnum >= tdep->ppc_vr0_regnum
477 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
478 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
479
480 if (regnum == tdep->ppc_vrsave_regnum - 1)
481 return offsets->vscr_offset;
482
483 if (regnum == tdep->ppc_vrsave_regnum)
484 return offsets->vrsave_offset;
485
486 return -1;
487 }
488
489 /* Supply register REGNUM in the general-purpose register set REGSET
490 from the buffer specified by GREGS and LEN to register cache
491 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
492
493 void
494 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
495 int regnum, const void *gregs, size_t len)
496 {
497 struct gdbarch *gdbarch = get_regcache_arch (regcache);
498 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
499 const struct ppc_reg_offsets *offsets = regset->descr;
500 size_t offset;
501 int regsize;
502
503 if (regnum == -1)
504 {
505 int i;
506 int gpr_size = offsets->gpr_size;
507
508 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
509 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
510 i++, offset += gpr_size)
511 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
512
513 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
514 gregs, offsets->pc_offset, gpr_size);
515 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
516 gregs, offsets->ps_offset, gpr_size);
517 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
518 gregs, offsets->lr_offset, gpr_size);
519 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
520 gregs, offsets->ctr_offset, gpr_size);
521 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
522 gregs, offsets->cr_offset, offsets->xr_size);
523 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
524 gregs, offsets->xer_offset, offsets->xr_size);
525 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
526 gregs, offsets->mq_offset, offsets->xr_size);
527 return;
528 }
529
530 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
531 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
532 }
533
534 /* Supply register REGNUM in the floating-point register set REGSET
535 from the buffer specified by FPREGS and LEN to register cache
536 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
537
538 void
539 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
540 int regnum, const void *fpregs, size_t len)
541 {
542 struct gdbarch *gdbarch = get_regcache_arch (regcache);
543 struct gdbarch_tdep *tdep;
544 const struct ppc_reg_offsets *offsets;
545 size_t offset;
546
547 if (!ppc_floating_point_unit_p (gdbarch))
548 return;
549
550 tdep = gdbarch_tdep (gdbarch);
551 offsets = regset->descr;
552 if (regnum == -1)
553 {
554 int i;
555
556 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
557 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
558 i++, offset += 8)
559 ppc_supply_reg (regcache, i, fpregs, offset, 8);
560
561 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
562 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
563 return;
564 }
565
566 offset = ppc_fpreg_offset (tdep, offsets, regnum);
567 ppc_supply_reg (regcache, regnum, fpregs, offset,
568 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
569 }
570
571 /* Supply register REGNUM in the Altivec register set REGSET
572 from the buffer specified by VRREGS and LEN to register cache
573 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
574
575 void
576 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
577 int regnum, const void *vrregs, size_t len)
578 {
579 struct gdbarch *gdbarch = get_regcache_arch (regcache);
580 struct gdbarch_tdep *tdep;
581 const struct ppc_reg_offsets *offsets;
582 size_t offset;
583
584 if (!ppc_altivec_support_p (gdbarch))
585 return;
586
587 tdep = gdbarch_tdep (gdbarch);
588 offsets = regset->descr;
589 if (regnum == -1)
590 {
591 int i;
592
593 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
594 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
595 i++, offset += 16)
596 ppc_supply_reg (regcache, i, vrregs, offset, 16);
597
598 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
599 vrregs, offsets->vscr_offset, 4);
600
601 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
602 vrregs, offsets->vrsave_offset, 4);
603 return;
604 }
605
606 offset = ppc_vrreg_offset (tdep, offsets, regnum);
607 if (regnum != tdep->ppc_vrsave_regnum
608 && regnum != tdep->ppc_vrsave_regnum - 1)
609 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
610 else
611 ppc_supply_reg (regcache, regnum,
612 vrregs, offset, 4);
613 }
614
615 /* Collect register REGNUM in the general-purpose register set
616 REGSET from register cache REGCACHE into the buffer specified by
617 GREGS and LEN. If REGNUM is -1, do this for all registers in
618 REGSET. */
619
620 void
621 ppc_collect_gregset (const struct regset *regset,
622 const struct regcache *regcache,
623 int regnum, void *gregs, size_t len)
624 {
625 struct gdbarch *gdbarch = get_regcache_arch (regcache);
626 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
627 const struct ppc_reg_offsets *offsets = regset->descr;
628 size_t offset;
629 int regsize;
630
631 if (regnum == -1)
632 {
633 int i;
634 int gpr_size = offsets->gpr_size;
635
636 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
637 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
638 i++, offset += gpr_size)
639 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
640
641 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
642 gregs, offsets->pc_offset, gpr_size);
643 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
644 gregs, offsets->ps_offset, gpr_size);
645 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
646 gregs, offsets->lr_offset, gpr_size);
647 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
648 gregs, offsets->ctr_offset, gpr_size);
649 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
650 gregs, offsets->cr_offset, offsets->xr_size);
651 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
652 gregs, offsets->xer_offset, offsets->xr_size);
653 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
654 gregs, offsets->mq_offset, offsets->xr_size);
655 return;
656 }
657
658 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
659 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
660 }
661
662 /* Collect register REGNUM in the floating-point register set
663 REGSET from register cache REGCACHE into the buffer specified by
664 FPREGS and LEN. If REGNUM is -1, do this for all registers in
665 REGSET. */
666
667 void
668 ppc_collect_fpregset (const struct regset *regset,
669 const struct regcache *regcache,
670 int regnum, void *fpregs, size_t len)
671 {
672 struct gdbarch *gdbarch = get_regcache_arch (regcache);
673 struct gdbarch_tdep *tdep;
674 const struct ppc_reg_offsets *offsets;
675 size_t offset;
676
677 if (!ppc_floating_point_unit_p (gdbarch))
678 return;
679
680 tdep = gdbarch_tdep (gdbarch);
681 offsets = regset->descr;
682 if (regnum == -1)
683 {
684 int i;
685
686 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
687 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
688 i++, offset += 8)
689 ppc_collect_reg (regcache, i, fpregs, offset, 8);
690
691 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
692 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
693 return;
694 }
695
696 offset = ppc_fpreg_offset (tdep, offsets, regnum);
697 ppc_collect_reg (regcache, regnum, fpregs, offset,
698 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
699 }
700
701 /* Collect register REGNUM in the Altivec register set
702 REGSET from register cache REGCACHE into the buffer specified by
703 VRREGS and LEN. If REGNUM is -1, do this for all registers in
704 REGSET. */
705
706 void
707 ppc_collect_vrregset (const struct regset *regset,
708 const struct regcache *regcache,
709 int regnum, void *vrregs, size_t len)
710 {
711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
712 struct gdbarch_tdep *tdep;
713 const struct ppc_reg_offsets *offsets;
714 size_t offset;
715
716 if (!ppc_altivec_support_p (gdbarch))
717 return;
718
719 tdep = gdbarch_tdep (gdbarch);
720 offsets = regset->descr;
721 if (regnum == -1)
722 {
723 int i;
724
725 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
726 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
727 i++, offset += 16)
728 ppc_collect_reg (regcache, i, vrregs, offset, 16);
729
730 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
731 vrregs, offsets->vscr_offset, 4);
732
733 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
734 vrregs, offsets->vrsave_offset, 4);
735 return;
736 }
737
738 offset = ppc_vrreg_offset (tdep, offsets, regnum);
739 if (regnum != tdep->ppc_vrsave_regnum
740 && regnum != tdep->ppc_vrsave_regnum - 1)
741 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
742 else
743 ppc_collect_reg (regcache, regnum,
744 vrregs, offset, 4);
745 }
746 \f
747
748 /* Read a LEN-byte address from debugged memory address MEMADDR. */
749
750 static CORE_ADDR
751 read_memory_addr (CORE_ADDR memaddr, int len)
752 {
753 return read_memory_unsigned_integer (memaddr, len);
754 }
755
756 static CORE_ADDR
757 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
758 {
759 struct rs6000_framedata frame;
760 CORE_ADDR limit_pc, func_addr;
761
762 /* See if we can determine the end of the prologue via the symbol table.
763 If so, then return either PC, or the PC after the prologue, whichever
764 is greater. */
765 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
766 {
767 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
768 if (post_prologue_pc != 0)
769 return max (pc, post_prologue_pc);
770 }
771
772 /* Can't determine prologue from the symbol table, need to examine
773 instructions. */
774
775 /* Find an upper limit on the function prologue using the debug
776 information. If the debug information could not be used to provide
777 that bound, then use an arbitrary large number as the upper bound. */
778 limit_pc = skip_prologue_using_sal (pc);
779 if (limit_pc == 0)
780 limit_pc = pc + 100; /* Magic. */
781
782 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
783 return pc;
784 }
785
786 static int
787 insn_changes_sp_or_jumps (unsigned long insn)
788 {
789 int opcode = (insn >> 26) & 0x03f;
790 int sd = (insn >> 21) & 0x01f;
791 int a = (insn >> 16) & 0x01f;
792 int subcode = (insn >> 1) & 0x3ff;
793
794 /* Changes the stack pointer. */
795
796 /* NOTE: There are many ways to change the value of a given register.
797 The ways below are those used when the register is R1, the SP,
798 in a funtion's epilogue. */
799
800 if (opcode == 31 && subcode == 444 && a == 1)
801 return 1; /* mr R1,Rn */
802 if (opcode == 14 && sd == 1)
803 return 1; /* addi R1,Rn,simm */
804 if (opcode == 58 && sd == 1)
805 return 1; /* ld R1,ds(Rn) */
806
807 /* Transfers control. */
808
809 if (opcode == 18)
810 return 1; /* b */
811 if (opcode == 16)
812 return 1; /* bc */
813 if (opcode == 19 && subcode == 16)
814 return 1; /* bclr */
815 if (opcode == 19 && subcode == 528)
816 return 1; /* bcctr */
817
818 return 0;
819 }
820
821 /* Return true if we are in the function's epilogue, i.e. after the
822 instruction that destroyed the function's stack frame.
823
824 1) scan forward from the point of execution:
825 a) If you find an instruction that modifies the stack pointer
826 or transfers control (except a return), execution is not in
827 an epilogue, return.
828 b) Stop scanning if you find a return instruction or reach the
829 end of the function or reach the hard limit for the size of
830 an epilogue.
831 2) scan backward from the point of execution:
832 a) If you find an instruction that modifies the stack pointer,
833 execution *is* in an epilogue, return.
834 b) Stop scanning if you reach an instruction that transfers
835 control or the beginning of the function or reach the hard
836 limit for the size of an epilogue. */
837
838 static int
839 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
840 {
841 bfd_byte insn_buf[PPC_INSN_SIZE];
842 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
843 unsigned long insn;
844 struct frame_info *curfrm;
845
846 /* Find the search limits based on function boundaries and hard limit. */
847
848 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
849 return 0;
850
851 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
852 if (epilogue_start < func_start) epilogue_start = func_start;
853
854 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
855 if (epilogue_end > func_end) epilogue_end = func_end;
856
857 curfrm = get_current_frame ();
858
859 /* Scan forward until next 'blr'. */
860
861 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
862 {
863 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
864 return 0;
865 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
866 if (insn == 0x4e800020)
867 break;
868 if (insn_changes_sp_or_jumps (insn))
869 return 0;
870 }
871
872 /* Scan backward until adjustment to stack pointer (R1). */
873
874 for (scan_pc = pc - PPC_INSN_SIZE;
875 scan_pc >= epilogue_start;
876 scan_pc -= PPC_INSN_SIZE)
877 {
878 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
879 return 0;
880 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
881 if (insn_changes_sp_or_jumps (insn))
882 return 1;
883 }
884
885 return 0;
886 }
887
888 /* Get the ith function argument for the current function. */
889 static CORE_ADDR
890 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
891 struct type *type)
892 {
893 return get_frame_register_unsigned (frame, 3 + argi);
894 }
895
896 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
897
898 static CORE_ADDR
899 branch_dest (struct frame_info *frame, int opcode, int instr,
900 CORE_ADDR pc, CORE_ADDR safety)
901 {
902 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
903 CORE_ADDR dest;
904 int immediate;
905 int absolute;
906 int ext_op;
907
908 absolute = (int) ((instr >> 1) & 1);
909
910 switch (opcode)
911 {
912 case 18:
913 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
914 if (absolute)
915 dest = immediate;
916 else
917 dest = pc + immediate;
918 break;
919
920 case 16:
921 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
922 if (absolute)
923 dest = immediate;
924 else
925 dest = pc + immediate;
926 break;
927
928 case 19:
929 ext_op = (instr >> 1) & 0x3ff;
930
931 if (ext_op == 16) /* br conditional register */
932 {
933 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
934
935 /* If we are about to return from a signal handler, dest is
936 something like 0x3c90. The current frame is a signal handler
937 caller frame, upon completion of the sigreturn system call
938 execution will return to the saved PC in the frame. */
939 if (dest < tdep->text_segment_base)
940 dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
941 tdep->wordsize);
942 }
943
944 else if (ext_op == 528) /* br cond to count reg */
945 {
946 dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
947
948 /* If we are about to execute a system call, dest is something
949 like 0x22fc or 0x3b00. Upon completion the system call
950 will return to the address in the link register. */
951 if (dest < tdep->text_segment_base)
952 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
953 }
954 else
955 return -1;
956 break;
957
958 default:
959 return -1;
960 }
961 return (dest < tdep->text_segment_base) ? safety : dest;
962 }
963
964
965 /* Sequence of bytes for breakpoint instruction. */
966
967 const static unsigned char *
968 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
969 int *bp_size)
970 {
971 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
972 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
973 *bp_size = 4;
974 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
975 return big_breakpoint;
976 else
977 return little_breakpoint;
978 }
979
980
981 /* Instruction masks used during single-stepping of atomic sequences. */
982 #define LWARX_MASK 0xfc0007fe
983 #define LWARX_INSTRUCTION 0x7c000028
984 #define LDARX_INSTRUCTION 0x7c0000A8
985 #define STWCX_MASK 0xfc0007ff
986 #define STWCX_INSTRUCTION 0x7c00012d
987 #define STDCX_INSTRUCTION 0x7c0001ad
988 #define BC_MASK 0xfc000000
989 #define BC_INSTRUCTION 0x40000000
990
991 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
992 instruction and ending with a STWCX/STDCX instruction. If such a sequence
993 is found, attempt to step through it. A breakpoint is placed at the end of
994 the sequence. */
995
996 static int
997 deal_with_atomic_sequence (struct frame_info *frame)
998 {
999 CORE_ADDR pc = get_frame_pc (frame);
1000 CORE_ADDR breaks[2] = {-1, -1};
1001 CORE_ADDR loc = pc;
1002 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
1003 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1004 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
1005 int insn_count;
1006 int index;
1007 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1008 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1009 int opcode; /* Branch instruction's OPcode. */
1010 int bc_insn_count = 0; /* Conditional branch instruction count. */
1011
1012 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1013 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1014 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1015 return 0;
1016
1017 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1018 instructions. */
1019 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1020 {
1021 loc += PPC_INSN_SIZE;
1022 insn = read_memory_integer (loc, PPC_INSN_SIZE);
1023
1024 /* Assume that there is at most one conditional branch in the atomic
1025 sequence. If a conditional branch is found, put a breakpoint in
1026 its destination address. */
1027 if ((insn & BC_MASK) == BC_INSTRUCTION)
1028 {
1029 if (bc_insn_count >= 1)
1030 return 0; /* More than one conditional branch found, fallback
1031 to the standard single-step code. */
1032
1033 opcode = insn >> 26;
1034 branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
1035
1036 if (branch_bp != -1)
1037 {
1038 breaks[1] = branch_bp;
1039 bc_insn_count++;
1040 last_breakpoint++;
1041 }
1042 }
1043
1044 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1045 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1046 break;
1047 }
1048
1049 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1050 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1051 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1052 return 0;
1053
1054 closing_insn = loc;
1055 loc += PPC_INSN_SIZE;
1056 insn = read_memory_integer (loc, PPC_INSN_SIZE);
1057
1058 /* Insert a breakpoint right after the end of the atomic sequence. */
1059 breaks[0] = loc;
1060
1061 /* Check for duplicated breakpoints. Check also for a breakpoint
1062 placed (branch instruction's destination) at the stwcx/stdcx
1063 instruction, this resets the reservation and take us back to the
1064 lwarx/ldarx instruction at the beginning of the atomic sequence. */
1065 if (last_breakpoint && ((breaks[1] == breaks[0])
1066 || (breaks[1] == closing_insn)))
1067 last_breakpoint = 0;
1068
1069 /* Effectively inserts the breakpoints. */
1070 for (index = 0; index <= last_breakpoint; index++)
1071 insert_single_step_breakpoint (breaks[index]);
1072
1073 return 1;
1074 }
1075
1076 /* AIX does not support PT_STEP. Simulate it. */
1077
1078 int
1079 rs6000_software_single_step (struct frame_info *frame)
1080 {
1081 CORE_ADDR dummy;
1082 int breakp_sz;
1083 const gdb_byte *breakp
1084 = rs6000_breakpoint_from_pc (get_frame_arch (frame), &dummy, &breakp_sz);
1085 int ii, insn;
1086 CORE_ADDR loc;
1087 CORE_ADDR breaks[2];
1088 int opcode;
1089
1090 loc = get_frame_pc (frame);
1091
1092 insn = read_memory_integer (loc, 4);
1093
1094 if (deal_with_atomic_sequence (frame))
1095 return 1;
1096
1097 breaks[0] = loc + breakp_sz;
1098 opcode = insn >> 26;
1099 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
1100
1101 /* Don't put two breakpoints on the same address. */
1102 if (breaks[1] == breaks[0])
1103 breaks[1] = -1;
1104
1105 for (ii = 0; ii < 2; ++ii)
1106 {
1107 /* ignore invalid breakpoint. */
1108 if (breaks[ii] == -1)
1109 continue;
1110 insert_single_step_breakpoint (breaks[ii]);
1111 }
1112
1113 errno = 0; /* FIXME, don't ignore errors! */
1114 /* What errors? {read,write}_memory call error(). */
1115 return 1;
1116 }
1117
1118
1119 #define SIGNED_SHORT(x) \
1120 ((sizeof (short) == 2) \
1121 ? ((int)(short)(x)) \
1122 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1123
1124 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1125
1126 /* Limit the number of skipped non-prologue instructions, as the examining
1127 of the prologue is expensive. */
1128 static int max_skip_non_prologue_insns = 10;
1129
1130 /* Return nonzero if the given instruction OP can be part of the prologue
1131 of a function and saves a parameter on the stack. FRAMEP should be
1132 set if one of the previous instructions in the function has set the
1133 Frame Pointer. */
1134
1135 static int
1136 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1137 {
1138 /* Move parameters from argument registers to temporary register. */
1139 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1140 {
1141 /* Rx must be scratch register r0. */
1142 const int rx_regno = (op >> 16) & 31;
1143 /* Ry: Only r3 - r10 are used for parameter passing. */
1144 const int ry_regno = GET_SRC_REG (op);
1145
1146 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1147 {
1148 *r0_contains_arg = 1;
1149 return 1;
1150 }
1151 else
1152 return 0;
1153 }
1154
1155 /* Save a General Purpose Register on stack. */
1156
1157 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1158 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1159 {
1160 /* Rx: Only r3 - r10 are used for parameter passing. */
1161 const int rx_regno = GET_SRC_REG (op);
1162
1163 return (rx_regno >= 3 && rx_regno <= 10);
1164 }
1165
1166 /* Save a General Purpose Register on stack via the Frame Pointer. */
1167
1168 if (framep &&
1169 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1170 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1171 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1172 {
1173 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1174 However, the compiler sometimes uses r0 to hold an argument. */
1175 const int rx_regno = GET_SRC_REG (op);
1176
1177 return ((rx_regno >= 3 && rx_regno <= 10)
1178 || (rx_regno == 0 && *r0_contains_arg));
1179 }
1180
1181 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1182 {
1183 /* Only f2 - f8 are used for parameter passing. */
1184 const int src_regno = GET_SRC_REG (op);
1185
1186 return (src_regno >= 2 && src_regno <= 8);
1187 }
1188
1189 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1190 {
1191 /* Only f2 - f8 are used for parameter passing. */
1192 const int src_regno = GET_SRC_REG (op);
1193
1194 return (src_regno >= 2 && src_regno <= 8);
1195 }
1196
1197 /* Not an insn that saves a parameter on stack. */
1198 return 0;
1199 }
1200
1201 /* Assuming that INSN is a "bl" instruction located at PC, return
1202 nonzero if the destination of the branch is a "blrl" instruction.
1203
1204 This sequence is sometimes found in certain function prologues.
1205 It allows the function to load the LR register with a value that
1206 they can use to access PIC data using PC-relative offsets. */
1207
1208 static int
1209 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
1210 {
1211 CORE_ADDR dest;
1212 int immediate;
1213 int absolute;
1214 int dest_insn;
1215
1216 absolute = (int) ((insn >> 1) & 1);
1217 immediate = ((insn & ~3) << 6) >> 6;
1218 if (absolute)
1219 dest = immediate;
1220 else
1221 dest = pc + immediate;
1222
1223 dest_insn = read_memory_integer (dest, 4);
1224 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1225 return 1;
1226
1227 return 0;
1228 }
1229
1230 /* return pc value after skipping a function prologue and also return
1231 information about a function frame.
1232
1233 in struct rs6000_framedata fdata:
1234 - frameless is TRUE, if function does not have a frame.
1235 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1236 - offset is the initial size of this stack frame --- the amount by
1237 which we decrement the sp to allocate the frame.
1238 - saved_gpr is the number of the first saved gpr.
1239 - saved_fpr is the number of the first saved fpr.
1240 - saved_vr is the number of the first saved vr.
1241 - saved_ev is the number of the first saved ev.
1242 - alloca_reg is the number of the register used for alloca() handling.
1243 Otherwise -1.
1244 - gpr_offset is the offset of the first saved gpr from the previous frame.
1245 - fpr_offset is the offset of the first saved fpr from the previous frame.
1246 - vr_offset is the offset of the first saved vr from the previous frame.
1247 - ev_offset is the offset of the first saved ev from the previous frame.
1248 - lr_offset is the offset of the saved lr
1249 - cr_offset is the offset of the saved cr
1250 - vrsave_offset is the offset of the saved vrsave register
1251 */
1252
1253 static CORE_ADDR
1254 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1255 struct rs6000_framedata *fdata)
1256 {
1257 CORE_ADDR orig_pc = pc;
1258 CORE_ADDR last_prologue_pc = pc;
1259 CORE_ADDR li_found_pc = 0;
1260 gdb_byte buf[4];
1261 unsigned long op;
1262 long offset = 0;
1263 long vr_saved_offset = 0;
1264 int lr_reg = -1;
1265 int cr_reg = -1;
1266 int vr_reg = -1;
1267 int ev_reg = -1;
1268 long ev_offset = 0;
1269 int vrsave_reg = -1;
1270 int reg;
1271 int framep = 0;
1272 int minimal_toc_loaded = 0;
1273 int prev_insn_was_prologue_insn = 1;
1274 int num_skip_non_prologue_insns = 0;
1275 int r0_contains_arg = 0;
1276 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1278
1279 memset (fdata, 0, sizeof (struct rs6000_framedata));
1280 fdata->saved_gpr = -1;
1281 fdata->saved_fpr = -1;
1282 fdata->saved_vr = -1;
1283 fdata->saved_ev = -1;
1284 fdata->alloca_reg = -1;
1285 fdata->frameless = 1;
1286 fdata->nosavedpc = 1;
1287
1288 for (;; pc += 4)
1289 {
1290 /* Sometimes it isn't clear if an instruction is a prologue
1291 instruction or not. When we encounter one of these ambiguous
1292 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1293 Otherwise, we'll assume that it really is a prologue instruction. */
1294 if (prev_insn_was_prologue_insn)
1295 last_prologue_pc = pc;
1296
1297 /* Stop scanning if we've hit the limit. */
1298 if (pc >= lim_pc)
1299 break;
1300
1301 prev_insn_was_prologue_insn = 1;
1302
1303 /* Fetch the instruction and convert it to an integer. */
1304 if (target_read_memory (pc, buf, 4))
1305 break;
1306 op = extract_unsigned_integer (buf, 4);
1307
1308 if ((op & 0xfc1fffff) == 0x7c0802a6)
1309 { /* mflr Rx */
1310 /* Since shared library / PIC code, which needs to get its
1311 address at runtime, can appear to save more than one link
1312 register vis:
1313
1314 *INDENT-OFF*
1315 stwu r1,-304(r1)
1316 mflr r3
1317 bl 0xff570d0 (blrl)
1318 stw r30,296(r1)
1319 mflr r30
1320 stw r31,300(r1)
1321 stw r3,308(r1);
1322 ...
1323 *INDENT-ON*
1324
1325 remember just the first one, but skip over additional
1326 ones. */
1327 if (lr_reg == -1)
1328 lr_reg = (op & 0x03e00000);
1329 if (lr_reg == 0)
1330 r0_contains_arg = 0;
1331 continue;
1332 }
1333 else if ((op & 0xfc1fffff) == 0x7c000026)
1334 { /* mfcr Rx */
1335 cr_reg = (op & 0x03e00000);
1336 if (cr_reg == 0)
1337 r0_contains_arg = 0;
1338 continue;
1339
1340 }
1341 else if ((op & 0xfc1f0000) == 0xd8010000)
1342 { /* stfd Rx,NUM(r1) */
1343 reg = GET_SRC_REG (op);
1344 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1345 {
1346 fdata->saved_fpr = reg;
1347 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1348 }
1349 continue;
1350
1351 }
1352 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1353 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1354 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1355 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1356 {
1357
1358 reg = GET_SRC_REG (op);
1359 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1360 {
1361 fdata->saved_gpr = reg;
1362 if ((op & 0xfc1f0003) == 0xf8010000)
1363 op &= ~3UL;
1364 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1365 }
1366 continue;
1367
1368 }
1369 else if ((op & 0xffff0000) == 0x60000000)
1370 {
1371 /* nop */
1372 /* Allow nops in the prologue, but do not consider them to
1373 be part of the prologue unless followed by other prologue
1374 instructions. */
1375 prev_insn_was_prologue_insn = 0;
1376 continue;
1377
1378 }
1379 else if ((op & 0xffff0000) == 0x3c000000)
1380 { /* addis 0,0,NUM, used
1381 for >= 32k frames */
1382 fdata->offset = (op & 0x0000ffff) << 16;
1383 fdata->frameless = 0;
1384 r0_contains_arg = 0;
1385 continue;
1386
1387 }
1388 else if ((op & 0xffff0000) == 0x60000000)
1389 { /* ori 0,0,NUM, 2nd ha
1390 lf of >= 32k frames */
1391 fdata->offset |= (op & 0x0000ffff);
1392 fdata->frameless = 0;
1393 r0_contains_arg = 0;
1394 continue;
1395
1396 }
1397 else if (lr_reg >= 0 &&
1398 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1399 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1400 /* stw Rx, NUM(r1) */
1401 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1402 /* stwu Rx, NUM(r1) */
1403 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1404 { /* where Rx == lr */
1405 fdata->lr_offset = offset;
1406 fdata->nosavedpc = 0;
1407 /* Invalidate lr_reg, but don't set it to -1.
1408 That would mean that it had never been set. */
1409 lr_reg = -2;
1410 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1411 (op & 0xfc000000) == 0x90000000) /* stw */
1412 {
1413 /* Does not update r1, so add displacement to lr_offset. */
1414 fdata->lr_offset += SIGNED_SHORT (op);
1415 }
1416 continue;
1417
1418 }
1419 else if (cr_reg >= 0 &&
1420 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1421 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1422 /* stw Rx, NUM(r1) */
1423 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1424 /* stwu Rx, NUM(r1) */
1425 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1426 { /* where Rx == cr */
1427 fdata->cr_offset = offset;
1428 /* Invalidate cr_reg, but don't set it to -1.
1429 That would mean that it had never been set. */
1430 cr_reg = -2;
1431 if ((op & 0xfc000003) == 0xf8000000 ||
1432 (op & 0xfc000000) == 0x90000000)
1433 {
1434 /* Does not update r1, so add displacement to cr_offset. */
1435 fdata->cr_offset += SIGNED_SHORT (op);
1436 }
1437 continue;
1438
1439 }
1440 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1441 {
1442 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1443 prediction bits. If the LR has already been saved, we can
1444 skip it. */
1445 continue;
1446 }
1447 else if (op == 0x48000005)
1448 { /* bl .+4 used in
1449 -mrelocatable */
1450 continue;
1451
1452 }
1453 else if (op == 0x48000004)
1454 { /* b .+4 (xlc) */
1455 break;
1456
1457 }
1458 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1459 in V.4 -mminimal-toc */
1460 (op & 0xffff0000) == 0x3bde0000)
1461 { /* addi 30,30,foo@l */
1462 continue;
1463
1464 }
1465 else if ((op & 0xfc000001) == 0x48000001)
1466 { /* bl foo,
1467 to save fprs??? */
1468
1469 fdata->frameless = 0;
1470
1471 /* If the return address has already been saved, we can skip
1472 calls to blrl (for PIC). */
1473 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1474 continue;
1475
1476 /* Don't skip over the subroutine call if it is not within
1477 the first three instructions of the prologue and either
1478 we have no line table information or the line info tells
1479 us that the subroutine call is not part of the line
1480 associated with the prologue. */
1481 if ((pc - orig_pc) > 8)
1482 {
1483 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1484 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1485
1486 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1487 break;
1488 }
1489
1490 op = read_memory_integer (pc + 4, 4);
1491
1492 /* At this point, make sure this is not a trampoline
1493 function (a function that simply calls another functions,
1494 and nothing else). If the next is not a nop, this branch
1495 was part of the function prologue. */
1496
1497 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1498 break; /* don't skip over
1499 this branch */
1500 continue;
1501
1502 }
1503 /* update stack pointer */
1504 else if ((op & 0xfc1f0000) == 0x94010000)
1505 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1506 fdata->frameless = 0;
1507 fdata->offset = SIGNED_SHORT (op);
1508 offset = fdata->offset;
1509 continue;
1510 }
1511 else if ((op & 0xfc1f016a) == 0x7c01016e)
1512 { /* stwux rX,r1,rY */
1513 /* no way to figure out what r1 is going to be */
1514 fdata->frameless = 0;
1515 offset = fdata->offset;
1516 continue;
1517 }
1518 else if ((op & 0xfc1f0003) == 0xf8010001)
1519 { /* stdu rX,NUM(r1) */
1520 fdata->frameless = 0;
1521 fdata->offset = SIGNED_SHORT (op & ~3UL);
1522 offset = fdata->offset;
1523 continue;
1524 }
1525 else if ((op & 0xfc1f016a) == 0x7c01016a)
1526 { /* stdux rX,r1,rY */
1527 /* no way to figure out what r1 is going to be */
1528 fdata->frameless = 0;
1529 offset = fdata->offset;
1530 continue;
1531 }
1532 else if ((op & 0xffff0000) == 0x38210000)
1533 { /* addi r1,r1,SIMM */
1534 fdata->frameless = 0;
1535 fdata->offset += SIGNED_SHORT (op);
1536 offset = fdata->offset;
1537 continue;
1538 }
1539 /* Load up minimal toc pointer. Do not treat an epilogue restore
1540 of r31 as a minimal TOC load. */
1541 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1542 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1543 && !framep
1544 && !minimal_toc_loaded)
1545 {
1546 minimal_toc_loaded = 1;
1547 continue;
1548
1549 /* move parameters from argument registers to local variable
1550 registers */
1551 }
1552 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1553 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1554 (((op >> 21) & 31) <= 10) &&
1555 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1556 {
1557 continue;
1558
1559 /* store parameters in stack */
1560 }
1561 /* Move parameters from argument registers to temporary register. */
1562 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1563 {
1564 continue;
1565
1566 /* Set up frame pointer */
1567 }
1568 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1569 || op == 0x7c3f0b78)
1570 { /* mr r31, r1 */
1571 fdata->frameless = 0;
1572 framep = 1;
1573 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1574 continue;
1575
1576 /* Another way to set up the frame pointer. */
1577 }
1578 else if ((op & 0xfc1fffff) == 0x38010000)
1579 { /* addi rX, r1, 0x0 */
1580 fdata->frameless = 0;
1581 framep = 1;
1582 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1583 + ((op & ~0x38010000) >> 21));
1584 continue;
1585 }
1586 /* AltiVec related instructions. */
1587 /* Store the vrsave register (spr 256) in another register for
1588 later manipulation, or load a register into the vrsave
1589 register. 2 instructions are used: mfvrsave and
1590 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1591 and mtspr SPR256, Rn. */
1592 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1593 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1594 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1595 {
1596 vrsave_reg = GET_SRC_REG (op);
1597 continue;
1598 }
1599 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1600 {
1601 continue;
1602 }
1603 /* Store the register where vrsave was saved to onto the stack:
1604 rS is the register where vrsave was stored in a previous
1605 instruction. */
1606 /* 100100 sssss 00001 dddddddd dddddddd */
1607 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1608 {
1609 if (vrsave_reg == GET_SRC_REG (op))
1610 {
1611 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1612 vrsave_reg = -1;
1613 }
1614 continue;
1615 }
1616 /* Compute the new value of vrsave, by modifying the register
1617 where vrsave was saved to. */
1618 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1619 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1620 {
1621 continue;
1622 }
1623 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1624 in a pair of insns to save the vector registers on the
1625 stack. */
1626 /* 001110 00000 00000 iiii iiii iiii iiii */
1627 /* 001110 01110 00000 iiii iiii iiii iiii */
1628 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1629 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1630 {
1631 if ((op & 0xffff0000) == 0x38000000)
1632 r0_contains_arg = 0;
1633 li_found_pc = pc;
1634 vr_saved_offset = SIGNED_SHORT (op);
1635
1636 /* This insn by itself is not part of the prologue, unless
1637 if part of the pair of insns mentioned above. So do not
1638 record this insn as part of the prologue yet. */
1639 prev_insn_was_prologue_insn = 0;
1640 }
1641 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1642 /* 011111 sssss 11111 00000 00111001110 */
1643 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1644 {
1645 if (pc == (li_found_pc + 4))
1646 {
1647 vr_reg = GET_SRC_REG (op);
1648 /* If this is the first vector reg to be saved, or if
1649 it has a lower number than others previously seen,
1650 reupdate the frame info. */
1651 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1652 {
1653 fdata->saved_vr = vr_reg;
1654 fdata->vr_offset = vr_saved_offset + offset;
1655 }
1656 vr_saved_offset = -1;
1657 vr_reg = -1;
1658 li_found_pc = 0;
1659 }
1660 }
1661 /* End AltiVec related instructions. */
1662
1663 /* Start BookE related instructions. */
1664 /* Store gen register S at (r31+uimm).
1665 Any register less than r13 is volatile, so we don't care. */
1666 /* 000100 sssss 11111 iiiii 01100100001 */
1667 else if (arch_info->mach == bfd_mach_ppc_e500
1668 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1669 {
1670 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1671 {
1672 unsigned int imm;
1673 ev_reg = GET_SRC_REG (op);
1674 imm = (op >> 11) & 0x1f;
1675 ev_offset = imm * 8;
1676 /* If this is the first vector reg to be saved, or if
1677 it has a lower number than others previously seen,
1678 reupdate the frame info. */
1679 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1680 {
1681 fdata->saved_ev = ev_reg;
1682 fdata->ev_offset = ev_offset + offset;
1683 }
1684 }
1685 continue;
1686 }
1687 /* Store gen register rS at (r1+rB). */
1688 /* 000100 sssss 00001 bbbbb 01100100000 */
1689 else if (arch_info->mach == bfd_mach_ppc_e500
1690 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1691 {
1692 if (pc == (li_found_pc + 4))
1693 {
1694 ev_reg = GET_SRC_REG (op);
1695 /* If this is the first vector reg to be saved, or if
1696 it has a lower number than others previously seen,
1697 reupdate the frame info. */
1698 /* We know the contents of rB from the previous instruction. */
1699 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1700 {
1701 fdata->saved_ev = ev_reg;
1702 fdata->ev_offset = vr_saved_offset + offset;
1703 }
1704 vr_saved_offset = -1;
1705 ev_reg = -1;
1706 li_found_pc = 0;
1707 }
1708 continue;
1709 }
1710 /* Store gen register r31 at (rA+uimm). */
1711 /* 000100 11111 aaaaa iiiii 01100100001 */
1712 else if (arch_info->mach == bfd_mach_ppc_e500
1713 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1714 {
1715 /* Wwe know that the source register is 31 already, but
1716 it can't hurt to compute it. */
1717 ev_reg = GET_SRC_REG (op);
1718 ev_offset = ((op >> 11) & 0x1f) * 8;
1719 /* If this is the first vector reg to be saved, or if
1720 it has a lower number than others previously seen,
1721 reupdate the frame info. */
1722 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1723 {
1724 fdata->saved_ev = ev_reg;
1725 fdata->ev_offset = ev_offset + offset;
1726 }
1727
1728 continue;
1729 }
1730 /* Store gen register S at (r31+r0).
1731 Store param on stack when offset from SP bigger than 4 bytes. */
1732 /* 000100 sssss 11111 00000 01100100000 */
1733 else if (arch_info->mach == bfd_mach_ppc_e500
1734 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1735 {
1736 if (pc == (li_found_pc + 4))
1737 {
1738 if ((op & 0x03e00000) >= 0x01a00000)
1739 {
1740 ev_reg = GET_SRC_REG (op);
1741 /* If this is the first vector reg to be saved, or if
1742 it has a lower number than others previously seen,
1743 reupdate the frame info. */
1744 /* We know the contents of r0 from the previous
1745 instruction. */
1746 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1747 {
1748 fdata->saved_ev = ev_reg;
1749 fdata->ev_offset = vr_saved_offset + offset;
1750 }
1751 ev_reg = -1;
1752 }
1753 vr_saved_offset = -1;
1754 li_found_pc = 0;
1755 continue;
1756 }
1757 }
1758 /* End BookE related instructions. */
1759
1760 else
1761 {
1762 /* Not a recognized prologue instruction.
1763 Handle optimizer code motions into the prologue by continuing
1764 the search if we have no valid frame yet or if the return
1765 address is not yet saved in the frame. */
1766 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1767 break;
1768
1769 if (op == 0x4e800020 /* blr */
1770 || op == 0x4e800420) /* bctr */
1771 /* Do not scan past epilogue in frameless functions or
1772 trampolines. */
1773 break;
1774 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1775 /* Never skip branches. */
1776 break;
1777
1778 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1779 /* Do not scan too many insns, scanning insns is expensive with
1780 remote targets. */
1781 break;
1782
1783 /* Continue scanning. */
1784 prev_insn_was_prologue_insn = 0;
1785 continue;
1786 }
1787 }
1788
1789 #if 0
1790 /* I have problems with skipping over __main() that I need to address
1791 * sometime. Previously, I used to use misc_function_vector which
1792 * didn't work as well as I wanted to be. -MGO */
1793
1794 /* If the first thing after skipping a prolog is a branch to a function,
1795 this might be a call to an initializer in main(), introduced by gcc2.
1796 We'd like to skip over it as well. Fortunately, xlc does some extra
1797 work before calling a function right after a prologue, thus we can
1798 single out such gcc2 behaviour. */
1799
1800
1801 if ((op & 0xfc000001) == 0x48000001)
1802 { /* bl foo, an initializer function? */
1803 op = read_memory_integer (pc + 4, 4);
1804
1805 if (op == 0x4def7b82)
1806 { /* cror 0xf, 0xf, 0xf (nop) */
1807
1808 /* Check and see if we are in main. If so, skip over this
1809 initializer function as well. */
1810
1811 tmp = find_pc_misc_function (pc);
1812 if (tmp >= 0
1813 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1814 return pc + 8;
1815 }
1816 }
1817 #endif /* 0 */
1818
1819 fdata->offset = -fdata->offset;
1820 return last_prologue_pc;
1821 }
1822
1823
1824 /*************************************************************************
1825 Support for creating pushing a dummy frame into the stack, and popping
1826 frames, etc.
1827 *************************************************************************/
1828
1829
1830 /* All the ABI's require 16 byte alignment. */
1831 static CORE_ADDR
1832 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1833 {
1834 return (addr & -16);
1835 }
1836
1837 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1838 the first eight words of the argument list (that might be less than
1839 eight parameters if some parameters occupy more than one word) are
1840 passed in r3..r10 registers. float and double parameters are
1841 passed in fpr's, in addition to that. Rest of the parameters if any
1842 are passed in user stack. There might be cases in which half of the
1843 parameter is copied into registers, the other half is pushed into
1844 stack.
1845
1846 Stack must be aligned on 64-bit boundaries when synthesizing
1847 function calls.
1848
1849 If the function is returning a structure, then the return address is passed
1850 in r3, then the first 7 words of the parameters can be passed in registers,
1851 starting from r4. */
1852
1853 static CORE_ADDR
1854 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1855 struct regcache *regcache, CORE_ADDR bp_addr,
1856 int nargs, struct value **args, CORE_ADDR sp,
1857 int struct_return, CORE_ADDR struct_addr)
1858 {
1859 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1860 int ii;
1861 int len = 0;
1862 int argno; /* current argument number */
1863 int argbytes; /* current argument byte */
1864 gdb_byte tmp_buffer[50];
1865 int f_argno = 0; /* current floating point argno */
1866 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
1867 CORE_ADDR func_addr = find_function_addr (function, NULL);
1868
1869 struct value *arg = 0;
1870 struct type *type;
1871
1872 ULONGEST saved_sp;
1873
1874 /* The calling convention this function implements assumes the
1875 processor has floating-point registers. We shouldn't be using it
1876 on PPC variants that lack them. */
1877 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1878
1879 /* The first eight words of ther arguments are passed in registers.
1880 Copy them appropriately. */
1881 ii = 0;
1882
1883 /* If the function is returning a `struct', then the first word
1884 (which will be passed in r3) is used for struct return address.
1885 In that case we should advance one word and start from r4
1886 register to copy parameters. */
1887 if (struct_return)
1888 {
1889 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1890 struct_addr);
1891 ii++;
1892 }
1893
1894 /*
1895 effectively indirect call... gcc does...
1896
1897 return_val example( float, int);
1898
1899 eabi:
1900 float in fp0, int in r3
1901 offset of stack on overflow 8/16
1902 for varargs, must go by type.
1903 power open:
1904 float in r3&r4, int in r5
1905 offset of stack on overflow different
1906 both:
1907 return in r3 or f0. If no float, must study how gcc emulates floats;
1908 pay attention to arg promotion.
1909 User may have to cast\args to handle promotion correctly
1910 since gdb won't know if prototype supplied or not.
1911 */
1912
1913 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1914 {
1915 int reg_size = register_size (gdbarch, ii + 3);
1916
1917 arg = args[argno];
1918 type = check_typedef (value_type (arg));
1919 len = TYPE_LENGTH (type);
1920
1921 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1922 {
1923
1924 /* Floating point arguments are passed in fpr's, as well as gpr's.
1925 There are 13 fpr's reserved for passing parameters. At this point
1926 there is no way we would run out of them. */
1927
1928 gdb_assert (len <= 8);
1929
1930 regcache_cooked_write (regcache,
1931 tdep->ppc_fp0_regnum + 1 + f_argno,
1932 value_contents (arg));
1933 ++f_argno;
1934 }
1935
1936 if (len > reg_size)
1937 {
1938
1939 /* Argument takes more than one register. */
1940 while (argbytes < len)
1941 {
1942 gdb_byte word[MAX_REGISTER_SIZE];
1943 memset (word, 0, reg_size);
1944 memcpy (word,
1945 ((char *) value_contents (arg)) + argbytes,
1946 (len - argbytes) > reg_size
1947 ? reg_size : len - argbytes);
1948 regcache_cooked_write (regcache,
1949 tdep->ppc_gp0_regnum + 3 + ii,
1950 word);
1951 ++ii, argbytes += reg_size;
1952
1953 if (ii >= 8)
1954 goto ran_out_of_registers_for_arguments;
1955 }
1956 argbytes = 0;
1957 --ii;
1958 }
1959 else
1960 {
1961 /* Argument can fit in one register. No problem. */
1962 int adj = gdbarch_byte_order (gdbarch)
1963 == BFD_ENDIAN_BIG ? reg_size - len : 0;
1964 gdb_byte word[MAX_REGISTER_SIZE];
1965
1966 memset (word, 0, reg_size);
1967 memcpy (word, value_contents (arg), len);
1968 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1969 }
1970 ++argno;
1971 }
1972
1973 ran_out_of_registers_for_arguments:
1974
1975 regcache_cooked_read_unsigned (regcache,
1976 gdbarch_sp_regnum (gdbarch),
1977 &saved_sp);
1978
1979 /* Location for 8 parameters are always reserved. */
1980 sp -= wordsize * 8;
1981
1982 /* Another six words for back chain, TOC register, link register, etc. */
1983 sp -= wordsize * 6;
1984
1985 /* Stack pointer must be quadword aligned. */
1986 sp &= -16;
1987
1988 /* If there are more arguments, allocate space for them in
1989 the stack, then push them starting from the ninth one. */
1990
1991 if ((argno < nargs) || argbytes)
1992 {
1993 int space = 0, jj;
1994
1995 if (argbytes)
1996 {
1997 space += ((len - argbytes + 3) & -4);
1998 jj = argno + 1;
1999 }
2000 else
2001 jj = argno;
2002
2003 for (; jj < nargs; ++jj)
2004 {
2005 struct value *val = args[jj];
2006 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
2007 }
2008
2009 /* Add location required for the rest of the parameters. */
2010 space = (space + 15) & -16;
2011 sp -= space;
2012
2013 /* This is another instance we need to be concerned about
2014 securing our stack space. If we write anything underneath %sp
2015 (r1), we might conflict with the kernel who thinks he is free
2016 to use this area. So, update %sp first before doing anything
2017 else. */
2018
2019 regcache_raw_write_signed (regcache,
2020 gdbarch_sp_regnum (gdbarch), sp);
2021
2022 /* If the last argument copied into the registers didn't fit there
2023 completely, push the rest of it into stack. */
2024
2025 if (argbytes)
2026 {
2027 write_memory (sp + 24 + (ii * 4),
2028 value_contents (arg) + argbytes,
2029 len - argbytes);
2030 ++argno;
2031 ii += ((len - argbytes + 3) & -4) / 4;
2032 }
2033
2034 /* Push the rest of the arguments into stack. */
2035 for (; argno < nargs; ++argno)
2036 {
2037
2038 arg = args[argno];
2039 type = check_typedef (value_type (arg));
2040 len = TYPE_LENGTH (type);
2041
2042
2043 /* Float types should be passed in fpr's, as well as in the
2044 stack. */
2045 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
2046 {
2047
2048 gdb_assert (len <= 8);
2049
2050 regcache_cooked_write (regcache,
2051 tdep->ppc_fp0_regnum + 1 + f_argno,
2052 value_contents (arg));
2053 ++f_argno;
2054 }
2055
2056 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
2057 ii += ((len + 3) & -4) / 4;
2058 }
2059 }
2060
2061 /* Set the stack pointer. According to the ABI, the SP is meant to
2062 be set _before_ the corresponding stack space is used. On AIX,
2063 this even applies when the target has been completely stopped!
2064 Not doing this can lead to conflicts with the kernel which thinks
2065 that it still has control over this not-yet-allocated stack
2066 region. */
2067 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
2068
2069 /* Set back chain properly. */
2070 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
2071 write_memory (sp, tmp_buffer, wordsize);
2072
2073 /* Point the inferior function call's return address at the dummy's
2074 breakpoint. */
2075 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
2076
2077 /* Set the TOC register, get the value from the objfile reader
2078 which, in turn, gets it from the VMAP table. */
2079 if (rs6000_find_toc_address_hook != NULL)
2080 {
2081 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
2082 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
2083 }
2084
2085 target_store_registers (regcache, -1);
2086 return sp;
2087 }
2088
2089 static enum return_value_convention
2090 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
2091 struct regcache *regcache, gdb_byte *readbuf,
2092 const gdb_byte *writebuf)
2093 {
2094 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2095 gdb_byte buf[8];
2096
2097 /* The calling convention this function implements assumes the
2098 processor has floating-point registers. We shouldn't be using it
2099 on PowerPC variants that lack them. */
2100 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2101
2102 /* AltiVec extension: Functions that declare a vector data type as a
2103 return value place that return value in VR2. */
2104 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
2105 && TYPE_LENGTH (valtype) == 16)
2106 {
2107 if (readbuf)
2108 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
2109 if (writebuf)
2110 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
2111
2112 return RETURN_VALUE_REGISTER_CONVENTION;
2113 }
2114
2115 /* If the called subprogram returns an aggregate, there exists an
2116 implicit first argument, whose value is the address of a caller-
2117 allocated buffer into which the callee is assumed to store its
2118 return value. All explicit parameters are appropriately
2119 relabeled. */
2120 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2121 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2122 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2123 return RETURN_VALUE_STRUCT_CONVENTION;
2124
2125 /* Scalar floating-point values are returned in FPR1 for float or
2126 double, and in FPR1:FPR2 for quadword precision. Fortran
2127 complex*8 and complex*16 are returned in FPR1:FPR2, and
2128 complex*32 is returned in FPR1:FPR4. */
2129 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
2130 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
2131 {
2132 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
2133 gdb_byte regval[8];
2134
2135 /* FIXME: kettenis/2007-01-01: Add support for quadword
2136 precision and complex. */
2137
2138 if (readbuf)
2139 {
2140 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
2141 convert_typed_floating (regval, regtype, readbuf, valtype);
2142 }
2143 if (writebuf)
2144 {
2145 convert_typed_floating (writebuf, valtype, regval, regtype);
2146 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
2147 }
2148
2149 return RETURN_VALUE_REGISTER_CONVENTION;
2150 }
2151
2152 /* Values of the types int, long, short, pointer, and char (length
2153 is less than or equal to four bytes), as well as bit values of
2154 lengths less than or equal to 32 bits, must be returned right
2155 justified in GPR3 with signed values sign extended and unsigned
2156 values zero extended, as necessary. */
2157 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
2158 {
2159 if (readbuf)
2160 {
2161 ULONGEST regval;
2162
2163 /* For reading we don't have to worry about sign extension. */
2164 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
2165 &regval);
2166 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
2167 }
2168 if (writebuf)
2169 {
2170 /* For writing, use unpack_long since that should handle any
2171 required sign extension. */
2172 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
2173 unpack_long (valtype, writebuf));
2174 }
2175
2176 return RETURN_VALUE_REGISTER_CONVENTION;
2177 }
2178
2179 /* Eight-byte non-floating-point scalar values must be returned in
2180 GPR3:GPR4. */
2181
2182 if (TYPE_LENGTH (valtype) == 8)
2183 {
2184 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
2185 gdb_assert (tdep->wordsize == 4);
2186
2187 if (readbuf)
2188 {
2189 gdb_byte regval[8];
2190
2191 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
2192 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
2193 regval + 4);
2194 memcpy (readbuf, regval, 8);
2195 }
2196 if (writebuf)
2197 {
2198 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
2199 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
2200 writebuf + 4);
2201 }
2202
2203 return RETURN_VALUE_REGISTER_CONVENTION;
2204 }
2205
2206 return RETURN_VALUE_STRUCT_CONVENTION;
2207 }
2208
2209 /* Return whether handle_inferior_event() should proceed through code
2210 starting at PC in function NAME when stepping.
2211
2212 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2213 handle memory references that are too distant to fit in instructions
2214 generated by the compiler. For example, if 'foo' in the following
2215 instruction:
2216
2217 lwz r9,foo(r2)
2218
2219 is greater than 32767, the linker might replace the lwz with a branch to
2220 somewhere in @FIX1 that does the load in 2 instructions and then branches
2221 back to where execution should continue.
2222
2223 GDB should silently step over @FIX code, just like AIX dbx does.
2224 Unfortunately, the linker uses the "b" instruction for the
2225 branches, meaning that the link register doesn't get set.
2226 Therefore, GDB's usual step_over_function () mechanism won't work.
2227
2228 Instead, use the gdbarch_skip_trampoline_code and
2229 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2230 @FIX code. */
2231
2232 int
2233 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
2234 {
2235 return name && !strncmp (name, "@FIX", 4);
2236 }
2237
2238 /* Skip code that the user doesn't want to see when stepping:
2239
2240 1. Indirect function calls use a piece of trampoline code to do context
2241 switching, i.e. to set the new TOC table. Skip such code if we are on
2242 its first instruction (as when we have single-stepped to here).
2243
2244 2. Skip shared library trampoline code (which is different from
2245 indirect function call trampolines).
2246
2247 3. Skip bigtoc fixup code.
2248
2249 Result is desired PC to step until, or NULL if we are not in
2250 code that should be skipped. */
2251
2252 CORE_ADDR
2253 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2254 {
2255 unsigned int ii, op;
2256 int rel;
2257 CORE_ADDR solib_target_pc;
2258 struct minimal_symbol *msymbol;
2259
2260 static unsigned trampoline_code[] =
2261 {
2262 0x800b0000, /* l r0,0x0(r11) */
2263 0x90410014, /* st r2,0x14(r1) */
2264 0x7c0903a6, /* mtctr r0 */
2265 0x804b0004, /* l r2,0x4(r11) */
2266 0x816b0008, /* l r11,0x8(r11) */
2267 0x4e800420, /* bctr */
2268 0x4e800020, /* br */
2269 0
2270 };
2271
2272 /* Check for bigtoc fixup code. */
2273 msymbol = lookup_minimal_symbol_by_pc (pc);
2274 if (msymbol
2275 && rs6000_in_solib_return_trampoline (pc,
2276 DEPRECATED_SYMBOL_NAME (msymbol)))
2277 {
2278 /* Double-check that the third instruction from PC is relative "b". */
2279 op = read_memory_integer (pc + 8, 4);
2280 if ((op & 0xfc000003) == 0x48000000)
2281 {
2282 /* Extract bits 6-29 as a signed 24-bit relative word address and
2283 add it to the containing PC. */
2284 rel = ((int)(op << 6) >> 6);
2285 return pc + 8 + rel;
2286 }
2287 }
2288
2289 /* If pc is in a shared library trampoline, return its target. */
2290 solib_target_pc = find_solib_trampoline_target (frame, pc);
2291 if (solib_target_pc)
2292 return solib_target_pc;
2293
2294 for (ii = 0; trampoline_code[ii]; ++ii)
2295 {
2296 op = read_memory_integer (pc + (ii * 4), 4);
2297 if (op != trampoline_code[ii])
2298 return 0;
2299 }
2300 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
2301 pc = read_memory_addr (ii,
2302 gdbarch_tdep (get_frame_arch (frame))->wordsize); /* (r11) value */
2303 return pc;
2304 }
2305
2306 /* ISA-specific vector types. */
2307
2308 static struct type *
2309 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2310 {
2311 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2312
2313 if (!tdep->ppc_builtin_type_vec64)
2314 {
2315 /* The type we're building is this: */
2316 #if 0
2317 union __gdb_builtin_type_vec64
2318 {
2319 int64_t uint64;
2320 float v2_float[2];
2321 int32_t v2_int32[2];
2322 int16_t v4_int16[4];
2323 int8_t v8_int8[8];
2324 };
2325 #endif
2326
2327 struct type *t;
2328
2329 t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2330 append_composite_type_field (t, "uint64", builtin_type_int64);
2331 append_composite_type_field (t, "v2_float",
2332 init_vector_type (builtin_type_float, 2));
2333 append_composite_type_field (t, "v2_int32",
2334 init_vector_type (builtin_type_int32, 2));
2335 append_composite_type_field (t, "v4_int16",
2336 init_vector_type (builtin_type_int16, 4));
2337 append_composite_type_field (t, "v8_int8",
2338 init_vector_type (builtin_type_int8, 8));
2339
2340 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2341 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2342 tdep->ppc_builtin_type_vec64 = t;
2343 }
2344
2345 return tdep->ppc_builtin_type_vec64;
2346 }
2347
2348 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
2349 isn't available with that word size, return 0. */
2350
2351 static int
2352 regsize (const struct reg *reg, int wordsize)
2353 {
2354 return wordsize == 8 ? reg->sz64 : reg->sz32;
2355 }
2356
2357 /* Return the name of register number REGNO, or the empty string if it
2358 is an anonymous register. */
2359
2360 static const char *
2361 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2362 {
2363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2364
2365 /* The upper half "registers" have names in the XML description,
2366 but we present only the low GPRs and the full 64-bit registers
2367 to the user. */
2368 if (tdep->ppc_ev0_upper_regnum >= 0
2369 && tdep->ppc_ev0_upper_regnum <= regno
2370 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2371 return "";
2372
2373 /* Check if the SPE pseudo registers are available. */
2374 if (tdep->ppc_ev0_regnum >= 0
2375 && tdep->ppc_ev0_regnum <= regno
2376 && regno < tdep->ppc_ev0_regnum + ppc_num_gprs)
2377 {
2378 static const char *const spe_regnames[] = {
2379 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2380 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2381 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2382 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2383 };
2384 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2385 }
2386
2387 return tdesc_register_name (gdbarch, regno);
2388 }
2389
2390 /* Return the GDB type object for the "standard" data type of data in
2391 register N. */
2392
2393 static struct type *
2394 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2395 {
2396 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2397
2398 /* These are the only pseudo-registers we support. */
2399 gdb_assert (tdep->ppc_ev0_regnum >= 0
2400 && regnum >= tdep->ppc_ev0_regnum
2401 && regnum < tdep->ppc_ev0_regnum + 32);
2402
2403 return rs6000_builtin_type_vec64 (gdbarch);
2404 }
2405
2406 /* Is REGNUM a member of REGGROUP? */
2407 static int
2408 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2409 struct reggroup *group)
2410 {
2411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2412
2413 /* These are the only pseudo-registers we support. */
2414 gdb_assert (tdep->ppc_ev0_regnum >= 0
2415 && regnum >= tdep->ppc_ev0_regnum
2416 && regnum < tdep->ppc_ev0_regnum + 32);
2417
2418 if (group == all_reggroup || group == vector_reggroup)
2419 return 1;
2420 else
2421 return 0;
2422 }
2423
2424 /* The register format for RS/6000 floating point registers is always
2425 double, we need a conversion if the memory format is float. */
2426
2427 static int
2428 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2429 struct type *type)
2430 {
2431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432
2433 return (tdep->ppc_fp0_regnum >= 0
2434 && regnum >= tdep->ppc_fp0_regnum
2435 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2436 && TYPE_CODE (type) == TYPE_CODE_FLT
2437 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2438 }
2439
2440 static void
2441 rs6000_register_to_value (struct frame_info *frame,
2442 int regnum,
2443 struct type *type,
2444 gdb_byte *to)
2445 {
2446 gdb_byte from[MAX_REGISTER_SIZE];
2447
2448 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2449
2450 get_frame_register (frame, regnum, from);
2451 convert_typed_floating (from, builtin_type_double, to, type);
2452 }
2453
2454 static void
2455 rs6000_value_to_register (struct frame_info *frame,
2456 int regnum,
2457 struct type *type,
2458 const gdb_byte *from)
2459 {
2460 gdb_byte to[MAX_REGISTER_SIZE];
2461
2462 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2463
2464 convert_typed_floating (from, type, to, builtin_type_double);
2465 put_frame_register (frame, regnum, to);
2466 }
2467
2468 /* Move SPE vector register values between a 64-bit buffer and the two
2469 32-bit raw register halves in a regcache. This function handles
2470 both splitting a 64-bit value into two 32-bit halves, and joining
2471 two halves into a whole 64-bit value, depending on the function
2472 passed as the MOVE argument.
2473
2474 EV_REG must be the number of an SPE evN vector register --- a
2475 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2476 64-bit buffer.
2477
2478 Call MOVE once for each 32-bit half of that register, passing
2479 REGCACHE, the number of the raw register corresponding to that
2480 half, and the address of the appropriate half of BUFFER.
2481
2482 For example, passing 'regcache_raw_read' as the MOVE function will
2483 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2484 'regcache_raw_supply' will supply the contents of BUFFER to the
2485 appropriate pair of raw registers in REGCACHE.
2486
2487 You may need to cast away some 'const' qualifiers when passing
2488 MOVE, since this function can't tell at compile-time which of
2489 REGCACHE or BUFFER is acting as the source of the data. If C had
2490 co-variant type qualifiers, ... */
2491 static void
2492 e500_move_ev_register (void (*move) (struct regcache *regcache,
2493 int regnum, gdb_byte *buf),
2494 struct regcache *regcache, int ev_reg,
2495 gdb_byte *buffer)
2496 {
2497 struct gdbarch *arch = get_regcache_arch (regcache);
2498 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2499 int reg_index;
2500 gdb_byte *byte_buffer = buffer;
2501
2502 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2503 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2504
2505 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2506
2507 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2508 {
2509 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2510 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2511 }
2512 else
2513 {
2514 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2515 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2516 }
2517 }
2518
2519 static void
2520 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2521 int reg_nr, gdb_byte *buffer)
2522 {
2523 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2525
2526 gdb_assert (regcache_arch == gdbarch);
2527
2528 if (tdep->ppc_ev0_regnum <= reg_nr
2529 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2530 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2531 else
2532 internal_error (__FILE__, __LINE__,
2533 _("e500_pseudo_register_read: "
2534 "called on unexpected register '%s' (%d)"),
2535 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2536 }
2537
2538 static void
2539 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2540 int reg_nr, const gdb_byte *buffer)
2541 {
2542 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2543 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2544
2545 gdb_assert (regcache_arch == gdbarch);
2546
2547 if (tdep->ppc_ev0_regnum <= reg_nr
2548 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2549 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2550 regcache_raw_write,
2551 regcache, reg_nr, (gdb_byte *) buffer);
2552 else
2553 internal_error (__FILE__, __LINE__,
2554 _("e500_pseudo_register_read: "
2555 "called on unexpected register '%s' (%d)"),
2556 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2557 }
2558
2559 /* Convert a DBX STABS register number to a GDB register number. */
2560 static int
2561 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2562 {
2563 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2564
2565 if (0 <= num && num <= 31)
2566 return tdep->ppc_gp0_regnum + num;
2567 else if (32 <= num && num <= 63)
2568 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2569 specifies registers the architecture doesn't have? Our
2570 callers don't check the value we return. */
2571 return tdep->ppc_fp0_regnum + (num - 32);
2572 else if (77 <= num && num <= 108)
2573 return tdep->ppc_vr0_regnum + (num - 77);
2574 else if (1200 <= num && num < 1200 + 32)
2575 return tdep->ppc_ev0_regnum + (num - 1200);
2576 else
2577 switch (num)
2578 {
2579 case 64:
2580 return tdep->ppc_mq_regnum;
2581 case 65:
2582 return tdep->ppc_lr_regnum;
2583 case 66:
2584 return tdep->ppc_ctr_regnum;
2585 case 76:
2586 return tdep->ppc_xer_regnum;
2587 case 109:
2588 return tdep->ppc_vrsave_regnum;
2589 case 110:
2590 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2591 case 111:
2592 return tdep->ppc_acc_regnum;
2593 case 112:
2594 return tdep->ppc_spefscr_regnum;
2595 default:
2596 return num;
2597 }
2598 }
2599
2600
2601 /* Convert a Dwarf 2 register number to a GDB register number. */
2602 static int
2603 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2604 {
2605 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2606
2607 if (0 <= num && num <= 31)
2608 return tdep->ppc_gp0_regnum + num;
2609 else if (32 <= num && num <= 63)
2610 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2611 specifies registers the architecture doesn't have? Our
2612 callers don't check the value we return. */
2613 return tdep->ppc_fp0_regnum + (num - 32);
2614 else if (1124 <= num && num < 1124 + 32)
2615 return tdep->ppc_vr0_regnum + (num - 1124);
2616 else if (1200 <= num && num < 1200 + 32)
2617 return tdep->ppc_ev0_regnum + (num - 1200);
2618 else
2619 switch (num)
2620 {
2621 case 64:
2622 return tdep->ppc_cr_regnum;
2623 case 67:
2624 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2625 case 99:
2626 return tdep->ppc_acc_regnum;
2627 case 100:
2628 return tdep->ppc_mq_regnum;
2629 case 101:
2630 return tdep->ppc_xer_regnum;
2631 case 108:
2632 return tdep->ppc_lr_regnum;
2633 case 109:
2634 return tdep->ppc_ctr_regnum;
2635 case 356:
2636 return tdep->ppc_vrsave_regnum;
2637 case 612:
2638 return tdep->ppc_spefscr_regnum;
2639 default:
2640 return num;
2641 }
2642 }
2643
2644 /* Translate a .eh_frame register to DWARF register, or adjust a
2645 .debug_frame register. */
2646
2647 static int
2648 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2649 {
2650 /* GCC releases before 3.4 use GCC internal register numbering in
2651 .debug_frame (and .debug_info, et cetera). The numbering is
2652 different from the standard SysV numbering for everything except
2653 for GPRs and FPRs. We can not detect this problem in most cases
2654 - to get accurate debug info for variables living in lr, ctr, v0,
2655 et cetera, use a newer version of GCC. But we must detect
2656 one important case - lr is in column 65 in .debug_frame output,
2657 instead of 108.
2658
2659 GCC 3.4, and the "hammer" branch, have a related problem. They
2660 record lr register saves in .debug_frame as 108, but still record
2661 the return column as 65. We fix that up too.
2662
2663 We can do this because 65 is assigned to fpsr, and GCC never
2664 generates debug info referring to it. To add support for
2665 handwritten debug info that restores fpsr, we would need to add a
2666 producer version check to this. */
2667 if (!eh_frame_p)
2668 {
2669 if (num == 65)
2670 return 108;
2671 else
2672 return num;
2673 }
2674
2675 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2676 internal register numbering; translate that to the standard DWARF2
2677 register numbering. */
2678 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2679 return num;
2680 else if (68 <= num && num <= 75) /* cr0-cr8 */
2681 return num - 68 + 86;
2682 else if (77 <= num && num <= 108) /* vr0-vr31 */
2683 return num - 77 + 1124;
2684 else
2685 switch (num)
2686 {
2687 case 64: /* mq */
2688 return 100;
2689 case 65: /* lr */
2690 return 108;
2691 case 66: /* ctr */
2692 return 109;
2693 case 76: /* xer */
2694 return 101;
2695 case 109: /* vrsave */
2696 return 356;
2697 case 110: /* vscr */
2698 return 67;
2699 case 111: /* spe_acc */
2700 return 99;
2701 case 112: /* spefscr */
2702 return 612;
2703 default:
2704 return num;
2705 }
2706 }
2707 \f
2708 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2709
2710 Usually a function pointer's representation is simply the address
2711 of the function. On the RS/6000 however, a function pointer is
2712 represented by a pointer to an OPD entry. This OPD entry contains
2713 three words, the first word is the address of the function, the
2714 second word is the TOC pointer (r2), and the third word is the
2715 static chain value. Throughout GDB it is currently assumed that a
2716 function pointer contains the address of the function, which is not
2717 easy to fix. In addition, the conversion of a function address to
2718 a function pointer would require allocation of an OPD entry in the
2719 inferior's memory space, with all its drawbacks. To be able to
2720 call C++ virtual methods in the inferior (which are called via
2721 function pointers), find_function_addr uses this function to get the
2722 function address from a function pointer. */
2723
2724 /* Return real function address if ADDR (a function pointer) is in the data
2725 space and is therefore a special function pointer. */
2726
2727 static CORE_ADDR
2728 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2729 CORE_ADDR addr,
2730 struct target_ops *targ)
2731 {
2732 struct obj_section *s;
2733
2734 s = find_pc_section (addr);
2735 if (s && s->the_bfd_section->flags & SEC_CODE)
2736 return addr;
2737
2738 /* ADDR is in the data space, so it's a special function pointer. */
2739 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
2740 }
2741 \f
2742
2743 /* Handling the various POWER/PowerPC variants. */
2744
2745 /* Information about a particular processor variant. */
2746
2747 struct variant
2748 {
2749 /* Name of this variant. */
2750 char *name;
2751
2752 /* English description of the variant. */
2753 char *description;
2754
2755 /* bfd_arch_info.arch corresponding to variant. */
2756 enum bfd_architecture arch;
2757
2758 /* bfd_arch_info.mach corresponding to variant. */
2759 unsigned long mach;
2760
2761 /* Target description for this variant. */
2762 struct target_desc **tdesc;
2763 };
2764
2765 static struct variant variants[] =
2766 {
2767 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2768 bfd_mach_ppc, &tdesc_powerpc_32},
2769 {"power", "POWER user-level", bfd_arch_rs6000,
2770 bfd_mach_rs6k, &tdesc_rs6000},
2771 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2772 bfd_mach_ppc_403, &tdesc_powerpc_403},
2773 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2774 bfd_mach_ppc_601, &tdesc_powerpc_601},
2775 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2776 bfd_mach_ppc_602, &tdesc_powerpc_602},
2777 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2778 bfd_mach_ppc_603, &tdesc_powerpc_603},
2779 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2780 604, &tdesc_powerpc_604},
2781 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2782 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
2783 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2784 bfd_mach_ppc_505, &tdesc_powerpc_505},
2785 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2786 bfd_mach_ppc_860, &tdesc_powerpc_860},
2787 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2788 bfd_mach_ppc_750, &tdesc_powerpc_750},
2789 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2790 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
2791 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2792 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
2793
2794 /* 64-bit */
2795 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2796 bfd_mach_ppc64, &tdesc_powerpc_64},
2797 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2798 bfd_mach_ppc_620, &tdesc_powerpc_64},
2799 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2800 bfd_mach_ppc_630, &tdesc_powerpc_64},
2801 {"a35", "PowerPC A35", bfd_arch_powerpc,
2802 bfd_mach_ppc_a35, &tdesc_powerpc_64},
2803 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2804 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
2805 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2806 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
2807
2808 /* FIXME: I haven't checked the register sets of the following. */
2809 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2810 bfd_mach_rs6k_rs1, &tdesc_rs6000},
2811 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2812 bfd_mach_rs6k_rsc, &tdesc_rs6000},
2813 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2814 bfd_mach_rs6k_rs2, &tdesc_rs6000},
2815
2816 {0, 0, 0, 0, 0}
2817 };
2818
2819 /* Return the variant corresponding to architecture ARCH and machine number
2820 MACH. If no such variant exists, return null. */
2821
2822 static const struct variant *
2823 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2824 {
2825 const struct variant *v;
2826
2827 for (v = variants; v->name; v++)
2828 if (arch == v->arch && mach == v->mach)
2829 return v;
2830
2831 return NULL;
2832 }
2833
2834 static int
2835 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2836 {
2837 if (!info->disassembler_options)
2838 info->disassembler_options = "any";
2839
2840 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2841 return print_insn_big_powerpc (memaddr, info);
2842 else
2843 return print_insn_little_powerpc (memaddr, info);
2844 }
2845 \f
2846 static CORE_ADDR
2847 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2848 {
2849 return frame_unwind_register_unsigned (next_frame,
2850 gdbarch_pc_regnum (gdbarch));
2851 }
2852
2853 static struct frame_id
2854 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2855 {
2856 return frame_id_build (frame_unwind_register_unsigned
2857 (next_frame, gdbarch_sp_regnum (gdbarch)),
2858 frame_pc_unwind (next_frame));
2859 }
2860
2861 struct rs6000_frame_cache
2862 {
2863 CORE_ADDR base;
2864 CORE_ADDR initial_sp;
2865 struct trad_frame_saved_reg *saved_regs;
2866 };
2867
2868 static struct rs6000_frame_cache *
2869 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2870 {
2871 struct rs6000_frame_cache *cache;
2872 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2873 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2874 struct rs6000_framedata fdata;
2875 int wordsize = tdep->wordsize;
2876 CORE_ADDR func, pc;
2877
2878 if ((*this_cache) != NULL)
2879 return (*this_cache);
2880 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2881 (*this_cache) = cache;
2882 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2883
2884 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2885 pc = frame_pc_unwind (next_frame);
2886 skip_prologue (gdbarch, func, pc, &fdata);
2887
2888 /* Figure out the parent's stack pointer. */
2889
2890 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2891 address of the current frame. Things might be easier if the
2892 ->frame pointed to the outer-most address of the frame. In
2893 the mean time, the address of the prev frame is used as the
2894 base address of this frame. */
2895 cache->base = frame_unwind_register_unsigned
2896 (next_frame, gdbarch_sp_regnum (gdbarch));
2897
2898 /* If the function appears to be frameless, check a couple of likely
2899 indicators that we have simply failed to find the frame setup.
2900 Two common cases of this are missing symbols (i.e.
2901 frame_func_unwind returns the wrong address or 0), and assembly
2902 stubs which have a fast exit path but set up a frame on the slow
2903 path.
2904
2905 If the LR appears to return to this function, then presume that
2906 we have an ABI compliant frame that we failed to find. */
2907 if (fdata.frameless && fdata.lr_offset == 0)
2908 {
2909 CORE_ADDR saved_lr;
2910 int make_frame = 0;
2911
2912 saved_lr = frame_unwind_register_unsigned (next_frame,
2913 tdep->ppc_lr_regnum);
2914 if (func == 0 && saved_lr == pc)
2915 make_frame = 1;
2916 else if (func != 0)
2917 {
2918 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
2919 if (func == saved_func)
2920 make_frame = 1;
2921 }
2922
2923 if (make_frame)
2924 {
2925 fdata.frameless = 0;
2926 fdata.lr_offset = tdep->lr_frame_offset;
2927 }
2928 }
2929
2930 if (!fdata.frameless)
2931 /* Frameless really means stackless. */
2932 cache->base = read_memory_addr (cache->base, wordsize);
2933
2934 trad_frame_set_value (cache->saved_regs,
2935 gdbarch_sp_regnum (gdbarch), cache->base);
2936
2937 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2938 All fpr's from saved_fpr to fp31 are saved. */
2939
2940 if (fdata.saved_fpr >= 0)
2941 {
2942 int i;
2943 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2944
2945 /* If skip_prologue says floating-point registers were saved,
2946 but the current architecture has no floating-point registers,
2947 then that's strange. But we have no indices to even record
2948 the addresses under, so we just ignore it. */
2949 if (ppc_floating_point_unit_p (gdbarch))
2950 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2951 {
2952 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2953 fpr_addr += 8;
2954 }
2955 }
2956
2957 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2958 All gpr's from saved_gpr to gpr31 are saved. */
2959
2960 if (fdata.saved_gpr >= 0)
2961 {
2962 int i;
2963 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2964 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2965 {
2966 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2967 gpr_addr += wordsize;
2968 }
2969 }
2970
2971 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2972 All vr's from saved_vr to vr31 are saved. */
2973 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2974 {
2975 if (fdata.saved_vr >= 0)
2976 {
2977 int i;
2978 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2979 for (i = fdata.saved_vr; i < 32; i++)
2980 {
2981 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2982 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2983 }
2984 }
2985 }
2986
2987 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2988 All vr's from saved_ev to ev31 are saved. ????? */
2989 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2990 {
2991 if (fdata.saved_ev >= 0)
2992 {
2993 int i;
2994 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2995 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2996 {
2997 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2998 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2999 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3000 }
3001 }
3002 }
3003
3004 /* If != 0, fdata.cr_offset is the offset from the frame that
3005 holds the CR. */
3006 if (fdata.cr_offset != 0)
3007 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3008
3009 /* If != 0, fdata.lr_offset is the offset from the frame that
3010 holds the LR. */
3011 if (fdata.lr_offset != 0)
3012 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3013 /* The PC is found in the link register. */
3014 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3015 cache->saved_regs[tdep->ppc_lr_regnum];
3016
3017 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3018 holds the VRSAVE. */
3019 if (fdata.vrsave_offset != 0)
3020 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3021
3022 if (fdata.alloca_reg < 0)
3023 /* If no alloca register used, then fi->frame is the value of the
3024 %sp for this frame, and it is good enough. */
3025 cache->initial_sp = frame_unwind_register_unsigned
3026 (next_frame, gdbarch_sp_regnum (gdbarch));
3027 else
3028 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3029 fdata.alloca_reg);
3030
3031 return cache;
3032 }
3033
3034 static void
3035 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3036 struct frame_id *this_id)
3037 {
3038 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3039 this_cache);
3040 (*this_id) = frame_id_build (info->base,
3041 frame_func_unwind (next_frame, NORMAL_FRAME));
3042 }
3043
3044 static void
3045 rs6000_frame_prev_register (struct frame_info *next_frame,
3046 void **this_cache,
3047 int regnum, int *optimizedp,
3048 enum lval_type *lvalp, CORE_ADDR *addrp,
3049 int *realnump, gdb_byte *valuep)
3050 {
3051 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3052 this_cache);
3053 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3054 optimizedp, lvalp, addrp, realnump, valuep);
3055 }
3056
3057 static const struct frame_unwind rs6000_frame_unwind =
3058 {
3059 NORMAL_FRAME,
3060 rs6000_frame_this_id,
3061 rs6000_frame_prev_register
3062 };
3063
3064 static const struct frame_unwind *
3065 rs6000_frame_sniffer (struct frame_info *next_frame)
3066 {
3067 return &rs6000_frame_unwind;
3068 }
3069
3070 \f
3071
3072 static CORE_ADDR
3073 rs6000_frame_base_address (struct frame_info *next_frame,
3074 void **this_cache)
3075 {
3076 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3077 this_cache);
3078 return info->initial_sp;
3079 }
3080
3081 static const struct frame_base rs6000_frame_base = {
3082 &rs6000_frame_unwind,
3083 rs6000_frame_base_address,
3084 rs6000_frame_base_address,
3085 rs6000_frame_base_address
3086 };
3087
3088 static const struct frame_base *
3089 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3090 {
3091 return &rs6000_frame_base;
3092 }
3093
3094 /* DWARF-2 frame support. Used to handle the detection of
3095 clobbered registers during function calls. */
3096
3097 static void
3098 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3099 struct dwarf2_frame_state_reg *reg,
3100 struct frame_info *next_frame)
3101 {
3102 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3103
3104 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3105 non-volatile registers. We will use the same code for both. */
3106
3107 /* Call-saved GP registers. */
3108 if ((regnum >= tdep->ppc_gp0_regnum + 14
3109 && regnum <= tdep->ppc_gp0_regnum + 31)
3110 || (regnum == tdep->ppc_gp0_regnum + 1))
3111 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3112
3113 /* Call-clobbered GP registers. */
3114 if ((regnum >= tdep->ppc_gp0_regnum + 3
3115 && regnum <= tdep->ppc_gp0_regnum + 12)
3116 || (regnum == tdep->ppc_gp0_regnum))
3117 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3118
3119 /* Deal with FP registers, if supported. */
3120 if (tdep->ppc_fp0_regnum >= 0)
3121 {
3122 /* Call-saved FP registers. */
3123 if ((regnum >= tdep->ppc_fp0_regnum + 14
3124 && regnum <= tdep->ppc_fp0_regnum + 31))
3125 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3126
3127 /* Call-clobbered FP registers. */
3128 if ((regnum >= tdep->ppc_fp0_regnum
3129 && regnum <= tdep->ppc_fp0_regnum + 13))
3130 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3131 }
3132
3133 /* Deal with ALTIVEC registers, if supported. */
3134 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3135 {
3136 /* Call-saved Altivec registers. */
3137 if ((regnum >= tdep->ppc_vr0_regnum + 20
3138 && regnum <= tdep->ppc_vr0_regnum + 31)
3139 || regnum == tdep->ppc_vrsave_regnum)
3140 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3141
3142 /* Call-clobbered Altivec registers. */
3143 if ((regnum >= tdep->ppc_vr0_regnum
3144 && regnum <= tdep->ppc_vr0_regnum + 19))
3145 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3146 }
3147
3148 /* Handle PC register and Stack Pointer correctly. */
3149 if (regnum == gdbarch_pc_regnum (gdbarch))
3150 reg->how = DWARF2_FRAME_REG_RA;
3151 else if (regnum == gdbarch_sp_regnum (gdbarch))
3152 reg->how = DWARF2_FRAME_REG_CFA;
3153 }
3154
3155
3156 /* Initialize the current architecture based on INFO. If possible, re-use an
3157 architecture from ARCHES, which is a list of architectures already created
3158 during this debugging session.
3159
3160 Called e.g. at program startup, when reading a core file, and when reading
3161 a binary file. */
3162
3163 static struct gdbarch *
3164 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3165 {
3166 struct gdbarch *gdbarch;
3167 struct gdbarch_tdep *tdep;
3168 int wordsize, from_xcoff_exec, from_elf_exec;
3169 enum bfd_architecture arch;
3170 unsigned long mach;
3171 bfd abfd;
3172 int sysv_abi;
3173 asection *sect;
3174 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3175 int soft_float;
3176 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3177 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0;
3178 int tdesc_wordsize = -1;
3179 const struct target_desc *tdesc = info.target_desc;
3180 struct tdesc_arch_data *tdesc_data = NULL;
3181 int num_sprs = 0;
3182
3183 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3184 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3185
3186 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3187 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3188
3189 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3190
3191 /* Check word size. If INFO is from a binary file, infer it from
3192 that, else choose a likely default. */
3193 if (from_xcoff_exec)
3194 {
3195 if (bfd_xcoff_is_xcoff64 (info.abfd))
3196 wordsize = 8;
3197 else
3198 wordsize = 4;
3199 }
3200 else if (from_elf_exec)
3201 {
3202 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3203 wordsize = 8;
3204 else
3205 wordsize = 4;
3206 }
3207 else if (tdesc_has_registers (tdesc))
3208 wordsize = -1;
3209 else
3210 {
3211 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3212 wordsize = info.bfd_arch_info->bits_per_word /
3213 info.bfd_arch_info->bits_per_byte;
3214 else
3215 wordsize = 4;
3216 }
3217
3218 if (!from_xcoff_exec)
3219 {
3220 arch = info.bfd_arch_info->arch;
3221 mach = info.bfd_arch_info->mach;
3222 }
3223 else
3224 {
3225 arch = bfd_arch_powerpc;
3226 bfd_default_set_arch_mach (&abfd, arch, 0);
3227 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3228 mach = info.bfd_arch_info->mach;
3229 }
3230
3231 /* For e500 executables, the apuinfo section is of help here. Such
3232 section contains the identifier and revision number of each
3233 Application-specific Processing Unit that is present on the
3234 chip. The content of the section is determined by the assembler
3235 which looks at each instruction and determines which unit (and
3236 which version of it) can execute it. In our case we just look for
3237 the existance of the section. */
3238
3239 if (info.abfd)
3240 {
3241 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3242 if (sect)
3243 {
3244 arch = info.bfd_arch_info->arch;
3245 mach = bfd_mach_ppc_e500;
3246 bfd_default_set_arch_mach (&abfd, arch, mach);
3247 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3248 }
3249 }
3250
3251 /* Find a default target description which describes our register
3252 layout, if we do not already have one. */
3253 if (! tdesc_has_registers (tdesc))
3254 {
3255 const struct variant *v;
3256
3257 /* Choose variant. */
3258 v = find_variant_by_arch (arch, mach);
3259 if (!v)
3260 return NULL;
3261
3262 tdesc = *v->tdesc;
3263 }
3264
3265 gdb_assert (tdesc_has_registers (tdesc));
3266
3267 /* Check any target description for validity. */
3268 if (tdesc_has_registers (tdesc))
3269 {
3270 static const char *const gprs[] = {
3271 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3272 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3273 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3274 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3275 };
3276 static const char *const segment_regs[] = {
3277 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3278 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3279 };
3280 const struct tdesc_feature *feature;
3281 int i, valid_p;
3282 static const char *const msr_names[] = { "msr", "ps" };
3283 static const char *const cr_names[] = { "cr", "cnd" };
3284 static const char *const ctr_names[] = { "ctr", "cnt" };
3285
3286 feature = tdesc_find_feature (tdesc,
3287 "org.gnu.gdb.power.core");
3288 if (feature == NULL)
3289 return NULL;
3290
3291 tdesc_data = tdesc_data_alloc ();
3292
3293 valid_p = 1;
3294 for (i = 0; i < ppc_num_gprs; i++)
3295 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3296 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3297 "pc");
3298 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3299 "lr");
3300 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3301 "xer");
3302
3303 /* Allow alternate names for these registers, to accomodate GDB's
3304 historic naming. */
3305 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3306 PPC_MSR_REGNUM, msr_names);
3307 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3308 PPC_CR_REGNUM, cr_names);
3309 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3310 PPC_CTR_REGNUM, ctr_names);
3311
3312 if (!valid_p)
3313 {
3314 tdesc_data_cleanup (tdesc_data);
3315 return NULL;
3316 }
3317
3318 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3319 "mq");
3320
3321 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3322 if (wordsize == -1)
3323 wordsize = tdesc_wordsize;
3324
3325 feature = tdesc_find_feature (tdesc,
3326 "org.gnu.gdb.power.fpu");
3327 if (feature != NULL)
3328 {
3329 static const char *const fprs[] = {
3330 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3331 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3332 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3333 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3334 };
3335 valid_p = 1;
3336 for (i = 0; i < ppc_num_fprs; i++)
3337 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3338 PPC_F0_REGNUM + i, fprs[i]);
3339 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3340 PPC_FPSCR_REGNUM, "fpscr");
3341
3342 if (!valid_p)
3343 {
3344 tdesc_data_cleanup (tdesc_data);
3345 return NULL;
3346 }
3347 have_fpu = 1;
3348 }
3349 else
3350 have_fpu = 0;
3351
3352 feature = tdesc_find_feature (tdesc,
3353 "org.gnu.gdb.power.altivec");
3354 if (feature != NULL)
3355 {
3356 static const char *const vector_regs[] = {
3357 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3358 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3359 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3360 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3361 };
3362
3363 valid_p = 1;
3364 for (i = 0; i < ppc_num_gprs; i++)
3365 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3366 PPC_VR0_REGNUM + i,
3367 vector_regs[i]);
3368 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3369 PPC_VSCR_REGNUM, "vscr");
3370 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3371 PPC_VRSAVE_REGNUM, "vrsave");
3372
3373 if (have_spe || !valid_p)
3374 {
3375 tdesc_data_cleanup (tdesc_data);
3376 return NULL;
3377 }
3378 have_altivec = 1;
3379 }
3380 else
3381 have_altivec = 0;
3382
3383 /* On machines supporting the SPE APU, the general-purpose registers
3384 are 64 bits long. There are SIMD vector instructions to treat them
3385 as pairs of floats, but the rest of the instruction set treats them
3386 as 32-bit registers, and only operates on their lower halves.
3387
3388 In the GDB regcache, we treat their high and low halves as separate
3389 registers. The low halves we present as the general-purpose
3390 registers, and then we have pseudo-registers that stitch together
3391 the upper and lower halves and present them as pseudo-registers.
3392
3393 Thus, the target description is expected to supply the upper
3394 halves separately. */
3395
3396 feature = tdesc_find_feature (tdesc,
3397 "org.gnu.gdb.power.spe");
3398 if (feature != NULL)
3399 {
3400 static const char *const upper_spe[] = {
3401 "ev0h", "ev1h", "ev2h", "ev3h",
3402 "ev4h", "ev5h", "ev6h", "ev7h",
3403 "ev8h", "ev9h", "ev10h", "ev11h",
3404 "ev12h", "ev13h", "ev14h", "ev15h",
3405 "ev16h", "ev17h", "ev18h", "ev19h",
3406 "ev20h", "ev21h", "ev22h", "ev23h",
3407 "ev24h", "ev25h", "ev26h", "ev27h",
3408 "ev28h", "ev29h", "ev30h", "ev31h"
3409 };
3410
3411 valid_p = 1;
3412 for (i = 0; i < ppc_num_gprs; i++)
3413 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3414 PPC_SPE_UPPER_GP0_REGNUM + i,
3415 upper_spe[i]);
3416 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3417 PPC_SPE_ACC_REGNUM, "acc");
3418 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3419 PPC_SPE_FSCR_REGNUM, "spefscr");
3420
3421 if (have_mq || have_fpu || !valid_p)
3422 {
3423 tdesc_data_cleanup (tdesc_data);
3424 return NULL;
3425 }
3426 have_spe = 1;
3427 }
3428 else
3429 have_spe = 0;
3430 }
3431
3432 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3433 complain for a 32-bit binary on a 64-bit target; we do not yet
3434 support that. For instance, the 32-bit ABI routines expect
3435 32-bit GPRs.
3436
3437 As long as there isn't an explicit target description, we'll
3438 choose one based on the BFD architecture and get a word size
3439 matching the binary (probably powerpc:common or
3440 powerpc:common64). So there is only trouble if a 64-bit target
3441 supplies a 64-bit description while debugging a 32-bit
3442 binary. */
3443 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3444 {
3445 tdesc_data_cleanup (tdesc_data);
3446 return NULL;
3447 }
3448
3449 #ifdef HAVE_ELF
3450 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3451 {
3452 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3453 Tag_GNU_Power_ABI_FP))
3454 {
3455 case 1:
3456 soft_float_flag = AUTO_BOOLEAN_FALSE;
3457 break;
3458 case 2:
3459 soft_float_flag = AUTO_BOOLEAN_TRUE;
3460 break;
3461 default:
3462 break;
3463 }
3464 }
3465
3466 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3467 {
3468 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3469 Tag_GNU_Power_ABI_Vector))
3470 {
3471 case 1:
3472 vector_abi = POWERPC_VEC_GENERIC;
3473 break;
3474 case 2:
3475 vector_abi = POWERPC_VEC_ALTIVEC;
3476 break;
3477 case 3:
3478 vector_abi = POWERPC_VEC_SPE;
3479 break;
3480 default:
3481 break;
3482 }
3483 }
3484 #endif
3485
3486 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3487 soft_float = 1;
3488 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3489 soft_float = 0;
3490 else
3491 soft_float = !have_fpu;
3492
3493 /* If we have a hard float binary or setting but no floating point
3494 registers, downgrade to soft float anyway. We're still somewhat
3495 useful in this scenario. */
3496 if (!soft_float && !have_fpu)
3497 soft_float = 1;
3498
3499 /* Similarly for vector registers. */
3500 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3501 vector_abi = POWERPC_VEC_GENERIC;
3502
3503 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3504 vector_abi = POWERPC_VEC_GENERIC;
3505
3506 if (vector_abi == POWERPC_VEC_AUTO)
3507 {
3508 if (have_altivec)
3509 vector_abi = POWERPC_VEC_ALTIVEC;
3510 else if (have_spe)
3511 vector_abi = POWERPC_VEC_SPE;
3512 else
3513 vector_abi = POWERPC_VEC_GENERIC;
3514 }
3515
3516 /* Do not limit the vector ABI based on available hardware, since we
3517 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3518
3519 /* Find a candidate among extant architectures. */
3520 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3521 arches != NULL;
3522 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3523 {
3524 /* Word size in the various PowerPC bfd_arch_info structs isn't
3525 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3526 separate word size check. */
3527 tdep = gdbarch_tdep (arches->gdbarch);
3528 if (tdep && tdep->soft_float != soft_float)
3529 continue;
3530 if (tdep && tdep->vector_abi != vector_abi)
3531 continue;
3532 if (tdep && tdep->wordsize == wordsize)
3533 {
3534 if (tdesc_data != NULL)
3535 tdesc_data_cleanup (tdesc_data);
3536 return arches->gdbarch;
3537 }
3538 }
3539
3540 /* None found, create a new architecture from INFO, whose bfd_arch_info
3541 validity depends on the source:
3542 - executable useless
3543 - rs6000_host_arch() good
3544 - core file good
3545 - "set arch" trust blindly
3546 - GDB startup useless but harmless */
3547
3548 tdep = XCALLOC (1, struct gdbarch_tdep);
3549 tdep->wordsize = wordsize;
3550 tdep->soft_float = soft_float;
3551 tdep->vector_abi = vector_abi;
3552
3553 gdbarch = gdbarch_alloc (&info, tdep);
3554
3555 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3556 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3557 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3558 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3559 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3560 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3561 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3562 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3563
3564 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3565 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
3566 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3567 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3568 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3569 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3570 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3571
3572 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3573 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3574 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3575 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
3576 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3577
3578 /* The XML specification for PowerPC sensibly calls the MSR "msr".
3579 GDB traditionally called it "ps", though, so let GDB add an
3580 alias. */
3581 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3582
3583 if (sysv_abi && wordsize == 8)
3584 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3585 else if (sysv_abi && wordsize == 4)
3586 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3587 else
3588 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3589
3590 /* Set lr_frame_offset. */
3591 if (wordsize == 8)
3592 tdep->lr_frame_offset = 16;
3593 else if (sysv_abi)
3594 tdep->lr_frame_offset = 4;
3595 else
3596 tdep->lr_frame_offset = 8;
3597
3598 if (have_spe)
3599 {
3600 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3601 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3602 }
3603
3604 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3605
3606 /* Select instruction printer. */
3607 if (arch == bfd_arch_rs6000)
3608 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3609 else
3610 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3611
3612 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS + num_sprs);
3613 set_gdbarch_num_pseudo_regs (gdbarch, have_spe ? 32 : 0);
3614
3615 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3616 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3617 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3618 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3619 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3620 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3621 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3622 if (sysv_abi)
3623 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3624 else
3625 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3626 set_gdbarch_char_signed (gdbarch, 0);
3627
3628 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3629 if (sysv_abi && wordsize == 8)
3630 /* PPC64 SYSV. */
3631 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3632 else if (!sysv_abi && wordsize == 4)
3633 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3634 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3635 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3636 224. */
3637 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3638
3639 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3640 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3641 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3642
3643 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3644 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3645
3646 if (sysv_abi && wordsize == 4)
3647 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3648 else if (sysv_abi && wordsize == 8)
3649 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3650 else
3651 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3652
3653 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3654 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3655
3656 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3657 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3658
3659 /* The value of symbols of type N_SO and N_FUN maybe null when
3660 it shouldn't be. */
3661 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
3662
3663 /* Handles single stepping of atomic sequences. */
3664 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3665
3666 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3667 for the descriptor and ".FN" for the entry-point -- a user
3668 specifying "break FN" will unexpectedly end up with a breakpoint
3669 on the descriptor and not the function. This architecture method
3670 transforms any breakpoints on descriptors into breakpoints on the
3671 corresponding entry point. */
3672 if (sysv_abi && wordsize == 8)
3673 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3674
3675 /* Not sure on this. FIXMEmgo */
3676 set_gdbarch_frame_args_skip (gdbarch, 8);
3677
3678 if (!sysv_abi)
3679 {
3680 /* Handle RS/6000 function pointers (which are really function
3681 descriptors). */
3682 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3683 rs6000_convert_from_func_ptr_addr);
3684 }
3685
3686 /* Helpers for function argument information. */
3687 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3688
3689 /* Trampoline. */
3690 set_gdbarch_in_solib_return_trampoline
3691 (gdbarch, rs6000_in_solib_return_trampoline);
3692 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3693
3694 /* Hook in the DWARF CFI frame unwinder. */
3695 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3696 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3697
3698 /* Frame handling. */
3699 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
3700
3701 /* Hook in ABI-specific overrides, if they have been registered. */
3702 gdbarch_init_osabi (info, gdbarch);
3703
3704 switch (info.osabi)
3705 {
3706 case GDB_OSABI_LINUX:
3707 case GDB_OSABI_NETBSD_AOUT:
3708 case GDB_OSABI_NETBSD_ELF:
3709 case GDB_OSABI_UNKNOWN:
3710 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3711 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3712 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3713 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3714 break;
3715 default:
3716 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3717
3718 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3719 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3720 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3721 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3722 }
3723
3724 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
3725 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3726 rs6000_pseudo_register_reggroup_p);
3727 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3728
3729 /* Override the normal target description method to make the SPE upper
3730 halves anonymous. */
3731 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3732
3733 /* Recording the numbering of pseudo registers. */
3734 tdep->ppc_ev0_regnum = have_spe ? gdbarch_num_regs (gdbarch) : -1;
3735 tdep->ppc_ev31_regnum = have_spe ? tdep->ppc_ev0_regnum + 31 : -1;
3736
3737 return gdbarch;
3738 }
3739
3740 static void
3741 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3742 {
3743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3744
3745 if (tdep == NULL)
3746 return;
3747
3748 /* FIXME: Dump gdbarch_tdep. */
3749 }
3750
3751 /* PowerPC-specific commands. */
3752
3753 static void
3754 set_powerpc_command (char *args, int from_tty)
3755 {
3756 printf_unfiltered (_("\
3757 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
3758 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
3759 }
3760
3761 static void
3762 show_powerpc_command (char *args, int from_tty)
3763 {
3764 cmd_show_list (showpowerpccmdlist, from_tty, "");
3765 }
3766
3767 static void
3768 powerpc_set_soft_float (char *args, int from_tty,
3769 struct cmd_list_element *c)
3770 {
3771 struct gdbarch_info info;
3772
3773 /* Update the architecture. */
3774 gdbarch_info_init (&info);
3775 if (!gdbarch_update_p (info))
3776 internal_error (__FILE__, __LINE__, "could not update architecture");
3777 }
3778
3779 static void
3780 powerpc_set_vector_abi (char *args, int from_tty,
3781 struct cmd_list_element *c)
3782 {
3783 struct gdbarch_info info;
3784 enum powerpc_vector_abi vector_abi;
3785
3786 for (vector_abi = POWERPC_VEC_AUTO;
3787 vector_abi != POWERPC_VEC_LAST;
3788 vector_abi++)
3789 if (strcmp (powerpc_vector_abi_string,
3790 powerpc_vector_strings[vector_abi]) == 0)
3791 {
3792 powerpc_vector_abi_global = vector_abi;
3793 break;
3794 }
3795
3796 if (vector_abi == POWERPC_VEC_LAST)
3797 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
3798 powerpc_vector_abi_string);
3799
3800 /* Update the architecture. */
3801 gdbarch_info_init (&info);
3802 if (!gdbarch_update_p (info))
3803 internal_error (__FILE__, __LINE__, "could not update architecture");
3804 }
3805
3806 /* Initialization code. */
3807
3808 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3809
3810 void
3811 _initialize_rs6000_tdep (void)
3812 {
3813 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3814 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3815
3816 /* Initialize the standard target descriptions. */
3817 initialize_tdesc_powerpc_32 ();
3818 initialize_tdesc_powerpc_403 ();
3819 initialize_tdesc_powerpc_403gc ();
3820 initialize_tdesc_powerpc_505 ();
3821 initialize_tdesc_powerpc_601 ();
3822 initialize_tdesc_powerpc_602 ();
3823 initialize_tdesc_powerpc_603 ();
3824 initialize_tdesc_powerpc_604 ();
3825 initialize_tdesc_powerpc_64 ();
3826 initialize_tdesc_powerpc_7400 ();
3827 initialize_tdesc_powerpc_750 ();
3828 initialize_tdesc_powerpc_860 ();
3829 initialize_tdesc_powerpc_e500 ();
3830 initialize_tdesc_rs6000 ();
3831
3832 /* Add root prefix command for all "set powerpc"/"show powerpc"
3833 commands. */
3834 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
3835 _("Various PowerPC-specific commands."),
3836 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
3837
3838 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
3839 _("Various PowerPC-specific commands."),
3840 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
3841
3842 /* Add a command to allow the user to force the ABI. */
3843 add_setshow_auto_boolean_cmd ("soft-float", class_support,
3844 &powerpc_soft_float_global,
3845 _("Set whether to use a soft-float ABI."),
3846 _("Show whether to use a soft-float ABI."),
3847 NULL,
3848 powerpc_set_soft_float, NULL,
3849 &setpowerpccmdlist, &showpowerpccmdlist);
3850
3851 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
3852 &powerpc_vector_abi_string,
3853 _("Set the vector ABI."),
3854 _("Show the vector ABI."),
3855 NULL, powerpc_set_vector_abi, NULL,
3856 &setpowerpccmdlist, &showpowerpccmdlist);
3857 }