]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
Add OpenBSD/powerpc support.
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39
40 #include "libbfd.h" /* for bfd_default_set_arch_mach */
41 #include "coff/internal.h" /* for libcoff.h */
42 #include "libcoff.h" /* for xcoff_data */
43 #include "coff/xcoff.h"
44 #include "libxcoff.h"
45
46 #include "elf-bfd.h"
47
48 #include "solib-svr4.h"
49 #include "ppc-tdep.h"
50
51 #include "gdb_assert.h"
52 #include "dis-asm.h"
53
54 #include "trad-frame.h"
55 #include "frame-unwind.h"
56 #include "frame-base.h"
57
58 /* If the kernel has to deliver a signal, it pushes a sigcontext
59 structure on the stack and then calls the signal handler, passing
60 the address of the sigcontext in an argument register. Usually
61 the signal handler doesn't save this register, so we have to
62 access the sigcontext structure via an offset from the signal handler
63 frame.
64 The following constants were determined by experimentation on AIX 3.2. */
65 #define SIG_FRAME_PC_OFFSET 96
66 #define SIG_FRAME_LR_OFFSET 108
67 #define SIG_FRAME_FP_OFFSET 284
68
69 /* To be used by skip_prologue. */
70
71 struct rs6000_framedata
72 {
73 int offset; /* total size of frame --- the distance
74 by which we decrement sp to allocate
75 the frame */
76 int saved_gpr; /* smallest # of saved gpr */
77 int saved_fpr; /* smallest # of saved fpr */
78 int saved_vr; /* smallest # of saved vr */
79 int saved_ev; /* smallest # of saved ev */
80 int alloca_reg; /* alloca register number (frame ptr) */
81 char frameless; /* true if frameless functions. */
82 char nosavedpc; /* true if pc not saved. */
83 int gpr_offset; /* offset of saved gprs from prev sp */
84 int fpr_offset; /* offset of saved fprs from prev sp */
85 int vr_offset; /* offset of saved vrs from prev sp */
86 int ev_offset; /* offset of saved evs from prev sp */
87 int lr_offset; /* offset of saved lr */
88 int cr_offset; /* offset of saved cr */
89 int vrsave_offset; /* offset of saved vrsave register */
90 };
91
92 /* Description of a single register. */
93
94 struct reg
95 {
96 char *name; /* name of register */
97 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
98 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
99 unsigned char fpr; /* whether register is floating-point */
100 unsigned char pseudo; /* whether register is pseudo */
101 };
102
103 /* Breakpoint shadows for the single step instructions will be kept here. */
104
105 static struct sstep_breaks
106 {
107 /* Address, or 0 if this is not in use. */
108 CORE_ADDR address;
109 /* Shadow contents. */
110 char data[4];
111 }
112 stepBreaks[2];
113
114 /* Hook for determining the TOC address when calling functions in the
115 inferior under AIX. The initialization code in rs6000-nat.c sets
116 this hook to point to find_toc_address. */
117
118 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
119
120 /* Hook to set the current architecture when starting a child process.
121 rs6000-nat.c sets this. */
122
123 void (*rs6000_set_host_arch_hook) (int) = NULL;
124
125 /* Static function prototypes */
126
127 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
128 CORE_ADDR safety);
129 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
130 struct rs6000_framedata *);
131
132 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
133 int
134 altivec_register_p (int regno)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
137 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
138 return 0;
139 else
140 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
141 }
142
143 /* Use the architectures FP registers? */
144 int
145 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
146 {
147 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
148 if (info->arch == bfd_arch_powerpc)
149 return (info->mach != bfd_mach_ppc_e500);
150 if (info->arch == bfd_arch_rs6000)
151 return 1;
152 return 0;
153 }
154 \f
155
156 /* Register set support functions. */
157
158 static void
159 ppc_supply_reg (struct regcache *regcache, int regnum,
160 const char *regs, size_t offset)
161 {
162 if (regnum != -1 && offset != -1)
163 regcache_raw_supply (regcache, regnum, regs + offset);
164 }
165
166 static void
167 ppc_collect_reg (const struct regcache *regcache, int regnum,
168 char *regs, size_t offset)
169 {
170 if (regnum != -1 && offset != -1)
171 regcache_raw_collect (regcache, regnum, regs + offset);
172 }
173
174 /* Supply register REGNUM in the general-purpose register set REGSET
175 from the buffer specified by GREGS and LEN to register cache
176 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
177
178 void
179 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
180 int regnum, const void *gregs, size_t len)
181 {
182 struct gdbarch *gdbarch = get_regcache_arch (regcache);
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184 const struct ppc_reg_offsets *offsets = regset->descr;
185 size_t offset;
186 int i;
187
188 for (i = 0, offset = offsets->r0_offset; i < 32; i++, offset += 4)
189 {
190 if (regnum == -1 || regnum == i)
191 ppc_supply_reg (regcache, i, gregs, offset);
192 }
193
194 if (regnum == -1 || regnum == PC_REGNUM)
195 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
196 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
197 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
198 gregs, offsets->ps_offset);
199 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
200 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
201 gregs, offsets->cr_offset);
202 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
203 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
204 gregs, offsets->lr_offset);
205 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
206 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
207 gregs, offsets->ctr_offset);
208 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
209 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
210 gregs, offsets->cr_offset);
211 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
212 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
213 }
214
215 /* Supply register REGNUM in the floating-point register set REGSET
216 from the buffer specified by FPREGS and LEN to register cache
217 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
218
219 void
220 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
221 int regnum, const void *fpregs, size_t len)
222 {
223 struct gdbarch *gdbarch = get_regcache_arch (regcache);
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225 const struct ppc_reg_offsets *offsets = regset->descr;
226 size_t offset;
227 int i;
228
229 offset = offsets->f0_offset;
230 for (i = FP0_REGNUM; i < FP0_REGNUM + 32; i++, offset += 4)
231 {
232 if (regnum == -1 || regnum == i)
233 ppc_supply_reg (regcache, i, fpregs, offset);
234 }
235
236 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
237 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
238 fpregs, offsets->fpscr_offset);
239 }
240
241 /* Collect register REGNUM in the general-purpose register set
242 REGSET. from register cache REGCACHE into the buffer specified by
243 GREGS and LEN. If REGNUM is -1, do this for all registers in
244 REGSET. */
245
246 void
247 ppc_collect_gregset (const struct regset *regset,
248 const struct regcache *regcache,
249 int regnum, void *gregs, size_t len)
250 {
251 struct gdbarch *gdbarch = get_regcache_arch (regcache);
252 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
253 const struct ppc_reg_offsets *offsets = regset->descr;
254 size_t offset;
255 int i;
256
257 offset = offsets->r0_offset;
258 for (i = 0; i <= 32; i++, offset += 4)
259 {
260 if (regnum == -1 || regnum == i)
261 ppc_collect_reg (regcache, regnum, gregs, offset);
262 }
263
264 if (regnum == -1 || regnum == PC_REGNUM)
265 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
266 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
267 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
268 gregs, offsets->ps_offset);
269 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
270 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
271 gregs, offsets->cr_offset);
272 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
273 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
274 gregs, offsets->lr_offset);
275 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
276 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
277 gregs, offsets->ctr_offset);
278 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
279 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
280 gregs, offsets->xer_offset);
281 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
282 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
283 gregs, offsets->mq_offset);
284 }
285
286 /* Collect register REGNUM in the floating-point register set
287 REGSET. from register cache REGCACHE into the buffer specified by
288 FPREGS and LEN. If REGNUM is -1, do this for all registers in
289 REGSET. */
290
291 void
292 ppc_collect_fpregset (const struct regset *regset,
293 const struct regcache *regcache,
294 int regnum, void *fpregs, size_t len)
295 {
296 struct gdbarch *gdbarch = get_regcache_arch (regcache);
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 const struct ppc_reg_offsets *offsets = regset->descr;
299 size_t offset;
300 int i;
301
302 offset = offsets->f0_offset;
303 for (i = FP0_REGNUM; i <= FP0_REGNUM + 32; i++, offset += 4)
304 {
305 if (regnum == -1 || regnum == i)
306 ppc_collect_reg (regcache, regnum, fpregs, offset);
307 }
308
309 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
310 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
311 fpregs, offsets->fpscr_offset);
312 }
313 \f
314
315 /* Read a LEN-byte address from debugged memory address MEMADDR. */
316
317 static CORE_ADDR
318 read_memory_addr (CORE_ADDR memaddr, int len)
319 {
320 return read_memory_unsigned_integer (memaddr, len);
321 }
322
323 static CORE_ADDR
324 rs6000_skip_prologue (CORE_ADDR pc)
325 {
326 struct rs6000_framedata frame;
327 pc = skip_prologue (pc, 0, &frame);
328 return pc;
329 }
330
331
332 /* Fill in fi->saved_regs */
333
334 struct frame_extra_info
335 {
336 /* Functions calling alloca() change the value of the stack
337 pointer. We need to use initial stack pointer (which is saved in
338 r31 by gcc) in such cases. If a compiler emits traceback table,
339 then we should use the alloca register specified in traceback
340 table. FIXME. */
341 CORE_ADDR initial_sp; /* initial stack pointer. */
342 };
343
344 /* Get the ith function argument for the current function. */
345 static CORE_ADDR
346 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
347 struct type *type)
348 {
349 CORE_ADDR addr;
350 get_frame_register (frame, 3 + argi, &addr);
351 return addr;
352 }
353
354 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
355
356 static CORE_ADDR
357 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
358 {
359 CORE_ADDR dest;
360 int immediate;
361 int absolute;
362 int ext_op;
363
364 absolute = (int) ((instr >> 1) & 1);
365
366 switch (opcode)
367 {
368 case 18:
369 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
370 if (absolute)
371 dest = immediate;
372 else
373 dest = pc + immediate;
374 break;
375
376 case 16:
377 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
378 if (absolute)
379 dest = immediate;
380 else
381 dest = pc + immediate;
382 break;
383
384 case 19:
385 ext_op = (instr >> 1) & 0x3ff;
386
387 if (ext_op == 16) /* br conditional register */
388 {
389 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
390
391 /* If we are about to return from a signal handler, dest is
392 something like 0x3c90. The current frame is a signal handler
393 caller frame, upon completion of the sigreturn system call
394 execution will return to the saved PC in the frame. */
395 if (dest < TEXT_SEGMENT_BASE)
396 {
397 struct frame_info *fi;
398
399 fi = get_current_frame ();
400 if (fi != NULL)
401 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
402 gdbarch_tdep (current_gdbarch)->wordsize);
403 }
404 }
405
406 else if (ext_op == 528) /* br cond to count reg */
407 {
408 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
409
410 /* If we are about to execute a system call, dest is something
411 like 0x22fc or 0x3b00. Upon completion the system call
412 will return to the address in the link register. */
413 if (dest < TEXT_SEGMENT_BASE)
414 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
415 }
416 else
417 return -1;
418 break;
419
420 default:
421 return -1;
422 }
423 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
424 }
425
426
427 /* Sequence of bytes for breakpoint instruction. */
428
429 const static unsigned char *
430 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
431 {
432 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
433 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
434 *bp_size = 4;
435 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
436 return big_breakpoint;
437 else
438 return little_breakpoint;
439 }
440
441
442 /* AIX does not support PT_STEP. Simulate it. */
443
444 void
445 rs6000_software_single_step (enum target_signal signal,
446 int insert_breakpoints_p)
447 {
448 CORE_ADDR dummy;
449 int breakp_sz;
450 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
451 int ii, insn;
452 CORE_ADDR loc;
453 CORE_ADDR breaks[2];
454 int opcode;
455
456 if (insert_breakpoints_p)
457 {
458
459 loc = read_pc ();
460
461 insn = read_memory_integer (loc, 4);
462
463 breaks[0] = loc + breakp_sz;
464 opcode = insn >> 26;
465 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
466
467 /* Don't put two breakpoints on the same address. */
468 if (breaks[1] == breaks[0])
469 breaks[1] = -1;
470
471 stepBreaks[1].address = 0;
472
473 for (ii = 0; ii < 2; ++ii)
474 {
475
476 /* ignore invalid breakpoint. */
477 if (breaks[ii] == -1)
478 continue;
479 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
480 stepBreaks[ii].address = breaks[ii];
481 }
482
483 }
484 else
485 {
486
487 /* remove step breakpoints. */
488 for (ii = 0; ii < 2; ++ii)
489 if (stepBreaks[ii].address != 0)
490 target_remove_breakpoint (stepBreaks[ii].address,
491 stepBreaks[ii].data);
492 }
493 errno = 0; /* FIXME, don't ignore errors! */
494 /* What errors? {read,write}_memory call error(). */
495 }
496
497
498 /* return pc value after skipping a function prologue and also return
499 information about a function frame.
500
501 in struct rs6000_framedata fdata:
502 - frameless is TRUE, if function does not have a frame.
503 - nosavedpc is TRUE, if function does not save %pc value in its frame.
504 - offset is the initial size of this stack frame --- the amount by
505 which we decrement the sp to allocate the frame.
506 - saved_gpr is the number of the first saved gpr.
507 - saved_fpr is the number of the first saved fpr.
508 - saved_vr is the number of the first saved vr.
509 - saved_ev is the number of the first saved ev.
510 - alloca_reg is the number of the register used for alloca() handling.
511 Otherwise -1.
512 - gpr_offset is the offset of the first saved gpr from the previous frame.
513 - fpr_offset is the offset of the first saved fpr from the previous frame.
514 - vr_offset is the offset of the first saved vr from the previous frame.
515 - ev_offset is the offset of the first saved ev from the previous frame.
516 - lr_offset is the offset of the saved lr
517 - cr_offset is the offset of the saved cr
518 - vrsave_offset is the offset of the saved vrsave register
519 */
520
521 #define SIGNED_SHORT(x) \
522 ((sizeof (short) == 2) \
523 ? ((int)(short)(x)) \
524 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
525
526 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
527
528 /* Limit the number of skipped non-prologue instructions, as the examining
529 of the prologue is expensive. */
530 static int max_skip_non_prologue_insns = 10;
531
532 /* Given PC representing the starting address of a function, and
533 LIM_PC which is the (sloppy) limit to which to scan when looking
534 for a prologue, attempt to further refine this limit by using
535 the line data in the symbol table. If successful, a better guess
536 on where the prologue ends is returned, otherwise the previous
537 value of lim_pc is returned. */
538
539 /* FIXME: cagney/2004-02-14: This function and logic have largely been
540 superseded by skip_prologue_using_sal. */
541
542 static CORE_ADDR
543 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
544 {
545 struct symtab_and_line prologue_sal;
546
547 prologue_sal = find_pc_line (pc, 0);
548 if (prologue_sal.line != 0)
549 {
550 int i;
551 CORE_ADDR addr = prologue_sal.end;
552
553 /* Handle the case in which compiler's optimizer/scheduler
554 has moved instructions into the prologue. We scan ahead
555 in the function looking for address ranges whose corresponding
556 line number is less than or equal to the first one that we
557 found for the function. (It can be less than when the
558 scheduler puts a body instruction before the first prologue
559 instruction.) */
560 for (i = 2 * max_skip_non_prologue_insns;
561 i > 0 && (lim_pc == 0 || addr < lim_pc);
562 i--)
563 {
564 struct symtab_and_line sal;
565
566 sal = find_pc_line (addr, 0);
567 if (sal.line == 0)
568 break;
569 if (sal.line <= prologue_sal.line
570 && sal.symtab == prologue_sal.symtab)
571 {
572 prologue_sal = sal;
573 }
574 addr = sal.end;
575 }
576
577 if (lim_pc == 0 || prologue_sal.end < lim_pc)
578 lim_pc = prologue_sal.end;
579 }
580 return lim_pc;
581 }
582
583
584 static CORE_ADDR
585 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
586 {
587 CORE_ADDR orig_pc = pc;
588 CORE_ADDR last_prologue_pc = pc;
589 CORE_ADDR li_found_pc = 0;
590 char buf[4];
591 unsigned long op;
592 long offset = 0;
593 long vr_saved_offset = 0;
594 int lr_reg = -1;
595 int cr_reg = -1;
596 int vr_reg = -1;
597 int ev_reg = -1;
598 long ev_offset = 0;
599 int vrsave_reg = -1;
600 int reg;
601 int framep = 0;
602 int minimal_toc_loaded = 0;
603 int prev_insn_was_prologue_insn = 1;
604 int num_skip_non_prologue_insns = 0;
605 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
606 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
607
608 /* Attempt to find the end of the prologue when no limit is specified.
609 Note that refine_prologue_limit() has been written so that it may
610 be used to "refine" the limits of non-zero PC values too, but this
611 is only safe if we 1) trust the line information provided by the
612 compiler and 2) iterate enough to actually find the end of the
613 prologue.
614
615 It may become a good idea at some point (for both performance and
616 accuracy) to unconditionally call refine_prologue_limit(). But,
617 until we can make a clear determination that this is beneficial,
618 we'll play it safe and only use it to obtain a limit when none
619 has been specified. */
620 if (lim_pc == 0)
621 lim_pc = refine_prologue_limit (pc, lim_pc);
622
623 memset (fdata, 0, sizeof (struct rs6000_framedata));
624 fdata->saved_gpr = -1;
625 fdata->saved_fpr = -1;
626 fdata->saved_vr = -1;
627 fdata->saved_ev = -1;
628 fdata->alloca_reg = -1;
629 fdata->frameless = 1;
630 fdata->nosavedpc = 1;
631
632 for (;; pc += 4)
633 {
634 /* Sometimes it isn't clear if an instruction is a prologue
635 instruction or not. When we encounter one of these ambiguous
636 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
637 Otherwise, we'll assume that it really is a prologue instruction. */
638 if (prev_insn_was_prologue_insn)
639 last_prologue_pc = pc;
640
641 /* Stop scanning if we've hit the limit. */
642 if (lim_pc != 0 && pc >= lim_pc)
643 break;
644
645 prev_insn_was_prologue_insn = 1;
646
647 /* Fetch the instruction and convert it to an integer. */
648 if (target_read_memory (pc, buf, 4))
649 break;
650 op = extract_signed_integer (buf, 4);
651
652 if ((op & 0xfc1fffff) == 0x7c0802a6)
653 { /* mflr Rx */
654 /* Since shared library / PIC code, which needs to get its
655 address at runtime, can appear to save more than one link
656 register vis:
657
658 *INDENT-OFF*
659 stwu r1,-304(r1)
660 mflr r3
661 bl 0xff570d0 (blrl)
662 stw r30,296(r1)
663 mflr r30
664 stw r31,300(r1)
665 stw r3,308(r1);
666 ...
667 *INDENT-ON*
668
669 remember just the first one, but skip over additional
670 ones. */
671 if (lr_reg < 0)
672 lr_reg = (op & 0x03e00000);
673 continue;
674 }
675 else if ((op & 0xfc1fffff) == 0x7c000026)
676 { /* mfcr Rx */
677 cr_reg = (op & 0x03e00000);
678 continue;
679
680 }
681 else if ((op & 0xfc1f0000) == 0xd8010000)
682 { /* stfd Rx,NUM(r1) */
683 reg = GET_SRC_REG (op);
684 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
685 {
686 fdata->saved_fpr = reg;
687 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
688 }
689 continue;
690
691 }
692 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
693 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
694 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
695 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
696 {
697
698 reg = GET_SRC_REG (op);
699 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
700 {
701 fdata->saved_gpr = reg;
702 if ((op & 0xfc1f0003) == 0xf8010000)
703 op &= ~3UL;
704 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
705 }
706 continue;
707
708 }
709 else if ((op & 0xffff0000) == 0x60000000)
710 {
711 /* nop */
712 /* Allow nops in the prologue, but do not consider them to
713 be part of the prologue unless followed by other prologue
714 instructions. */
715 prev_insn_was_prologue_insn = 0;
716 continue;
717
718 }
719 else if ((op & 0xffff0000) == 0x3c000000)
720 { /* addis 0,0,NUM, used
721 for >= 32k frames */
722 fdata->offset = (op & 0x0000ffff) << 16;
723 fdata->frameless = 0;
724 continue;
725
726 }
727 else if ((op & 0xffff0000) == 0x60000000)
728 { /* ori 0,0,NUM, 2nd ha
729 lf of >= 32k frames */
730 fdata->offset |= (op & 0x0000ffff);
731 fdata->frameless = 0;
732 continue;
733
734 }
735 else if (lr_reg != -1 &&
736 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
737 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
738 /* stw Rx, NUM(r1) */
739 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
740 /* stwu Rx, NUM(r1) */
741 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
742 { /* where Rx == lr */
743 fdata->lr_offset = offset;
744 fdata->nosavedpc = 0;
745 lr_reg = 0;
746 if ((op & 0xfc000003) == 0xf8000000 || /* std */
747 (op & 0xfc000000) == 0x90000000) /* stw */
748 {
749 /* Does not update r1, so add displacement to lr_offset. */
750 fdata->lr_offset += SIGNED_SHORT (op);
751 }
752 continue;
753
754 }
755 else if (cr_reg != -1 &&
756 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
757 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
758 /* stw Rx, NUM(r1) */
759 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
760 /* stwu Rx, NUM(r1) */
761 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
762 { /* where Rx == cr */
763 fdata->cr_offset = offset;
764 cr_reg = 0;
765 if ((op & 0xfc000003) == 0xf8000000 ||
766 (op & 0xfc000000) == 0x90000000)
767 {
768 /* Does not update r1, so add displacement to cr_offset. */
769 fdata->cr_offset += SIGNED_SHORT (op);
770 }
771 continue;
772
773 }
774 else if (op == 0x48000005)
775 { /* bl .+4 used in
776 -mrelocatable */
777 continue;
778
779 }
780 else if (op == 0x48000004)
781 { /* b .+4 (xlc) */
782 break;
783
784 }
785 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
786 in V.4 -mminimal-toc */
787 (op & 0xffff0000) == 0x3bde0000)
788 { /* addi 30,30,foo@l */
789 continue;
790
791 }
792 else if ((op & 0xfc000001) == 0x48000001)
793 { /* bl foo,
794 to save fprs??? */
795
796 fdata->frameless = 0;
797 /* Don't skip over the subroutine call if it is not within
798 the first three instructions of the prologue. */
799 if ((pc - orig_pc) > 8)
800 break;
801
802 op = read_memory_integer (pc + 4, 4);
803
804 /* At this point, make sure this is not a trampoline
805 function (a function that simply calls another functions,
806 and nothing else). If the next is not a nop, this branch
807 was part of the function prologue. */
808
809 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
810 break; /* don't skip over
811 this branch */
812 continue;
813
814 }
815 /* update stack pointer */
816 else if ((op & 0xfc1f0000) == 0x94010000)
817 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
818 fdata->frameless = 0;
819 fdata->offset = SIGNED_SHORT (op);
820 offset = fdata->offset;
821 continue;
822 }
823 else if ((op & 0xfc1f016a) == 0x7c01016e)
824 { /* stwux rX,r1,rY */
825 /* no way to figure out what r1 is going to be */
826 fdata->frameless = 0;
827 offset = fdata->offset;
828 continue;
829 }
830 else if ((op & 0xfc1f0003) == 0xf8010001)
831 { /* stdu rX,NUM(r1) */
832 fdata->frameless = 0;
833 fdata->offset = SIGNED_SHORT (op & ~3UL);
834 offset = fdata->offset;
835 continue;
836 }
837 else if ((op & 0xfc1f016a) == 0x7c01016a)
838 { /* stdux rX,r1,rY */
839 /* no way to figure out what r1 is going to be */
840 fdata->frameless = 0;
841 offset = fdata->offset;
842 continue;
843 }
844 /* Load up minimal toc pointer */
845 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
846 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
847 && !minimal_toc_loaded)
848 {
849 minimal_toc_loaded = 1;
850 continue;
851
852 /* move parameters from argument registers to local variable
853 registers */
854 }
855 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
856 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
857 (((op >> 21) & 31) <= 10) &&
858 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
859 {
860 continue;
861
862 /* store parameters in stack */
863 }
864 /* Move parameters from argument registers to temporary register. */
865 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
866 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
867 (((op >> 21) & 31) <= 10) &&
868 (((op >> 16) & 31) == 0)) /* Rx: scratch register r0 */
869 {
870 continue;
871 }
872 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
873 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
874 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
875 {
876 continue;
877
878 /* store parameters in stack via frame pointer */
879 }
880 else if (framep &&
881 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
882 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
883 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r31) */
884 (op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
885 {
886 continue;
887
888 /* Set up frame pointer */
889 }
890 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
891 || op == 0x7c3f0b78)
892 { /* mr r31, r1 */
893 fdata->frameless = 0;
894 framep = 1;
895 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
896 continue;
897
898 /* Another way to set up the frame pointer. */
899 }
900 else if ((op & 0xfc1fffff) == 0x38010000)
901 { /* addi rX, r1, 0x0 */
902 fdata->frameless = 0;
903 framep = 1;
904 fdata->alloca_reg = (tdep->ppc_gp0_regnum
905 + ((op & ~0x38010000) >> 21));
906 continue;
907 }
908 /* AltiVec related instructions. */
909 /* Store the vrsave register (spr 256) in another register for
910 later manipulation, or load a register into the vrsave
911 register. 2 instructions are used: mfvrsave and
912 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
913 and mtspr SPR256, Rn. */
914 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
915 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
916 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
917 {
918 vrsave_reg = GET_SRC_REG (op);
919 continue;
920 }
921 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
922 {
923 continue;
924 }
925 /* Store the register where vrsave was saved to onto the stack:
926 rS is the register where vrsave was stored in a previous
927 instruction. */
928 /* 100100 sssss 00001 dddddddd dddddddd */
929 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
930 {
931 if (vrsave_reg == GET_SRC_REG (op))
932 {
933 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
934 vrsave_reg = -1;
935 }
936 continue;
937 }
938 /* Compute the new value of vrsave, by modifying the register
939 where vrsave was saved to. */
940 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
941 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
942 {
943 continue;
944 }
945 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
946 in a pair of insns to save the vector registers on the
947 stack. */
948 /* 001110 00000 00000 iiii iiii iiii iiii */
949 /* 001110 01110 00000 iiii iiii iiii iiii */
950 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
951 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
952 {
953 li_found_pc = pc;
954 vr_saved_offset = SIGNED_SHORT (op);
955 }
956 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
957 /* 011111 sssss 11111 00000 00111001110 */
958 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
959 {
960 if (pc == (li_found_pc + 4))
961 {
962 vr_reg = GET_SRC_REG (op);
963 /* If this is the first vector reg to be saved, or if
964 it has a lower number than others previously seen,
965 reupdate the frame info. */
966 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
967 {
968 fdata->saved_vr = vr_reg;
969 fdata->vr_offset = vr_saved_offset + offset;
970 }
971 vr_saved_offset = -1;
972 vr_reg = -1;
973 li_found_pc = 0;
974 }
975 }
976 /* End AltiVec related instructions. */
977
978 /* Start BookE related instructions. */
979 /* Store gen register S at (r31+uimm).
980 Any register less than r13 is volatile, so we don't care. */
981 /* 000100 sssss 11111 iiiii 01100100001 */
982 else if (arch_info->mach == bfd_mach_ppc_e500
983 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
984 {
985 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
986 {
987 unsigned int imm;
988 ev_reg = GET_SRC_REG (op);
989 imm = (op >> 11) & 0x1f;
990 ev_offset = imm * 8;
991 /* If this is the first vector reg to be saved, or if
992 it has a lower number than others previously seen,
993 reupdate the frame info. */
994 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
995 {
996 fdata->saved_ev = ev_reg;
997 fdata->ev_offset = ev_offset + offset;
998 }
999 }
1000 continue;
1001 }
1002 /* Store gen register rS at (r1+rB). */
1003 /* 000100 sssss 00001 bbbbb 01100100000 */
1004 else if (arch_info->mach == bfd_mach_ppc_e500
1005 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1006 {
1007 if (pc == (li_found_pc + 4))
1008 {
1009 ev_reg = GET_SRC_REG (op);
1010 /* If this is the first vector reg to be saved, or if
1011 it has a lower number than others previously seen,
1012 reupdate the frame info. */
1013 /* We know the contents of rB from the previous instruction. */
1014 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1015 {
1016 fdata->saved_ev = ev_reg;
1017 fdata->ev_offset = vr_saved_offset + offset;
1018 }
1019 vr_saved_offset = -1;
1020 ev_reg = -1;
1021 li_found_pc = 0;
1022 }
1023 continue;
1024 }
1025 /* Store gen register r31 at (rA+uimm). */
1026 /* 000100 11111 aaaaa iiiii 01100100001 */
1027 else if (arch_info->mach == bfd_mach_ppc_e500
1028 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1029 {
1030 /* Wwe know that the source register is 31 already, but
1031 it can't hurt to compute it. */
1032 ev_reg = GET_SRC_REG (op);
1033 ev_offset = ((op >> 11) & 0x1f) * 8;
1034 /* If this is the first vector reg to be saved, or if
1035 it has a lower number than others previously seen,
1036 reupdate the frame info. */
1037 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1038 {
1039 fdata->saved_ev = ev_reg;
1040 fdata->ev_offset = ev_offset + offset;
1041 }
1042
1043 continue;
1044 }
1045 /* Store gen register S at (r31+r0).
1046 Store param on stack when offset from SP bigger than 4 bytes. */
1047 /* 000100 sssss 11111 00000 01100100000 */
1048 else if (arch_info->mach == bfd_mach_ppc_e500
1049 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1050 {
1051 if (pc == (li_found_pc + 4))
1052 {
1053 if ((op & 0x03e00000) >= 0x01a00000)
1054 {
1055 ev_reg = GET_SRC_REG (op);
1056 /* If this is the first vector reg to be saved, or if
1057 it has a lower number than others previously seen,
1058 reupdate the frame info. */
1059 /* We know the contents of r0 from the previous
1060 instruction. */
1061 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1062 {
1063 fdata->saved_ev = ev_reg;
1064 fdata->ev_offset = vr_saved_offset + offset;
1065 }
1066 ev_reg = -1;
1067 }
1068 vr_saved_offset = -1;
1069 li_found_pc = 0;
1070 continue;
1071 }
1072 }
1073 /* End BookE related instructions. */
1074
1075 else
1076 {
1077 /* Not a recognized prologue instruction.
1078 Handle optimizer code motions into the prologue by continuing
1079 the search if we have no valid frame yet or if the return
1080 address is not yet saved in the frame. */
1081 if (fdata->frameless == 0
1082 && (lr_reg == -1 || fdata->nosavedpc == 0))
1083 break;
1084
1085 if (op == 0x4e800020 /* blr */
1086 || op == 0x4e800420) /* bctr */
1087 /* Do not scan past epilogue in frameless functions or
1088 trampolines. */
1089 break;
1090 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1091 /* Never skip branches. */
1092 break;
1093
1094 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1095 /* Do not scan too many insns, scanning insns is expensive with
1096 remote targets. */
1097 break;
1098
1099 /* Continue scanning. */
1100 prev_insn_was_prologue_insn = 0;
1101 continue;
1102 }
1103 }
1104
1105 #if 0
1106 /* I have problems with skipping over __main() that I need to address
1107 * sometime. Previously, I used to use misc_function_vector which
1108 * didn't work as well as I wanted to be. -MGO */
1109
1110 /* If the first thing after skipping a prolog is a branch to a function,
1111 this might be a call to an initializer in main(), introduced by gcc2.
1112 We'd like to skip over it as well. Fortunately, xlc does some extra
1113 work before calling a function right after a prologue, thus we can
1114 single out such gcc2 behaviour. */
1115
1116
1117 if ((op & 0xfc000001) == 0x48000001)
1118 { /* bl foo, an initializer function? */
1119 op = read_memory_integer (pc + 4, 4);
1120
1121 if (op == 0x4def7b82)
1122 { /* cror 0xf, 0xf, 0xf (nop) */
1123
1124 /* Check and see if we are in main. If so, skip over this
1125 initializer function as well. */
1126
1127 tmp = find_pc_misc_function (pc);
1128 if (tmp >= 0
1129 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1130 return pc + 8;
1131 }
1132 }
1133 #endif /* 0 */
1134
1135 fdata->offset = -fdata->offset;
1136 return last_prologue_pc;
1137 }
1138
1139
1140 /*************************************************************************
1141 Support for creating pushing a dummy frame into the stack, and popping
1142 frames, etc.
1143 *************************************************************************/
1144
1145
1146 /* All the ABI's require 16 byte alignment. */
1147 static CORE_ADDR
1148 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1149 {
1150 return (addr & -16);
1151 }
1152
1153 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1154 the first eight words of the argument list (that might be less than
1155 eight parameters if some parameters occupy more than one word) are
1156 passed in r3..r10 registers. float and double parameters are
1157 passed in fpr's, in addition to that. Rest of the parameters if any
1158 are passed in user stack. There might be cases in which half of the
1159 parameter is copied into registers, the other half is pushed into
1160 stack.
1161
1162 Stack must be aligned on 64-bit boundaries when synthesizing
1163 function calls.
1164
1165 If the function is returning a structure, then the return address is passed
1166 in r3, then the first 7 words of the parameters can be passed in registers,
1167 starting from r4. */
1168
1169 static CORE_ADDR
1170 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1171 struct regcache *regcache, CORE_ADDR bp_addr,
1172 int nargs, struct value **args, CORE_ADDR sp,
1173 int struct_return, CORE_ADDR struct_addr)
1174 {
1175 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1176 int ii;
1177 int len = 0;
1178 int argno; /* current argument number */
1179 int argbytes; /* current argument byte */
1180 char tmp_buffer[50];
1181 int f_argno = 0; /* current floating point argno */
1182 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1183
1184 struct value *arg = 0;
1185 struct type *type;
1186
1187 CORE_ADDR saved_sp;
1188
1189 /* The first eight words of ther arguments are passed in registers.
1190 Copy them appropriately. */
1191 ii = 0;
1192
1193 /* If the function is returning a `struct', then the first word
1194 (which will be passed in r3) is used for struct return address.
1195 In that case we should advance one word and start from r4
1196 register to copy parameters. */
1197 if (struct_return)
1198 {
1199 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1200 struct_addr);
1201 ii++;
1202 }
1203
1204 /*
1205 effectively indirect call... gcc does...
1206
1207 return_val example( float, int);
1208
1209 eabi:
1210 float in fp0, int in r3
1211 offset of stack on overflow 8/16
1212 for varargs, must go by type.
1213 power open:
1214 float in r3&r4, int in r5
1215 offset of stack on overflow different
1216 both:
1217 return in r3 or f0. If no float, must study how gcc emulates floats;
1218 pay attention to arg promotion.
1219 User may have to cast\args to handle promotion correctly
1220 since gdb won't know if prototype supplied or not.
1221 */
1222
1223 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1224 {
1225 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1226
1227 arg = args[argno];
1228 type = check_typedef (VALUE_TYPE (arg));
1229 len = TYPE_LENGTH (type);
1230
1231 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1232 {
1233
1234 /* Floating point arguments are passed in fpr's, as well as gpr's.
1235 There are 13 fpr's reserved for passing parameters. At this point
1236 there is no way we would run out of them. */
1237
1238 if (len > 8)
1239 printf_unfiltered (
1240 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1241
1242 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1243 VALUE_CONTENTS (arg),
1244 len);
1245 ++f_argno;
1246 }
1247
1248 if (len > reg_size)
1249 {
1250
1251 /* Argument takes more than one register. */
1252 while (argbytes < len)
1253 {
1254 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1255 reg_size);
1256 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1257 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1258 (len - argbytes) > reg_size
1259 ? reg_size : len - argbytes);
1260 ++ii, argbytes += reg_size;
1261
1262 if (ii >= 8)
1263 goto ran_out_of_registers_for_arguments;
1264 }
1265 argbytes = 0;
1266 --ii;
1267 }
1268 else
1269 {
1270 /* Argument can fit in one register. No problem. */
1271 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1272 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1273 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1274 VALUE_CONTENTS (arg), len);
1275 }
1276 ++argno;
1277 }
1278
1279 ran_out_of_registers_for_arguments:
1280
1281 saved_sp = read_sp ();
1282
1283 /* Location for 8 parameters are always reserved. */
1284 sp -= wordsize * 8;
1285
1286 /* Another six words for back chain, TOC register, link register, etc. */
1287 sp -= wordsize * 6;
1288
1289 /* Stack pointer must be quadword aligned. */
1290 sp &= -16;
1291
1292 /* If there are more arguments, allocate space for them in
1293 the stack, then push them starting from the ninth one. */
1294
1295 if ((argno < nargs) || argbytes)
1296 {
1297 int space = 0, jj;
1298
1299 if (argbytes)
1300 {
1301 space += ((len - argbytes + 3) & -4);
1302 jj = argno + 1;
1303 }
1304 else
1305 jj = argno;
1306
1307 for (; jj < nargs; ++jj)
1308 {
1309 struct value *val = args[jj];
1310 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1311 }
1312
1313 /* Add location required for the rest of the parameters. */
1314 space = (space + 15) & -16;
1315 sp -= space;
1316
1317 /* This is another instance we need to be concerned about
1318 securing our stack space. If we write anything underneath %sp
1319 (r1), we might conflict with the kernel who thinks he is free
1320 to use this area. So, update %sp first before doing anything
1321 else. */
1322
1323 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1324
1325 /* If the last argument copied into the registers didn't fit there
1326 completely, push the rest of it into stack. */
1327
1328 if (argbytes)
1329 {
1330 write_memory (sp + 24 + (ii * 4),
1331 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1332 len - argbytes);
1333 ++argno;
1334 ii += ((len - argbytes + 3) & -4) / 4;
1335 }
1336
1337 /* Push the rest of the arguments into stack. */
1338 for (; argno < nargs; ++argno)
1339 {
1340
1341 arg = args[argno];
1342 type = check_typedef (VALUE_TYPE (arg));
1343 len = TYPE_LENGTH (type);
1344
1345
1346 /* Float types should be passed in fpr's, as well as in the
1347 stack. */
1348 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1349 {
1350
1351 if (len > 8)
1352 printf_unfiltered (
1353 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1354
1355 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1356 VALUE_CONTENTS (arg),
1357 len);
1358 ++f_argno;
1359 }
1360
1361 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1362 ii += ((len + 3) & -4) / 4;
1363 }
1364 }
1365
1366 /* Set the stack pointer. According to the ABI, the SP is meant to
1367 be set _before_ the corresponding stack space is used. On AIX,
1368 this even applies when the target has been completely stopped!
1369 Not doing this can lead to conflicts with the kernel which thinks
1370 that it still has control over this not-yet-allocated stack
1371 region. */
1372 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1373
1374 /* Set back chain properly. */
1375 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1376 write_memory (sp, tmp_buffer, 4);
1377
1378 /* Point the inferior function call's return address at the dummy's
1379 breakpoint. */
1380 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1381
1382 /* Set the TOC register, get the value from the objfile reader
1383 which, in turn, gets it from the VMAP table. */
1384 if (rs6000_find_toc_address_hook != NULL)
1385 {
1386 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1387 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1388 }
1389
1390 target_store_registers (-1);
1391 return sp;
1392 }
1393
1394 /* PowerOpen always puts structures in memory. Vectors, which were
1395 added later, do get returned in a register though. */
1396
1397 static int
1398 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1399 {
1400 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1401 && TYPE_VECTOR (value_type))
1402 return 0;
1403 return 1;
1404 }
1405
1406 static void
1407 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1408 {
1409 int offset = 0;
1410 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1411
1412 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1413 {
1414
1415 double dd;
1416 float ff;
1417 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1418 We need to truncate the return value into float size (4 byte) if
1419 necessary. */
1420
1421 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1422 memcpy (valbuf,
1423 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
1424 TYPE_LENGTH (valtype));
1425 else
1426 { /* float */
1427 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1428 ff = (float) dd;
1429 memcpy (valbuf, &ff, sizeof (float));
1430 }
1431 }
1432 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1433 && TYPE_LENGTH (valtype) == 16
1434 && TYPE_VECTOR (valtype))
1435 {
1436 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1437 TYPE_LENGTH (valtype));
1438 }
1439 else
1440 {
1441 /* return value is copied starting from r3. */
1442 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1443 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1444 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1445
1446 memcpy (valbuf,
1447 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1448 TYPE_LENGTH (valtype));
1449 }
1450 }
1451
1452 /* Return whether handle_inferior_event() should proceed through code
1453 starting at PC in function NAME when stepping.
1454
1455 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1456 handle memory references that are too distant to fit in instructions
1457 generated by the compiler. For example, if 'foo' in the following
1458 instruction:
1459
1460 lwz r9,foo(r2)
1461
1462 is greater than 32767, the linker might replace the lwz with a branch to
1463 somewhere in @FIX1 that does the load in 2 instructions and then branches
1464 back to where execution should continue.
1465
1466 GDB should silently step over @FIX code, just like AIX dbx does.
1467 Unfortunately, the linker uses the "b" instruction for the branches,
1468 meaning that the link register doesn't get set. Therefore, GDB's usual
1469 step_over_function() mechanism won't work.
1470
1471 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1472 in handle_inferior_event() to skip past @FIX code. */
1473
1474 int
1475 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1476 {
1477 return name && !strncmp (name, "@FIX", 4);
1478 }
1479
1480 /* Skip code that the user doesn't want to see when stepping:
1481
1482 1. Indirect function calls use a piece of trampoline code to do context
1483 switching, i.e. to set the new TOC table. Skip such code if we are on
1484 its first instruction (as when we have single-stepped to here).
1485
1486 2. Skip shared library trampoline code (which is different from
1487 indirect function call trampolines).
1488
1489 3. Skip bigtoc fixup code.
1490
1491 Result is desired PC to step until, or NULL if we are not in
1492 code that should be skipped. */
1493
1494 CORE_ADDR
1495 rs6000_skip_trampoline_code (CORE_ADDR pc)
1496 {
1497 unsigned int ii, op;
1498 int rel;
1499 CORE_ADDR solib_target_pc;
1500 struct minimal_symbol *msymbol;
1501
1502 static unsigned trampoline_code[] =
1503 {
1504 0x800b0000, /* l r0,0x0(r11) */
1505 0x90410014, /* st r2,0x14(r1) */
1506 0x7c0903a6, /* mtctr r0 */
1507 0x804b0004, /* l r2,0x4(r11) */
1508 0x816b0008, /* l r11,0x8(r11) */
1509 0x4e800420, /* bctr */
1510 0x4e800020, /* br */
1511 0
1512 };
1513
1514 /* Check for bigtoc fixup code. */
1515 msymbol = lookup_minimal_symbol_by_pc (pc);
1516 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1517 {
1518 /* Double-check that the third instruction from PC is relative "b". */
1519 op = read_memory_integer (pc + 8, 4);
1520 if ((op & 0xfc000003) == 0x48000000)
1521 {
1522 /* Extract bits 6-29 as a signed 24-bit relative word address and
1523 add it to the containing PC. */
1524 rel = ((int)(op << 6) >> 6);
1525 return pc + 8 + rel;
1526 }
1527 }
1528
1529 /* If pc is in a shared library trampoline, return its target. */
1530 solib_target_pc = find_solib_trampoline_target (pc);
1531 if (solib_target_pc)
1532 return solib_target_pc;
1533
1534 for (ii = 0; trampoline_code[ii]; ++ii)
1535 {
1536 op = read_memory_integer (pc + (ii * 4), 4);
1537 if (op != trampoline_code[ii])
1538 return 0;
1539 }
1540 ii = read_register (11); /* r11 holds destination addr */
1541 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1542 return pc;
1543 }
1544
1545 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1546 isn't available with that word size, return 0. */
1547
1548 static int
1549 regsize (const struct reg *reg, int wordsize)
1550 {
1551 return wordsize == 8 ? reg->sz64 : reg->sz32;
1552 }
1553
1554 /* Return the name of register number N, or null if no such register exists
1555 in the current architecture. */
1556
1557 static const char *
1558 rs6000_register_name (int n)
1559 {
1560 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1561 const struct reg *reg = tdep->regs + n;
1562
1563 if (!regsize (reg, tdep->wordsize))
1564 return NULL;
1565 return reg->name;
1566 }
1567
1568 /* Index within `registers' of the first byte of the space for
1569 register N. */
1570
1571 static int
1572 rs6000_register_byte (int n)
1573 {
1574 return gdbarch_tdep (current_gdbarch)->regoff[n];
1575 }
1576
1577 /* Return the number of bytes of storage in the actual machine representation
1578 for register N if that register is available, else return 0. */
1579
1580 static int
1581 rs6000_register_raw_size (int n)
1582 {
1583 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1584 const struct reg *reg = tdep->regs + n;
1585 return regsize (reg, tdep->wordsize);
1586 }
1587
1588 /* Return the GDB type object for the "standard" data type
1589 of data in register N. */
1590
1591 static struct type *
1592 rs6000_register_virtual_type (int n)
1593 {
1594 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1595 const struct reg *reg = tdep->regs + n;
1596
1597 if (reg->fpr)
1598 return builtin_type_double;
1599 else
1600 {
1601 int size = regsize (reg, tdep->wordsize);
1602 switch (size)
1603 {
1604 case 0:
1605 return builtin_type_int0;
1606 case 4:
1607 return builtin_type_uint32;
1608 case 8:
1609 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1610 return builtin_type_vec64;
1611 else
1612 return builtin_type_uint64;
1613 break;
1614 case 16:
1615 return builtin_type_vec128;
1616 break;
1617 default:
1618 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1619 n, size);
1620 }
1621 }
1622 }
1623
1624 /* Return whether register N requires conversion when moving from raw format
1625 to virtual format.
1626
1627 The register format for RS/6000 floating point registers is always
1628 double, we need a conversion if the memory format is float. */
1629
1630 static int
1631 rs6000_register_convertible (int n)
1632 {
1633 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1634 return reg->fpr;
1635 }
1636
1637 /* Convert data from raw format for register N in buffer FROM
1638 to virtual format with type TYPE in buffer TO. */
1639
1640 static void
1641 rs6000_register_convert_to_virtual (int n, struct type *type,
1642 char *from, char *to)
1643 {
1644 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1645 {
1646 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
1647 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1648 }
1649 else
1650 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1651 }
1652
1653 /* Convert data from virtual format with type TYPE in buffer FROM
1654 to raw format for register N in buffer TO. */
1655
1656 static void
1657 rs6000_register_convert_to_raw (struct type *type, int n,
1658 const char *from, char *to)
1659 {
1660 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1661 {
1662 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1663 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
1664 }
1665 else
1666 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1667 }
1668
1669 static void
1670 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1671 int reg_nr, void *buffer)
1672 {
1673 int base_regnum;
1674 int offset = 0;
1675 char temp_buffer[MAX_REGISTER_SIZE];
1676 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1677
1678 if (reg_nr >= tdep->ppc_gp0_regnum
1679 && reg_nr <= tdep->ppc_gplast_regnum)
1680 {
1681 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1682
1683 /* Build the value in the provided buffer. */
1684 /* Read the raw register of which this one is the lower portion. */
1685 regcache_raw_read (regcache, base_regnum, temp_buffer);
1686 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1687 offset = 4;
1688 memcpy ((char *) buffer, temp_buffer + offset, 4);
1689 }
1690 }
1691
1692 static void
1693 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1694 int reg_nr, const void *buffer)
1695 {
1696 int base_regnum;
1697 int offset = 0;
1698 char temp_buffer[MAX_REGISTER_SIZE];
1699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1700
1701 if (reg_nr >= tdep->ppc_gp0_regnum
1702 && reg_nr <= tdep->ppc_gplast_regnum)
1703 {
1704 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1705 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1706 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1707 offset = 4;
1708
1709 /* Let's read the value of the base register into a temporary
1710 buffer, so that overwriting the last four bytes with the new
1711 value of the pseudo will leave the upper 4 bytes unchanged. */
1712 regcache_raw_read (regcache, base_regnum, temp_buffer);
1713
1714 /* Write as an 8 byte quantity. */
1715 memcpy (temp_buffer + offset, (char *) buffer, 4);
1716 regcache_raw_write (regcache, base_regnum, temp_buffer);
1717 }
1718 }
1719
1720 /* Convert a dbx stab or Dwarf 2 register number (from `r'
1721 declaration) to a gdb REGNUM. */
1722 static int
1723 rs6000_dwarf2_stab_reg_to_regnum (int num)
1724 {
1725 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1726
1727 if (0 <= num && num <= 31)
1728 return tdep->ppc_gp0_regnum + num;
1729 else if (32 <= num && num <= 63)
1730 return FP0_REGNUM + (num - 32);
1731 else if (1200 <= num && num < 1200 + 32)
1732 return tdep->ppc_ev0_regnum + (num - 1200);
1733 else
1734 switch (num)
1735 {
1736 case 64:
1737 return tdep->ppc_mq_regnum;
1738 case 65:
1739 return tdep->ppc_lr_regnum;
1740 case 66:
1741 return tdep->ppc_ctr_regnum;
1742 case 76:
1743 return tdep->ppc_xer_regnum;
1744 case 109:
1745 return tdep->ppc_vrsave_regnum;
1746 default:
1747 return num;
1748 }
1749
1750 /* FIXME: jimb/2004-03-28: Doesn't something need to be done here
1751 for the Altivec registers, too?
1752
1753 Looking at GCC, the headers in config/rs6000 never define a
1754 DBX_REGISTER_NUMBER macro, so the debug info uses the same
1755 numbers GCC does internally. Then, looking at the REGISTER_NAMES
1756 macro defined in config/rs6000/rs6000.h, it seems that GCC gives
1757 v0 -- v31 the numbers 77 -- 108. But we number them 119 -- 150.
1758
1759 I don't have a way to test this ready to hand, but I noticed it
1760 and thought I should include a note. */
1761 }
1762
1763 static void
1764 rs6000_store_return_value (struct type *type, char *valbuf)
1765 {
1766 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1767
1768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1769
1770 /* Floating point values are returned starting from FPR1 and up.
1771 Say a double_double_double type could be returned in
1772 FPR1/FPR2/FPR3 triple. */
1773
1774 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1775 TYPE_LENGTH (type));
1776 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1777 {
1778 if (TYPE_LENGTH (type) == 16
1779 && TYPE_VECTOR (type))
1780 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1781 valbuf, TYPE_LENGTH (type));
1782 }
1783 else
1784 /* Everything else is returned in GPR3 and up. */
1785 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1786 valbuf, TYPE_LENGTH (type));
1787 }
1788
1789 /* Extract from an array REGBUF containing the (raw) register state
1790 the address in which a function should return its structure value,
1791 as a CORE_ADDR (or an expression that can be used as one). */
1792
1793 static CORE_ADDR
1794 rs6000_extract_struct_value_address (struct regcache *regcache)
1795 {
1796 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
1797 function call GDB knows the address of the struct return value
1798 and hence, should not need to call this function. Unfortunately,
1799 the current call_function_by_hand() code only saves the most
1800 recent struct address leading to occasional calls. The code
1801 should instead maintain a stack of such addresses (in the dummy
1802 frame object). */
1803 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
1804 really got no idea where the return value is being stored. While
1805 r3, on function entry, contained the address it will have since
1806 been reused (scratch) and hence wouldn't be valid */
1807 return 0;
1808 }
1809
1810 /* Hook called when a new child process is started. */
1811
1812 void
1813 rs6000_create_inferior (int pid)
1814 {
1815 if (rs6000_set_host_arch_hook)
1816 rs6000_set_host_arch_hook (pid);
1817 }
1818 \f
1819 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
1820
1821 Usually a function pointer's representation is simply the address
1822 of the function. On the RS/6000 however, a function pointer is
1823 represented by a pointer to a TOC entry. This TOC entry contains
1824 three words, the first word is the address of the function, the
1825 second word is the TOC pointer (r2), and the third word is the
1826 static chain value. Throughout GDB it is currently assumed that a
1827 function pointer contains the address of the function, which is not
1828 easy to fix. In addition, the conversion of a function address to
1829 a function pointer would require allocation of a TOC entry in the
1830 inferior's memory space, with all its drawbacks. To be able to
1831 call C++ virtual methods in the inferior (which are called via
1832 function pointers), find_function_addr uses this function to get the
1833 function address from a function pointer. */
1834
1835 /* Return real function address if ADDR (a function pointer) is in the data
1836 space and is therefore a special function pointer. */
1837
1838 static CORE_ADDR
1839 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1840 CORE_ADDR addr,
1841 struct target_ops *targ)
1842 {
1843 struct obj_section *s;
1844
1845 s = find_pc_section (addr);
1846 if (s && s->the_bfd_section->flags & SEC_CODE)
1847 return addr;
1848
1849 /* ADDR is in the data space, so it's a special function pointer. */
1850 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
1851 }
1852 \f
1853
1854 /* Handling the various POWER/PowerPC variants. */
1855
1856
1857 /* The arrays here called registers_MUMBLE hold information about available
1858 registers.
1859
1860 For each family of PPC variants, I've tried to isolate out the
1861 common registers and put them up front, so that as long as you get
1862 the general family right, GDB will correctly identify the registers
1863 common to that family. The common register sets are:
1864
1865 For the 60x family: hid0 hid1 iabr dabr pir
1866
1867 For the 505 and 860 family: eie eid nri
1868
1869 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
1870 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1871 pbu1 pbl2 pbu2
1872
1873 Most of these register groups aren't anything formal. I arrived at
1874 them by looking at the registers that occurred in more than one
1875 processor.
1876
1877 Note: kevinb/2002-04-30: Support for the fpscr register was added
1878 during April, 2002. Slot 70 is being used for PowerPC and slot 71
1879 for Power. For PowerPC, slot 70 was unused and was already in the
1880 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
1881 slot 70 was being used for "mq", so the next available slot (71)
1882 was chosen. It would have been nice to be able to make the
1883 register numbers the same across processor cores, but this wasn't
1884 possible without either 1) renumbering some registers for some
1885 processors or 2) assigning fpscr to a really high slot that's
1886 larger than any current register number. Doing (1) is bad because
1887 existing stubs would break. Doing (2) is undesirable because it
1888 would introduce a really large gap between fpscr and the rest of
1889 the registers for most processors. */
1890
1891 /* Convenience macros for populating register arrays. */
1892
1893 /* Within another macro, convert S to a string. */
1894
1895 #define STR(s) #s
1896
1897 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
1898 and 64 bits on 64-bit systems. */
1899 #define R(name) { STR(name), 4, 8, 0, 0 }
1900
1901 /* Return a struct reg defining register NAME that's 32 bits on all
1902 systems. */
1903 #define R4(name) { STR(name), 4, 4, 0, 0 }
1904
1905 /* Return a struct reg defining register NAME that's 64 bits on all
1906 systems. */
1907 #define R8(name) { STR(name), 8, 8, 0, 0 }
1908
1909 /* Return a struct reg defining register NAME that's 128 bits on all
1910 systems. */
1911 #define R16(name) { STR(name), 16, 16, 0, 0 }
1912
1913 /* Return a struct reg defining floating-point register NAME. */
1914 #define F(name) { STR(name), 8, 8, 1, 0 }
1915
1916 /* Return a struct reg defining a pseudo register NAME. */
1917 #define P(name) { STR(name), 4, 8, 0, 1}
1918
1919 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
1920 systems and that doesn't exist on 64-bit systems. */
1921 #define R32(name) { STR(name), 4, 0, 0, 0 }
1922
1923 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
1924 systems and that doesn't exist on 32-bit systems. */
1925 #define R64(name) { STR(name), 0, 8, 0, 0 }
1926
1927 /* Return a struct reg placeholder for a register that doesn't exist. */
1928 #define R0 { 0, 0, 0, 0, 0 }
1929
1930 /* UISA registers common across all architectures, including POWER. */
1931
1932 #define COMMON_UISA_REGS \
1933 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1934 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1935 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1936 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1937 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
1938 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
1939 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
1940 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
1941 /* 64 */ R(pc), R(ps)
1942
1943 #define COMMON_UISA_NOFP_REGS \
1944 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1945 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1946 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1947 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1948 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1949 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1950 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1951 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1952 /* 64 */ R(pc), R(ps)
1953
1954 /* UISA-level SPRs for PowerPC. */
1955 #define PPC_UISA_SPRS \
1956 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
1957
1958 /* UISA-level SPRs for PowerPC without floating point support. */
1959 #define PPC_UISA_NOFP_SPRS \
1960 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
1961
1962 /* Segment registers, for PowerPC. */
1963 #define PPC_SEGMENT_REGS \
1964 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
1965 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
1966 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
1967 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
1968
1969 /* OEA SPRs for PowerPC. */
1970 #define PPC_OEA_SPRS \
1971 /* 87 */ R4(pvr), \
1972 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
1973 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
1974 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
1975 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
1976 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
1977 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
1978 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
1979 /* 116 */ R4(dec), R(dabr), R4(ear)
1980
1981 /* AltiVec registers. */
1982 #define PPC_ALTIVEC_REGS \
1983 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
1984 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
1985 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
1986 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
1987 /*151*/R4(vscr), R4(vrsave)
1988
1989 /* Vectors of hi-lo general purpose registers. */
1990 #define PPC_EV_REGS \
1991 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
1992 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
1993 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
1994 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
1995
1996 /* Lower half of the EV registers. */
1997 #define PPC_GPRS_PSEUDO_REGS \
1998 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
1999 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2000 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2001 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2002
2003 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2004 user-level SPR's. */
2005 static const struct reg registers_power[] =
2006 {
2007 COMMON_UISA_REGS,
2008 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2009 /* 71 */ R4(fpscr)
2010 };
2011
2012 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2013 view of the PowerPC. */
2014 static const struct reg registers_powerpc[] =
2015 {
2016 COMMON_UISA_REGS,
2017 PPC_UISA_SPRS,
2018 PPC_ALTIVEC_REGS
2019 };
2020
2021 /* PowerPC UISA - a PPC processor as viewed by user-level
2022 code, but without floating point registers. */
2023 static const struct reg registers_powerpc_nofp[] =
2024 {
2025 COMMON_UISA_NOFP_REGS,
2026 PPC_UISA_SPRS
2027 };
2028
2029 /* IBM PowerPC 403. */
2030 static const struct reg registers_403[] =
2031 {
2032 COMMON_UISA_REGS,
2033 PPC_UISA_SPRS,
2034 PPC_SEGMENT_REGS,
2035 PPC_OEA_SPRS,
2036 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2037 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2038 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2039 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2040 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2041 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2042 };
2043
2044 /* IBM PowerPC 403GC. */
2045 static const struct reg registers_403GC[] =
2046 {
2047 COMMON_UISA_REGS,
2048 PPC_UISA_SPRS,
2049 PPC_SEGMENT_REGS,
2050 PPC_OEA_SPRS,
2051 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2052 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2053 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2054 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2055 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2056 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2057 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2058 /* 147 */ R(tbhu), R(tblu)
2059 };
2060
2061 /* Motorola PowerPC 505. */
2062 static const struct reg registers_505[] =
2063 {
2064 COMMON_UISA_REGS,
2065 PPC_UISA_SPRS,
2066 PPC_SEGMENT_REGS,
2067 PPC_OEA_SPRS,
2068 /* 119 */ R(eie), R(eid), R(nri)
2069 };
2070
2071 /* Motorola PowerPC 860 or 850. */
2072 static const struct reg registers_860[] =
2073 {
2074 COMMON_UISA_REGS,
2075 PPC_UISA_SPRS,
2076 PPC_SEGMENT_REGS,
2077 PPC_OEA_SPRS,
2078 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2079 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2080 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2081 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2082 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2083 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2084 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2085 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2086 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2087 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2088 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2089 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2090 };
2091
2092 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2093 for reading and writing RTCU and RTCL. However, how one reads and writes a
2094 register is the stub's problem. */
2095 static const struct reg registers_601[] =
2096 {
2097 COMMON_UISA_REGS,
2098 PPC_UISA_SPRS,
2099 PPC_SEGMENT_REGS,
2100 PPC_OEA_SPRS,
2101 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2102 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2103 };
2104
2105 /* Motorola PowerPC 602. */
2106 static const struct reg registers_602[] =
2107 {
2108 COMMON_UISA_REGS,
2109 PPC_UISA_SPRS,
2110 PPC_SEGMENT_REGS,
2111 PPC_OEA_SPRS,
2112 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2113 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2114 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2115 };
2116
2117 /* Motorola/IBM PowerPC 603 or 603e. */
2118 static const struct reg registers_603[] =
2119 {
2120 COMMON_UISA_REGS,
2121 PPC_UISA_SPRS,
2122 PPC_SEGMENT_REGS,
2123 PPC_OEA_SPRS,
2124 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2125 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2126 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2127 };
2128
2129 /* Motorola PowerPC 604 or 604e. */
2130 static const struct reg registers_604[] =
2131 {
2132 COMMON_UISA_REGS,
2133 PPC_UISA_SPRS,
2134 PPC_SEGMENT_REGS,
2135 PPC_OEA_SPRS,
2136 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2137 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2138 /* 127 */ R(sia), R(sda)
2139 };
2140
2141 /* Motorola/IBM PowerPC 750 or 740. */
2142 static const struct reg registers_750[] =
2143 {
2144 COMMON_UISA_REGS,
2145 PPC_UISA_SPRS,
2146 PPC_SEGMENT_REGS,
2147 PPC_OEA_SPRS,
2148 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2149 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2150 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2151 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2152 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2153 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2154 };
2155
2156
2157 /* Motorola PowerPC 7400. */
2158 static const struct reg registers_7400[] =
2159 {
2160 /* gpr0-gpr31, fpr0-fpr31 */
2161 COMMON_UISA_REGS,
2162 /* cr, lr, ctr, xer, fpscr */
2163 PPC_UISA_SPRS,
2164 /* sr0-sr15 */
2165 PPC_SEGMENT_REGS,
2166 PPC_OEA_SPRS,
2167 /* vr0-vr31, vrsave, vscr */
2168 PPC_ALTIVEC_REGS
2169 /* FIXME? Add more registers? */
2170 };
2171
2172 /* Motorola e500. */
2173 static const struct reg registers_e500[] =
2174 {
2175 R(pc), R(ps),
2176 /* cr, lr, ctr, xer, "" */
2177 PPC_UISA_NOFP_SPRS,
2178 /* 7...38 */
2179 PPC_EV_REGS,
2180 R8(acc), R(spefscr),
2181 /* NOTE: Add new registers here the end of the raw register
2182 list and just before the first pseudo register. */
2183 /* 41...72 */
2184 PPC_GPRS_PSEUDO_REGS
2185 };
2186
2187 /* Information about a particular processor variant. */
2188
2189 struct variant
2190 {
2191 /* Name of this variant. */
2192 char *name;
2193
2194 /* English description of the variant. */
2195 char *description;
2196
2197 /* bfd_arch_info.arch corresponding to variant. */
2198 enum bfd_architecture arch;
2199
2200 /* bfd_arch_info.mach corresponding to variant. */
2201 unsigned long mach;
2202
2203 /* Number of real registers. */
2204 int nregs;
2205
2206 /* Number of pseudo registers. */
2207 int npregs;
2208
2209 /* Number of total registers (the sum of nregs and npregs). */
2210 int num_tot_regs;
2211
2212 /* Table of register names; registers[R] is the name of the register
2213 number R. */
2214 const struct reg *regs;
2215 };
2216
2217 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2218
2219 static int
2220 num_registers (const struct reg *reg_list, int num_tot_regs)
2221 {
2222 int i;
2223 int nregs = 0;
2224
2225 for (i = 0; i < num_tot_regs; i++)
2226 if (!reg_list[i].pseudo)
2227 nregs++;
2228
2229 return nregs;
2230 }
2231
2232 static int
2233 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2234 {
2235 int i;
2236 int npregs = 0;
2237
2238 for (i = 0; i < num_tot_regs; i++)
2239 if (reg_list[i].pseudo)
2240 npregs ++;
2241
2242 return npregs;
2243 }
2244
2245 /* Information in this table comes from the following web sites:
2246 IBM: http://www.chips.ibm.com:80/products/embedded/
2247 Motorola: http://www.mot.com/SPS/PowerPC/
2248
2249 I'm sure I've got some of the variant descriptions not quite right.
2250 Please report any inaccuracies you find to GDB's maintainer.
2251
2252 If you add entries to this table, please be sure to allow the new
2253 value as an argument to the --with-cpu flag, in configure.in. */
2254
2255 static struct variant variants[] =
2256 {
2257
2258 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2259 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2260 registers_powerpc},
2261 {"power", "POWER user-level", bfd_arch_rs6000,
2262 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2263 registers_power},
2264 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2265 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2266 registers_403},
2267 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2268 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2269 registers_601},
2270 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2271 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2272 registers_602},
2273 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2274 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2275 registers_603},
2276 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2277 604, -1, -1, tot_num_registers (registers_604),
2278 registers_604},
2279 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2280 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2281 registers_403GC},
2282 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2283 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2284 registers_505},
2285 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2286 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2287 registers_860},
2288 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2289 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2290 registers_750},
2291 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2292 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2293 registers_7400},
2294 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2295 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2296 registers_e500},
2297
2298 /* 64-bit */
2299 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2300 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2301 registers_powerpc},
2302 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2303 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2304 registers_powerpc},
2305 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2306 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2307 registers_powerpc},
2308 {"a35", "PowerPC A35", bfd_arch_powerpc,
2309 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2310 registers_powerpc},
2311 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2312 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2313 registers_powerpc},
2314 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2315 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2316 registers_powerpc},
2317
2318 /* FIXME: I haven't checked the register sets of the following. */
2319 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2320 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2321 registers_power},
2322 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2323 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2324 registers_power},
2325 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2326 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2327 registers_power},
2328
2329 {0, 0, 0, 0, 0, 0, 0, 0}
2330 };
2331
2332 /* Initialize the number of registers and pseudo registers in each variant. */
2333
2334 static void
2335 init_variants (void)
2336 {
2337 struct variant *v;
2338
2339 for (v = variants; v->name; v++)
2340 {
2341 if (v->nregs == -1)
2342 v->nregs = num_registers (v->regs, v->num_tot_regs);
2343 if (v->npregs == -1)
2344 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2345 }
2346 }
2347
2348 /* Return the variant corresponding to architecture ARCH and machine number
2349 MACH. If no such variant exists, return null. */
2350
2351 static const struct variant *
2352 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2353 {
2354 const struct variant *v;
2355
2356 for (v = variants; v->name; v++)
2357 if (arch == v->arch && mach == v->mach)
2358 return v;
2359
2360 return NULL;
2361 }
2362
2363 static int
2364 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2365 {
2366 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2367 return print_insn_big_powerpc (memaddr, info);
2368 else
2369 return print_insn_little_powerpc (memaddr, info);
2370 }
2371 \f
2372 static CORE_ADDR
2373 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2374 {
2375 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2376 }
2377
2378 static struct frame_id
2379 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2380 {
2381 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2382 SP_REGNUM),
2383 frame_pc_unwind (next_frame));
2384 }
2385
2386 struct rs6000_frame_cache
2387 {
2388 CORE_ADDR base;
2389 CORE_ADDR initial_sp;
2390 struct trad_frame_saved_reg *saved_regs;
2391 };
2392
2393 static struct rs6000_frame_cache *
2394 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2395 {
2396 struct rs6000_frame_cache *cache;
2397 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399 struct rs6000_framedata fdata;
2400 int wordsize = tdep->wordsize;
2401
2402 if ((*this_cache) != NULL)
2403 return (*this_cache);
2404 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2405 (*this_cache) = cache;
2406 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2407
2408 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2409 &fdata);
2410
2411 /* If there were any saved registers, figure out parent's stack
2412 pointer. */
2413 /* The following is true only if the frame doesn't have a call to
2414 alloca(), FIXME. */
2415
2416 if (fdata.saved_fpr == 0
2417 && fdata.saved_gpr == 0
2418 && fdata.saved_vr == 0
2419 && fdata.saved_ev == 0
2420 && fdata.lr_offset == 0
2421 && fdata.cr_offset == 0
2422 && fdata.vr_offset == 0
2423 && fdata.ev_offset == 0)
2424 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2425 else
2426 {
2427 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2428 address of the current frame. Things might be easier if the
2429 ->frame pointed to the outer-most address of the frame. In
2430 the mean time, the address of the prev frame is used as the
2431 base address of this frame. */
2432 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2433 if (!fdata.frameless)
2434 /* Frameless really means stackless. */
2435 cache->base = read_memory_addr (cache->base, wordsize);
2436 }
2437 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2438
2439 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2440 All fpr's from saved_fpr to fp31 are saved. */
2441
2442 if (fdata.saved_fpr >= 0)
2443 {
2444 int i;
2445 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2446 for (i = fdata.saved_fpr; i < 32; i++)
2447 {
2448 cache->saved_regs[FP0_REGNUM + i].addr = fpr_addr;
2449 fpr_addr += 8;
2450 }
2451 }
2452
2453 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2454 All gpr's from saved_gpr to gpr31 are saved. */
2455
2456 if (fdata.saved_gpr >= 0)
2457 {
2458 int i;
2459 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2460 for (i = fdata.saved_gpr; i < 32; i++)
2461 {
2462 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2463 gpr_addr += wordsize;
2464 }
2465 }
2466
2467 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2468 All vr's from saved_vr to vr31 are saved. */
2469 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2470 {
2471 if (fdata.saved_vr >= 0)
2472 {
2473 int i;
2474 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2475 for (i = fdata.saved_vr; i < 32; i++)
2476 {
2477 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2478 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2479 }
2480 }
2481 }
2482
2483 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2484 All vr's from saved_ev to ev31 are saved. ????? */
2485 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2486 {
2487 if (fdata.saved_ev >= 0)
2488 {
2489 int i;
2490 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2491 for (i = fdata.saved_ev; i < 32; i++)
2492 {
2493 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2494 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2495 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2496 }
2497 }
2498 }
2499
2500 /* If != 0, fdata.cr_offset is the offset from the frame that
2501 holds the CR. */
2502 if (fdata.cr_offset != 0)
2503 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2504
2505 /* If != 0, fdata.lr_offset is the offset from the frame that
2506 holds the LR. */
2507 if (fdata.lr_offset != 0)
2508 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2509 /* The PC is found in the link register. */
2510 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2511
2512 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2513 holds the VRSAVE. */
2514 if (fdata.vrsave_offset != 0)
2515 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2516
2517 if (fdata.alloca_reg < 0)
2518 /* If no alloca register used, then fi->frame is the value of the
2519 %sp for this frame, and it is good enough. */
2520 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2521 else
2522 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2523 fdata.alloca_reg);
2524
2525 return cache;
2526 }
2527
2528 static void
2529 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2530 struct frame_id *this_id)
2531 {
2532 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2533 this_cache);
2534 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2535 }
2536
2537 static void
2538 rs6000_frame_prev_register (struct frame_info *next_frame,
2539 void **this_cache,
2540 int regnum, int *optimizedp,
2541 enum lval_type *lvalp, CORE_ADDR *addrp,
2542 int *realnump, void *valuep)
2543 {
2544 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2545 this_cache);
2546 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
2547 optimizedp, lvalp, addrp, realnump, valuep);
2548 }
2549
2550 static const struct frame_unwind rs6000_frame_unwind =
2551 {
2552 NORMAL_FRAME,
2553 rs6000_frame_this_id,
2554 rs6000_frame_prev_register
2555 };
2556
2557 static const struct frame_unwind *
2558 rs6000_frame_sniffer (struct frame_info *next_frame)
2559 {
2560 return &rs6000_frame_unwind;
2561 }
2562
2563 \f
2564
2565 static CORE_ADDR
2566 rs6000_frame_base_address (struct frame_info *next_frame,
2567 void **this_cache)
2568 {
2569 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2570 this_cache);
2571 return info->initial_sp;
2572 }
2573
2574 static const struct frame_base rs6000_frame_base = {
2575 &rs6000_frame_unwind,
2576 rs6000_frame_base_address,
2577 rs6000_frame_base_address,
2578 rs6000_frame_base_address
2579 };
2580
2581 static const struct frame_base *
2582 rs6000_frame_base_sniffer (struct frame_info *next_frame)
2583 {
2584 return &rs6000_frame_base;
2585 }
2586
2587 /* Initialize the current architecture based on INFO. If possible, re-use an
2588 architecture from ARCHES, which is a list of architectures already created
2589 during this debugging session.
2590
2591 Called e.g. at program startup, when reading a core file, and when reading
2592 a binary file. */
2593
2594 static struct gdbarch *
2595 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2596 {
2597 struct gdbarch *gdbarch;
2598 struct gdbarch_tdep *tdep;
2599 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2600 struct reg *regs;
2601 const struct variant *v;
2602 enum bfd_architecture arch;
2603 unsigned long mach;
2604 bfd abfd;
2605 int sysv_abi;
2606 asection *sect;
2607
2608 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2609 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2610
2611 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2612 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2613
2614 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2615
2616 /* Check word size. If INFO is from a binary file, infer it from
2617 that, else choose a likely default. */
2618 if (from_xcoff_exec)
2619 {
2620 if (bfd_xcoff_is_xcoff64 (info.abfd))
2621 wordsize = 8;
2622 else
2623 wordsize = 4;
2624 }
2625 else if (from_elf_exec)
2626 {
2627 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2628 wordsize = 8;
2629 else
2630 wordsize = 4;
2631 }
2632 else
2633 {
2634 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2635 wordsize = info.bfd_arch_info->bits_per_word /
2636 info.bfd_arch_info->bits_per_byte;
2637 else
2638 wordsize = 4;
2639 }
2640
2641 /* Find a candidate among extant architectures. */
2642 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2643 arches != NULL;
2644 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2645 {
2646 /* Word size in the various PowerPC bfd_arch_info structs isn't
2647 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2648 separate word size check. */
2649 tdep = gdbarch_tdep (arches->gdbarch);
2650 if (tdep && tdep->wordsize == wordsize)
2651 return arches->gdbarch;
2652 }
2653
2654 /* None found, create a new architecture from INFO, whose bfd_arch_info
2655 validity depends on the source:
2656 - executable useless
2657 - rs6000_host_arch() good
2658 - core file good
2659 - "set arch" trust blindly
2660 - GDB startup useless but harmless */
2661
2662 if (!from_xcoff_exec)
2663 {
2664 arch = info.bfd_arch_info->arch;
2665 mach = info.bfd_arch_info->mach;
2666 }
2667 else
2668 {
2669 arch = bfd_arch_powerpc;
2670 bfd_default_set_arch_mach (&abfd, arch, 0);
2671 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2672 mach = info.bfd_arch_info->mach;
2673 }
2674 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2675 tdep->wordsize = wordsize;
2676
2677 /* For e500 executables, the apuinfo section is of help here. Such
2678 section contains the identifier and revision number of each
2679 Application-specific Processing Unit that is present on the
2680 chip. The content of the section is determined by the assembler
2681 which looks at each instruction and determines which unit (and
2682 which version of it) can execute it. In our case we just look for
2683 the existance of the section. */
2684
2685 if (info.abfd)
2686 {
2687 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2688 if (sect)
2689 {
2690 arch = info.bfd_arch_info->arch;
2691 mach = bfd_mach_ppc_e500;
2692 bfd_default_set_arch_mach (&abfd, arch, mach);
2693 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2694 }
2695 }
2696
2697 gdbarch = gdbarch_alloc (&info, tdep);
2698 power = arch == bfd_arch_rs6000;
2699
2700 /* Initialize the number of real and pseudo registers in each variant. */
2701 init_variants ();
2702
2703 /* Choose variant. */
2704 v = find_variant_by_arch (arch, mach);
2705 if (!v)
2706 return NULL;
2707
2708 tdep->regs = v->regs;
2709
2710 tdep->ppc_gp0_regnum = 0;
2711 tdep->ppc_gplast_regnum = 31;
2712 tdep->ppc_toc_regnum = 2;
2713 tdep->ppc_ps_regnum = 65;
2714 tdep->ppc_cr_regnum = 66;
2715 tdep->ppc_lr_regnum = 67;
2716 tdep->ppc_ctr_regnum = 68;
2717 tdep->ppc_xer_regnum = 69;
2718 if (v->mach == bfd_mach_ppc_601)
2719 tdep->ppc_mq_regnum = 124;
2720 else if (power)
2721 tdep->ppc_mq_regnum = 70;
2722 else
2723 tdep->ppc_mq_regnum = -1;
2724 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2725
2726 set_gdbarch_pc_regnum (gdbarch, 64);
2727 set_gdbarch_sp_regnum (gdbarch, 1);
2728 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2729 if (sysv_abi && wordsize == 8)
2730 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
2731 else if (sysv_abi && wordsize == 4)
2732 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
2733 else
2734 {
2735 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2736 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2737 }
2738
2739 if (v->arch == bfd_arch_powerpc)
2740 switch (v->mach)
2741 {
2742 case bfd_mach_ppc:
2743 tdep->ppc_vr0_regnum = 71;
2744 tdep->ppc_vrsave_regnum = 104;
2745 tdep->ppc_ev0_regnum = -1;
2746 tdep->ppc_ev31_regnum = -1;
2747 break;
2748 case bfd_mach_ppc_7400:
2749 tdep->ppc_vr0_regnum = 119;
2750 tdep->ppc_vrsave_regnum = 152;
2751 tdep->ppc_ev0_regnum = -1;
2752 tdep->ppc_ev31_regnum = -1;
2753 break;
2754 case bfd_mach_ppc_e500:
2755 tdep->ppc_gp0_regnum = 41;
2756 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2757 tdep->ppc_toc_regnum = -1;
2758 tdep->ppc_ps_regnum = 1;
2759 tdep->ppc_cr_regnum = 2;
2760 tdep->ppc_lr_regnum = 3;
2761 tdep->ppc_ctr_regnum = 4;
2762 tdep->ppc_xer_regnum = 5;
2763 tdep->ppc_ev0_regnum = 7;
2764 tdep->ppc_ev31_regnum = 38;
2765 set_gdbarch_pc_regnum (gdbarch, 0);
2766 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2767 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2768 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2769 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2770 break;
2771 default:
2772 tdep->ppc_vr0_regnum = -1;
2773 tdep->ppc_vrsave_regnum = -1;
2774 tdep->ppc_ev0_regnum = -1;
2775 tdep->ppc_ev31_regnum = -1;
2776 break;
2777 }
2778
2779 /* Sanity check on registers. */
2780 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2781
2782 /* Set lr_frame_offset. */
2783 if (wordsize == 8)
2784 tdep->lr_frame_offset = 16;
2785 else if (sysv_abi)
2786 tdep->lr_frame_offset = 4;
2787 else
2788 tdep->lr_frame_offset = 8;
2789
2790 /* Calculate byte offsets in raw register array. */
2791 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2792 for (i = off = 0; i < v->num_tot_regs; i++)
2793 {
2794 tdep->regoff[i] = off;
2795 off += regsize (v->regs + i, wordsize);
2796 }
2797
2798 /* Select instruction printer. */
2799 if (arch == power)
2800 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2801 else
2802 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2803
2804 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2805
2806 set_gdbarch_num_regs (gdbarch, v->nregs);
2807 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2808 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2809 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2810 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2811 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2812 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2813 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2814
2815 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2816 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2817 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2818 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2819 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2820 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2821 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2822 if (sysv_abi)
2823 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2824 else
2825 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2826 set_gdbarch_char_signed (gdbarch, 0);
2827
2828 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2829 if (sysv_abi && wordsize == 8)
2830 /* PPC64 SYSV. */
2831 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2832 else if (!sysv_abi && wordsize == 4)
2833 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2834 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2835 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2836 224. */
2837 set_gdbarch_frame_red_zone_size (gdbarch, 224);
2838
2839 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2840 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2841 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2842 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_dwarf2_stab_reg_to_regnum);
2843 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_stab_reg_to_regnum);
2844 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2845 is correct for the SysV ABI when the wordsize is 8, but I'm also
2846 fairly certain that ppc_sysv_abi_push_arguments() will give even
2847 worse results since it only works for 32-bit code. So, for the moment,
2848 we're better off calling rs6000_push_arguments() since it works for
2849 64-bit code. At some point in the future, this matter needs to be
2850 revisited. */
2851 if (sysv_abi && wordsize == 4)
2852 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2853 else if (sysv_abi && wordsize == 8)
2854 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
2855 else
2856 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2857
2858 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2859
2860 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2861 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2862 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2863
2864 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2865 for the descriptor and ".FN" for the entry-point -- a user
2866 specifying "break FN" will unexpectedly end up with a breakpoint
2867 on the descriptor and not the function. This architecture method
2868 transforms any breakpoints on descriptors into breakpoints on the
2869 corresponding entry point. */
2870 if (sysv_abi && wordsize == 8)
2871 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2872
2873 /* Not sure on this. FIXMEmgo */
2874 set_gdbarch_frame_args_skip (gdbarch, 8);
2875
2876 if (!sysv_abi)
2877 set_gdbarch_use_struct_convention (gdbarch,
2878 rs6000_use_struct_convention);
2879
2880 if (!sysv_abi)
2881 {
2882 /* Handle RS/6000 function pointers (which are really function
2883 descriptors). */
2884 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2885 rs6000_convert_from_func_ptr_addr);
2886 }
2887
2888 /* Helpers for function argument information. */
2889 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2890
2891 /* Hook in ABI-specific overrides, if they have been registered. */
2892 gdbarch_init_osabi (info, gdbarch);
2893
2894 switch (info.osabi)
2895 {
2896 case GDB_OSABI_NETBSD_AOUT:
2897 case GDB_OSABI_NETBSD_ELF:
2898 case GDB_OSABI_UNKNOWN:
2899 case GDB_OSABI_LINUX:
2900 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2901 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
2902 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
2903 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
2904 break;
2905 default:
2906 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2907 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2908
2909 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2910 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
2911 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
2912 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
2913 }
2914
2915 if (from_xcoff_exec)
2916 {
2917 /* NOTE: jimix/2003-06-09: This test should really check for
2918 GDB_OSABI_AIX when that is defined and becomes
2919 available. (Actually, once things are properly split apart,
2920 the test goes away.) */
2921 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2922 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2923 }
2924
2925 return gdbarch;
2926 }
2927
2928 static void
2929 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2930 {
2931 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2932
2933 if (tdep == NULL)
2934 return;
2935
2936 /* FIXME: Dump gdbarch_tdep. */
2937 }
2938
2939 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2940
2941 static void
2942 rs6000_info_powerpc_command (char *args, int from_tty)
2943 {
2944 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2945 }
2946
2947 /* Initialization code. */
2948
2949 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
2950
2951 void
2952 _initialize_rs6000_tdep (void)
2953 {
2954 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2955 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2956
2957 /* Add root prefix command for "info powerpc" commands */
2958 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2959 "Various POWERPC info specific commands.",
2960 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2961 }