]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
* rs6000-tdep.c (rs6000_builtin_type_vec128): Add v2_double
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "objfiles.h"
30 #include "arch-utils.h"
31 #include "regcache.h"
32 #include "regset.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "parser-defs.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "sim-regno.h"
39 #include "gdb/sim-ppc.h"
40 #include "reggroups.h"
41 #include "dwarf2-frame.h"
42 #include "target-descriptions.h"
43 #include "user-regs.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53
54 #include "solib-svr4.h"
55 #include "ppc-tdep.h"
56
57 #include "gdb_assert.h"
58 #include "dis-asm.h"
59
60 #include "trad-frame.h"
61 #include "frame-unwind.h"
62 #include "frame-base.h"
63
64 #include "features/rs6000/powerpc-32.c"
65 #include "features/rs6000/powerpc-altivec32.c"
66 #include "features/rs6000/powerpc-vsx32.c"
67 #include "features/rs6000/powerpc-403.c"
68 #include "features/rs6000/powerpc-403gc.c"
69 #include "features/rs6000/powerpc-405.c"
70 #include "features/rs6000/powerpc-505.c"
71 #include "features/rs6000/powerpc-601.c"
72 #include "features/rs6000/powerpc-602.c"
73 #include "features/rs6000/powerpc-603.c"
74 #include "features/rs6000/powerpc-604.c"
75 #include "features/rs6000/powerpc-64.c"
76 #include "features/rs6000/powerpc-altivec64.c"
77 #include "features/rs6000/powerpc-vsx64.c"
78 #include "features/rs6000/powerpc-7400.c"
79 #include "features/rs6000/powerpc-750.c"
80 #include "features/rs6000/powerpc-860.c"
81 #include "features/rs6000/powerpc-e500.c"
82 #include "features/rs6000/rs6000.c"
83
84 /* Determine if regnum is an SPE pseudo-register. */
85 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
86 && (regnum) >= (tdep)->ppc_ev0_regnum \
87 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
88
89 /* Determine if regnum is a decimal float pseudo-register. */
90 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_dl0_regnum \
92 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
93
94 /* Determine if regnum is a POWER7 VSX register. */
95 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_vsr0_regnum \
97 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
98
99 /* Determine if regnum is a POWER7 Extended FP register. */
100 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_efpr0_regnum \
102 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_fprs)
103
104 /* The list of available "set powerpc ..." and "show powerpc ..."
105 commands. */
106 static struct cmd_list_element *setpowerpccmdlist = NULL;
107 static struct cmd_list_element *showpowerpccmdlist = NULL;
108
109 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
110
111 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
112 static const char *powerpc_vector_strings[] =
113 {
114 "auto",
115 "generic",
116 "altivec",
117 "spe",
118 NULL
119 };
120
121 /* A variable that can be configured by the user. */
122 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
123 static const char *powerpc_vector_abi_string = "auto";
124
125 /* To be used by skip_prologue. */
126
127 struct rs6000_framedata
128 {
129 int offset; /* total size of frame --- the distance
130 by which we decrement sp to allocate
131 the frame */
132 int saved_gpr; /* smallest # of saved gpr */
133 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
134 int saved_fpr; /* smallest # of saved fpr */
135 int saved_vr; /* smallest # of saved vr */
136 int saved_ev; /* smallest # of saved ev */
137 int alloca_reg; /* alloca register number (frame ptr) */
138 char frameless; /* true if frameless functions. */
139 char nosavedpc; /* true if pc not saved. */
140 char used_bl; /* true if link register clobbered */
141 int gpr_offset; /* offset of saved gprs from prev sp */
142 int fpr_offset; /* offset of saved fprs from prev sp */
143 int vr_offset; /* offset of saved vrs from prev sp */
144 int ev_offset; /* offset of saved evs from prev sp */
145 int lr_offset; /* offset of saved lr */
146 int lr_register; /* register of saved lr, if trustworthy */
147 int cr_offset; /* offset of saved cr */
148 int vrsave_offset; /* offset of saved vrsave register */
149 };
150
151
152 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
153 int
154 vsx_register_p (struct gdbarch *gdbarch, int regno)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157 if (tdep->ppc_vsr0_regnum < 0)
158 return 0;
159 else
160 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
161 <= tdep->ppc_vsr0_upper_regnum + 31);
162 }
163
164 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
165 int
166 altivec_register_p (struct gdbarch *gdbarch, int regno)
167 {
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
170 return 0;
171 else
172 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
173 }
174
175
176 /* Return true if REGNO is an SPE register, false otherwise. */
177 int
178 spe_register_p (struct gdbarch *gdbarch, int regno)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 /* Is it a reference to EV0 -- EV31, and do we have those? */
183 if (IS_SPE_PSEUDOREG (tdep, regno))
184 return 1;
185
186 /* Is it a reference to one of the raw upper GPR halves? */
187 if (tdep->ppc_ev0_upper_regnum >= 0
188 && tdep->ppc_ev0_upper_regnum <= regno
189 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
190 return 1;
191
192 /* Is it a reference to the 64-bit accumulator, and do we have that? */
193 if (tdep->ppc_acc_regnum >= 0
194 && tdep->ppc_acc_regnum == regno)
195 return 1;
196
197 /* Is it a reference to the SPE floating-point status and control register,
198 and do we have that? */
199 if (tdep->ppc_spefscr_regnum >= 0
200 && tdep->ppc_spefscr_regnum == regno)
201 return 1;
202
203 return 0;
204 }
205
206
207 /* Return non-zero if the architecture described by GDBARCH has
208 floating-point registers (f0 --- f31 and fpscr). */
209 int
210 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
211 {
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213
214 return (tdep->ppc_fp0_regnum >= 0
215 && tdep->ppc_fpscr_regnum >= 0);
216 }
217
218 /* Return non-zero if the architecture described by GDBARCH has
219 VSX registers (vsr0 --- vsr63). */
220 static int
221 ppc_vsx_support_p (struct gdbarch *gdbarch)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224
225 return tdep->ppc_vsr0_regnum >= 0;
226 }
227
228 /* Return non-zero if the architecture described by GDBARCH has
229 Altivec registers (vr0 --- vr31, vrsave and vscr). */
230 int
231 ppc_altivec_support_p (struct gdbarch *gdbarch)
232 {
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234
235 return (tdep->ppc_vr0_regnum >= 0
236 && tdep->ppc_vrsave_regnum >= 0);
237 }
238
239 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
240 set it to SIM_REGNO.
241
242 This is a helper function for init_sim_regno_table, constructing
243 the table mapping GDB register numbers to sim register numbers; we
244 initialize every element in that table to -1 before we start
245 filling it in. */
246 static void
247 set_sim_regno (int *table, int gdb_regno, int sim_regno)
248 {
249 /* Make sure we don't try to assign any given GDB register a sim
250 register number more than once. */
251 gdb_assert (table[gdb_regno] == -1);
252 table[gdb_regno] = sim_regno;
253 }
254
255
256 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
257 numbers to simulator register numbers, based on the values placed
258 in the ARCH->tdep->ppc_foo_regnum members. */
259 static void
260 init_sim_regno_table (struct gdbarch *arch)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
263 int total_regs = gdbarch_num_regs (arch);
264 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
265 int i;
266 static const char *const segment_regs[] = {
267 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
268 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
269 };
270
271 /* Presume that all registers not explicitly mentioned below are
272 unavailable from the sim. */
273 for (i = 0; i < total_regs; i++)
274 sim_regno[i] = -1;
275
276 /* General-purpose registers. */
277 for (i = 0; i < ppc_num_gprs; i++)
278 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
279
280 /* Floating-point registers. */
281 if (tdep->ppc_fp0_regnum >= 0)
282 for (i = 0; i < ppc_num_fprs; i++)
283 set_sim_regno (sim_regno,
284 tdep->ppc_fp0_regnum + i,
285 sim_ppc_f0_regnum + i);
286 if (tdep->ppc_fpscr_regnum >= 0)
287 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
288
289 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
290 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
291 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
292
293 /* Segment registers. */
294 for (i = 0; i < ppc_num_srs; i++)
295 {
296 int gdb_regno;
297
298 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
299 if (gdb_regno >= 0)
300 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
301 }
302
303 /* Altivec registers. */
304 if (tdep->ppc_vr0_regnum >= 0)
305 {
306 for (i = 0; i < ppc_num_vrs; i++)
307 set_sim_regno (sim_regno,
308 tdep->ppc_vr0_regnum + i,
309 sim_ppc_vr0_regnum + i);
310
311 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
312 we can treat this more like the other cases. */
313 set_sim_regno (sim_regno,
314 tdep->ppc_vr0_regnum + ppc_num_vrs,
315 sim_ppc_vscr_regnum);
316 }
317 /* vsave is a special-purpose register, so the code below handles it. */
318
319 /* SPE APU (E500) registers. */
320 if (tdep->ppc_ev0_upper_regnum >= 0)
321 for (i = 0; i < ppc_num_gprs; i++)
322 set_sim_regno (sim_regno,
323 tdep->ppc_ev0_upper_regnum + i,
324 sim_ppc_rh0_regnum + i);
325 if (tdep->ppc_acc_regnum >= 0)
326 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
327 /* spefscr is a special-purpose register, so the code below handles it. */
328
329 #ifdef WITH_SIM
330 /* Now handle all special-purpose registers. Verify that they
331 haven't mistakenly been assigned numbers by any of the above
332 code. */
333 for (i = 0; i < sim_ppc_num_sprs; i++)
334 {
335 const char *spr_name = sim_spr_register_name (i);
336 int gdb_regno = -1;
337
338 if (spr_name != NULL)
339 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
340
341 if (gdb_regno != -1)
342 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
343 }
344 #endif
345
346 /* Drop the initialized array into place. */
347 tdep->sim_regno = sim_regno;
348 }
349
350
351 /* Given a GDB register number REG, return the corresponding SIM
352 register number. */
353 static int
354 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 int sim_regno;
358
359 if (tdep->sim_regno == NULL)
360 init_sim_regno_table (gdbarch);
361
362 gdb_assert (0 <= reg
363 && reg <= gdbarch_num_regs (gdbarch)
364 + gdbarch_num_pseudo_regs (gdbarch));
365 sim_regno = tdep->sim_regno[reg];
366
367 if (sim_regno >= 0)
368 return sim_regno;
369 else
370 return LEGACY_SIM_REGNO_IGNORE;
371 }
372
373 \f
374
375 /* Register set support functions. */
376
377 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
378 Write the register to REGCACHE. */
379
380 void
381 ppc_supply_reg (struct regcache *regcache, int regnum,
382 const gdb_byte *regs, size_t offset, int regsize)
383 {
384 if (regnum != -1 && offset != -1)
385 {
386 if (regsize > 4)
387 {
388 struct gdbarch *gdbarch = get_regcache_arch (regcache);
389 int gdb_regsize = register_size (gdbarch, regnum);
390 if (gdb_regsize < regsize
391 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
392 offset += regsize - gdb_regsize;
393 }
394 regcache_raw_supply (regcache, regnum, regs + offset);
395 }
396 }
397
398 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
399 in a field REGSIZE wide. Zero pad as necessary. */
400
401 void
402 ppc_collect_reg (const struct regcache *regcache, int regnum,
403 gdb_byte *regs, size_t offset, int regsize)
404 {
405 if (regnum != -1 && offset != -1)
406 {
407 if (regsize > 4)
408 {
409 struct gdbarch *gdbarch = get_regcache_arch (regcache);
410 int gdb_regsize = register_size (gdbarch, regnum);
411 if (gdb_regsize < regsize)
412 {
413 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
414 {
415 memset (regs + offset, 0, regsize - gdb_regsize);
416 offset += regsize - gdb_regsize;
417 }
418 else
419 memset (regs + offset + regsize - gdb_regsize, 0,
420 regsize - gdb_regsize);
421 }
422 }
423 regcache_raw_collect (regcache, regnum, regs + offset);
424 }
425 }
426
427 static int
428 ppc_greg_offset (struct gdbarch *gdbarch,
429 struct gdbarch_tdep *tdep,
430 const struct ppc_reg_offsets *offsets,
431 int regnum,
432 int *regsize)
433 {
434 *regsize = offsets->gpr_size;
435 if (regnum >= tdep->ppc_gp0_regnum
436 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
437 return (offsets->r0_offset
438 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
439
440 if (regnum == gdbarch_pc_regnum (gdbarch))
441 return offsets->pc_offset;
442
443 if (regnum == tdep->ppc_ps_regnum)
444 return offsets->ps_offset;
445
446 if (regnum == tdep->ppc_lr_regnum)
447 return offsets->lr_offset;
448
449 if (regnum == tdep->ppc_ctr_regnum)
450 return offsets->ctr_offset;
451
452 *regsize = offsets->xr_size;
453 if (regnum == tdep->ppc_cr_regnum)
454 return offsets->cr_offset;
455
456 if (regnum == tdep->ppc_xer_regnum)
457 return offsets->xer_offset;
458
459 if (regnum == tdep->ppc_mq_regnum)
460 return offsets->mq_offset;
461
462 return -1;
463 }
464
465 static int
466 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
467 const struct ppc_reg_offsets *offsets,
468 int regnum)
469 {
470 if (regnum >= tdep->ppc_fp0_regnum
471 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
472 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
473
474 if (regnum == tdep->ppc_fpscr_regnum)
475 return offsets->fpscr_offset;
476
477 return -1;
478 }
479
480 static int
481 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
482 const struct ppc_reg_offsets *offsets,
483 int regnum)
484 {
485 if (regnum >= tdep->ppc_vr0_regnum
486 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
487 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
488
489 if (regnum == tdep->ppc_vrsave_regnum - 1)
490 return offsets->vscr_offset;
491
492 if (regnum == tdep->ppc_vrsave_regnum)
493 return offsets->vrsave_offset;
494
495 return -1;
496 }
497
498 /* Supply register REGNUM in the general-purpose register set REGSET
499 from the buffer specified by GREGS and LEN to register cache
500 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
501
502 void
503 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
504 int regnum, const void *gregs, size_t len)
505 {
506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508 const struct ppc_reg_offsets *offsets = regset->descr;
509 size_t offset;
510 int regsize;
511
512 if (regnum == -1)
513 {
514 int i;
515 int gpr_size = offsets->gpr_size;
516
517 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
518 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
519 i++, offset += gpr_size)
520 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
521
522 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
523 gregs, offsets->pc_offset, gpr_size);
524 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
525 gregs, offsets->ps_offset, gpr_size);
526 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
527 gregs, offsets->lr_offset, gpr_size);
528 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
529 gregs, offsets->ctr_offset, gpr_size);
530 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
531 gregs, offsets->cr_offset, offsets->xr_size);
532 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
533 gregs, offsets->xer_offset, offsets->xr_size);
534 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
535 gregs, offsets->mq_offset, offsets->xr_size);
536 return;
537 }
538
539 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
540 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
541 }
542
543 /* Supply register REGNUM in the floating-point register set REGSET
544 from the buffer specified by FPREGS and LEN to register cache
545 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
546
547 void
548 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
549 int regnum, const void *fpregs, size_t len)
550 {
551 struct gdbarch *gdbarch = get_regcache_arch (regcache);
552 struct gdbarch_tdep *tdep;
553 const struct ppc_reg_offsets *offsets;
554 size_t offset;
555
556 if (!ppc_floating_point_unit_p (gdbarch))
557 return;
558
559 tdep = gdbarch_tdep (gdbarch);
560 offsets = regset->descr;
561 if (regnum == -1)
562 {
563 int i;
564
565 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
566 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
567 i++, offset += 8)
568 ppc_supply_reg (regcache, i, fpregs, offset, 8);
569
570 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
571 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
572 return;
573 }
574
575 offset = ppc_fpreg_offset (tdep, offsets, regnum);
576 ppc_supply_reg (regcache, regnum, fpregs, offset,
577 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
578 }
579
580 /* Supply register REGNUM in the VSX register set REGSET
581 from the buffer specified by VSXREGS and LEN to register cache
582 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
583
584 void
585 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
586 int regnum, const void *vsxregs, size_t len)
587 {
588 struct gdbarch *gdbarch = get_regcache_arch (regcache);
589 struct gdbarch_tdep *tdep;
590
591 if (!ppc_vsx_support_p (gdbarch))
592 return;
593
594 tdep = gdbarch_tdep (gdbarch);
595
596 if (regnum == -1)
597 {
598 int i;
599
600 for (i = tdep->ppc_vsr0_upper_regnum;
601 i < tdep->ppc_vsr0_upper_regnum + 32;
602 i++)
603 ppc_supply_reg (regcache, i, vsxregs, 0, 8);
604
605 return;
606 }
607 else
608 ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
609 }
610
611 /* Supply register REGNUM in the Altivec register set REGSET
612 from the buffer specified by VRREGS and LEN to register cache
613 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
614
615 void
616 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
617 int regnum, const void *vrregs, size_t len)
618 {
619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
620 struct gdbarch_tdep *tdep;
621 const struct ppc_reg_offsets *offsets;
622 size_t offset;
623
624 if (!ppc_altivec_support_p (gdbarch))
625 return;
626
627 tdep = gdbarch_tdep (gdbarch);
628 offsets = regset->descr;
629 if (regnum == -1)
630 {
631 int i;
632
633 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
634 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
635 i++, offset += 16)
636 ppc_supply_reg (regcache, i, vrregs, offset, 16);
637
638 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
639 vrregs, offsets->vscr_offset, 4);
640
641 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
642 vrregs, offsets->vrsave_offset, 4);
643 return;
644 }
645
646 offset = ppc_vrreg_offset (tdep, offsets, regnum);
647 if (regnum != tdep->ppc_vrsave_regnum
648 && regnum != tdep->ppc_vrsave_regnum - 1)
649 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
650 else
651 ppc_supply_reg (regcache, regnum,
652 vrregs, offset, 4);
653 }
654
655 /* Collect register REGNUM in the general-purpose register set
656 REGSET from register cache REGCACHE into the buffer specified by
657 GREGS and LEN. If REGNUM is -1, do this for all registers in
658 REGSET. */
659
660 void
661 ppc_collect_gregset (const struct regset *regset,
662 const struct regcache *regcache,
663 int regnum, void *gregs, size_t len)
664 {
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
667 const struct ppc_reg_offsets *offsets = regset->descr;
668 size_t offset;
669 int regsize;
670
671 if (regnum == -1)
672 {
673 int i;
674 int gpr_size = offsets->gpr_size;
675
676 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
677 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
678 i++, offset += gpr_size)
679 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
680
681 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
682 gregs, offsets->pc_offset, gpr_size);
683 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
684 gregs, offsets->ps_offset, gpr_size);
685 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
686 gregs, offsets->lr_offset, gpr_size);
687 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
688 gregs, offsets->ctr_offset, gpr_size);
689 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
690 gregs, offsets->cr_offset, offsets->xr_size);
691 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
692 gregs, offsets->xer_offset, offsets->xr_size);
693 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
694 gregs, offsets->mq_offset, offsets->xr_size);
695 return;
696 }
697
698 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
699 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
700 }
701
702 /* Collect register REGNUM in the floating-point register set
703 REGSET from register cache REGCACHE into the buffer specified by
704 FPREGS and LEN. If REGNUM is -1, do this for all registers in
705 REGSET. */
706
707 void
708 ppc_collect_fpregset (const struct regset *regset,
709 const struct regcache *regcache,
710 int regnum, void *fpregs, size_t len)
711 {
712 struct gdbarch *gdbarch = get_regcache_arch (regcache);
713 struct gdbarch_tdep *tdep;
714 const struct ppc_reg_offsets *offsets;
715 size_t offset;
716
717 if (!ppc_floating_point_unit_p (gdbarch))
718 return;
719
720 tdep = gdbarch_tdep (gdbarch);
721 offsets = regset->descr;
722 if (regnum == -1)
723 {
724 int i;
725
726 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
727 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
728 i++, offset += 8)
729 ppc_collect_reg (regcache, i, fpregs, offset, 8);
730
731 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
732 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
733 return;
734 }
735
736 offset = ppc_fpreg_offset (tdep, offsets, regnum);
737 ppc_collect_reg (regcache, regnum, fpregs, offset,
738 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
739 }
740
741 /* Collect register REGNUM in the VSX register set
742 REGSET from register cache REGCACHE into the buffer specified by
743 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
744 REGSET. */
745
746 void
747 ppc_collect_vsxregset (const struct regset *regset,
748 const struct regcache *regcache,
749 int regnum, void *vsxregs, size_t len)
750 {
751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
752 struct gdbarch_tdep *tdep;
753
754 if (!ppc_vsx_support_p (gdbarch))
755 return;
756
757 tdep = gdbarch_tdep (gdbarch);
758
759 if (regnum == -1)
760 {
761 int i;
762
763 for (i = tdep->ppc_vsr0_upper_regnum;
764 i < tdep->ppc_vsr0_upper_regnum + 32;
765 i++)
766 ppc_collect_reg (regcache, i, vsxregs, 0, 8);
767
768 return;
769 }
770 else
771 ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
772 }
773
774
775 /* Collect register REGNUM in the Altivec register set
776 REGSET from register cache REGCACHE into the buffer specified by
777 VRREGS and LEN. If REGNUM is -1, do this for all registers in
778 REGSET. */
779
780 void
781 ppc_collect_vrregset (const struct regset *regset,
782 const struct regcache *regcache,
783 int regnum, void *vrregs, size_t len)
784 {
785 struct gdbarch *gdbarch = get_regcache_arch (regcache);
786 struct gdbarch_tdep *tdep;
787 const struct ppc_reg_offsets *offsets;
788 size_t offset;
789
790 if (!ppc_altivec_support_p (gdbarch))
791 return;
792
793 tdep = gdbarch_tdep (gdbarch);
794 offsets = regset->descr;
795 if (regnum == -1)
796 {
797 int i;
798
799 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
800 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
801 i++, offset += 16)
802 ppc_collect_reg (regcache, i, vrregs, offset, 16);
803
804 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
805 vrregs, offsets->vscr_offset, 4);
806
807 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
808 vrregs, offsets->vrsave_offset, 4);
809 return;
810 }
811
812 offset = ppc_vrreg_offset (tdep, offsets, regnum);
813 if (regnum != tdep->ppc_vrsave_regnum
814 && regnum != tdep->ppc_vrsave_regnum - 1)
815 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
816 else
817 ppc_collect_reg (regcache, regnum,
818 vrregs, offset, 4);
819 }
820 \f
821
822 static int
823 insn_changes_sp_or_jumps (unsigned long insn)
824 {
825 int opcode = (insn >> 26) & 0x03f;
826 int sd = (insn >> 21) & 0x01f;
827 int a = (insn >> 16) & 0x01f;
828 int subcode = (insn >> 1) & 0x3ff;
829
830 /* Changes the stack pointer. */
831
832 /* NOTE: There are many ways to change the value of a given register.
833 The ways below are those used when the register is R1, the SP,
834 in a funtion's epilogue. */
835
836 if (opcode == 31 && subcode == 444 && a == 1)
837 return 1; /* mr R1,Rn */
838 if (opcode == 14 && sd == 1)
839 return 1; /* addi R1,Rn,simm */
840 if (opcode == 58 && sd == 1)
841 return 1; /* ld R1,ds(Rn) */
842
843 /* Transfers control. */
844
845 if (opcode == 18)
846 return 1; /* b */
847 if (opcode == 16)
848 return 1; /* bc */
849 if (opcode == 19 && subcode == 16)
850 return 1; /* bclr */
851 if (opcode == 19 && subcode == 528)
852 return 1; /* bcctr */
853
854 return 0;
855 }
856
857 /* Return true if we are in the function's epilogue, i.e. after the
858 instruction that destroyed the function's stack frame.
859
860 1) scan forward from the point of execution:
861 a) If you find an instruction that modifies the stack pointer
862 or transfers control (except a return), execution is not in
863 an epilogue, return.
864 b) Stop scanning if you find a return instruction or reach the
865 end of the function or reach the hard limit for the size of
866 an epilogue.
867 2) scan backward from the point of execution:
868 a) If you find an instruction that modifies the stack pointer,
869 execution *is* in an epilogue, return.
870 b) Stop scanning if you reach an instruction that transfers
871 control or the beginning of the function or reach the hard
872 limit for the size of an epilogue. */
873
874 static int
875 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
876 {
877 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
878 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
879 bfd_byte insn_buf[PPC_INSN_SIZE];
880 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
881 unsigned long insn;
882 struct frame_info *curfrm;
883
884 /* Find the search limits based on function boundaries and hard limit. */
885
886 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
887 return 0;
888
889 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
890 if (epilogue_start < func_start) epilogue_start = func_start;
891
892 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
893 if (epilogue_end > func_end) epilogue_end = func_end;
894
895 curfrm = get_current_frame ();
896
897 /* Scan forward until next 'blr'. */
898
899 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
900 {
901 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
902 return 0;
903 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
904 if (insn == 0x4e800020)
905 break;
906 /* Assume a bctr is a tail call unless it points strictly within
907 this function. */
908 if (insn == 0x4e800420)
909 {
910 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
911 tdep->ppc_ctr_regnum);
912 if (ctr > func_start && ctr < func_end)
913 return 0;
914 else
915 break;
916 }
917 if (insn_changes_sp_or_jumps (insn))
918 return 0;
919 }
920
921 /* Scan backward until adjustment to stack pointer (R1). */
922
923 for (scan_pc = pc - PPC_INSN_SIZE;
924 scan_pc >= epilogue_start;
925 scan_pc -= PPC_INSN_SIZE)
926 {
927 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
928 return 0;
929 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
930 if (insn_changes_sp_or_jumps (insn))
931 return 1;
932 }
933
934 return 0;
935 }
936
937 /* Get the ith function argument for the current function. */
938 static CORE_ADDR
939 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
940 struct type *type)
941 {
942 return get_frame_register_unsigned (frame, 3 + argi);
943 }
944
945 /* Sequence of bytes for breakpoint instruction. */
946
947 const static unsigned char *
948 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
949 int *bp_size)
950 {
951 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
952 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
953 *bp_size = 4;
954 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
955 return big_breakpoint;
956 else
957 return little_breakpoint;
958 }
959
960 /* Instruction masks for displaced stepping. */
961 #define BRANCH_MASK 0xfc000000
962 #define BP_MASK 0xFC0007FE
963 #define B_INSN 0x48000000
964 #define BC_INSN 0x40000000
965 #define BXL_INSN 0x4c000000
966 #define BP_INSN 0x7C000008
967
968 /* Fix up the state of registers and memory after having single-stepped
969 a displaced instruction. */
970 static void
971 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
972 struct displaced_step_closure *closure,
973 CORE_ADDR from, CORE_ADDR to,
974 struct regcache *regs)
975 {
976 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
977 /* Since we use simple_displaced_step_copy_insn, our closure is a
978 copy of the instruction. */
979 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
980 PPC_INSN_SIZE, byte_order);
981 ULONGEST opcode = 0;
982 /* Offset for non PC-relative instructions. */
983 LONGEST offset = PPC_INSN_SIZE;
984
985 opcode = insn & BRANCH_MASK;
986
987 if (debug_displaced)
988 fprintf_unfiltered (gdb_stdlog,
989 "displaced: (ppc) fixup (%s, %s)\n",
990 paddress (gdbarch, from), paddress (gdbarch, to));
991
992
993 /* Handle PC-relative branch instructions. */
994 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
995 {
996 ULONGEST current_pc;
997
998 /* Read the current PC value after the instruction has been executed
999 in a displaced location. Calculate the offset to be applied to the
1000 original PC value before the displaced stepping. */
1001 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1002 &current_pc);
1003 offset = current_pc - to;
1004
1005 if (opcode != BXL_INSN)
1006 {
1007 /* Check for AA bit indicating whether this is an absolute
1008 addressing or PC-relative (1: absolute, 0: relative). */
1009 if (!(insn & 0x2))
1010 {
1011 /* PC-relative addressing is being used in the branch. */
1012 if (debug_displaced)
1013 fprintf_unfiltered
1014 (gdb_stdlog,
1015 "displaced: (ppc) branch instruction: %s\n"
1016 "displaced: (ppc) adjusted PC from %s to %s\n",
1017 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1018 paddress (gdbarch, from + offset));
1019
1020 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1021 from + offset);
1022 }
1023 }
1024 else
1025 {
1026 /* If we're here, it means we have a branch to LR or CTR. If the
1027 branch was taken, the offset is probably greater than 4 (the next
1028 instruction), so it's safe to assume that an offset of 4 means we
1029 did not take the branch. */
1030 if (offset == PPC_INSN_SIZE)
1031 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1032 from + PPC_INSN_SIZE);
1033 }
1034
1035 /* Check for LK bit indicating whether we should set the link
1036 register to point to the next instruction
1037 (1: Set, 0: Don't set). */
1038 if (insn & 0x1)
1039 {
1040 /* Link register needs to be set to the next instruction's PC. */
1041 regcache_cooked_write_unsigned (regs,
1042 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1043 from + PPC_INSN_SIZE);
1044 if (debug_displaced)
1045 fprintf_unfiltered (gdb_stdlog,
1046 "displaced: (ppc) adjusted LR to %s\n",
1047 paddress (gdbarch, from + PPC_INSN_SIZE));
1048
1049 }
1050 }
1051 /* Check for breakpoints in the inferior. If we've found one, place the PC
1052 right at the breakpoint instruction. */
1053 else if ((insn & BP_MASK) == BP_INSN)
1054 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1055 else
1056 /* Handle any other instructions that do not fit in the categories above. */
1057 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1058 from + offset);
1059 }
1060
1061 /* Instruction masks used during single-stepping of atomic sequences. */
1062 #define LWARX_MASK 0xfc0007fe
1063 #define LWARX_INSTRUCTION 0x7c000028
1064 #define LDARX_INSTRUCTION 0x7c0000A8
1065 #define STWCX_MASK 0xfc0007ff
1066 #define STWCX_INSTRUCTION 0x7c00012d
1067 #define STDCX_INSTRUCTION 0x7c0001ad
1068
1069 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1070 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1071 is found, attempt to step through it. A breakpoint is placed at the end of
1072 the sequence. */
1073
1074 int
1075 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1076 {
1077 struct gdbarch *gdbarch = get_frame_arch (frame);
1078 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1079 CORE_ADDR pc = get_frame_pc (frame);
1080 CORE_ADDR breaks[2] = {-1, -1};
1081 CORE_ADDR loc = pc;
1082 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1083 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1084 int insn_count;
1085 int index;
1086 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1087 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1088 int opcode; /* Branch instruction's OPcode. */
1089 int bc_insn_count = 0; /* Conditional branch instruction count. */
1090
1091 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1092 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1093 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1094 return 0;
1095
1096 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1097 instructions. */
1098 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1099 {
1100 loc += PPC_INSN_SIZE;
1101 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1102
1103 /* Assume that there is at most one conditional branch in the atomic
1104 sequence. If a conditional branch is found, put a breakpoint in
1105 its destination address. */
1106 if ((insn & BRANCH_MASK) == BC_INSN)
1107 {
1108 int immediate = ((insn & ~3) << 16) >> 16;
1109 int absolute = ((insn >> 1) & 1);
1110
1111 if (bc_insn_count >= 1)
1112 return 0; /* More than one conditional branch found, fallback
1113 to the standard single-step code. */
1114
1115 if (absolute)
1116 breaks[1] = immediate;
1117 else
1118 breaks[1] = pc + immediate;
1119
1120 bc_insn_count++;
1121 last_breakpoint++;
1122 }
1123
1124 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1125 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1126 break;
1127 }
1128
1129 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1130 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1131 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1132 return 0;
1133
1134 closing_insn = loc;
1135 loc += PPC_INSN_SIZE;
1136 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1137
1138 /* Insert a breakpoint right after the end of the atomic sequence. */
1139 breaks[0] = loc;
1140
1141 /* Check for duplicated breakpoints. Check also for a breakpoint
1142 placed (branch instruction's destination) at the stwcx/stdcx
1143 instruction, this resets the reservation and take us back to the
1144 lwarx/ldarx instruction at the beginning of the atomic sequence. */
1145 if (last_breakpoint && ((breaks[1] == breaks[0])
1146 || (breaks[1] == closing_insn)))
1147 last_breakpoint = 0;
1148
1149 /* Effectively inserts the breakpoints. */
1150 for (index = 0; index <= last_breakpoint; index++)
1151 insert_single_step_breakpoint (gdbarch, breaks[index]);
1152
1153 return 1;
1154 }
1155
1156
1157 #define SIGNED_SHORT(x) \
1158 ((sizeof (short) == 2) \
1159 ? ((int)(short)(x)) \
1160 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1161
1162 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1163
1164 /* Limit the number of skipped non-prologue instructions, as the examining
1165 of the prologue is expensive. */
1166 static int max_skip_non_prologue_insns = 10;
1167
1168 /* Return nonzero if the given instruction OP can be part of the prologue
1169 of a function and saves a parameter on the stack. FRAMEP should be
1170 set if one of the previous instructions in the function has set the
1171 Frame Pointer. */
1172
1173 static int
1174 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1175 {
1176 /* Move parameters from argument registers to temporary register. */
1177 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1178 {
1179 /* Rx must be scratch register r0. */
1180 const int rx_regno = (op >> 16) & 31;
1181 /* Ry: Only r3 - r10 are used for parameter passing. */
1182 const int ry_regno = GET_SRC_REG (op);
1183
1184 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1185 {
1186 *r0_contains_arg = 1;
1187 return 1;
1188 }
1189 else
1190 return 0;
1191 }
1192
1193 /* Save a General Purpose Register on stack. */
1194
1195 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1196 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1197 {
1198 /* Rx: Only r3 - r10 are used for parameter passing. */
1199 const int rx_regno = GET_SRC_REG (op);
1200
1201 return (rx_regno >= 3 && rx_regno <= 10);
1202 }
1203
1204 /* Save a General Purpose Register on stack via the Frame Pointer. */
1205
1206 if (framep &&
1207 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1208 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1209 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1210 {
1211 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1212 However, the compiler sometimes uses r0 to hold an argument. */
1213 const int rx_regno = GET_SRC_REG (op);
1214
1215 return ((rx_regno >= 3 && rx_regno <= 10)
1216 || (rx_regno == 0 && *r0_contains_arg));
1217 }
1218
1219 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1220 {
1221 /* Only f2 - f8 are used for parameter passing. */
1222 const int src_regno = GET_SRC_REG (op);
1223
1224 return (src_regno >= 2 && src_regno <= 8);
1225 }
1226
1227 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1228 {
1229 /* Only f2 - f8 are used for parameter passing. */
1230 const int src_regno = GET_SRC_REG (op);
1231
1232 return (src_regno >= 2 && src_regno <= 8);
1233 }
1234
1235 /* Not an insn that saves a parameter on stack. */
1236 return 0;
1237 }
1238
1239 /* Assuming that INSN is a "bl" instruction located at PC, return
1240 nonzero if the destination of the branch is a "blrl" instruction.
1241
1242 This sequence is sometimes found in certain function prologues.
1243 It allows the function to load the LR register with a value that
1244 they can use to access PIC data using PC-relative offsets. */
1245
1246 static int
1247 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1248 {
1249 CORE_ADDR dest;
1250 int immediate;
1251 int absolute;
1252 int dest_insn;
1253
1254 absolute = (int) ((insn >> 1) & 1);
1255 immediate = ((insn & ~3) << 6) >> 6;
1256 if (absolute)
1257 dest = immediate;
1258 else
1259 dest = pc + immediate;
1260
1261 dest_insn = read_memory_integer (dest, 4, byte_order);
1262 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1263 return 1;
1264
1265 return 0;
1266 }
1267
1268 /* Masks for decoding a branch-and-link (bl) instruction.
1269
1270 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1271 The former is anded with the opcode in question; if the result of
1272 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1273 question is a ``bl'' instruction.
1274
1275 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1276 the branch displacement. */
1277
1278 #define BL_MASK 0xfc000001
1279 #define BL_INSTRUCTION 0x48000001
1280 #define BL_DISPLACEMENT_MASK 0x03fffffc
1281
1282 static unsigned long
1283 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1284 {
1285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1286 gdb_byte buf[4];
1287 unsigned long op;
1288
1289 /* Fetch the instruction and convert it to an integer. */
1290 if (target_read_memory (pc, buf, 4))
1291 return 0;
1292 op = extract_unsigned_integer (buf, 4, byte_order);
1293
1294 return op;
1295 }
1296
1297 /* GCC generates several well-known sequences of instructions at the begining
1298 of each function prologue when compiling with -fstack-check. If one of
1299 such sequences starts at START_PC, then return the address of the
1300 instruction immediately past this sequence. Otherwise, return START_PC. */
1301
1302 static CORE_ADDR
1303 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1304 {
1305 CORE_ADDR pc = start_pc;
1306 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1307
1308 /* First possible sequence: A small number of probes.
1309 stw 0, -<some immediate>(1)
1310 [repeat this instruction any (small) number of times]
1311 */
1312
1313 if ((op & 0xffff0000) == 0x90010000)
1314 {
1315 while ((op & 0xffff0000) == 0x90010000)
1316 {
1317 pc = pc + 4;
1318 op = rs6000_fetch_instruction (gdbarch, pc);
1319 }
1320 return pc;
1321 }
1322
1323 /* Second sequence: A probing loop.
1324 addi 12,1,-<some immediate>
1325 lis 0,-<some immediate>
1326 [possibly ori 0,0,<some immediate>]
1327 add 0,12,0
1328 cmpw 0,12,0
1329 beq 0,<disp>
1330 addi 12,12,-<some immediate>
1331 stw 0,0(12)
1332 b <disp>
1333 [possibly one last probe: stw 0,<some immediate>(12)]
1334 */
1335
1336 while (1)
1337 {
1338 /* addi 12,1,-<some immediate> */
1339 if ((op & 0xffff0000) != 0x39810000)
1340 break;
1341
1342 /* lis 0,-<some immediate> */
1343 pc = pc + 4;
1344 op = rs6000_fetch_instruction (gdbarch, pc);
1345 if ((op & 0xffff0000) != 0x3c000000)
1346 break;
1347
1348 pc = pc + 4;
1349 op = rs6000_fetch_instruction (gdbarch, pc);
1350 /* [possibly ori 0,0,<some immediate>] */
1351 if ((op & 0xffff0000) == 0x60000000)
1352 {
1353 pc = pc + 4;
1354 op = rs6000_fetch_instruction (gdbarch, pc);
1355 }
1356 /* add 0,12,0 */
1357 if (op != 0x7c0c0214)
1358 break;
1359
1360 /* cmpw 0,12,0 */
1361 pc = pc + 4;
1362 op = rs6000_fetch_instruction (gdbarch, pc);
1363 if (op != 0x7c0c0000)
1364 break;
1365
1366 /* beq 0,<disp> */
1367 pc = pc + 4;
1368 op = rs6000_fetch_instruction (gdbarch, pc);
1369 if ((op & 0xff9f0001) != 0x41820000)
1370 break;
1371
1372 /* addi 12,12,-<some immediate> */
1373 pc = pc + 4;
1374 op = rs6000_fetch_instruction (gdbarch, pc);
1375 if ((op & 0xffff0000) != 0x398c0000)
1376 break;
1377
1378 /* stw 0,0(12) */
1379 pc = pc + 4;
1380 op = rs6000_fetch_instruction (gdbarch, pc);
1381 if (op != 0x900c0000)
1382 break;
1383
1384 /* b <disp> */
1385 pc = pc + 4;
1386 op = rs6000_fetch_instruction (gdbarch, pc);
1387 if ((op & 0xfc000001) != 0x48000000)
1388 break;
1389
1390 /* [possibly one last probe: stw 0,<some immediate>(12)] */
1391 pc = pc + 4;
1392 op = rs6000_fetch_instruction (gdbarch, pc);
1393 if ((op & 0xffff0000) == 0x900c0000)
1394 {
1395 pc = pc + 4;
1396 op = rs6000_fetch_instruction (gdbarch, pc);
1397 }
1398
1399 /* We found a valid stack-check sequence, return the new PC. */
1400 return pc;
1401 }
1402
1403 /* Third sequence: No probe; instead, a comparizon between the stack size
1404 limit (saved in a run-time global variable) and the current stack
1405 pointer:
1406
1407 addi 0,1,-<some immediate>
1408 lis 12,__gnat_stack_limit@ha
1409 lwz 12,__gnat_stack_limit@l(12)
1410 twllt 0,12
1411
1412 or, with a small variant in the case of a bigger stack frame:
1413 addis 0,1,<some immediate>
1414 addic 0,0,-<some immediate>
1415 lis 12,__gnat_stack_limit@ha
1416 lwz 12,__gnat_stack_limit@l(12)
1417 twllt 0,12
1418 */
1419 while (1)
1420 {
1421 /* addi 0,1,-<some immediate> */
1422 if ((op & 0xffff0000) != 0x38010000)
1423 {
1424 /* small stack frame variant not recognized; try the
1425 big stack frame variant: */
1426
1427 /* addis 0,1,<some immediate> */
1428 if ((op & 0xffff0000) != 0x3c010000)
1429 break;
1430
1431 /* addic 0,0,-<some immediate> */
1432 pc = pc + 4;
1433 op = rs6000_fetch_instruction (gdbarch, pc);
1434 if ((op & 0xffff0000) != 0x30000000)
1435 break;
1436 }
1437
1438 /* lis 12,<some immediate> */
1439 pc = pc + 4;
1440 op = rs6000_fetch_instruction (gdbarch, pc);
1441 if ((op & 0xffff0000) != 0x3d800000)
1442 break;
1443
1444 /* lwz 12,<some immediate>(12) */
1445 pc = pc + 4;
1446 op = rs6000_fetch_instruction (gdbarch, pc);
1447 if ((op & 0xffff0000) != 0x818c0000)
1448 break;
1449
1450 /* twllt 0,12 */
1451 pc = pc + 4;
1452 op = rs6000_fetch_instruction (gdbarch, pc);
1453 if ((op & 0xfffffffe) != 0x7c406008)
1454 break;
1455
1456 /* We found a valid stack-check sequence, return the new PC. */
1457 return pc;
1458 }
1459
1460 /* No stack check code in our prologue, return the start_pc. */
1461 return start_pc;
1462 }
1463
1464 /* return pc value after skipping a function prologue and also return
1465 information about a function frame.
1466
1467 in struct rs6000_framedata fdata:
1468 - frameless is TRUE, if function does not have a frame.
1469 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1470 - offset is the initial size of this stack frame --- the amount by
1471 which we decrement the sp to allocate the frame.
1472 - saved_gpr is the number of the first saved gpr.
1473 - saved_fpr is the number of the first saved fpr.
1474 - saved_vr is the number of the first saved vr.
1475 - saved_ev is the number of the first saved ev.
1476 - alloca_reg is the number of the register used for alloca() handling.
1477 Otherwise -1.
1478 - gpr_offset is the offset of the first saved gpr from the previous frame.
1479 - fpr_offset is the offset of the first saved fpr from the previous frame.
1480 - vr_offset is the offset of the first saved vr from the previous frame.
1481 - ev_offset is the offset of the first saved ev from the previous frame.
1482 - lr_offset is the offset of the saved lr
1483 - cr_offset is the offset of the saved cr
1484 - vrsave_offset is the offset of the saved vrsave register
1485 */
1486
1487 static CORE_ADDR
1488 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1489 struct rs6000_framedata *fdata)
1490 {
1491 CORE_ADDR orig_pc = pc;
1492 CORE_ADDR last_prologue_pc = pc;
1493 CORE_ADDR li_found_pc = 0;
1494 gdb_byte buf[4];
1495 unsigned long op;
1496 long offset = 0;
1497 long vr_saved_offset = 0;
1498 int lr_reg = -1;
1499 int cr_reg = -1;
1500 int vr_reg = -1;
1501 int ev_reg = -1;
1502 long ev_offset = 0;
1503 int vrsave_reg = -1;
1504 int reg;
1505 int framep = 0;
1506 int minimal_toc_loaded = 0;
1507 int prev_insn_was_prologue_insn = 1;
1508 int num_skip_non_prologue_insns = 0;
1509 int r0_contains_arg = 0;
1510 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1511 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1512 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1513
1514 memset (fdata, 0, sizeof (struct rs6000_framedata));
1515 fdata->saved_gpr = -1;
1516 fdata->saved_fpr = -1;
1517 fdata->saved_vr = -1;
1518 fdata->saved_ev = -1;
1519 fdata->alloca_reg = -1;
1520 fdata->frameless = 1;
1521 fdata->nosavedpc = 1;
1522 fdata->lr_register = -1;
1523
1524 pc = rs6000_skip_stack_check (gdbarch, pc);
1525 if (pc >= lim_pc)
1526 pc = lim_pc;
1527
1528 for (;; pc += 4)
1529 {
1530 /* Sometimes it isn't clear if an instruction is a prologue
1531 instruction or not. When we encounter one of these ambiguous
1532 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1533 Otherwise, we'll assume that it really is a prologue instruction. */
1534 if (prev_insn_was_prologue_insn)
1535 last_prologue_pc = pc;
1536
1537 /* Stop scanning if we've hit the limit. */
1538 if (pc >= lim_pc)
1539 break;
1540
1541 prev_insn_was_prologue_insn = 1;
1542
1543 /* Fetch the instruction and convert it to an integer. */
1544 if (target_read_memory (pc, buf, 4))
1545 break;
1546 op = extract_unsigned_integer (buf, 4, byte_order);
1547
1548 if ((op & 0xfc1fffff) == 0x7c0802a6)
1549 { /* mflr Rx */
1550 /* Since shared library / PIC code, which needs to get its
1551 address at runtime, can appear to save more than one link
1552 register vis:
1553
1554 *INDENT-OFF*
1555 stwu r1,-304(r1)
1556 mflr r3
1557 bl 0xff570d0 (blrl)
1558 stw r30,296(r1)
1559 mflr r30
1560 stw r31,300(r1)
1561 stw r3,308(r1);
1562 ...
1563 *INDENT-ON*
1564
1565 remember just the first one, but skip over additional
1566 ones. */
1567 if (lr_reg == -1)
1568 lr_reg = (op & 0x03e00000) >> 21;
1569 if (lr_reg == 0)
1570 r0_contains_arg = 0;
1571 continue;
1572 }
1573 else if ((op & 0xfc1fffff) == 0x7c000026)
1574 { /* mfcr Rx */
1575 cr_reg = (op & 0x03e00000);
1576 if (cr_reg == 0)
1577 r0_contains_arg = 0;
1578 continue;
1579
1580 }
1581 else if ((op & 0xfc1f0000) == 0xd8010000)
1582 { /* stfd Rx,NUM(r1) */
1583 reg = GET_SRC_REG (op);
1584 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1585 {
1586 fdata->saved_fpr = reg;
1587 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1588 }
1589 continue;
1590
1591 }
1592 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1593 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1594 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1595 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1596 {
1597
1598 reg = GET_SRC_REG (op);
1599 if ((op & 0xfc1f0000) == 0xbc010000)
1600 fdata->gpr_mask |= ~((1U << reg) - 1);
1601 else
1602 fdata->gpr_mask |= 1U << reg;
1603 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1604 {
1605 fdata->saved_gpr = reg;
1606 if ((op & 0xfc1f0003) == 0xf8010000)
1607 op &= ~3UL;
1608 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1609 }
1610 continue;
1611
1612 }
1613 else if ((op & 0xffff0000) == 0x60000000)
1614 {
1615 /* nop */
1616 /* Allow nops in the prologue, but do not consider them to
1617 be part of the prologue unless followed by other prologue
1618 instructions. */
1619 prev_insn_was_prologue_insn = 0;
1620 continue;
1621
1622 }
1623 else if ((op & 0xffff0000) == 0x3c000000)
1624 { /* addis 0,0,NUM, used
1625 for >= 32k frames */
1626 fdata->offset = (op & 0x0000ffff) << 16;
1627 fdata->frameless = 0;
1628 r0_contains_arg = 0;
1629 continue;
1630
1631 }
1632 else if ((op & 0xffff0000) == 0x60000000)
1633 { /* ori 0,0,NUM, 2nd ha
1634 lf of >= 32k frames */
1635 fdata->offset |= (op & 0x0000ffff);
1636 fdata->frameless = 0;
1637 r0_contains_arg = 0;
1638 continue;
1639
1640 }
1641 else if (lr_reg >= 0 &&
1642 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1643 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1644 /* stw Rx, NUM(r1) */
1645 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1646 /* stwu Rx, NUM(r1) */
1647 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1648 { /* where Rx == lr */
1649 fdata->lr_offset = offset;
1650 fdata->nosavedpc = 0;
1651 /* Invalidate lr_reg, but don't set it to -1.
1652 That would mean that it had never been set. */
1653 lr_reg = -2;
1654 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1655 (op & 0xfc000000) == 0x90000000) /* stw */
1656 {
1657 /* Does not update r1, so add displacement to lr_offset. */
1658 fdata->lr_offset += SIGNED_SHORT (op);
1659 }
1660 continue;
1661
1662 }
1663 else if (cr_reg >= 0 &&
1664 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1665 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1666 /* stw Rx, NUM(r1) */
1667 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1668 /* stwu Rx, NUM(r1) */
1669 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1670 { /* where Rx == cr */
1671 fdata->cr_offset = offset;
1672 /* Invalidate cr_reg, but don't set it to -1.
1673 That would mean that it had never been set. */
1674 cr_reg = -2;
1675 if ((op & 0xfc000003) == 0xf8000000 ||
1676 (op & 0xfc000000) == 0x90000000)
1677 {
1678 /* Does not update r1, so add displacement to cr_offset. */
1679 fdata->cr_offset += SIGNED_SHORT (op);
1680 }
1681 continue;
1682
1683 }
1684 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1685 {
1686 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1687 prediction bits. If the LR has already been saved, we can
1688 skip it. */
1689 continue;
1690 }
1691 else if (op == 0x48000005)
1692 { /* bl .+4 used in
1693 -mrelocatable */
1694 fdata->used_bl = 1;
1695 continue;
1696
1697 }
1698 else if (op == 0x48000004)
1699 { /* b .+4 (xlc) */
1700 break;
1701
1702 }
1703 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1704 in V.4 -mminimal-toc */
1705 (op & 0xffff0000) == 0x3bde0000)
1706 { /* addi 30,30,foo@l */
1707 continue;
1708
1709 }
1710 else if ((op & 0xfc000001) == 0x48000001)
1711 { /* bl foo,
1712 to save fprs??? */
1713
1714 fdata->frameless = 0;
1715
1716 /* If the return address has already been saved, we can skip
1717 calls to blrl (for PIC). */
1718 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1719 {
1720 fdata->used_bl = 1;
1721 continue;
1722 }
1723
1724 /* Don't skip over the subroutine call if it is not within
1725 the first three instructions of the prologue and either
1726 we have no line table information or the line info tells
1727 us that the subroutine call is not part of the line
1728 associated with the prologue. */
1729 if ((pc - orig_pc) > 8)
1730 {
1731 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1732 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1733
1734 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1735 break;
1736 }
1737
1738 op = read_memory_integer (pc + 4, 4, byte_order);
1739
1740 /* At this point, make sure this is not a trampoline
1741 function (a function that simply calls another functions,
1742 and nothing else). If the next is not a nop, this branch
1743 was part of the function prologue. */
1744
1745 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1746 break; /* don't skip over
1747 this branch */
1748
1749 fdata->used_bl = 1;
1750 continue;
1751 }
1752 /* update stack pointer */
1753 else if ((op & 0xfc1f0000) == 0x94010000)
1754 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1755 fdata->frameless = 0;
1756 fdata->offset = SIGNED_SHORT (op);
1757 offset = fdata->offset;
1758 continue;
1759 }
1760 else if ((op & 0xfc1f016a) == 0x7c01016e)
1761 { /* stwux rX,r1,rY */
1762 /* no way to figure out what r1 is going to be */
1763 fdata->frameless = 0;
1764 offset = fdata->offset;
1765 continue;
1766 }
1767 else if ((op & 0xfc1f0003) == 0xf8010001)
1768 { /* stdu rX,NUM(r1) */
1769 fdata->frameless = 0;
1770 fdata->offset = SIGNED_SHORT (op & ~3UL);
1771 offset = fdata->offset;
1772 continue;
1773 }
1774 else if ((op & 0xfc1f016a) == 0x7c01016a)
1775 { /* stdux rX,r1,rY */
1776 /* no way to figure out what r1 is going to be */
1777 fdata->frameless = 0;
1778 offset = fdata->offset;
1779 continue;
1780 }
1781 else if ((op & 0xffff0000) == 0x38210000)
1782 { /* addi r1,r1,SIMM */
1783 fdata->frameless = 0;
1784 fdata->offset += SIGNED_SHORT (op);
1785 offset = fdata->offset;
1786 continue;
1787 }
1788 /* Load up minimal toc pointer. Do not treat an epilogue restore
1789 of r31 as a minimal TOC load. */
1790 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1791 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1792 && !framep
1793 && !minimal_toc_loaded)
1794 {
1795 minimal_toc_loaded = 1;
1796 continue;
1797
1798 /* move parameters from argument registers to local variable
1799 registers */
1800 }
1801 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1802 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1803 (((op >> 21) & 31) <= 10) &&
1804 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1805 {
1806 continue;
1807
1808 /* store parameters in stack */
1809 }
1810 /* Move parameters from argument registers to temporary register. */
1811 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1812 {
1813 continue;
1814
1815 /* Set up frame pointer */
1816 }
1817 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1818 || op == 0x7c3f0b78)
1819 { /* mr r31, r1 */
1820 fdata->frameless = 0;
1821 framep = 1;
1822 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1823 continue;
1824
1825 /* Another way to set up the frame pointer. */
1826 }
1827 else if ((op & 0xfc1fffff) == 0x38010000)
1828 { /* addi rX, r1, 0x0 */
1829 fdata->frameless = 0;
1830 framep = 1;
1831 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1832 + ((op & ~0x38010000) >> 21));
1833 continue;
1834 }
1835 /* AltiVec related instructions. */
1836 /* Store the vrsave register (spr 256) in another register for
1837 later manipulation, or load a register into the vrsave
1838 register. 2 instructions are used: mfvrsave and
1839 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1840 and mtspr SPR256, Rn. */
1841 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1842 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1843 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1844 {
1845 vrsave_reg = GET_SRC_REG (op);
1846 continue;
1847 }
1848 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1849 {
1850 continue;
1851 }
1852 /* Store the register where vrsave was saved to onto the stack:
1853 rS is the register where vrsave was stored in a previous
1854 instruction. */
1855 /* 100100 sssss 00001 dddddddd dddddddd */
1856 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1857 {
1858 if (vrsave_reg == GET_SRC_REG (op))
1859 {
1860 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1861 vrsave_reg = -1;
1862 }
1863 continue;
1864 }
1865 /* Compute the new value of vrsave, by modifying the register
1866 where vrsave was saved to. */
1867 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1868 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1869 {
1870 continue;
1871 }
1872 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1873 in a pair of insns to save the vector registers on the
1874 stack. */
1875 /* 001110 00000 00000 iiii iiii iiii iiii */
1876 /* 001110 01110 00000 iiii iiii iiii iiii */
1877 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1878 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1879 {
1880 if ((op & 0xffff0000) == 0x38000000)
1881 r0_contains_arg = 0;
1882 li_found_pc = pc;
1883 vr_saved_offset = SIGNED_SHORT (op);
1884
1885 /* This insn by itself is not part of the prologue, unless
1886 if part of the pair of insns mentioned above. So do not
1887 record this insn as part of the prologue yet. */
1888 prev_insn_was_prologue_insn = 0;
1889 }
1890 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1891 /* 011111 sssss 11111 00000 00111001110 */
1892 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1893 {
1894 if (pc == (li_found_pc + 4))
1895 {
1896 vr_reg = GET_SRC_REG (op);
1897 /* If this is the first vector reg to be saved, or if
1898 it has a lower number than others previously seen,
1899 reupdate the frame info. */
1900 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1901 {
1902 fdata->saved_vr = vr_reg;
1903 fdata->vr_offset = vr_saved_offset + offset;
1904 }
1905 vr_saved_offset = -1;
1906 vr_reg = -1;
1907 li_found_pc = 0;
1908 }
1909 }
1910 /* End AltiVec related instructions. */
1911
1912 /* Start BookE related instructions. */
1913 /* Store gen register S at (r31+uimm).
1914 Any register less than r13 is volatile, so we don't care. */
1915 /* 000100 sssss 11111 iiiii 01100100001 */
1916 else if (arch_info->mach == bfd_mach_ppc_e500
1917 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1918 {
1919 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1920 {
1921 unsigned int imm;
1922 ev_reg = GET_SRC_REG (op);
1923 imm = (op >> 11) & 0x1f;
1924 ev_offset = imm * 8;
1925 /* If this is the first vector reg to be saved, or if
1926 it has a lower number than others previously seen,
1927 reupdate the frame info. */
1928 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1929 {
1930 fdata->saved_ev = ev_reg;
1931 fdata->ev_offset = ev_offset + offset;
1932 }
1933 }
1934 continue;
1935 }
1936 /* Store gen register rS at (r1+rB). */
1937 /* 000100 sssss 00001 bbbbb 01100100000 */
1938 else if (arch_info->mach == bfd_mach_ppc_e500
1939 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1940 {
1941 if (pc == (li_found_pc + 4))
1942 {
1943 ev_reg = GET_SRC_REG (op);
1944 /* If this is the first vector reg to be saved, or if
1945 it has a lower number than others previously seen,
1946 reupdate the frame info. */
1947 /* We know the contents of rB from the previous instruction. */
1948 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1949 {
1950 fdata->saved_ev = ev_reg;
1951 fdata->ev_offset = vr_saved_offset + offset;
1952 }
1953 vr_saved_offset = -1;
1954 ev_reg = -1;
1955 li_found_pc = 0;
1956 }
1957 continue;
1958 }
1959 /* Store gen register r31 at (rA+uimm). */
1960 /* 000100 11111 aaaaa iiiii 01100100001 */
1961 else if (arch_info->mach == bfd_mach_ppc_e500
1962 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1963 {
1964 /* Wwe know that the source register is 31 already, but
1965 it can't hurt to compute it. */
1966 ev_reg = GET_SRC_REG (op);
1967 ev_offset = ((op >> 11) & 0x1f) * 8;
1968 /* If this is the first vector reg to be saved, or if
1969 it has a lower number than others previously seen,
1970 reupdate the frame info. */
1971 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1972 {
1973 fdata->saved_ev = ev_reg;
1974 fdata->ev_offset = ev_offset + offset;
1975 }
1976
1977 continue;
1978 }
1979 /* Store gen register S at (r31+r0).
1980 Store param on stack when offset from SP bigger than 4 bytes. */
1981 /* 000100 sssss 11111 00000 01100100000 */
1982 else if (arch_info->mach == bfd_mach_ppc_e500
1983 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1984 {
1985 if (pc == (li_found_pc + 4))
1986 {
1987 if ((op & 0x03e00000) >= 0x01a00000)
1988 {
1989 ev_reg = GET_SRC_REG (op);
1990 /* If this is the first vector reg to be saved, or if
1991 it has a lower number than others previously seen,
1992 reupdate the frame info. */
1993 /* We know the contents of r0 from the previous
1994 instruction. */
1995 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1996 {
1997 fdata->saved_ev = ev_reg;
1998 fdata->ev_offset = vr_saved_offset + offset;
1999 }
2000 ev_reg = -1;
2001 }
2002 vr_saved_offset = -1;
2003 li_found_pc = 0;
2004 continue;
2005 }
2006 }
2007 /* End BookE related instructions. */
2008
2009 else
2010 {
2011 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2012
2013 /* Not a recognized prologue instruction.
2014 Handle optimizer code motions into the prologue by continuing
2015 the search if we have no valid frame yet or if the return
2016 address is not yet saved in the frame. Also skip instructions
2017 if some of the GPRs expected to be saved are not yet saved. */
2018 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2019 && (fdata->gpr_mask & all_mask) == all_mask)
2020 break;
2021
2022 if (op == 0x4e800020 /* blr */
2023 || op == 0x4e800420) /* bctr */
2024 /* Do not scan past epilogue in frameless functions or
2025 trampolines. */
2026 break;
2027 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2028 /* Never skip branches. */
2029 break;
2030
2031 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2032 /* Do not scan too many insns, scanning insns is expensive with
2033 remote targets. */
2034 break;
2035
2036 /* Continue scanning. */
2037 prev_insn_was_prologue_insn = 0;
2038 continue;
2039 }
2040 }
2041
2042 #if 0
2043 /* I have problems with skipping over __main() that I need to address
2044 * sometime. Previously, I used to use misc_function_vector which
2045 * didn't work as well as I wanted to be. -MGO */
2046
2047 /* If the first thing after skipping a prolog is a branch to a function,
2048 this might be a call to an initializer in main(), introduced by gcc2.
2049 We'd like to skip over it as well. Fortunately, xlc does some extra
2050 work before calling a function right after a prologue, thus we can
2051 single out such gcc2 behaviour. */
2052
2053
2054 if ((op & 0xfc000001) == 0x48000001)
2055 { /* bl foo, an initializer function? */
2056 op = read_memory_integer (pc + 4, 4, byte_order);
2057
2058 if (op == 0x4def7b82)
2059 { /* cror 0xf, 0xf, 0xf (nop) */
2060
2061 /* Check and see if we are in main. If so, skip over this
2062 initializer function as well. */
2063
2064 tmp = find_pc_misc_function (pc);
2065 if (tmp >= 0
2066 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2067 return pc + 8;
2068 }
2069 }
2070 #endif /* 0 */
2071
2072 if (pc == lim_pc && lr_reg >= 0)
2073 fdata->lr_register = lr_reg;
2074
2075 fdata->offset = -fdata->offset;
2076 return last_prologue_pc;
2077 }
2078
2079 static CORE_ADDR
2080 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2081 {
2082 struct rs6000_framedata frame;
2083 CORE_ADDR limit_pc, func_addr;
2084
2085 /* See if we can determine the end of the prologue via the symbol table.
2086 If so, then return either PC, or the PC after the prologue, whichever
2087 is greater. */
2088 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
2089 {
2090 CORE_ADDR post_prologue_pc
2091 = skip_prologue_using_sal (gdbarch, func_addr);
2092 if (post_prologue_pc != 0)
2093 return max (pc, post_prologue_pc);
2094 }
2095
2096 /* Can't determine prologue from the symbol table, need to examine
2097 instructions. */
2098
2099 /* Find an upper limit on the function prologue using the debug
2100 information. If the debug information could not be used to provide
2101 that bound, then use an arbitrary large number as the upper bound. */
2102 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2103 if (limit_pc == 0)
2104 limit_pc = pc + 100; /* Magic. */
2105
2106 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2107 return pc;
2108 }
2109
2110 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2111 in the prologue of main().
2112
2113 The function below examines the code pointed at by PC and checks to
2114 see if it corresponds to a call to __eabi. If so, it returns the
2115 address of the instruction following that call. Otherwise, it simply
2116 returns PC. */
2117
2118 static CORE_ADDR
2119 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2120 {
2121 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2122 gdb_byte buf[4];
2123 unsigned long op;
2124
2125 if (target_read_memory (pc, buf, 4))
2126 return pc;
2127 op = extract_unsigned_integer (buf, 4, byte_order);
2128
2129 if ((op & BL_MASK) == BL_INSTRUCTION)
2130 {
2131 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2132 CORE_ADDR call_dest = pc + 4 + displ;
2133 struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);
2134
2135 /* We check for ___eabi (three leading underscores) in addition
2136 to __eabi in case the GCC option "-fleading-underscore" was
2137 used to compile the program. */
2138 if (s != NULL
2139 && SYMBOL_LINKAGE_NAME (s) != NULL
2140 && (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
2141 || strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
2142 pc += 4;
2143 }
2144 return pc;
2145 }
2146
2147 /* All the ABI's require 16 byte alignment. */
2148 static CORE_ADDR
2149 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2150 {
2151 return (addr & -16);
2152 }
2153
2154 /* Return whether handle_inferior_event() should proceed through code
2155 starting at PC in function NAME when stepping.
2156
2157 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2158 handle memory references that are too distant to fit in instructions
2159 generated by the compiler. For example, if 'foo' in the following
2160 instruction:
2161
2162 lwz r9,foo(r2)
2163
2164 is greater than 32767, the linker might replace the lwz with a branch to
2165 somewhere in @FIX1 that does the load in 2 instructions and then branches
2166 back to where execution should continue.
2167
2168 GDB should silently step over @FIX code, just like AIX dbx does.
2169 Unfortunately, the linker uses the "b" instruction for the
2170 branches, meaning that the link register doesn't get set.
2171 Therefore, GDB's usual step_over_function () mechanism won't work.
2172
2173 Instead, use the gdbarch_skip_trampoline_code and
2174 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2175 @FIX code. */
2176
2177 static int
2178 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2179 CORE_ADDR pc, char *name)
2180 {
2181 return name && !strncmp (name, "@FIX", 4);
2182 }
2183
2184 /* Skip code that the user doesn't want to see when stepping:
2185
2186 1. Indirect function calls use a piece of trampoline code to do context
2187 switching, i.e. to set the new TOC table. Skip such code if we are on
2188 its first instruction (as when we have single-stepped to here).
2189
2190 2. Skip shared library trampoline code (which is different from
2191 indirect function call trampolines).
2192
2193 3. Skip bigtoc fixup code.
2194
2195 Result is desired PC to step until, or NULL if we are not in
2196 code that should be skipped. */
2197
2198 static CORE_ADDR
2199 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2200 {
2201 struct gdbarch *gdbarch = get_frame_arch (frame);
2202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2204 unsigned int ii, op;
2205 int rel;
2206 CORE_ADDR solib_target_pc;
2207 struct minimal_symbol *msymbol;
2208
2209 static unsigned trampoline_code[] =
2210 {
2211 0x800b0000, /* l r0,0x0(r11) */
2212 0x90410014, /* st r2,0x14(r1) */
2213 0x7c0903a6, /* mtctr r0 */
2214 0x804b0004, /* l r2,0x4(r11) */
2215 0x816b0008, /* l r11,0x8(r11) */
2216 0x4e800420, /* bctr */
2217 0x4e800020, /* br */
2218 0
2219 };
2220
2221 /* Check for bigtoc fixup code. */
2222 msymbol = lookup_minimal_symbol_by_pc (pc);
2223 if (msymbol
2224 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2225 SYMBOL_LINKAGE_NAME (msymbol)))
2226 {
2227 /* Double-check that the third instruction from PC is relative "b". */
2228 op = read_memory_integer (pc + 8, 4, byte_order);
2229 if ((op & 0xfc000003) == 0x48000000)
2230 {
2231 /* Extract bits 6-29 as a signed 24-bit relative word address and
2232 add it to the containing PC. */
2233 rel = ((int)(op << 6) >> 6);
2234 return pc + 8 + rel;
2235 }
2236 }
2237
2238 /* If pc is in a shared library trampoline, return its target. */
2239 solib_target_pc = find_solib_trampoline_target (frame, pc);
2240 if (solib_target_pc)
2241 return solib_target_pc;
2242
2243 for (ii = 0; trampoline_code[ii]; ++ii)
2244 {
2245 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2246 if (op != trampoline_code[ii])
2247 return 0;
2248 }
2249 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
2250 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2251 return pc;
2252 }
2253
2254 /* ISA-specific vector types. */
2255
2256 static struct type *
2257 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2258 {
2259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2260
2261 if (!tdep->ppc_builtin_type_vec64)
2262 {
2263 const struct builtin_type *bt = builtin_type (gdbarch);
2264
2265 /* The type we're building is this: */
2266 #if 0
2267 union __gdb_builtin_type_vec64
2268 {
2269 int64_t uint64;
2270 float v2_float[2];
2271 int32_t v2_int32[2];
2272 int16_t v4_int16[4];
2273 int8_t v8_int8[8];
2274 };
2275 #endif
2276
2277 struct type *t;
2278
2279 t = arch_composite_type (gdbarch,
2280 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2281 append_composite_type_field (t, "uint64", bt->builtin_int64);
2282 append_composite_type_field (t, "v2_float",
2283 init_vector_type (bt->builtin_float, 2));
2284 append_composite_type_field (t, "v2_int32",
2285 init_vector_type (bt->builtin_int32, 2));
2286 append_composite_type_field (t, "v4_int16",
2287 init_vector_type (bt->builtin_int16, 4));
2288 append_composite_type_field (t, "v8_int8",
2289 init_vector_type (bt->builtin_int8, 8));
2290
2291 TYPE_VECTOR (t) = 1;
2292 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2293 tdep->ppc_builtin_type_vec64 = t;
2294 }
2295
2296 return tdep->ppc_builtin_type_vec64;
2297 }
2298
2299 /* Vector 128 type. */
2300
2301 static struct type *
2302 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2303 {
2304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2305
2306 if (!tdep->ppc_builtin_type_vec128)
2307 {
2308 const struct builtin_type *bt = builtin_type (gdbarch);
2309
2310 /* The type we're building is this
2311
2312 type = union __ppc_builtin_type_vec128 {
2313 uint128_t uint128;
2314 double v2_double[2];
2315 float v4_float[4];
2316 int32_t v4_int32[4];
2317 int16_t v8_int16[8];
2318 int8_t v16_int8[16];
2319 }
2320 */
2321
2322 struct type *t;
2323
2324 t = arch_composite_type (gdbarch,
2325 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2326 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2327 append_composite_type_field (t, "v2_double",
2328 init_vector_type (bt->builtin_double, 2));
2329 append_composite_type_field (t, "v4_float",
2330 init_vector_type (bt->builtin_float, 4));
2331 append_composite_type_field (t, "v4_int32",
2332 init_vector_type (bt->builtin_int32, 4));
2333 append_composite_type_field (t, "v8_int16",
2334 init_vector_type (bt->builtin_int16, 8));
2335 append_composite_type_field (t, "v16_int8",
2336 init_vector_type (bt->builtin_int8, 16));
2337
2338 TYPE_VECTOR (t) = 1;
2339 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2340 tdep->ppc_builtin_type_vec128 = t;
2341 }
2342
2343 return tdep->ppc_builtin_type_vec128;
2344 }
2345
2346 /* Return the name of register number REGNO, or the empty string if it
2347 is an anonymous register. */
2348
2349 static const char *
2350 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2351 {
2352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2353
2354 /* The upper half "registers" have names in the XML description,
2355 but we present only the low GPRs and the full 64-bit registers
2356 to the user. */
2357 if (tdep->ppc_ev0_upper_regnum >= 0
2358 && tdep->ppc_ev0_upper_regnum <= regno
2359 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2360 return "";
2361
2362 /* Hide the upper halves of the vs0~vs31 registers. */
2363 if (tdep->ppc_vsr0_regnum >= 0
2364 && tdep->ppc_vsr0_upper_regnum <= regno
2365 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2366 return "";
2367
2368 /* Check if the SPE pseudo registers are available. */
2369 if (IS_SPE_PSEUDOREG (tdep, regno))
2370 {
2371 static const char *const spe_regnames[] = {
2372 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2373 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2374 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2375 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2376 };
2377 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2378 }
2379
2380 /* Check if the decimal128 pseudo-registers are available. */
2381 if (IS_DFP_PSEUDOREG (tdep, regno))
2382 {
2383 static const char *const dfp128_regnames[] = {
2384 "dl0", "dl1", "dl2", "dl3",
2385 "dl4", "dl5", "dl6", "dl7",
2386 "dl8", "dl9", "dl10", "dl11",
2387 "dl12", "dl13", "dl14", "dl15"
2388 };
2389 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2390 }
2391
2392 /* Check if this is a VSX pseudo-register. */
2393 if (IS_VSX_PSEUDOREG (tdep, regno))
2394 {
2395 static const char *const vsx_regnames[] = {
2396 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2397 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2398 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2399 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2400 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2401 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2402 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2403 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2404 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2405 };
2406 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2407 }
2408
2409 /* Check if the this is a Extended FP pseudo-register. */
2410 if (IS_EFP_PSEUDOREG (tdep, regno))
2411 {
2412 static const char *const efpr_regnames[] = {
2413 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2414 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2415 "f46", "f47", "f48", "f49", "f50", "f51",
2416 "f52", "f53", "f54", "f55", "f56", "f57",
2417 "f58", "f59", "f60", "f61", "f62", "f63"
2418 };
2419 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2420 }
2421
2422 return tdesc_register_name (gdbarch, regno);
2423 }
2424
2425 /* Return the GDB type object for the "standard" data type of data in
2426 register N. */
2427
2428 static struct type *
2429 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2430 {
2431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432
2433 /* These are the only pseudo-registers we support. */
2434 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2435 || IS_DFP_PSEUDOREG (tdep, regnum)
2436 || IS_VSX_PSEUDOREG (tdep, regnum)
2437 || IS_EFP_PSEUDOREG (tdep, regnum));
2438
2439 /* These are the e500 pseudo-registers. */
2440 if (IS_SPE_PSEUDOREG (tdep, regnum))
2441 return rs6000_builtin_type_vec64 (gdbarch);
2442 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2443 /* PPC decimal128 pseudo-registers. */
2444 return builtin_type (gdbarch)->builtin_declong;
2445 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2446 /* POWER7 VSX pseudo-registers. */
2447 return rs6000_builtin_type_vec128 (gdbarch);
2448 else
2449 /* POWER7 Extended FP pseudo-registers. */
2450 return builtin_type (gdbarch)->builtin_double;
2451 }
2452
2453 /* Is REGNUM a member of REGGROUP? */
2454 static int
2455 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2456 struct reggroup *group)
2457 {
2458 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2459
2460 /* These are the only pseudo-registers we support. */
2461 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2462 || IS_DFP_PSEUDOREG (tdep, regnum)
2463 || IS_VSX_PSEUDOREG (tdep, regnum)
2464 || IS_EFP_PSEUDOREG (tdep, regnum));
2465
2466 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2467 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2468 return group == all_reggroup || group == vector_reggroup;
2469 else
2470 /* PPC decimal128 or Extended FP pseudo-registers. */
2471 return group == all_reggroup || group == float_reggroup;
2472 }
2473
2474 /* The register format for RS/6000 floating point registers is always
2475 double, we need a conversion if the memory format is float. */
2476
2477 static int
2478 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2479 struct type *type)
2480 {
2481 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2482
2483 return (tdep->ppc_fp0_regnum >= 0
2484 && regnum >= tdep->ppc_fp0_regnum
2485 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2486 && TYPE_CODE (type) == TYPE_CODE_FLT
2487 && TYPE_LENGTH (type)
2488 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2489 }
2490
2491 static void
2492 rs6000_register_to_value (struct frame_info *frame,
2493 int regnum,
2494 struct type *type,
2495 gdb_byte *to)
2496 {
2497 struct gdbarch *gdbarch = get_frame_arch (frame);
2498 gdb_byte from[MAX_REGISTER_SIZE];
2499
2500 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2501
2502 get_frame_register (frame, regnum, from);
2503 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2504 to, type);
2505 }
2506
2507 static void
2508 rs6000_value_to_register (struct frame_info *frame,
2509 int regnum,
2510 struct type *type,
2511 const gdb_byte *from)
2512 {
2513 struct gdbarch *gdbarch = get_frame_arch (frame);
2514 gdb_byte to[MAX_REGISTER_SIZE];
2515
2516 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2517
2518 convert_typed_floating (from, type,
2519 to, builtin_type (gdbarch)->builtin_double);
2520 put_frame_register (frame, regnum, to);
2521 }
2522
2523 /* Move SPE vector register values between a 64-bit buffer and the two
2524 32-bit raw register halves in a regcache. This function handles
2525 both splitting a 64-bit value into two 32-bit halves, and joining
2526 two halves into a whole 64-bit value, depending on the function
2527 passed as the MOVE argument.
2528
2529 EV_REG must be the number of an SPE evN vector register --- a
2530 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2531 64-bit buffer.
2532
2533 Call MOVE once for each 32-bit half of that register, passing
2534 REGCACHE, the number of the raw register corresponding to that
2535 half, and the address of the appropriate half of BUFFER.
2536
2537 For example, passing 'regcache_raw_read' as the MOVE function will
2538 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2539 'regcache_raw_supply' will supply the contents of BUFFER to the
2540 appropriate pair of raw registers in REGCACHE.
2541
2542 You may need to cast away some 'const' qualifiers when passing
2543 MOVE, since this function can't tell at compile-time which of
2544 REGCACHE or BUFFER is acting as the source of the data. If C had
2545 co-variant type qualifiers, ... */
2546 static void
2547 e500_move_ev_register (void (*move) (struct regcache *regcache,
2548 int regnum, gdb_byte *buf),
2549 struct regcache *regcache, int ev_reg,
2550 gdb_byte *buffer)
2551 {
2552 struct gdbarch *arch = get_regcache_arch (regcache);
2553 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2554 int reg_index;
2555 gdb_byte *byte_buffer = buffer;
2556
2557 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2558
2559 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2560
2561 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2562 {
2563 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2564 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2565 }
2566 else
2567 {
2568 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2569 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2570 }
2571 }
2572
2573 static void
2574 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2575 int reg_nr, gdb_byte *buffer)
2576 {
2577 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2578 }
2579
2580 static void
2581 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2582 int reg_nr, const gdb_byte *buffer)
2583 {
2584 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2585 regcache_raw_write,
2586 regcache, reg_nr, (gdb_byte *) buffer);
2587 }
2588
2589 /* Read method for DFP pseudo-registers. */
2590 static void
2591 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2592 int reg_nr, gdb_byte *buffer)
2593 {
2594 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2595 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2596
2597 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2598 {
2599 /* Read two FP registers to form a whole dl register. */
2600 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2601 2 * reg_index, buffer);
2602 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2603 2 * reg_index + 1, buffer + 8);
2604 }
2605 else
2606 {
2607 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2608 2 * reg_index + 1, buffer + 8);
2609 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2610 2 * reg_index, buffer);
2611 }
2612 }
2613
2614 /* Write method for DFP pseudo-registers. */
2615 static void
2616 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2617 int reg_nr, const gdb_byte *buffer)
2618 {
2619 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2620 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2621
2622 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2623 {
2624 /* Write each half of the dl register into a separate
2625 FP register. */
2626 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2627 2 * reg_index, buffer);
2628 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2629 2 * reg_index + 1, buffer + 8);
2630 }
2631 else
2632 {
2633 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2634 2 * reg_index + 1, buffer + 8);
2635 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2636 2 * reg_index, buffer);
2637 }
2638 }
2639
2640 /* Read method for POWER7 VSX pseudo-registers. */
2641 static void
2642 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2643 int reg_nr, gdb_byte *buffer)
2644 {
2645 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2646 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2647
2648 /* Read the portion that overlaps the VMX registers. */
2649 if (reg_index > 31)
2650 regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2651 reg_index - 32, buffer);
2652 else
2653 /* Read the portion that overlaps the FPR registers. */
2654 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2655 {
2656 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2657 reg_index, buffer);
2658 regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2659 reg_index, buffer + 8);
2660 }
2661 else
2662 {
2663 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2664 reg_index, buffer + 8);
2665 regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2666 reg_index, buffer);
2667 }
2668 }
2669
2670 /* Write method for POWER7 VSX pseudo-registers. */
2671 static void
2672 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2673 int reg_nr, const gdb_byte *buffer)
2674 {
2675 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2676 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2677
2678 /* Write the portion that overlaps the VMX registers. */
2679 if (reg_index > 31)
2680 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2681 reg_index - 32, buffer);
2682 else
2683 /* Write the portion that overlaps the FPR registers. */
2684 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2685 {
2686 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2687 reg_index, buffer);
2688 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2689 reg_index, buffer + 8);
2690 }
2691 else
2692 {
2693 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2694 reg_index, buffer + 8);
2695 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2696 reg_index, buffer);
2697 }
2698 }
2699
2700 /* Read method for POWER7 Extended FP pseudo-registers. */
2701 static void
2702 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2703 int reg_nr, gdb_byte *buffer)
2704 {
2705 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2706 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2707
2708 /* Read the portion that overlaps the VMX registers. */
2709 regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2710 reg_index, buffer);
2711 }
2712
2713 /* Write method for POWER7 Extended FP pseudo-registers. */
2714 static void
2715 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2716 int reg_nr, const gdb_byte *buffer)
2717 {
2718 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2719 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2720
2721 /* Write the portion that overlaps the VMX registers. */
2722 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2723 reg_index, buffer);
2724 }
2725
2726 static void
2727 rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2728 int reg_nr, gdb_byte *buffer)
2729 {
2730 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2732
2733 gdb_assert (regcache_arch == gdbarch);
2734
2735 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2736 e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2737 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2738 dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2739 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2740 vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2741 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2742 efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2743 else
2744 internal_error (__FILE__, __LINE__,
2745 _("rs6000_pseudo_register_read: "
2746 "called on unexpected register '%s' (%d)"),
2747 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2748 }
2749
2750 static void
2751 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2752 struct regcache *regcache,
2753 int reg_nr, const gdb_byte *buffer)
2754 {
2755 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2757
2758 gdb_assert (regcache_arch == gdbarch);
2759
2760 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2761 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2762 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2763 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2764 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2765 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2766 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2767 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2768 else
2769 internal_error (__FILE__, __LINE__,
2770 _("rs6000_pseudo_register_write: "
2771 "called on unexpected register '%s' (%d)"),
2772 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2773 }
2774
2775 /* Convert a DBX STABS register number to a GDB register number. */
2776 static int
2777 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2778 {
2779 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2780
2781 if (0 <= num && num <= 31)
2782 return tdep->ppc_gp0_regnum + num;
2783 else if (32 <= num && num <= 63)
2784 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2785 specifies registers the architecture doesn't have? Our
2786 callers don't check the value we return. */
2787 return tdep->ppc_fp0_regnum + (num - 32);
2788 else if (77 <= num && num <= 108)
2789 return tdep->ppc_vr0_regnum + (num - 77);
2790 else if (1200 <= num && num < 1200 + 32)
2791 return tdep->ppc_ev0_regnum + (num - 1200);
2792 else
2793 switch (num)
2794 {
2795 case 64:
2796 return tdep->ppc_mq_regnum;
2797 case 65:
2798 return tdep->ppc_lr_regnum;
2799 case 66:
2800 return tdep->ppc_ctr_regnum;
2801 case 76:
2802 return tdep->ppc_xer_regnum;
2803 case 109:
2804 return tdep->ppc_vrsave_regnum;
2805 case 110:
2806 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2807 case 111:
2808 return tdep->ppc_acc_regnum;
2809 case 112:
2810 return tdep->ppc_spefscr_regnum;
2811 default:
2812 return num;
2813 }
2814 }
2815
2816
2817 /* Convert a Dwarf 2 register number to a GDB register number. */
2818 static int
2819 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2820 {
2821 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2822
2823 if (0 <= num && num <= 31)
2824 return tdep->ppc_gp0_regnum + num;
2825 else if (32 <= num && num <= 63)
2826 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2827 specifies registers the architecture doesn't have? Our
2828 callers don't check the value we return. */
2829 return tdep->ppc_fp0_regnum + (num - 32);
2830 else if (1124 <= num && num < 1124 + 32)
2831 return tdep->ppc_vr0_regnum + (num - 1124);
2832 else if (1200 <= num && num < 1200 + 32)
2833 return tdep->ppc_ev0_regnum + (num - 1200);
2834 else
2835 switch (num)
2836 {
2837 case 64:
2838 return tdep->ppc_cr_regnum;
2839 case 67:
2840 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2841 case 99:
2842 return tdep->ppc_acc_regnum;
2843 case 100:
2844 return tdep->ppc_mq_regnum;
2845 case 101:
2846 return tdep->ppc_xer_regnum;
2847 case 108:
2848 return tdep->ppc_lr_regnum;
2849 case 109:
2850 return tdep->ppc_ctr_regnum;
2851 case 356:
2852 return tdep->ppc_vrsave_regnum;
2853 case 612:
2854 return tdep->ppc_spefscr_regnum;
2855 default:
2856 return num;
2857 }
2858 }
2859
2860 /* Translate a .eh_frame register to DWARF register, or adjust a
2861 .debug_frame register. */
2862
2863 static int
2864 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2865 {
2866 /* GCC releases before 3.4 use GCC internal register numbering in
2867 .debug_frame (and .debug_info, et cetera). The numbering is
2868 different from the standard SysV numbering for everything except
2869 for GPRs and FPRs. We can not detect this problem in most cases
2870 - to get accurate debug info for variables living in lr, ctr, v0,
2871 et cetera, use a newer version of GCC. But we must detect
2872 one important case - lr is in column 65 in .debug_frame output,
2873 instead of 108.
2874
2875 GCC 3.4, and the "hammer" branch, have a related problem. They
2876 record lr register saves in .debug_frame as 108, but still record
2877 the return column as 65. We fix that up too.
2878
2879 We can do this because 65 is assigned to fpsr, and GCC never
2880 generates debug info referring to it. To add support for
2881 handwritten debug info that restores fpsr, we would need to add a
2882 producer version check to this. */
2883 if (!eh_frame_p)
2884 {
2885 if (num == 65)
2886 return 108;
2887 else
2888 return num;
2889 }
2890
2891 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2892 internal register numbering; translate that to the standard DWARF2
2893 register numbering. */
2894 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2895 return num;
2896 else if (68 <= num && num <= 75) /* cr0-cr8 */
2897 return num - 68 + 86;
2898 else if (77 <= num && num <= 108) /* vr0-vr31 */
2899 return num - 77 + 1124;
2900 else
2901 switch (num)
2902 {
2903 case 64: /* mq */
2904 return 100;
2905 case 65: /* lr */
2906 return 108;
2907 case 66: /* ctr */
2908 return 109;
2909 case 76: /* xer */
2910 return 101;
2911 case 109: /* vrsave */
2912 return 356;
2913 case 110: /* vscr */
2914 return 67;
2915 case 111: /* spe_acc */
2916 return 99;
2917 case 112: /* spefscr */
2918 return 612;
2919 default:
2920 return num;
2921 }
2922 }
2923 \f
2924
2925 /* Handling the various POWER/PowerPC variants. */
2926
2927 /* Information about a particular processor variant. */
2928
2929 struct variant
2930 {
2931 /* Name of this variant. */
2932 char *name;
2933
2934 /* English description of the variant. */
2935 char *description;
2936
2937 /* bfd_arch_info.arch corresponding to variant. */
2938 enum bfd_architecture arch;
2939
2940 /* bfd_arch_info.mach corresponding to variant. */
2941 unsigned long mach;
2942
2943 /* Target description for this variant. */
2944 struct target_desc **tdesc;
2945 };
2946
2947 static struct variant variants[] =
2948 {
2949 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2950 bfd_mach_ppc, &tdesc_powerpc_altivec32},
2951 {"power", "POWER user-level", bfd_arch_rs6000,
2952 bfd_mach_rs6k, &tdesc_rs6000},
2953 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2954 bfd_mach_ppc_403, &tdesc_powerpc_403},
2955 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
2956 bfd_mach_ppc_405, &tdesc_powerpc_405},
2957 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2958 bfd_mach_ppc_601, &tdesc_powerpc_601},
2959 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2960 bfd_mach_ppc_602, &tdesc_powerpc_602},
2961 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2962 bfd_mach_ppc_603, &tdesc_powerpc_603},
2963 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2964 604, &tdesc_powerpc_604},
2965 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2966 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
2967 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2968 bfd_mach_ppc_505, &tdesc_powerpc_505},
2969 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2970 bfd_mach_ppc_860, &tdesc_powerpc_860},
2971 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2972 bfd_mach_ppc_750, &tdesc_powerpc_750},
2973 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2974 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
2975 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2976 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
2977
2978 /* 64-bit */
2979 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2980 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
2981 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2982 bfd_mach_ppc_620, &tdesc_powerpc_64},
2983 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2984 bfd_mach_ppc_630, &tdesc_powerpc_64},
2985 {"a35", "PowerPC A35", bfd_arch_powerpc,
2986 bfd_mach_ppc_a35, &tdesc_powerpc_64},
2987 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2988 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
2989 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2990 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
2991
2992 /* FIXME: I haven't checked the register sets of the following. */
2993 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2994 bfd_mach_rs6k_rs1, &tdesc_rs6000},
2995 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2996 bfd_mach_rs6k_rsc, &tdesc_rs6000},
2997 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2998 bfd_mach_rs6k_rs2, &tdesc_rs6000},
2999
3000 {0, 0, 0, 0, 0}
3001 };
3002
3003 /* Return the variant corresponding to architecture ARCH and machine number
3004 MACH. If no such variant exists, return null. */
3005
3006 static const struct variant *
3007 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3008 {
3009 const struct variant *v;
3010
3011 for (v = variants; v->name; v++)
3012 if (arch == v->arch && mach == v->mach)
3013 return v;
3014
3015 return NULL;
3016 }
3017
3018 static int
3019 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3020 {
3021 if (!info->disassembler_options)
3022 info->disassembler_options = "any";
3023
3024 if (info->endian == BFD_ENDIAN_BIG)
3025 return print_insn_big_powerpc (memaddr, info);
3026 else
3027 return print_insn_little_powerpc (memaddr, info);
3028 }
3029 \f
3030 static CORE_ADDR
3031 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3032 {
3033 return frame_unwind_register_unsigned (next_frame,
3034 gdbarch_pc_regnum (gdbarch));
3035 }
3036
3037 static struct frame_id
3038 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3039 {
3040 return frame_id_build (get_frame_register_unsigned
3041 (this_frame, gdbarch_sp_regnum (gdbarch)),
3042 get_frame_pc (this_frame));
3043 }
3044
3045 struct rs6000_frame_cache
3046 {
3047 CORE_ADDR base;
3048 CORE_ADDR initial_sp;
3049 struct trad_frame_saved_reg *saved_regs;
3050 };
3051
3052 static struct rs6000_frame_cache *
3053 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3054 {
3055 struct rs6000_frame_cache *cache;
3056 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3057 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3058 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3059 struct rs6000_framedata fdata;
3060 int wordsize = tdep->wordsize;
3061 CORE_ADDR func, pc;
3062
3063 if ((*this_cache) != NULL)
3064 return (*this_cache);
3065 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3066 (*this_cache) = cache;
3067 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3068
3069 func = get_frame_func (this_frame);
3070 pc = get_frame_pc (this_frame);
3071 skip_prologue (gdbarch, func, pc, &fdata);
3072
3073 /* Figure out the parent's stack pointer. */
3074
3075 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3076 address of the current frame. Things might be easier if the
3077 ->frame pointed to the outer-most address of the frame. In
3078 the mean time, the address of the prev frame is used as the
3079 base address of this frame. */
3080 cache->base = get_frame_register_unsigned
3081 (this_frame, gdbarch_sp_regnum (gdbarch));
3082
3083 /* If the function appears to be frameless, check a couple of likely
3084 indicators that we have simply failed to find the frame setup.
3085 Two common cases of this are missing symbols (i.e.
3086 get_frame_func returns the wrong address or 0), and assembly
3087 stubs which have a fast exit path but set up a frame on the slow
3088 path.
3089
3090 If the LR appears to return to this function, then presume that
3091 we have an ABI compliant frame that we failed to find. */
3092 if (fdata.frameless && fdata.lr_offset == 0)
3093 {
3094 CORE_ADDR saved_lr;
3095 int make_frame = 0;
3096
3097 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3098 if (func == 0 && saved_lr == pc)
3099 make_frame = 1;
3100 else if (func != 0)
3101 {
3102 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3103 if (func == saved_func)
3104 make_frame = 1;
3105 }
3106
3107 if (make_frame)
3108 {
3109 fdata.frameless = 0;
3110 fdata.lr_offset = tdep->lr_frame_offset;
3111 }
3112 }
3113
3114 if (!fdata.frameless)
3115 /* Frameless really means stackless. */
3116 cache->base
3117 = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
3118
3119 trad_frame_set_value (cache->saved_regs,
3120 gdbarch_sp_regnum (gdbarch), cache->base);
3121
3122 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3123 All fpr's from saved_fpr to fp31 are saved. */
3124
3125 if (fdata.saved_fpr >= 0)
3126 {
3127 int i;
3128 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3129
3130 /* If skip_prologue says floating-point registers were saved,
3131 but the current architecture has no floating-point registers,
3132 then that's strange. But we have no indices to even record
3133 the addresses under, so we just ignore it. */
3134 if (ppc_floating_point_unit_p (gdbarch))
3135 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3136 {
3137 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3138 fpr_addr += 8;
3139 }
3140 }
3141
3142 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3143 All gpr's from saved_gpr to gpr31 are saved (except during the
3144 prologue). */
3145
3146 if (fdata.saved_gpr >= 0)
3147 {
3148 int i;
3149 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3150 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3151 {
3152 if (fdata.gpr_mask & (1U << i))
3153 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3154 gpr_addr += wordsize;
3155 }
3156 }
3157
3158 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3159 All vr's from saved_vr to vr31 are saved. */
3160 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3161 {
3162 if (fdata.saved_vr >= 0)
3163 {
3164 int i;
3165 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3166 for (i = fdata.saved_vr; i < 32; i++)
3167 {
3168 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3169 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3170 }
3171 }
3172 }
3173
3174 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3175 All vr's from saved_ev to ev31 are saved. ????? */
3176 if (tdep->ppc_ev0_regnum != -1)
3177 {
3178 if (fdata.saved_ev >= 0)
3179 {
3180 int i;
3181 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3182 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3183 {
3184 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3185 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3186 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3187 }
3188 }
3189 }
3190
3191 /* If != 0, fdata.cr_offset is the offset from the frame that
3192 holds the CR. */
3193 if (fdata.cr_offset != 0)
3194 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3195
3196 /* If != 0, fdata.lr_offset is the offset from the frame that
3197 holds the LR. */
3198 if (fdata.lr_offset != 0)
3199 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3200 else if (fdata.lr_register != -1)
3201 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3202 /* The PC is found in the link register. */
3203 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3204 cache->saved_regs[tdep->ppc_lr_regnum];
3205
3206 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3207 holds the VRSAVE. */
3208 if (fdata.vrsave_offset != 0)
3209 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3210
3211 if (fdata.alloca_reg < 0)
3212 /* If no alloca register used, then fi->frame is the value of the
3213 %sp for this frame, and it is good enough. */
3214 cache->initial_sp
3215 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3216 else
3217 cache->initial_sp
3218 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3219
3220 return cache;
3221 }
3222
3223 static void
3224 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3225 struct frame_id *this_id)
3226 {
3227 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3228 this_cache);
3229 /* This marks the outermost frame. */
3230 if (info->base == 0)
3231 return;
3232
3233 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3234 }
3235
3236 static struct value *
3237 rs6000_frame_prev_register (struct frame_info *this_frame,
3238 void **this_cache, int regnum)
3239 {
3240 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3241 this_cache);
3242 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3243 }
3244
3245 static const struct frame_unwind rs6000_frame_unwind =
3246 {
3247 NORMAL_FRAME,
3248 rs6000_frame_this_id,
3249 rs6000_frame_prev_register,
3250 NULL,
3251 default_frame_sniffer
3252 };
3253 \f
3254
3255 static CORE_ADDR
3256 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3257 {
3258 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3259 this_cache);
3260 return info->initial_sp;
3261 }
3262
3263 static const struct frame_base rs6000_frame_base = {
3264 &rs6000_frame_unwind,
3265 rs6000_frame_base_address,
3266 rs6000_frame_base_address,
3267 rs6000_frame_base_address
3268 };
3269
3270 static const struct frame_base *
3271 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3272 {
3273 return &rs6000_frame_base;
3274 }
3275
3276 /* DWARF-2 frame support. Used to handle the detection of
3277 clobbered registers during function calls. */
3278
3279 static void
3280 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3281 struct dwarf2_frame_state_reg *reg,
3282 struct frame_info *this_frame)
3283 {
3284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3285
3286 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3287 non-volatile registers. We will use the same code for both. */
3288
3289 /* Call-saved GP registers. */
3290 if ((regnum >= tdep->ppc_gp0_regnum + 14
3291 && regnum <= tdep->ppc_gp0_regnum + 31)
3292 || (regnum == tdep->ppc_gp0_regnum + 1))
3293 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3294
3295 /* Call-clobbered GP registers. */
3296 if ((regnum >= tdep->ppc_gp0_regnum + 3
3297 && regnum <= tdep->ppc_gp0_regnum + 12)
3298 || (regnum == tdep->ppc_gp0_regnum))
3299 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3300
3301 /* Deal with FP registers, if supported. */
3302 if (tdep->ppc_fp0_regnum >= 0)
3303 {
3304 /* Call-saved FP registers. */
3305 if ((regnum >= tdep->ppc_fp0_regnum + 14
3306 && regnum <= tdep->ppc_fp0_regnum + 31))
3307 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3308
3309 /* Call-clobbered FP registers. */
3310 if ((regnum >= tdep->ppc_fp0_regnum
3311 && regnum <= tdep->ppc_fp0_regnum + 13))
3312 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3313 }
3314
3315 /* Deal with ALTIVEC registers, if supported. */
3316 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3317 {
3318 /* Call-saved Altivec registers. */
3319 if ((regnum >= tdep->ppc_vr0_regnum + 20
3320 && regnum <= tdep->ppc_vr0_regnum + 31)
3321 || regnum == tdep->ppc_vrsave_regnum)
3322 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3323
3324 /* Call-clobbered Altivec registers. */
3325 if ((regnum >= tdep->ppc_vr0_regnum
3326 && regnum <= tdep->ppc_vr0_regnum + 19))
3327 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3328 }
3329
3330 /* Handle PC register and Stack Pointer correctly. */
3331 if (regnum == gdbarch_pc_regnum (gdbarch))
3332 reg->how = DWARF2_FRAME_REG_RA;
3333 else if (regnum == gdbarch_sp_regnum (gdbarch))
3334 reg->how = DWARF2_FRAME_REG_CFA;
3335 }
3336
3337
3338 /* Initialize the current architecture based on INFO. If possible, re-use an
3339 architecture from ARCHES, which is a list of architectures already created
3340 during this debugging session.
3341
3342 Called e.g. at program startup, when reading a core file, and when reading
3343 a binary file. */
3344
3345 static struct gdbarch *
3346 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3347 {
3348 struct gdbarch *gdbarch;
3349 struct gdbarch_tdep *tdep;
3350 int wordsize, from_xcoff_exec, from_elf_exec;
3351 enum bfd_architecture arch;
3352 unsigned long mach;
3353 bfd abfd;
3354 asection *sect;
3355 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3356 int soft_float;
3357 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3358 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
3359 have_vsx = 0;
3360 int tdesc_wordsize = -1;
3361 const struct target_desc *tdesc = info.target_desc;
3362 struct tdesc_arch_data *tdesc_data = NULL;
3363 int num_pseudoregs = 0;
3364 int cur_reg;
3365
3366 /* INFO may refer to a binary that is not of the PowerPC architecture,
3367 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
3368 In this case, we must not attempt to infer properties of the (PowerPC
3369 side) of the target system from properties of that executable. Trust
3370 the target description instead. */
3371 if (info.abfd
3372 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
3373 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
3374 info.abfd = NULL;
3375
3376 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3377 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3378
3379 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3380 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3381
3382 /* Check word size. If INFO is from a binary file, infer it from
3383 that, else choose a likely default. */
3384 if (from_xcoff_exec)
3385 {
3386 if (bfd_xcoff_is_xcoff64 (info.abfd))
3387 wordsize = 8;
3388 else
3389 wordsize = 4;
3390 }
3391 else if (from_elf_exec)
3392 {
3393 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3394 wordsize = 8;
3395 else
3396 wordsize = 4;
3397 }
3398 else if (tdesc_has_registers (tdesc))
3399 wordsize = -1;
3400 else
3401 {
3402 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3403 wordsize = info.bfd_arch_info->bits_per_word /
3404 info.bfd_arch_info->bits_per_byte;
3405 else
3406 wordsize = 4;
3407 }
3408
3409 /* Get the architecture and machine from the BFD. */
3410 arch = info.bfd_arch_info->arch;
3411 mach = info.bfd_arch_info->mach;
3412
3413 /* For e500 executables, the apuinfo section is of help here. Such
3414 section contains the identifier and revision number of each
3415 Application-specific Processing Unit that is present on the
3416 chip. The content of the section is determined by the assembler
3417 which looks at each instruction and determines which unit (and
3418 which version of it) can execute it. In our case we just look for
3419 the existance of the section. */
3420
3421 if (info.abfd)
3422 {
3423 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3424 if (sect)
3425 {
3426 arch = info.bfd_arch_info->arch;
3427 mach = bfd_mach_ppc_e500;
3428 bfd_default_set_arch_mach (&abfd, arch, mach);
3429 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3430 }
3431 }
3432
3433 /* Find a default target description which describes our register
3434 layout, if we do not already have one. */
3435 if (! tdesc_has_registers (tdesc))
3436 {
3437 const struct variant *v;
3438
3439 /* Choose variant. */
3440 v = find_variant_by_arch (arch, mach);
3441 if (!v)
3442 return NULL;
3443
3444 tdesc = *v->tdesc;
3445 }
3446
3447 gdb_assert (tdesc_has_registers (tdesc));
3448
3449 /* Check any target description for validity. */
3450 if (tdesc_has_registers (tdesc))
3451 {
3452 static const char *const gprs[] = {
3453 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3454 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3455 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3456 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3457 };
3458 static const char *const segment_regs[] = {
3459 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3460 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3461 };
3462 const struct tdesc_feature *feature;
3463 int i, valid_p;
3464 static const char *const msr_names[] = { "msr", "ps" };
3465 static const char *const cr_names[] = { "cr", "cnd" };
3466 static const char *const ctr_names[] = { "ctr", "cnt" };
3467
3468 feature = tdesc_find_feature (tdesc,
3469 "org.gnu.gdb.power.core");
3470 if (feature == NULL)
3471 return NULL;
3472
3473 tdesc_data = tdesc_data_alloc ();
3474
3475 valid_p = 1;
3476 for (i = 0; i < ppc_num_gprs; i++)
3477 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3478 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3479 "pc");
3480 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3481 "lr");
3482 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3483 "xer");
3484
3485 /* Allow alternate names for these registers, to accomodate GDB's
3486 historic naming. */
3487 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3488 PPC_MSR_REGNUM, msr_names);
3489 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3490 PPC_CR_REGNUM, cr_names);
3491 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3492 PPC_CTR_REGNUM, ctr_names);
3493
3494 if (!valid_p)
3495 {
3496 tdesc_data_cleanup (tdesc_data);
3497 return NULL;
3498 }
3499
3500 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3501 "mq");
3502
3503 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3504 if (wordsize == -1)
3505 wordsize = tdesc_wordsize;
3506
3507 feature = tdesc_find_feature (tdesc,
3508 "org.gnu.gdb.power.fpu");
3509 if (feature != NULL)
3510 {
3511 static const char *const fprs[] = {
3512 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3513 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3514 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3515 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3516 };
3517 valid_p = 1;
3518 for (i = 0; i < ppc_num_fprs; i++)
3519 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3520 PPC_F0_REGNUM + i, fprs[i]);
3521 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3522 PPC_FPSCR_REGNUM, "fpscr");
3523
3524 if (!valid_p)
3525 {
3526 tdesc_data_cleanup (tdesc_data);
3527 return NULL;
3528 }
3529 have_fpu = 1;
3530 }
3531 else
3532 have_fpu = 0;
3533
3534 /* The DFP pseudo-registers will be available when there are floating
3535 point registers. */
3536 have_dfp = have_fpu;
3537
3538 feature = tdesc_find_feature (tdesc,
3539 "org.gnu.gdb.power.altivec");
3540 if (feature != NULL)
3541 {
3542 static const char *const vector_regs[] = {
3543 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3544 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3545 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3546 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3547 };
3548
3549 valid_p = 1;
3550 for (i = 0; i < ppc_num_gprs; i++)
3551 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3552 PPC_VR0_REGNUM + i,
3553 vector_regs[i]);
3554 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3555 PPC_VSCR_REGNUM, "vscr");
3556 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3557 PPC_VRSAVE_REGNUM, "vrsave");
3558
3559 if (have_spe || !valid_p)
3560 {
3561 tdesc_data_cleanup (tdesc_data);
3562 return NULL;
3563 }
3564 have_altivec = 1;
3565 }
3566 else
3567 have_altivec = 0;
3568
3569 /* Check for POWER7 VSX registers support. */
3570 feature = tdesc_find_feature (tdesc,
3571 "org.gnu.gdb.power.vsx");
3572
3573 if (feature != NULL)
3574 {
3575 static const char *const vsx_regs[] = {
3576 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3577 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3578 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3579 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3580 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3581 "vs30h", "vs31h"
3582 };
3583
3584 valid_p = 1;
3585
3586 for (i = 0; i < ppc_num_vshrs; i++)
3587 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3588 PPC_VSR0_UPPER_REGNUM + i,
3589 vsx_regs[i]);
3590 if (!valid_p)
3591 {
3592 tdesc_data_cleanup (tdesc_data);
3593 return NULL;
3594 }
3595
3596 have_vsx = 1;
3597 }
3598 else
3599 have_vsx = 0;
3600
3601 /* On machines supporting the SPE APU, the general-purpose registers
3602 are 64 bits long. There are SIMD vector instructions to treat them
3603 as pairs of floats, but the rest of the instruction set treats them
3604 as 32-bit registers, and only operates on their lower halves.
3605
3606 In the GDB regcache, we treat their high and low halves as separate
3607 registers. The low halves we present as the general-purpose
3608 registers, and then we have pseudo-registers that stitch together
3609 the upper and lower halves and present them as pseudo-registers.
3610
3611 Thus, the target description is expected to supply the upper
3612 halves separately. */
3613
3614 feature = tdesc_find_feature (tdesc,
3615 "org.gnu.gdb.power.spe");
3616 if (feature != NULL)
3617 {
3618 static const char *const upper_spe[] = {
3619 "ev0h", "ev1h", "ev2h", "ev3h",
3620 "ev4h", "ev5h", "ev6h", "ev7h",
3621 "ev8h", "ev9h", "ev10h", "ev11h",
3622 "ev12h", "ev13h", "ev14h", "ev15h",
3623 "ev16h", "ev17h", "ev18h", "ev19h",
3624 "ev20h", "ev21h", "ev22h", "ev23h",
3625 "ev24h", "ev25h", "ev26h", "ev27h",
3626 "ev28h", "ev29h", "ev30h", "ev31h"
3627 };
3628
3629 valid_p = 1;
3630 for (i = 0; i < ppc_num_gprs; i++)
3631 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3632 PPC_SPE_UPPER_GP0_REGNUM + i,
3633 upper_spe[i]);
3634 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3635 PPC_SPE_ACC_REGNUM, "acc");
3636 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3637 PPC_SPE_FSCR_REGNUM, "spefscr");
3638
3639 if (have_mq || have_fpu || !valid_p)
3640 {
3641 tdesc_data_cleanup (tdesc_data);
3642 return NULL;
3643 }
3644 have_spe = 1;
3645 }
3646 else
3647 have_spe = 0;
3648 }
3649
3650 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3651 complain for a 32-bit binary on a 64-bit target; we do not yet
3652 support that. For instance, the 32-bit ABI routines expect
3653 32-bit GPRs.
3654
3655 As long as there isn't an explicit target description, we'll
3656 choose one based on the BFD architecture and get a word size
3657 matching the binary (probably powerpc:common or
3658 powerpc:common64). So there is only trouble if a 64-bit target
3659 supplies a 64-bit description while debugging a 32-bit
3660 binary. */
3661 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3662 {
3663 tdesc_data_cleanup (tdesc_data);
3664 return NULL;
3665 }
3666
3667 #ifdef HAVE_ELF
3668 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3669 {
3670 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3671 Tag_GNU_Power_ABI_FP))
3672 {
3673 case 1:
3674 soft_float_flag = AUTO_BOOLEAN_FALSE;
3675 break;
3676 case 2:
3677 soft_float_flag = AUTO_BOOLEAN_TRUE;
3678 break;
3679 default:
3680 break;
3681 }
3682 }
3683
3684 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3685 {
3686 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3687 Tag_GNU_Power_ABI_Vector))
3688 {
3689 case 1:
3690 vector_abi = POWERPC_VEC_GENERIC;
3691 break;
3692 case 2:
3693 vector_abi = POWERPC_VEC_ALTIVEC;
3694 break;
3695 case 3:
3696 vector_abi = POWERPC_VEC_SPE;
3697 break;
3698 default:
3699 break;
3700 }
3701 }
3702 #endif
3703
3704 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3705 soft_float = 1;
3706 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3707 soft_float = 0;
3708 else
3709 soft_float = !have_fpu;
3710
3711 /* If we have a hard float binary or setting but no floating point
3712 registers, downgrade to soft float anyway. We're still somewhat
3713 useful in this scenario. */
3714 if (!soft_float && !have_fpu)
3715 soft_float = 1;
3716
3717 /* Similarly for vector registers. */
3718 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3719 vector_abi = POWERPC_VEC_GENERIC;
3720
3721 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3722 vector_abi = POWERPC_VEC_GENERIC;
3723
3724 if (vector_abi == POWERPC_VEC_AUTO)
3725 {
3726 if (have_altivec)
3727 vector_abi = POWERPC_VEC_ALTIVEC;
3728 else if (have_spe)
3729 vector_abi = POWERPC_VEC_SPE;
3730 else
3731 vector_abi = POWERPC_VEC_GENERIC;
3732 }
3733
3734 /* Do not limit the vector ABI based on available hardware, since we
3735 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3736
3737 /* Find a candidate among extant architectures. */
3738 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3739 arches != NULL;
3740 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3741 {
3742 /* Word size in the various PowerPC bfd_arch_info structs isn't
3743 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3744 separate word size check. */
3745 tdep = gdbarch_tdep (arches->gdbarch);
3746 if (tdep && tdep->soft_float != soft_float)
3747 continue;
3748 if (tdep && tdep->vector_abi != vector_abi)
3749 continue;
3750 if (tdep && tdep->wordsize == wordsize)
3751 {
3752 if (tdesc_data != NULL)
3753 tdesc_data_cleanup (tdesc_data);
3754 return arches->gdbarch;
3755 }
3756 }
3757
3758 /* None found, create a new architecture from INFO, whose bfd_arch_info
3759 validity depends on the source:
3760 - executable useless
3761 - rs6000_host_arch() good
3762 - core file good
3763 - "set arch" trust blindly
3764 - GDB startup useless but harmless */
3765
3766 tdep = XCALLOC (1, struct gdbarch_tdep);
3767 tdep->wordsize = wordsize;
3768 tdep->soft_float = soft_float;
3769 tdep->vector_abi = vector_abi;
3770
3771 gdbarch = gdbarch_alloc (&info, tdep);
3772
3773 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3774 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3775 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3776 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3777 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3778 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3779 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3780 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3781
3782 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3783 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
3784 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
3785 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3786 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3787 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3788 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3789 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3790
3791 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3792 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3793 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3794 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
3795 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3796
3797 /* The XML specification for PowerPC sensibly calls the MSR "msr".
3798 GDB traditionally called it "ps", though, so let GDB add an
3799 alias. */
3800 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3801
3802 if (wordsize == 8)
3803 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3804 else
3805 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3806
3807 /* Set lr_frame_offset. */
3808 if (wordsize == 8)
3809 tdep->lr_frame_offset = 16;
3810 else
3811 tdep->lr_frame_offset = 4;
3812
3813 if (have_spe || have_dfp || have_vsx)
3814 {
3815 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
3816 set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write);
3817 }
3818
3819 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3820
3821 /* Select instruction printer. */
3822 if (arch == bfd_arch_rs6000)
3823 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3824 else
3825 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3826
3827 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
3828
3829 if (have_spe)
3830 num_pseudoregs += 32;
3831 if (have_dfp)
3832 num_pseudoregs += 16;
3833 if (have_vsx)
3834 /* Include both VSX and Extended FP registers. */
3835 num_pseudoregs += 96;
3836
3837 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
3838
3839 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3840 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3841 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3842 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3843 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3844 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3845 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3846 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3847 set_gdbarch_char_signed (gdbarch, 0);
3848
3849 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3850 if (wordsize == 8)
3851 /* PPC64 SYSV. */
3852 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3853
3854 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3855 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3856 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3857
3858 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3859 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3860
3861 if (wordsize == 4)
3862 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3863 else if (wordsize == 8)
3864 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3865
3866 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3867 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3868 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
3869
3870 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3871 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3872
3873 /* The value of symbols of type N_SO and N_FUN maybe null when
3874 it shouldn't be. */
3875 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
3876
3877 /* Handles single stepping of atomic sequences. */
3878 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
3879
3880 /* Not sure on this. FIXMEmgo */
3881 set_gdbarch_frame_args_skip (gdbarch, 8);
3882
3883 /* Helpers for function argument information. */
3884 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3885
3886 /* Trampoline. */
3887 set_gdbarch_in_solib_return_trampoline
3888 (gdbarch, rs6000_in_solib_return_trampoline);
3889 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3890
3891 /* Hook in the DWARF CFI frame unwinder. */
3892 dwarf2_append_unwinders (gdbarch);
3893 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3894
3895 /* Frame handling. */
3896 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
3897
3898 /* Setup displaced stepping. */
3899 set_gdbarch_displaced_step_copy_insn (gdbarch,
3900 simple_displaced_step_copy_insn);
3901 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
3902 set_gdbarch_displaced_step_free_closure (gdbarch,
3903 simple_displaced_step_free_closure);
3904 set_gdbarch_displaced_step_location (gdbarch,
3905 displaced_step_at_entry_point);
3906
3907 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
3908
3909 /* Hook in ABI-specific overrides, if they have been registered. */
3910 info.target_desc = tdesc;
3911 info.tdep_info = (void *) tdesc_data;
3912 gdbarch_init_osabi (info, gdbarch);
3913
3914 switch (info.osabi)
3915 {
3916 case GDB_OSABI_LINUX:
3917 case GDB_OSABI_NETBSD_AOUT:
3918 case GDB_OSABI_NETBSD_ELF:
3919 case GDB_OSABI_UNKNOWN:
3920 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3921 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
3922 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
3923 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3924 break;
3925 default:
3926 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3927
3928 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3929 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
3930 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
3931 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3932 }
3933
3934 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
3935 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3936 rs6000_pseudo_register_reggroup_p);
3937 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3938
3939 /* Override the normal target description method to make the SPE upper
3940 halves anonymous. */
3941 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3942
3943 /* Choose register numbers for all supported pseudo-registers. */
3944 tdep->ppc_ev0_regnum = -1;
3945 tdep->ppc_dl0_regnum = -1;
3946 tdep->ppc_vsr0_regnum = -1;
3947 tdep->ppc_efpr0_regnum = -1;
3948
3949 cur_reg = gdbarch_num_regs (gdbarch);
3950
3951 if (have_spe)
3952 {
3953 tdep->ppc_ev0_regnum = cur_reg;
3954 cur_reg += 32;
3955 }
3956 if (have_dfp)
3957 {
3958 tdep->ppc_dl0_regnum = cur_reg;
3959 cur_reg += 16;
3960 }
3961 if (have_vsx)
3962 {
3963 tdep->ppc_vsr0_regnum = cur_reg;
3964 cur_reg += 64;
3965 tdep->ppc_efpr0_regnum = cur_reg;
3966 cur_reg += 32;
3967 }
3968
3969 gdb_assert (gdbarch_num_regs (gdbarch)
3970 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
3971
3972 return gdbarch;
3973 }
3974
3975 static void
3976 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3977 {
3978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3979
3980 if (tdep == NULL)
3981 return;
3982
3983 /* FIXME: Dump gdbarch_tdep. */
3984 }
3985
3986 /* PowerPC-specific commands. */
3987
3988 static void
3989 set_powerpc_command (char *args, int from_tty)
3990 {
3991 printf_unfiltered (_("\
3992 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
3993 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
3994 }
3995
3996 static void
3997 show_powerpc_command (char *args, int from_tty)
3998 {
3999 cmd_show_list (showpowerpccmdlist, from_tty, "");
4000 }
4001
4002 static void
4003 powerpc_set_soft_float (char *args, int from_tty,
4004 struct cmd_list_element *c)
4005 {
4006 struct gdbarch_info info;
4007
4008 /* Update the architecture. */
4009 gdbarch_info_init (&info);
4010 if (!gdbarch_update_p (info))
4011 internal_error (__FILE__, __LINE__, "could not update architecture");
4012 }
4013
4014 static void
4015 powerpc_set_vector_abi (char *args, int from_tty,
4016 struct cmd_list_element *c)
4017 {
4018 struct gdbarch_info info;
4019 enum powerpc_vector_abi vector_abi;
4020
4021 for (vector_abi = POWERPC_VEC_AUTO;
4022 vector_abi != POWERPC_VEC_LAST;
4023 vector_abi++)
4024 if (strcmp (powerpc_vector_abi_string,
4025 powerpc_vector_strings[vector_abi]) == 0)
4026 {
4027 powerpc_vector_abi_global = vector_abi;
4028 break;
4029 }
4030
4031 if (vector_abi == POWERPC_VEC_LAST)
4032 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
4033 powerpc_vector_abi_string);
4034
4035 /* Update the architecture. */
4036 gdbarch_info_init (&info);
4037 if (!gdbarch_update_p (info))
4038 internal_error (__FILE__, __LINE__, "could not update architecture");
4039 }
4040
4041 /* Initialization code. */
4042
4043 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
4044
4045 void
4046 _initialize_rs6000_tdep (void)
4047 {
4048 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
4049 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
4050
4051 /* Initialize the standard target descriptions. */
4052 initialize_tdesc_powerpc_32 ();
4053 initialize_tdesc_powerpc_altivec32 ();
4054 initialize_tdesc_powerpc_vsx32 ();
4055 initialize_tdesc_powerpc_403 ();
4056 initialize_tdesc_powerpc_403gc ();
4057 initialize_tdesc_powerpc_405 ();
4058 initialize_tdesc_powerpc_505 ();
4059 initialize_tdesc_powerpc_601 ();
4060 initialize_tdesc_powerpc_602 ();
4061 initialize_tdesc_powerpc_603 ();
4062 initialize_tdesc_powerpc_604 ();
4063 initialize_tdesc_powerpc_64 ();
4064 initialize_tdesc_powerpc_altivec64 ();
4065 initialize_tdesc_powerpc_vsx64 ();
4066 initialize_tdesc_powerpc_7400 ();
4067 initialize_tdesc_powerpc_750 ();
4068 initialize_tdesc_powerpc_860 ();
4069 initialize_tdesc_powerpc_e500 ();
4070 initialize_tdesc_rs6000 ();
4071
4072 /* Add root prefix command for all "set powerpc"/"show powerpc"
4073 commands. */
4074 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
4075 _("Various PowerPC-specific commands."),
4076 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
4077
4078 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
4079 _("Various PowerPC-specific commands."),
4080 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
4081
4082 /* Add a command to allow the user to force the ABI. */
4083 add_setshow_auto_boolean_cmd ("soft-float", class_support,
4084 &powerpc_soft_float_global,
4085 _("Set whether to use a soft-float ABI."),
4086 _("Show whether to use a soft-float ABI."),
4087 NULL,
4088 powerpc_set_soft_float, NULL,
4089 &setpowerpccmdlist, &showpowerpccmdlist);
4090
4091 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
4092 &powerpc_vector_abi_string,
4093 _("Set the vector ABI."),
4094 _("Show the vector ABI."),
4095 NULL, powerpc_set_vector_abi, NULL,
4096 &setpowerpccmdlist, &showpowerpccmdlist);
4097 }