]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
2007-11-19 Markus Deuling <deuling@de.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "objfiles.h"
30 #include "arch-utils.h"
31 #include "regcache.h"
32 #include "regset.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "parser-defs.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "sim-regno.h"
39 #include "gdb/sim-ppc.h"
40 #include "reggroups.h"
41 #include "dwarf2-frame.h"
42 #include "target-descriptions.h"
43 #include "user-regs.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53
54 #include "solib-svr4.h"
55 #include "ppc-tdep.h"
56
57 #include "gdb_assert.h"
58 #include "dis-asm.h"
59
60 #include "trad-frame.h"
61 #include "frame-unwind.h"
62 #include "frame-base.h"
63
64 #include "rs6000-tdep.h"
65
66 #include "features/rs6000/powerpc-32.c"
67 #include "features/rs6000/powerpc-403.c"
68 #include "features/rs6000/powerpc-403gc.c"
69 #include "features/rs6000/powerpc-505.c"
70 #include "features/rs6000/powerpc-601.c"
71 #include "features/rs6000/powerpc-602.c"
72 #include "features/rs6000/powerpc-603.c"
73 #include "features/rs6000/powerpc-604.c"
74 #include "features/rs6000/powerpc-64.c"
75 #include "features/rs6000/powerpc-7400.c"
76 #include "features/rs6000/powerpc-750.c"
77 #include "features/rs6000/powerpc-860.c"
78 #include "features/rs6000/powerpc-e500.c"
79 #include "features/rs6000/rs6000.c"
80
81 /* The list of available "set powerpc ..." and "show powerpc ..."
82 commands. */
83 static struct cmd_list_element *setpowerpccmdlist = NULL;
84 static struct cmd_list_element *showpowerpccmdlist = NULL;
85
86 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
87
88 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
89 static const char *powerpc_vector_strings[] =
90 {
91 "auto",
92 "generic",
93 "altivec",
94 "spe",
95 NULL
96 };
97
98 /* A variable that can be configured by the user. */
99 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
100 static const char *powerpc_vector_abi_string = "auto";
101
102 /* If the kernel has to deliver a signal, it pushes a sigcontext
103 structure on the stack and then calls the signal handler, passing
104 the address of the sigcontext in an argument register. Usually
105 the signal handler doesn't save this register, so we have to
106 access the sigcontext structure via an offset from the signal handler
107 frame.
108 The following constants were determined by experimentation on AIX 3.2. */
109 #define SIG_FRAME_PC_OFFSET 96
110 #define SIG_FRAME_LR_OFFSET 108
111 #define SIG_FRAME_FP_OFFSET 284
112
113 /* To be used by skip_prologue. */
114
115 struct rs6000_framedata
116 {
117 int offset; /* total size of frame --- the distance
118 by which we decrement sp to allocate
119 the frame */
120 int saved_gpr; /* smallest # of saved gpr */
121 int saved_fpr; /* smallest # of saved fpr */
122 int saved_vr; /* smallest # of saved vr */
123 int saved_ev; /* smallest # of saved ev */
124 int alloca_reg; /* alloca register number (frame ptr) */
125 char frameless; /* true if frameless functions. */
126 char nosavedpc; /* true if pc not saved. */
127 int gpr_offset; /* offset of saved gprs from prev sp */
128 int fpr_offset; /* offset of saved fprs from prev sp */
129 int vr_offset; /* offset of saved vrs from prev sp */
130 int ev_offset; /* offset of saved evs from prev sp */
131 int lr_offset; /* offset of saved lr */
132 int cr_offset; /* offset of saved cr */
133 int vrsave_offset; /* offset of saved vrsave register */
134 };
135
136 /* Description of a single register. */
137
138 struct reg
139 {
140 char *name; /* name of register */
141 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
142 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
143 unsigned char fpr; /* whether register is floating-point */
144 unsigned char pseudo; /* whether register is pseudo */
145 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
146 This is an ISA SPR number, not a GDB
147 register number. */
148 };
149
150 /* Hook for determining the TOC address when calling functions in the
151 inferior under AIX. The initialization code in rs6000-nat.c sets
152 this hook to point to find_toc_address. */
153
154 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
155
156 /* Static function prototypes */
157
158 static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
159 int instr, CORE_ADDR pc, CORE_ADDR safety);
160 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
161 struct rs6000_framedata *);
162
163 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
164 int
165 altivec_register_p (int regno)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
168 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
169 return 0;
170 else
171 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
172 }
173
174
175 /* Return true if REGNO is an SPE register, false otherwise. */
176 int
177 spe_register_p (int regno)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
180
181 /* Is it a reference to EV0 -- EV31, and do we have those? */
182 if (tdep->ppc_ev0_regnum >= 0
183 && tdep->ppc_ev31_regnum >= 0
184 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
185 return 1;
186
187 /* Is it a reference to one of the raw upper GPR halves? */
188 if (tdep->ppc_ev0_upper_regnum >= 0
189 && tdep->ppc_ev0_upper_regnum <= regno
190 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
191 return 1;
192
193 /* Is it a reference to the 64-bit accumulator, and do we have that? */
194 if (tdep->ppc_acc_regnum >= 0
195 && tdep->ppc_acc_regnum == regno)
196 return 1;
197
198 /* Is it a reference to the SPE floating-point status and control register,
199 and do we have that? */
200 if (tdep->ppc_spefscr_regnum >= 0
201 && tdep->ppc_spefscr_regnum == regno)
202 return 1;
203
204 return 0;
205 }
206
207
208 /* Return non-zero if the architecture described by GDBARCH has
209 floating-point registers (f0 --- f31 and fpscr). */
210 int
211 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
212 {
213 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
214
215 return (tdep->ppc_fp0_regnum >= 0
216 && tdep->ppc_fpscr_regnum >= 0);
217 }
218
219 /* Return non-zero if the architecture described by GDBARCH has
220 Altivec registers (vr0 --- vr31, vrsave and vscr). */
221 int
222 ppc_altivec_support_p (struct gdbarch *gdbarch)
223 {
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225
226 return (tdep->ppc_vr0_regnum >= 0
227 && tdep->ppc_vrsave_regnum >= 0);
228 }
229
230 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
231 set it to SIM_REGNO.
232
233 This is a helper function for init_sim_regno_table, constructing
234 the table mapping GDB register numbers to sim register numbers; we
235 initialize every element in that table to -1 before we start
236 filling it in. */
237 static void
238 set_sim_regno (int *table, int gdb_regno, int sim_regno)
239 {
240 /* Make sure we don't try to assign any given GDB register a sim
241 register number more than once. */
242 gdb_assert (table[gdb_regno] == -1);
243 table[gdb_regno] = sim_regno;
244 }
245
246
247 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
248 numbers to simulator register numbers, based on the values placed
249 in the ARCH->tdep->ppc_foo_regnum members. */
250 static void
251 init_sim_regno_table (struct gdbarch *arch)
252 {
253 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
254 int total_regs = gdbarch_num_regs (arch);
255 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
256 int i;
257 static const char *const segment_regs[] = {
258 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
259 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
260 };
261
262 /* Presume that all registers not explicitly mentioned below are
263 unavailable from the sim. */
264 for (i = 0; i < total_regs; i++)
265 sim_regno[i] = -1;
266
267 /* General-purpose registers. */
268 for (i = 0; i < ppc_num_gprs; i++)
269 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
270
271 /* Floating-point registers. */
272 if (tdep->ppc_fp0_regnum >= 0)
273 for (i = 0; i < ppc_num_fprs; i++)
274 set_sim_regno (sim_regno,
275 tdep->ppc_fp0_regnum + i,
276 sim_ppc_f0_regnum + i);
277 if (tdep->ppc_fpscr_regnum >= 0)
278 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
279
280 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
281 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
282 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
283
284 /* Segment registers. */
285 for (i = 0; i < ppc_num_srs; i++)
286 {
287 int gdb_regno;
288
289 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
290 if (gdb_regno >= 0)
291 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
292 }
293
294 /* Altivec registers. */
295 if (tdep->ppc_vr0_regnum >= 0)
296 {
297 for (i = 0; i < ppc_num_vrs; i++)
298 set_sim_regno (sim_regno,
299 tdep->ppc_vr0_regnum + i,
300 sim_ppc_vr0_regnum + i);
301
302 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
303 we can treat this more like the other cases. */
304 set_sim_regno (sim_regno,
305 tdep->ppc_vr0_regnum + ppc_num_vrs,
306 sim_ppc_vscr_regnum);
307 }
308 /* vsave is a special-purpose register, so the code below handles it. */
309
310 /* SPE APU (E500) registers. */
311 if (tdep->ppc_ev0_upper_regnum >= 0)
312 for (i = 0; i < ppc_num_gprs; i++)
313 set_sim_regno (sim_regno,
314 tdep->ppc_ev0_upper_regnum + i,
315 sim_ppc_rh0_regnum + i);
316 if (tdep->ppc_acc_regnum >= 0)
317 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
318 /* spefscr is a special-purpose register, so the code below handles it. */
319
320 #ifdef WITH_SIM
321 /* Now handle all special-purpose registers. Verify that they
322 haven't mistakenly been assigned numbers by any of the above
323 code. */
324 for (i = 0; i < sim_ppc_num_sprs; i++)
325 {
326 const char *spr_name = sim_spr_register_name (i);
327 int gdb_regno = -1;
328
329 if (spr_name != NULL)
330 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
331
332 if (gdb_regno != -1)
333 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
334 }
335 #endif
336
337 /* Drop the initialized array into place. */
338 tdep->sim_regno = sim_regno;
339 }
340
341
342 /* Given a GDB register number REG, return the corresponding SIM
343 register number. */
344 static int
345 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
346 {
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348 int sim_regno;
349
350 if (tdep->sim_regno == NULL)
351 init_sim_regno_table (gdbarch);
352
353 gdb_assert (0 <= reg
354 && reg <= gdbarch_num_regs (gdbarch)
355 + gdbarch_num_pseudo_regs (gdbarch));
356 sim_regno = tdep->sim_regno[reg];
357
358 if (sim_regno >= 0)
359 return sim_regno;
360 else
361 return LEGACY_SIM_REGNO_IGNORE;
362 }
363
364 \f
365
366 /* Register set support functions. */
367
368 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
369 Write the register to REGCACHE. */
370
371 static void
372 ppc_supply_reg (struct regcache *regcache, int regnum,
373 const gdb_byte *regs, size_t offset, int regsize)
374 {
375 if (regnum != -1 && offset != -1)
376 {
377 if (regsize > 4)
378 {
379 struct gdbarch *gdbarch = get_regcache_arch (regcache);
380 int gdb_regsize = register_size (gdbarch, regnum);
381 if (gdb_regsize < regsize
382 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
383 offset += regsize - gdb_regsize;
384 }
385 regcache_raw_supply (regcache, regnum, regs + offset);
386 }
387 }
388
389 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
390 in a field REGSIZE wide. Zero pad as necessary. */
391
392 static void
393 ppc_collect_reg (const struct regcache *regcache, int regnum,
394 gdb_byte *regs, size_t offset, int regsize)
395 {
396 if (regnum != -1 && offset != -1)
397 {
398 if (regsize > 4)
399 {
400 struct gdbarch *gdbarch = get_regcache_arch (regcache);
401 int gdb_regsize = register_size (gdbarch, regnum);
402 if (gdb_regsize < regsize)
403 {
404 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
405 {
406 memset (regs + offset, 0, regsize - gdb_regsize);
407 offset += regsize - gdb_regsize;
408 }
409 else
410 memset (regs + offset + regsize - gdb_regsize, 0,
411 regsize - gdb_regsize);
412 }
413 }
414 regcache_raw_collect (regcache, regnum, regs + offset);
415 }
416 }
417
418 static int
419 ppc_greg_offset (struct gdbarch *gdbarch,
420 struct gdbarch_tdep *tdep,
421 const struct ppc_reg_offsets *offsets,
422 int regnum,
423 int *regsize)
424 {
425 *regsize = offsets->gpr_size;
426 if (regnum >= tdep->ppc_gp0_regnum
427 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
428 return (offsets->r0_offset
429 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
430
431 if (regnum == gdbarch_pc_regnum (gdbarch))
432 return offsets->pc_offset;
433
434 if (regnum == tdep->ppc_ps_regnum)
435 return offsets->ps_offset;
436
437 if (regnum == tdep->ppc_lr_regnum)
438 return offsets->lr_offset;
439
440 if (regnum == tdep->ppc_ctr_regnum)
441 return offsets->ctr_offset;
442
443 *regsize = offsets->xr_size;
444 if (regnum == tdep->ppc_cr_regnum)
445 return offsets->cr_offset;
446
447 if (regnum == tdep->ppc_xer_regnum)
448 return offsets->xer_offset;
449
450 if (regnum == tdep->ppc_mq_regnum)
451 return offsets->mq_offset;
452
453 return -1;
454 }
455
456 static int
457 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
458 const struct ppc_reg_offsets *offsets,
459 int regnum)
460 {
461 if (regnum >= tdep->ppc_fp0_regnum
462 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
463 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
464
465 if (regnum == tdep->ppc_fpscr_regnum)
466 return offsets->fpscr_offset;
467
468 return -1;
469 }
470
471 static int
472 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
473 const struct ppc_reg_offsets *offsets,
474 int regnum)
475 {
476 if (regnum >= tdep->ppc_vr0_regnum
477 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
478 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
479
480 if (regnum == tdep->ppc_vrsave_regnum - 1)
481 return offsets->vscr_offset;
482
483 if (regnum == tdep->ppc_vrsave_regnum)
484 return offsets->vrsave_offset;
485
486 return -1;
487 }
488
489 /* Supply register REGNUM in the general-purpose register set REGSET
490 from the buffer specified by GREGS and LEN to register cache
491 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
492
493 void
494 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
495 int regnum, const void *gregs, size_t len)
496 {
497 struct gdbarch *gdbarch = get_regcache_arch (regcache);
498 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
499 const struct ppc_reg_offsets *offsets = regset->descr;
500 size_t offset;
501 int regsize;
502
503 if (regnum == -1)
504 {
505 int i;
506 int gpr_size = offsets->gpr_size;
507
508 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
509 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
510 i++, offset += gpr_size)
511 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
512
513 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
514 gregs, offsets->pc_offset, gpr_size);
515 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
516 gregs, offsets->ps_offset, gpr_size);
517 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
518 gregs, offsets->lr_offset, gpr_size);
519 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
520 gregs, offsets->ctr_offset, gpr_size);
521 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
522 gregs, offsets->cr_offset, offsets->xr_size);
523 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
524 gregs, offsets->xer_offset, offsets->xr_size);
525 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
526 gregs, offsets->mq_offset, offsets->xr_size);
527 return;
528 }
529
530 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
531 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
532 }
533
534 /* Supply register REGNUM in the floating-point register set REGSET
535 from the buffer specified by FPREGS and LEN to register cache
536 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
537
538 void
539 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
540 int regnum, const void *fpregs, size_t len)
541 {
542 struct gdbarch *gdbarch = get_regcache_arch (regcache);
543 struct gdbarch_tdep *tdep;
544 const struct ppc_reg_offsets *offsets;
545 size_t offset;
546
547 if (!ppc_floating_point_unit_p (gdbarch))
548 return;
549
550 tdep = gdbarch_tdep (gdbarch);
551 offsets = regset->descr;
552 if (regnum == -1)
553 {
554 int i;
555
556 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
557 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
558 i++, offset += 8)
559 ppc_supply_reg (regcache, i, fpregs, offset, 8);
560
561 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
562 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
563 return;
564 }
565
566 offset = ppc_fpreg_offset (tdep, offsets, regnum);
567 ppc_supply_reg (regcache, regnum, fpregs, offset,
568 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
569 }
570
571 /* Supply register REGNUM in the Altivec register set REGSET
572 from the buffer specified by VRREGS and LEN to register cache
573 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
574
575 void
576 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
577 int regnum, const void *vrregs, size_t len)
578 {
579 struct gdbarch *gdbarch = get_regcache_arch (regcache);
580 struct gdbarch_tdep *tdep;
581 const struct ppc_reg_offsets *offsets;
582 size_t offset;
583
584 if (!ppc_altivec_support_p (gdbarch))
585 return;
586
587 tdep = gdbarch_tdep (gdbarch);
588 offsets = regset->descr;
589 if (regnum == -1)
590 {
591 int i;
592
593 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
594 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
595 i++, offset += 16)
596 ppc_supply_reg (regcache, i, vrregs, offset, 16);
597
598 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
599 vrregs, offsets->vscr_offset, 4);
600
601 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
602 vrregs, offsets->vrsave_offset, 4);
603 return;
604 }
605
606 offset = ppc_vrreg_offset (tdep, offsets, regnum);
607 if (regnum != tdep->ppc_vrsave_regnum
608 && regnum != tdep->ppc_vrsave_regnum - 1)
609 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
610 else
611 ppc_supply_reg (regcache, regnum,
612 vrregs, offset, 4);
613 }
614
615 /* Collect register REGNUM in the general-purpose register set
616 REGSET from register cache REGCACHE into the buffer specified by
617 GREGS and LEN. If REGNUM is -1, do this for all registers in
618 REGSET. */
619
620 void
621 ppc_collect_gregset (const struct regset *regset,
622 const struct regcache *regcache,
623 int regnum, void *gregs, size_t len)
624 {
625 struct gdbarch *gdbarch = get_regcache_arch (regcache);
626 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
627 const struct ppc_reg_offsets *offsets = regset->descr;
628 size_t offset;
629 int regsize;
630
631 if (regnum == -1)
632 {
633 int i;
634 int gpr_size = offsets->gpr_size;
635
636 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
637 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
638 i++, offset += gpr_size)
639 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
640
641 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
642 gregs, offsets->pc_offset, gpr_size);
643 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
644 gregs, offsets->ps_offset, gpr_size);
645 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
646 gregs, offsets->lr_offset, gpr_size);
647 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
648 gregs, offsets->ctr_offset, gpr_size);
649 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
650 gregs, offsets->cr_offset, offsets->xr_size);
651 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
652 gregs, offsets->xer_offset, offsets->xr_size);
653 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
654 gregs, offsets->mq_offset, offsets->xr_size);
655 return;
656 }
657
658 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
659 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
660 }
661
662 /* Collect register REGNUM in the floating-point register set
663 REGSET from register cache REGCACHE into the buffer specified by
664 FPREGS and LEN. If REGNUM is -1, do this for all registers in
665 REGSET. */
666
667 void
668 ppc_collect_fpregset (const struct regset *regset,
669 const struct regcache *regcache,
670 int regnum, void *fpregs, size_t len)
671 {
672 struct gdbarch *gdbarch = get_regcache_arch (regcache);
673 struct gdbarch_tdep *tdep;
674 const struct ppc_reg_offsets *offsets;
675 size_t offset;
676
677 if (!ppc_floating_point_unit_p (gdbarch))
678 return;
679
680 tdep = gdbarch_tdep (gdbarch);
681 offsets = regset->descr;
682 if (regnum == -1)
683 {
684 int i;
685
686 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
687 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
688 i++, offset += 8)
689 ppc_collect_reg (regcache, i, fpregs, offset, 8);
690
691 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
692 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
693 return;
694 }
695
696 offset = ppc_fpreg_offset (tdep, offsets, regnum);
697 ppc_collect_reg (regcache, regnum, fpregs, offset,
698 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
699 }
700
701 /* Collect register REGNUM in the Altivec register set
702 REGSET from register cache REGCACHE into the buffer specified by
703 VRREGS and LEN. If REGNUM is -1, do this for all registers in
704 REGSET. */
705
706 void
707 ppc_collect_vrregset (const struct regset *regset,
708 const struct regcache *regcache,
709 int regnum, void *vrregs, size_t len)
710 {
711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
712 struct gdbarch_tdep *tdep;
713 const struct ppc_reg_offsets *offsets;
714 size_t offset;
715
716 if (!ppc_altivec_support_p (gdbarch))
717 return;
718
719 tdep = gdbarch_tdep (gdbarch);
720 offsets = regset->descr;
721 if (regnum == -1)
722 {
723 int i;
724
725 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
726 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
727 i++, offset += 16)
728 ppc_collect_reg (regcache, i, vrregs, offset, 16);
729
730 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
731 vrregs, offsets->vscr_offset, 4);
732
733 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
734 vrregs, offsets->vrsave_offset, 4);
735 return;
736 }
737
738 offset = ppc_vrreg_offset (tdep, offsets, regnum);
739 if (regnum != tdep->ppc_vrsave_regnum
740 && regnum != tdep->ppc_vrsave_regnum - 1)
741 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
742 else
743 ppc_collect_reg (regcache, regnum,
744 vrregs, offset, 4);
745 }
746 \f
747
748 /* Read a LEN-byte address from debugged memory address MEMADDR. */
749
750 static CORE_ADDR
751 read_memory_addr (CORE_ADDR memaddr, int len)
752 {
753 return read_memory_unsigned_integer (memaddr, len);
754 }
755
756 static CORE_ADDR
757 rs6000_skip_prologue (CORE_ADDR pc)
758 {
759 struct rs6000_framedata frame;
760 CORE_ADDR limit_pc, func_addr;
761
762 /* See if we can determine the end of the prologue via the symbol table.
763 If so, then return either PC, or the PC after the prologue, whichever
764 is greater. */
765 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
766 {
767 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
768 if (post_prologue_pc != 0)
769 return max (pc, post_prologue_pc);
770 }
771
772 /* Can't determine prologue from the symbol table, need to examine
773 instructions. */
774
775 /* Find an upper limit on the function prologue using the debug
776 information. If the debug information could not be used to provide
777 that bound, then use an arbitrary large number as the upper bound. */
778 limit_pc = skip_prologue_using_sal (pc);
779 if (limit_pc == 0)
780 limit_pc = pc + 100; /* Magic. */
781
782 pc = skip_prologue (pc, limit_pc, &frame);
783 return pc;
784 }
785
786 static int
787 insn_changes_sp_or_jumps (unsigned long insn)
788 {
789 int opcode = (insn >> 26) & 0x03f;
790 int sd = (insn >> 21) & 0x01f;
791 int a = (insn >> 16) & 0x01f;
792 int subcode = (insn >> 1) & 0x3ff;
793
794 /* Changes the stack pointer. */
795
796 /* NOTE: There are many ways to change the value of a given register.
797 The ways below are those used when the register is R1, the SP,
798 in a funtion's epilogue. */
799
800 if (opcode == 31 && subcode == 444 && a == 1)
801 return 1; /* mr R1,Rn */
802 if (opcode == 14 && sd == 1)
803 return 1; /* addi R1,Rn,simm */
804 if (opcode == 58 && sd == 1)
805 return 1; /* ld R1,ds(Rn) */
806
807 /* Transfers control. */
808
809 if (opcode == 18)
810 return 1; /* b */
811 if (opcode == 16)
812 return 1; /* bc */
813 if (opcode == 19 && subcode == 16)
814 return 1; /* bclr */
815 if (opcode == 19 && subcode == 528)
816 return 1; /* bcctr */
817
818 return 0;
819 }
820
821 /* Return true if we are in the function's epilogue, i.e. after the
822 instruction that destroyed the function's stack frame.
823
824 1) scan forward from the point of execution:
825 a) If you find an instruction that modifies the stack pointer
826 or transfers control (except a return), execution is not in
827 an epilogue, return.
828 b) Stop scanning if you find a return instruction or reach the
829 end of the function or reach the hard limit for the size of
830 an epilogue.
831 2) scan backward from the point of execution:
832 a) If you find an instruction that modifies the stack pointer,
833 execution *is* in an epilogue, return.
834 b) Stop scanning if you reach an instruction that transfers
835 control or the beginning of the function or reach the hard
836 limit for the size of an epilogue. */
837
838 static int
839 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
840 {
841 bfd_byte insn_buf[PPC_INSN_SIZE];
842 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
843 unsigned long insn;
844 struct frame_info *curfrm;
845
846 /* Find the search limits based on function boundaries and hard limit. */
847
848 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
849 return 0;
850
851 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
852 if (epilogue_start < func_start) epilogue_start = func_start;
853
854 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
855 if (epilogue_end > func_end) epilogue_end = func_end;
856
857 curfrm = get_current_frame ();
858
859 /* Scan forward until next 'blr'. */
860
861 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
862 {
863 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
864 return 0;
865 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
866 if (insn == 0x4e800020)
867 break;
868 if (insn_changes_sp_or_jumps (insn))
869 return 0;
870 }
871
872 /* Scan backward until adjustment to stack pointer (R1). */
873
874 for (scan_pc = pc - PPC_INSN_SIZE;
875 scan_pc >= epilogue_start;
876 scan_pc -= PPC_INSN_SIZE)
877 {
878 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
879 return 0;
880 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
881 if (insn_changes_sp_or_jumps (insn))
882 return 1;
883 }
884
885 return 0;
886 }
887
888 /* Get the ith function argument for the current function. */
889 static CORE_ADDR
890 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
891 struct type *type)
892 {
893 return get_frame_register_unsigned (frame, 3 + argi);
894 }
895
896 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
897
898 static CORE_ADDR
899 branch_dest (struct frame_info *frame, int opcode, int instr,
900 CORE_ADDR pc, CORE_ADDR safety)
901 {
902 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
903 CORE_ADDR dest;
904 int immediate;
905 int absolute;
906 int ext_op;
907
908 absolute = (int) ((instr >> 1) & 1);
909
910 switch (opcode)
911 {
912 case 18:
913 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
914 if (absolute)
915 dest = immediate;
916 else
917 dest = pc + immediate;
918 break;
919
920 case 16:
921 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
922 if (absolute)
923 dest = immediate;
924 else
925 dest = pc + immediate;
926 break;
927
928 case 19:
929 ext_op = (instr >> 1) & 0x3ff;
930
931 if (ext_op == 16) /* br conditional register */
932 {
933 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
934
935 /* If we are about to return from a signal handler, dest is
936 something like 0x3c90. The current frame is a signal handler
937 caller frame, upon completion of the sigreturn system call
938 execution will return to the saved PC in the frame. */
939 if (dest < tdep->text_segment_base)
940 dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
941 tdep->wordsize);
942 }
943
944 else if (ext_op == 528) /* br cond to count reg */
945 {
946 dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
947
948 /* If we are about to execute a system call, dest is something
949 like 0x22fc or 0x3b00. Upon completion the system call
950 will return to the address in the link register. */
951 if (dest < tdep->text_segment_base)
952 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
953 }
954 else
955 return -1;
956 break;
957
958 default:
959 return -1;
960 }
961 return (dest < tdep->text_segment_base) ? safety : dest;
962 }
963
964
965 /* Sequence of bytes for breakpoint instruction. */
966
967 const static unsigned char *
968 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
969 int *bp_size)
970 {
971 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
972 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
973 *bp_size = 4;
974 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
975 return big_breakpoint;
976 else
977 return little_breakpoint;
978 }
979
980
981 /* Instruction masks used during single-stepping of atomic sequences. */
982 #define LWARX_MASK 0xfc0007fe
983 #define LWARX_INSTRUCTION 0x7c000028
984 #define LDARX_INSTRUCTION 0x7c0000A8
985 #define STWCX_MASK 0xfc0007ff
986 #define STWCX_INSTRUCTION 0x7c00012d
987 #define STDCX_INSTRUCTION 0x7c0001ad
988 #define BC_MASK 0xfc000000
989 #define BC_INSTRUCTION 0x40000000
990
991 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
992 instruction and ending with a STWCX/STDCX instruction. If such a sequence
993 is found, attempt to step through it. A breakpoint is placed at the end of
994 the sequence. */
995
996 static int
997 deal_with_atomic_sequence (struct frame_info *frame)
998 {
999 CORE_ADDR pc = get_frame_pc (frame);
1000 CORE_ADDR breaks[2] = {-1, -1};
1001 CORE_ADDR loc = pc;
1002 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
1003 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1004 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
1005 int insn_count;
1006 int index;
1007 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1008 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1009 int opcode; /* Branch instruction's OPcode. */
1010 int bc_insn_count = 0; /* Conditional branch instruction count. */
1011
1012 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1013 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1014 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1015 return 0;
1016
1017 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1018 instructions. */
1019 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1020 {
1021 loc += PPC_INSN_SIZE;
1022 insn = read_memory_integer (loc, PPC_INSN_SIZE);
1023
1024 /* Assume that there is at most one conditional branch in the atomic
1025 sequence. If a conditional branch is found, put a breakpoint in
1026 its destination address. */
1027 if ((insn & BC_MASK) == BC_INSTRUCTION)
1028 {
1029 if (bc_insn_count >= 1)
1030 return 0; /* More than one conditional branch found, fallback
1031 to the standard single-step code. */
1032
1033 opcode = insn >> 26;
1034 branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
1035
1036 if (branch_bp != -1)
1037 {
1038 breaks[1] = branch_bp;
1039 bc_insn_count++;
1040 last_breakpoint++;
1041 }
1042 }
1043
1044 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1045 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1046 break;
1047 }
1048
1049 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1050 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1051 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1052 return 0;
1053
1054 closing_insn = loc;
1055 loc += PPC_INSN_SIZE;
1056 insn = read_memory_integer (loc, PPC_INSN_SIZE);
1057
1058 /* Insert a breakpoint right after the end of the atomic sequence. */
1059 breaks[0] = loc;
1060
1061 /* Check for duplicated breakpoints. Check also for a breakpoint
1062 placed (branch instruction's destination) at the stwcx/stdcx
1063 instruction, this resets the reservation and take us back to the
1064 lwarx/ldarx instruction at the beginning of the atomic sequence. */
1065 if (last_breakpoint && ((breaks[1] == breaks[0])
1066 || (breaks[1] == closing_insn)))
1067 last_breakpoint = 0;
1068
1069 /* Effectively inserts the breakpoints. */
1070 for (index = 0; index <= last_breakpoint; index++)
1071 insert_single_step_breakpoint (breaks[index]);
1072
1073 return 1;
1074 }
1075
1076 /* AIX does not support PT_STEP. Simulate it. */
1077
1078 int
1079 rs6000_software_single_step (struct frame_info *frame)
1080 {
1081 CORE_ADDR dummy;
1082 int breakp_sz;
1083 const gdb_byte *breakp
1084 = rs6000_breakpoint_from_pc (get_frame_arch (frame), &dummy, &breakp_sz);
1085 int ii, insn;
1086 CORE_ADDR loc;
1087 CORE_ADDR breaks[2];
1088 int opcode;
1089
1090 loc = get_frame_pc (frame);
1091
1092 insn = read_memory_integer (loc, 4);
1093
1094 if (deal_with_atomic_sequence (frame))
1095 return 1;
1096
1097 breaks[0] = loc + breakp_sz;
1098 opcode = insn >> 26;
1099 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
1100
1101 /* Don't put two breakpoints on the same address. */
1102 if (breaks[1] == breaks[0])
1103 breaks[1] = -1;
1104
1105 for (ii = 0; ii < 2; ++ii)
1106 {
1107 /* ignore invalid breakpoint. */
1108 if (breaks[ii] == -1)
1109 continue;
1110 insert_single_step_breakpoint (breaks[ii]);
1111 }
1112
1113 errno = 0; /* FIXME, don't ignore errors! */
1114 /* What errors? {read,write}_memory call error(). */
1115 return 1;
1116 }
1117
1118
1119 #define SIGNED_SHORT(x) \
1120 ((sizeof (short) == 2) \
1121 ? ((int)(short)(x)) \
1122 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1123
1124 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1125
1126 /* Limit the number of skipped non-prologue instructions, as the examining
1127 of the prologue is expensive. */
1128 static int max_skip_non_prologue_insns = 10;
1129
1130 /* Return nonzero if the given instruction OP can be part of the prologue
1131 of a function and saves a parameter on the stack. FRAMEP should be
1132 set if one of the previous instructions in the function has set the
1133 Frame Pointer. */
1134
1135 static int
1136 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1137 {
1138 /* Move parameters from argument registers to temporary register. */
1139 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1140 {
1141 /* Rx must be scratch register r0. */
1142 const int rx_regno = (op >> 16) & 31;
1143 /* Ry: Only r3 - r10 are used for parameter passing. */
1144 const int ry_regno = GET_SRC_REG (op);
1145
1146 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1147 {
1148 *r0_contains_arg = 1;
1149 return 1;
1150 }
1151 else
1152 return 0;
1153 }
1154
1155 /* Save a General Purpose Register on stack. */
1156
1157 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1158 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1159 {
1160 /* Rx: Only r3 - r10 are used for parameter passing. */
1161 const int rx_regno = GET_SRC_REG (op);
1162
1163 return (rx_regno >= 3 && rx_regno <= 10);
1164 }
1165
1166 /* Save a General Purpose Register on stack via the Frame Pointer. */
1167
1168 if (framep &&
1169 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1170 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1171 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1172 {
1173 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1174 However, the compiler sometimes uses r0 to hold an argument. */
1175 const int rx_regno = GET_SRC_REG (op);
1176
1177 return ((rx_regno >= 3 && rx_regno <= 10)
1178 || (rx_regno == 0 && *r0_contains_arg));
1179 }
1180
1181 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1182 {
1183 /* Only f2 - f8 are used for parameter passing. */
1184 const int src_regno = GET_SRC_REG (op);
1185
1186 return (src_regno >= 2 && src_regno <= 8);
1187 }
1188
1189 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1190 {
1191 /* Only f2 - f8 are used for parameter passing. */
1192 const int src_regno = GET_SRC_REG (op);
1193
1194 return (src_regno >= 2 && src_regno <= 8);
1195 }
1196
1197 /* Not an insn that saves a parameter on stack. */
1198 return 0;
1199 }
1200
1201 /* Assuming that INSN is a "bl" instruction located at PC, return
1202 nonzero if the destination of the branch is a "blrl" instruction.
1203
1204 This sequence is sometimes found in certain function prologues.
1205 It allows the function to load the LR register with a value that
1206 they can use to access PIC data using PC-relative offsets. */
1207
1208 static int
1209 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
1210 {
1211 CORE_ADDR dest;
1212 int immediate;
1213 int absolute;
1214 int dest_insn;
1215
1216 absolute = (int) ((insn >> 1) & 1);
1217 immediate = ((insn & ~3) << 6) >> 6;
1218 if (absolute)
1219 dest = immediate;
1220 else
1221 dest = pc + immediate;
1222
1223 dest_insn = read_memory_integer (dest, 4);
1224 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1225 return 1;
1226
1227 return 0;
1228 }
1229
1230 /* return pc value after skipping a function prologue and also return
1231 information about a function frame.
1232
1233 in struct rs6000_framedata fdata:
1234 - frameless is TRUE, if function does not have a frame.
1235 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1236 - offset is the initial size of this stack frame --- the amount by
1237 which we decrement the sp to allocate the frame.
1238 - saved_gpr is the number of the first saved gpr.
1239 - saved_fpr is the number of the first saved fpr.
1240 - saved_vr is the number of the first saved vr.
1241 - saved_ev is the number of the first saved ev.
1242 - alloca_reg is the number of the register used for alloca() handling.
1243 Otherwise -1.
1244 - gpr_offset is the offset of the first saved gpr from the previous frame.
1245 - fpr_offset is the offset of the first saved fpr from the previous frame.
1246 - vr_offset is the offset of the first saved vr from the previous frame.
1247 - ev_offset is the offset of the first saved ev from the previous frame.
1248 - lr_offset is the offset of the saved lr
1249 - cr_offset is the offset of the saved cr
1250 - vrsave_offset is the offset of the saved vrsave register
1251 */
1252
1253 static CORE_ADDR
1254 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
1255 {
1256 CORE_ADDR orig_pc = pc;
1257 CORE_ADDR last_prologue_pc = pc;
1258 CORE_ADDR li_found_pc = 0;
1259 gdb_byte buf[4];
1260 unsigned long op;
1261 long offset = 0;
1262 long vr_saved_offset = 0;
1263 int lr_reg = -1;
1264 int cr_reg = -1;
1265 int vr_reg = -1;
1266 int ev_reg = -1;
1267 long ev_offset = 0;
1268 int vrsave_reg = -1;
1269 int reg;
1270 int framep = 0;
1271 int minimal_toc_loaded = 0;
1272 int prev_insn_was_prologue_insn = 1;
1273 int num_skip_non_prologue_insns = 0;
1274 int r0_contains_arg = 0;
1275 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
1276 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1277
1278 memset (fdata, 0, sizeof (struct rs6000_framedata));
1279 fdata->saved_gpr = -1;
1280 fdata->saved_fpr = -1;
1281 fdata->saved_vr = -1;
1282 fdata->saved_ev = -1;
1283 fdata->alloca_reg = -1;
1284 fdata->frameless = 1;
1285 fdata->nosavedpc = 1;
1286
1287 for (;; pc += 4)
1288 {
1289 /* Sometimes it isn't clear if an instruction is a prologue
1290 instruction or not. When we encounter one of these ambiguous
1291 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1292 Otherwise, we'll assume that it really is a prologue instruction. */
1293 if (prev_insn_was_prologue_insn)
1294 last_prologue_pc = pc;
1295
1296 /* Stop scanning if we've hit the limit. */
1297 if (pc >= lim_pc)
1298 break;
1299
1300 prev_insn_was_prologue_insn = 1;
1301
1302 /* Fetch the instruction and convert it to an integer. */
1303 if (target_read_memory (pc, buf, 4))
1304 break;
1305 op = extract_unsigned_integer (buf, 4);
1306
1307 if ((op & 0xfc1fffff) == 0x7c0802a6)
1308 { /* mflr Rx */
1309 /* Since shared library / PIC code, which needs to get its
1310 address at runtime, can appear to save more than one link
1311 register vis:
1312
1313 *INDENT-OFF*
1314 stwu r1,-304(r1)
1315 mflr r3
1316 bl 0xff570d0 (blrl)
1317 stw r30,296(r1)
1318 mflr r30
1319 stw r31,300(r1)
1320 stw r3,308(r1);
1321 ...
1322 *INDENT-ON*
1323
1324 remember just the first one, but skip over additional
1325 ones. */
1326 if (lr_reg == -1)
1327 lr_reg = (op & 0x03e00000);
1328 if (lr_reg == 0)
1329 r0_contains_arg = 0;
1330 continue;
1331 }
1332 else if ((op & 0xfc1fffff) == 0x7c000026)
1333 { /* mfcr Rx */
1334 cr_reg = (op & 0x03e00000);
1335 if (cr_reg == 0)
1336 r0_contains_arg = 0;
1337 continue;
1338
1339 }
1340 else if ((op & 0xfc1f0000) == 0xd8010000)
1341 { /* stfd Rx,NUM(r1) */
1342 reg = GET_SRC_REG (op);
1343 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1344 {
1345 fdata->saved_fpr = reg;
1346 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1347 }
1348 continue;
1349
1350 }
1351 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1352 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1353 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1354 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1355 {
1356
1357 reg = GET_SRC_REG (op);
1358 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1359 {
1360 fdata->saved_gpr = reg;
1361 if ((op & 0xfc1f0003) == 0xf8010000)
1362 op &= ~3UL;
1363 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1364 }
1365 continue;
1366
1367 }
1368 else if ((op & 0xffff0000) == 0x60000000)
1369 {
1370 /* nop */
1371 /* Allow nops in the prologue, but do not consider them to
1372 be part of the prologue unless followed by other prologue
1373 instructions. */
1374 prev_insn_was_prologue_insn = 0;
1375 continue;
1376
1377 }
1378 else if ((op & 0xffff0000) == 0x3c000000)
1379 { /* addis 0,0,NUM, used
1380 for >= 32k frames */
1381 fdata->offset = (op & 0x0000ffff) << 16;
1382 fdata->frameless = 0;
1383 r0_contains_arg = 0;
1384 continue;
1385
1386 }
1387 else if ((op & 0xffff0000) == 0x60000000)
1388 { /* ori 0,0,NUM, 2nd ha
1389 lf of >= 32k frames */
1390 fdata->offset |= (op & 0x0000ffff);
1391 fdata->frameless = 0;
1392 r0_contains_arg = 0;
1393 continue;
1394
1395 }
1396 else if (lr_reg >= 0 &&
1397 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1398 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1399 /* stw Rx, NUM(r1) */
1400 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1401 /* stwu Rx, NUM(r1) */
1402 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1403 { /* where Rx == lr */
1404 fdata->lr_offset = offset;
1405 fdata->nosavedpc = 0;
1406 /* Invalidate lr_reg, but don't set it to -1.
1407 That would mean that it had never been set. */
1408 lr_reg = -2;
1409 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1410 (op & 0xfc000000) == 0x90000000) /* stw */
1411 {
1412 /* Does not update r1, so add displacement to lr_offset. */
1413 fdata->lr_offset += SIGNED_SHORT (op);
1414 }
1415 continue;
1416
1417 }
1418 else if (cr_reg >= 0 &&
1419 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1420 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1421 /* stw Rx, NUM(r1) */
1422 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1423 /* stwu Rx, NUM(r1) */
1424 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1425 { /* where Rx == cr */
1426 fdata->cr_offset = offset;
1427 /* Invalidate cr_reg, but don't set it to -1.
1428 That would mean that it had never been set. */
1429 cr_reg = -2;
1430 if ((op & 0xfc000003) == 0xf8000000 ||
1431 (op & 0xfc000000) == 0x90000000)
1432 {
1433 /* Does not update r1, so add displacement to cr_offset. */
1434 fdata->cr_offset += SIGNED_SHORT (op);
1435 }
1436 continue;
1437
1438 }
1439 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1440 {
1441 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1442 prediction bits. If the LR has already been saved, we can
1443 skip it. */
1444 continue;
1445 }
1446 else if (op == 0x48000005)
1447 { /* bl .+4 used in
1448 -mrelocatable */
1449 continue;
1450
1451 }
1452 else if (op == 0x48000004)
1453 { /* b .+4 (xlc) */
1454 break;
1455
1456 }
1457 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1458 in V.4 -mminimal-toc */
1459 (op & 0xffff0000) == 0x3bde0000)
1460 { /* addi 30,30,foo@l */
1461 continue;
1462
1463 }
1464 else if ((op & 0xfc000001) == 0x48000001)
1465 { /* bl foo,
1466 to save fprs??? */
1467
1468 fdata->frameless = 0;
1469
1470 /* If the return address has already been saved, we can skip
1471 calls to blrl (for PIC). */
1472 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1473 continue;
1474
1475 /* Don't skip over the subroutine call if it is not within
1476 the first three instructions of the prologue and either
1477 we have no line table information or the line info tells
1478 us that the subroutine call is not part of the line
1479 associated with the prologue. */
1480 if ((pc - orig_pc) > 8)
1481 {
1482 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1483 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1484
1485 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1486 break;
1487 }
1488
1489 op = read_memory_integer (pc + 4, 4);
1490
1491 /* At this point, make sure this is not a trampoline
1492 function (a function that simply calls another functions,
1493 and nothing else). If the next is not a nop, this branch
1494 was part of the function prologue. */
1495
1496 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1497 break; /* don't skip over
1498 this branch */
1499 continue;
1500
1501 }
1502 /* update stack pointer */
1503 else if ((op & 0xfc1f0000) == 0x94010000)
1504 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1505 fdata->frameless = 0;
1506 fdata->offset = SIGNED_SHORT (op);
1507 offset = fdata->offset;
1508 continue;
1509 }
1510 else if ((op & 0xfc1f016a) == 0x7c01016e)
1511 { /* stwux rX,r1,rY */
1512 /* no way to figure out what r1 is going to be */
1513 fdata->frameless = 0;
1514 offset = fdata->offset;
1515 continue;
1516 }
1517 else if ((op & 0xfc1f0003) == 0xf8010001)
1518 { /* stdu rX,NUM(r1) */
1519 fdata->frameless = 0;
1520 fdata->offset = SIGNED_SHORT (op & ~3UL);
1521 offset = fdata->offset;
1522 continue;
1523 }
1524 else if ((op & 0xfc1f016a) == 0x7c01016a)
1525 { /* stdux rX,r1,rY */
1526 /* no way to figure out what r1 is going to be */
1527 fdata->frameless = 0;
1528 offset = fdata->offset;
1529 continue;
1530 }
1531 else if ((op & 0xffff0000) == 0x38210000)
1532 { /* addi r1,r1,SIMM */
1533 fdata->frameless = 0;
1534 fdata->offset += SIGNED_SHORT (op);
1535 offset = fdata->offset;
1536 continue;
1537 }
1538 /* Load up minimal toc pointer. Do not treat an epilogue restore
1539 of r31 as a minimal TOC load. */
1540 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1541 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1542 && !framep
1543 && !minimal_toc_loaded)
1544 {
1545 minimal_toc_loaded = 1;
1546 continue;
1547
1548 /* move parameters from argument registers to local variable
1549 registers */
1550 }
1551 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1552 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1553 (((op >> 21) & 31) <= 10) &&
1554 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1555 {
1556 continue;
1557
1558 /* store parameters in stack */
1559 }
1560 /* Move parameters from argument registers to temporary register. */
1561 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1562 {
1563 continue;
1564
1565 /* Set up frame pointer */
1566 }
1567 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1568 || op == 0x7c3f0b78)
1569 { /* mr r31, r1 */
1570 fdata->frameless = 0;
1571 framep = 1;
1572 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1573 continue;
1574
1575 /* Another way to set up the frame pointer. */
1576 }
1577 else if ((op & 0xfc1fffff) == 0x38010000)
1578 { /* addi rX, r1, 0x0 */
1579 fdata->frameless = 0;
1580 framep = 1;
1581 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1582 + ((op & ~0x38010000) >> 21));
1583 continue;
1584 }
1585 /* AltiVec related instructions. */
1586 /* Store the vrsave register (spr 256) in another register for
1587 later manipulation, or load a register into the vrsave
1588 register. 2 instructions are used: mfvrsave and
1589 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1590 and mtspr SPR256, Rn. */
1591 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1592 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1593 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1594 {
1595 vrsave_reg = GET_SRC_REG (op);
1596 continue;
1597 }
1598 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1599 {
1600 continue;
1601 }
1602 /* Store the register where vrsave was saved to onto the stack:
1603 rS is the register where vrsave was stored in a previous
1604 instruction. */
1605 /* 100100 sssss 00001 dddddddd dddddddd */
1606 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1607 {
1608 if (vrsave_reg == GET_SRC_REG (op))
1609 {
1610 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1611 vrsave_reg = -1;
1612 }
1613 continue;
1614 }
1615 /* Compute the new value of vrsave, by modifying the register
1616 where vrsave was saved to. */
1617 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1618 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1619 {
1620 continue;
1621 }
1622 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1623 in a pair of insns to save the vector registers on the
1624 stack. */
1625 /* 001110 00000 00000 iiii iiii iiii iiii */
1626 /* 001110 01110 00000 iiii iiii iiii iiii */
1627 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1628 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1629 {
1630 if ((op & 0xffff0000) == 0x38000000)
1631 r0_contains_arg = 0;
1632 li_found_pc = pc;
1633 vr_saved_offset = SIGNED_SHORT (op);
1634
1635 /* This insn by itself is not part of the prologue, unless
1636 if part of the pair of insns mentioned above. So do not
1637 record this insn as part of the prologue yet. */
1638 prev_insn_was_prologue_insn = 0;
1639 }
1640 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1641 /* 011111 sssss 11111 00000 00111001110 */
1642 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1643 {
1644 if (pc == (li_found_pc + 4))
1645 {
1646 vr_reg = GET_SRC_REG (op);
1647 /* If this is the first vector reg to be saved, or if
1648 it has a lower number than others previously seen,
1649 reupdate the frame info. */
1650 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1651 {
1652 fdata->saved_vr = vr_reg;
1653 fdata->vr_offset = vr_saved_offset + offset;
1654 }
1655 vr_saved_offset = -1;
1656 vr_reg = -1;
1657 li_found_pc = 0;
1658 }
1659 }
1660 /* End AltiVec related instructions. */
1661
1662 /* Start BookE related instructions. */
1663 /* Store gen register S at (r31+uimm).
1664 Any register less than r13 is volatile, so we don't care. */
1665 /* 000100 sssss 11111 iiiii 01100100001 */
1666 else if (arch_info->mach == bfd_mach_ppc_e500
1667 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1668 {
1669 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1670 {
1671 unsigned int imm;
1672 ev_reg = GET_SRC_REG (op);
1673 imm = (op >> 11) & 0x1f;
1674 ev_offset = imm * 8;
1675 /* If this is the first vector reg to be saved, or if
1676 it has a lower number than others previously seen,
1677 reupdate the frame info. */
1678 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1679 {
1680 fdata->saved_ev = ev_reg;
1681 fdata->ev_offset = ev_offset + offset;
1682 }
1683 }
1684 continue;
1685 }
1686 /* Store gen register rS at (r1+rB). */
1687 /* 000100 sssss 00001 bbbbb 01100100000 */
1688 else if (arch_info->mach == bfd_mach_ppc_e500
1689 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1690 {
1691 if (pc == (li_found_pc + 4))
1692 {
1693 ev_reg = GET_SRC_REG (op);
1694 /* If this is the first vector reg to be saved, or if
1695 it has a lower number than others previously seen,
1696 reupdate the frame info. */
1697 /* We know the contents of rB from the previous instruction. */
1698 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1699 {
1700 fdata->saved_ev = ev_reg;
1701 fdata->ev_offset = vr_saved_offset + offset;
1702 }
1703 vr_saved_offset = -1;
1704 ev_reg = -1;
1705 li_found_pc = 0;
1706 }
1707 continue;
1708 }
1709 /* Store gen register r31 at (rA+uimm). */
1710 /* 000100 11111 aaaaa iiiii 01100100001 */
1711 else if (arch_info->mach == bfd_mach_ppc_e500
1712 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1713 {
1714 /* Wwe know that the source register is 31 already, but
1715 it can't hurt to compute it. */
1716 ev_reg = GET_SRC_REG (op);
1717 ev_offset = ((op >> 11) & 0x1f) * 8;
1718 /* If this is the first vector reg to be saved, or if
1719 it has a lower number than others previously seen,
1720 reupdate the frame info. */
1721 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1722 {
1723 fdata->saved_ev = ev_reg;
1724 fdata->ev_offset = ev_offset + offset;
1725 }
1726
1727 continue;
1728 }
1729 /* Store gen register S at (r31+r0).
1730 Store param on stack when offset from SP bigger than 4 bytes. */
1731 /* 000100 sssss 11111 00000 01100100000 */
1732 else if (arch_info->mach == bfd_mach_ppc_e500
1733 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1734 {
1735 if (pc == (li_found_pc + 4))
1736 {
1737 if ((op & 0x03e00000) >= 0x01a00000)
1738 {
1739 ev_reg = GET_SRC_REG (op);
1740 /* If this is the first vector reg to be saved, or if
1741 it has a lower number than others previously seen,
1742 reupdate the frame info. */
1743 /* We know the contents of r0 from the previous
1744 instruction. */
1745 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1746 {
1747 fdata->saved_ev = ev_reg;
1748 fdata->ev_offset = vr_saved_offset + offset;
1749 }
1750 ev_reg = -1;
1751 }
1752 vr_saved_offset = -1;
1753 li_found_pc = 0;
1754 continue;
1755 }
1756 }
1757 /* End BookE related instructions. */
1758
1759 else
1760 {
1761 /* Not a recognized prologue instruction.
1762 Handle optimizer code motions into the prologue by continuing
1763 the search if we have no valid frame yet or if the return
1764 address is not yet saved in the frame. */
1765 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1766 break;
1767
1768 if (op == 0x4e800020 /* blr */
1769 || op == 0x4e800420) /* bctr */
1770 /* Do not scan past epilogue in frameless functions or
1771 trampolines. */
1772 break;
1773 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1774 /* Never skip branches. */
1775 break;
1776
1777 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1778 /* Do not scan too many insns, scanning insns is expensive with
1779 remote targets. */
1780 break;
1781
1782 /* Continue scanning. */
1783 prev_insn_was_prologue_insn = 0;
1784 continue;
1785 }
1786 }
1787
1788 #if 0
1789 /* I have problems with skipping over __main() that I need to address
1790 * sometime. Previously, I used to use misc_function_vector which
1791 * didn't work as well as I wanted to be. -MGO */
1792
1793 /* If the first thing after skipping a prolog is a branch to a function,
1794 this might be a call to an initializer in main(), introduced by gcc2.
1795 We'd like to skip over it as well. Fortunately, xlc does some extra
1796 work before calling a function right after a prologue, thus we can
1797 single out such gcc2 behaviour. */
1798
1799
1800 if ((op & 0xfc000001) == 0x48000001)
1801 { /* bl foo, an initializer function? */
1802 op = read_memory_integer (pc + 4, 4);
1803
1804 if (op == 0x4def7b82)
1805 { /* cror 0xf, 0xf, 0xf (nop) */
1806
1807 /* Check and see if we are in main. If so, skip over this
1808 initializer function as well. */
1809
1810 tmp = find_pc_misc_function (pc);
1811 if (tmp >= 0
1812 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1813 return pc + 8;
1814 }
1815 }
1816 #endif /* 0 */
1817
1818 fdata->offset = -fdata->offset;
1819 return last_prologue_pc;
1820 }
1821
1822
1823 /*************************************************************************
1824 Support for creating pushing a dummy frame into the stack, and popping
1825 frames, etc.
1826 *************************************************************************/
1827
1828
1829 /* All the ABI's require 16 byte alignment. */
1830 static CORE_ADDR
1831 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1832 {
1833 return (addr & -16);
1834 }
1835
1836 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1837 the first eight words of the argument list (that might be less than
1838 eight parameters if some parameters occupy more than one word) are
1839 passed in r3..r10 registers. float and double parameters are
1840 passed in fpr's, in addition to that. Rest of the parameters if any
1841 are passed in user stack. There might be cases in which half of the
1842 parameter is copied into registers, the other half is pushed into
1843 stack.
1844
1845 Stack must be aligned on 64-bit boundaries when synthesizing
1846 function calls.
1847
1848 If the function is returning a structure, then the return address is passed
1849 in r3, then the first 7 words of the parameters can be passed in registers,
1850 starting from r4. */
1851
1852 static CORE_ADDR
1853 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1854 struct regcache *regcache, CORE_ADDR bp_addr,
1855 int nargs, struct value **args, CORE_ADDR sp,
1856 int struct_return, CORE_ADDR struct_addr)
1857 {
1858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1859 int ii;
1860 int len = 0;
1861 int argno; /* current argument number */
1862 int argbytes; /* current argument byte */
1863 gdb_byte tmp_buffer[50];
1864 int f_argno = 0; /* current floating point argno */
1865 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
1866 CORE_ADDR func_addr = find_function_addr (function, NULL);
1867
1868 struct value *arg = 0;
1869 struct type *type;
1870
1871 ULONGEST saved_sp;
1872
1873 /* The calling convention this function implements assumes the
1874 processor has floating-point registers. We shouldn't be using it
1875 on PPC variants that lack them. */
1876 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1877
1878 /* The first eight words of ther arguments are passed in registers.
1879 Copy them appropriately. */
1880 ii = 0;
1881
1882 /* If the function is returning a `struct', then the first word
1883 (which will be passed in r3) is used for struct return address.
1884 In that case we should advance one word and start from r4
1885 register to copy parameters. */
1886 if (struct_return)
1887 {
1888 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1889 struct_addr);
1890 ii++;
1891 }
1892
1893 /*
1894 effectively indirect call... gcc does...
1895
1896 return_val example( float, int);
1897
1898 eabi:
1899 float in fp0, int in r3
1900 offset of stack on overflow 8/16
1901 for varargs, must go by type.
1902 power open:
1903 float in r3&r4, int in r5
1904 offset of stack on overflow different
1905 both:
1906 return in r3 or f0. If no float, must study how gcc emulates floats;
1907 pay attention to arg promotion.
1908 User may have to cast\args to handle promotion correctly
1909 since gdb won't know if prototype supplied or not.
1910 */
1911
1912 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1913 {
1914 int reg_size = register_size (gdbarch, ii + 3);
1915
1916 arg = args[argno];
1917 type = check_typedef (value_type (arg));
1918 len = TYPE_LENGTH (type);
1919
1920 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1921 {
1922
1923 /* Floating point arguments are passed in fpr's, as well as gpr's.
1924 There are 13 fpr's reserved for passing parameters. At this point
1925 there is no way we would run out of them. */
1926
1927 gdb_assert (len <= 8);
1928
1929 regcache_cooked_write (regcache,
1930 tdep->ppc_fp0_regnum + 1 + f_argno,
1931 value_contents (arg));
1932 ++f_argno;
1933 }
1934
1935 if (len > reg_size)
1936 {
1937
1938 /* Argument takes more than one register. */
1939 while (argbytes < len)
1940 {
1941 gdb_byte word[MAX_REGISTER_SIZE];
1942 memset (word, 0, reg_size);
1943 memcpy (word,
1944 ((char *) value_contents (arg)) + argbytes,
1945 (len - argbytes) > reg_size
1946 ? reg_size : len - argbytes);
1947 regcache_cooked_write (regcache,
1948 tdep->ppc_gp0_regnum + 3 + ii,
1949 word);
1950 ++ii, argbytes += reg_size;
1951
1952 if (ii >= 8)
1953 goto ran_out_of_registers_for_arguments;
1954 }
1955 argbytes = 0;
1956 --ii;
1957 }
1958 else
1959 {
1960 /* Argument can fit in one register. No problem. */
1961 int adj = gdbarch_byte_order (gdbarch)
1962 == BFD_ENDIAN_BIG ? reg_size - len : 0;
1963 gdb_byte word[MAX_REGISTER_SIZE];
1964
1965 memset (word, 0, reg_size);
1966 memcpy (word, value_contents (arg), len);
1967 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1968 }
1969 ++argno;
1970 }
1971
1972 ran_out_of_registers_for_arguments:
1973
1974 regcache_cooked_read_unsigned (regcache,
1975 gdbarch_sp_regnum (gdbarch),
1976 &saved_sp);
1977
1978 /* Location for 8 parameters are always reserved. */
1979 sp -= wordsize * 8;
1980
1981 /* Another six words for back chain, TOC register, link register, etc. */
1982 sp -= wordsize * 6;
1983
1984 /* Stack pointer must be quadword aligned. */
1985 sp &= -16;
1986
1987 /* If there are more arguments, allocate space for them in
1988 the stack, then push them starting from the ninth one. */
1989
1990 if ((argno < nargs) || argbytes)
1991 {
1992 int space = 0, jj;
1993
1994 if (argbytes)
1995 {
1996 space += ((len - argbytes + 3) & -4);
1997 jj = argno + 1;
1998 }
1999 else
2000 jj = argno;
2001
2002 for (; jj < nargs; ++jj)
2003 {
2004 struct value *val = args[jj];
2005 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
2006 }
2007
2008 /* Add location required for the rest of the parameters. */
2009 space = (space + 15) & -16;
2010 sp -= space;
2011
2012 /* This is another instance we need to be concerned about
2013 securing our stack space. If we write anything underneath %sp
2014 (r1), we might conflict with the kernel who thinks he is free
2015 to use this area. So, update %sp first before doing anything
2016 else. */
2017
2018 regcache_raw_write_signed (regcache,
2019 gdbarch_sp_regnum (gdbarch), sp);
2020
2021 /* If the last argument copied into the registers didn't fit there
2022 completely, push the rest of it into stack. */
2023
2024 if (argbytes)
2025 {
2026 write_memory (sp + 24 + (ii * 4),
2027 value_contents (arg) + argbytes,
2028 len - argbytes);
2029 ++argno;
2030 ii += ((len - argbytes + 3) & -4) / 4;
2031 }
2032
2033 /* Push the rest of the arguments into stack. */
2034 for (; argno < nargs; ++argno)
2035 {
2036
2037 arg = args[argno];
2038 type = check_typedef (value_type (arg));
2039 len = TYPE_LENGTH (type);
2040
2041
2042 /* Float types should be passed in fpr's, as well as in the
2043 stack. */
2044 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
2045 {
2046
2047 gdb_assert (len <= 8);
2048
2049 regcache_cooked_write (regcache,
2050 tdep->ppc_fp0_regnum + 1 + f_argno,
2051 value_contents (arg));
2052 ++f_argno;
2053 }
2054
2055 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
2056 ii += ((len + 3) & -4) / 4;
2057 }
2058 }
2059
2060 /* Set the stack pointer. According to the ABI, the SP is meant to
2061 be set _before_ the corresponding stack space is used. On AIX,
2062 this even applies when the target has been completely stopped!
2063 Not doing this can lead to conflicts with the kernel which thinks
2064 that it still has control over this not-yet-allocated stack
2065 region. */
2066 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
2067
2068 /* Set back chain properly. */
2069 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
2070 write_memory (sp, tmp_buffer, wordsize);
2071
2072 /* Point the inferior function call's return address at the dummy's
2073 breakpoint. */
2074 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
2075
2076 /* Set the TOC register, get the value from the objfile reader
2077 which, in turn, gets it from the VMAP table. */
2078 if (rs6000_find_toc_address_hook != NULL)
2079 {
2080 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
2081 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
2082 }
2083
2084 target_store_registers (regcache, -1);
2085 return sp;
2086 }
2087
2088 static enum return_value_convention
2089 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
2090 struct regcache *regcache, gdb_byte *readbuf,
2091 const gdb_byte *writebuf)
2092 {
2093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2094 gdb_byte buf[8];
2095
2096 /* The calling convention this function implements assumes the
2097 processor has floating-point registers. We shouldn't be using it
2098 on PowerPC variants that lack them. */
2099 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2100
2101 /* AltiVec extension: Functions that declare a vector data type as a
2102 return value place that return value in VR2. */
2103 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
2104 && TYPE_LENGTH (valtype) == 16)
2105 {
2106 if (readbuf)
2107 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
2108 if (writebuf)
2109 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
2110
2111 return RETURN_VALUE_REGISTER_CONVENTION;
2112 }
2113
2114 /* If the called subprogram returns an aggregate, there exists an
2115 implicit first argument, whose value is the address of a caller-
2116 allocated buffer into which the callee is assumed to store its
2117 return value. All explicit parameters are appropriately
2118 relabeled. */
2119 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2120 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2121 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2122 return RETURN_VALUE_STRUCT_CONVENTION;
2123
2124 /* Scalar floating-point values are returned in FPR1 for float or
2125 double, and in FPR1:FPR2 for quadword precision. Fortran
2126 complex*8 and complex*16 are returned in FPR1:FPR2, and
2127 complex*32 is returned in FPR1:FPR4. */
2128 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
2129 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
2130 {
2131 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
2132 gdb_byte regval[8];
2133
2134 /* FIXME: kettenis/2007-01-01: Add support for quadword
2135 precision and complex. */
2136
2137 if (readbuf)
2138 {
2139 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
2140 convert_typed_floating (regval, regtype, readbuf, valtype);
2141 }
2142 if (writebuf)
2143 {
2144 convert_typed_floating (writebuf, valtype, regval, regtype);
2145 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
2146 }
2147
2148 return RETURN_VALUE_REGISTER_CONVENTION;
2149 }
2150
2151 /* Values of the types int, long, short, pointer, and char (length
2152 is less than or equal to four bytes), as well as bit values of
2153 lengths less than or equal to 32 bits, must be returned right
2154 justified in GPR3 with signed values sign extended and unsigned
2155 values zero extended, as necessary. */
2156 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
2157 {
2158 if (readbuf)
2159 {
2160 ULONGEST regval;
2161
2162 /* For reading we don't have to worry about sign extension. */
2163 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
2164 &regval);
2165 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
2166 }
2167 if (writebuf)
2168 {
2169 /* For writing, use unpack_long since that should handle any
2170 required sign extension. */
2171 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
2172 unpack_long (valtype, writebuf));
2173 }
2174
2175 return RETURN_VALUE_REGISTER_CONVENTION;
2176 }
2177
2178 /* Eight-byte non-floating-point scalar values must be returned in
2179 GPR3:GPR4. */
2180
2181 if (TYPE_LENGTH (valtype) == 8)
2182 {
2183 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
2184 gdb_assert (tdep->wordsize == 4);
2185
2186 if (readbuf)
2187 {
2188 gdb_byte regval[8];
2189
2190 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
2191 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
2192 regval + 4);
2193 memcpy (readbuf, regval, 8);
2194 }
2195 if (writebuf)
2196 {
2197 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
2198 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
2199 writebuf + 4);
2200 }
2201
2202 return RETURN_VALUE_REGISTER_CONVENTION;
2203 }
2204
2205 return RETURN_VALUE_STRUCT_CONVENTION;
2206 }
2207
2208 /* Return whether handle_inferior_event() should proceed through code
2209 starting at PC in function NAME when stepping.
2210
2211 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2212 handle memory references that are too distant to fit in instructions
2213 generated by the compiler. For example, if 'foo' in the following
2214 instruction:
2215
2216 lwz r9,foo(r2)
2217
2218 is greater than 32767, the linker might replace the lwz with a branch to
2219 somewhere in @FIX1 that does the load in 2 instructions and then branches
2220 back to where execution should continue.
2221
2222 GDB should silently step over @FIX code, just like AIX dbx does.
2223 Unfortunately, the linker uses the "b" instruction for the
2224 branches, meaning that the link register doesn't get set.
2225 Therefore, GDB's usual step_over_function () mechanism won't work.
2226
2227 Instead, use the gdbarch_skip_trampoline_code and
2228 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2229 @FIX code. */
2230
2231 int
2232 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
2233 {
2234 return name && !strncmp (name, "@FIX", 4);
2235 }
2236
2237 /* Skip code that the user doesn't want to see when stepping:
2238
2239 1. Indirect function calls use a piece of trampoline code to do context
2240 switching, i.e. to set the new TOC table. Skip such code if we are on
2241 its first instruction (as when we have single-stepped to here).
2242
2243 2. Skip shared library trampoline code (which is different from
2244 indirect function call trampolines).
2245
2246 3. Skip bigtoc fixup code.
2247
2248 Result is desired PC to step until, or NULL if we are not in
2249 code that should be skipped. */
2250
2251 CORE_ADDR
2252 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2253 {
2254 unsigned int ii, op;
2255 int rel;
2256 CORE_ADDR solib_target_pc;
2257 struct minimal_symbol *msymbol;
2258
2259 static unsigned trampoline_code[] =
2260 {
2261 0x800b0000, /* l r0,0x0(r11) */
2262 0x90410014, /* st r2,0x14(r1) */
2263 0x7c0903a6, /* mtctr r0 */
2264 0x804b0004, /* l r2,0x4(r11) */
2265 0x816b0008, /* l r11,0x8(r11) */
2266 0x4e800420, /* bctr */
2267 0x4e800020, /* br */
2268 0
2269 };
2270
2271 /* Check for bigtoc fixup code. */
2272 msymbol = lookup_minimal_symbol_by_pc (pc);
2273 if (msymbol
2274 && rs6000_in_solib_return_trampoline (pc,
2275 DEPRECATED_SYMBOL_NAME (msymbol)))
2276 {
2277 /* Double-check that the third instruction from PC is relative "b". */
2278 op = read_memory_integer (pc + 8, 4);
2279 if ((op & 0xfc000003) == 0x48000000)
2280 {
2281 /* Extract bits 6-29 as a signed 24-bit relative word address and
2282 add it to the containing PC. */
2283 rel = ((int)(op << 6) >> 6);
2284 return pc + 8 + rel;
2285 }
2286 }
2287
2288 /* If pc is in a shared library trampoline, return its target. */
2289 solib_target_pc = find_solib_trampoline_target (frame, pc);
2290 if (solib_target_pc)
2291 return solib_target_pc;
2292
2293 for (ii = 0; trampoline_code[ii]; ++ii)
2294 {
2295 op = read_memory_integer (pc + (ii * 4), 4);
2296 if (op != trampoline_code[ii])
2297 return 0;
2298 }
2299 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
2300 pc = read_memory_addr (ii,
2301 gdbarch_tdep (get_frame_arch (frame))->wordsize); /* (r11) value */
2302 return pc;
2303 }
2304
2305 /* ISA-specific vector types. */
2306
2307 static struct type *
2308 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2309 {
2310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2311
2312 if (!tdep->ppc_builtin_type_vec64)
2313 {
2314 /* The type we're building is this: */
2315 #if 0
2316 union __gdb_builtin_type_vec64
2317 {
2318 int64_t uint64;
2319 float v2_float[2];
2320 int32_t v2_int32[2];
2321 int16_t v4_int16[4];
2322 int8_t v8_int8[8];
2323 };
2324 #endif
2325
2326 struct type *t;
2327
2328 t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2329 append_composite_type_field (t, "uint64", builtin_type_int64);
2330 append_composite_type_field (t, "v2_float",
2331 init_vector_type (builtin_type_float, 2));
2332 append_composite_type_field (t, "v2_int32",
2333 init_vector_type (builtin_type_int32, 2));
2334 append_composite_type_field (t, "v4_int16",
2335 init_vector_type (builtin_type_int16, 4));
2336 append_composite_type_field (t, "v8_int8",
2337 init_vector_type (builtin_type_int8, 8));
2338
2339 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2340 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2341 tdep->ppc_builtin_type_vec64 = t;
2342 }
2343
2344 return tdep->ppc_builtin_type_vec64;
2345 }
2346
2347 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
2348 isn't available with that word size, return 0. */
2349
2350 static int
2351 regsize (const struct reg *reg, int wordsize)
2352 {
2353 return wordsize == 8 ? reg->sz64 : reg->sz32;
2354 }
2355
2356 /* Return the name of register number REGNO, or the empty string if it
2357 is an anonymous register. */
2358
2359 static const char *
2360 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2361 {
2362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2363
2364 /* The upper half "registers" have names in the XML description,
2365 but we present only the low GPRs and the full 64-bit registers
2366 to the user. */
2367 if (tdep->ppc_ev0_upper_regnum >= 0
2368 && tdep->ppc_ev0_upper_regnum <= regno
2369 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2370 return "";
2371
2372 /* Check if the SPE pseudo registers are available. */
2373 if (tdep->ppc_ev0_regnum >= 0
2374 && tdep->ppc_ev0_regnum <= regno
2375 && regno < tdep->ppc_ev0_regnum + ppc_num_gprs)
2376 {
2377 static const char *const spe_regnames[] = {
2378 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2379 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2380 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2381 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2382 };
2383 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2384 }
2385
2386 return tdesc_register_name (gdbarch, regno);
2387 }
2388
2389 /* Return the GDB type object for the "standard" data type of data in
2390 register N. */
2391
2392 static struct type *
2393 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2394 {
2395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2396
2397 /* These are the only pseudo-registers we support. */
2398 gdb_assert (tdep->ppc_ev0_regnum >= 0
2399 && regnum >= tdep->ppc_ev0_regnum
2400 && regnum < tdep->ppc_ev0_regnum + 32);
2401
2402 return rs6000_builtin_type_vec64 (gdbarch);
2403 }
2404
2405 /* Is REGNUM a member of REGGROUP? */
2406 static int
2407 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2408 struct reggroup *group)
2409 {
2410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2411
2412 /* These are the only pseudo-registers we support. */
2413 gdb_assert (tdep->ppc_ev0_regnum >= 0
2414 && regnum >= tdep->ppc_ev0_regnum
2415 && regnum < tdep->ppc_ev0_regnum + 32);
2416
2417 if (group == all_reggroup || group == vector_reggroup)
2418 return 1;
2419 else
2420 return 0;
2421 }
2422
2423 /* The register format for RS/6000 floating point registers is always
2424 double, we need a conversion if the memory format is float. */
2425
2426 static int
2427 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2428 struct type *type)
2429 {
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431
2432 return (tdep->ppc_fp0_regnum >= 0
2433 && regnum >= tdep->ppc_fp0_regnum
2434 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2435 && TYPE_CODE (type) == TYPE_CODE_FLT
2436 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2437 }
2438
2439 static void
2440 rs6000_register_to_value (struct frame_info *frame,
2441 int regnum,
2442 struct type *type,
2443 gdb_byte *to)
2444 {
2445 gdb_byte from[MAX_REGISTER_SIZE];
2446
2447 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2448
2449 get_frame_register (frame, regnum, from);
2450 convert_typed_floating (from, builtin_type_double, to, type);
2451 }
2452
2453 static void
2454 rs6000_value_to_register (struct frame_info *frame,
2455 int regnum,
2456 struct type *type,
2457 const gdb_byte *from)
2458 {
2459 gdb_byte to[MAX_REGISTER_SIZE];
2460
2461 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2462
2463 convert_typed_floating (from, type, to, builtin_type_double);
2464 put_frame_register (frame, regnum, to);
2465 }
2466
2467 /* Move SPE vector register values between a 64-bit buffer and the two
2468 32-bit raw register halves in a regcache. This function handles
2469 both splitting a 64-bit value into two 32-bit halves, and joining
2470 two halves into a whole 64-bit value, depending on the function
2471 passed as the MOVE argument.
2472
2473 EV_REG must be the number of an SPE evN vector register --- a
2474 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2475 64-bit buffer.
2476
2477 Call MOVE once for each 32-bit half of that register, passing
2478 REGCACHE, the number of the raw register corresponding to that
2479 half, and the address of the appropriate half of BUFFER.
2480
2481 For example, passing 'regcache_raw_read' as the MOVE function will
2482 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2483 'regcache_raw_supply' will supply the contents of BUFFER to the
2484 appropriate pair of raw registers in REGCACHE.
2485
2486 You may need to cast away some 'const' qualifiers when passing
2487 MOVE, since this function can't tell at compile-time which of
2488 REGCACHE or BUFFER is acting as the source of the data. If C had
2489 co-variant type qualifiers, ... */
2490 static void
2491 e500_move_ev_register (void (*move) (struct regcache *regcache,
2492 int regnum, gdb_byte *buf),
2493 struct regcache *regcache, int ev_reg,
2494 gdb_byte *buffer)
2495 {
2496 struct gdbarch *arch = get_regcache_arch (regcache);
2497 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2498 int reg_index;
2499 gdb_byte *byte_buffer = buffer;
2500
2501 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2502 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2503
2504 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2505
2506 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2507 {
2508 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2509 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2510 }
2511 else
2512 {
2513 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2514 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2515 }
2516 }
2517
2518 static void
2519 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2520 int reg_nr, gdb_byte *buffer)
2521 {
2522 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2523 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2524
2525 gdb_assert (regcache_arch == gdbarch);
2526
2527 if (tdep->ppc_ev0_regnum <= reg_nr
2528 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2529 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2530 else
2531 internal_error (__FILE__, __LINE__,
2532 _("e500_pseudo_register_read: "
2533 "called on unexpected register '%s' (%d)"),
2534 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2535 }
2536
2537 static void
2538 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2539 int reg_nr, const gdb_byte *buffer)
2540 {
2541 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2542 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2543
2544 gdb_assert (regcache_arch == gdbarch);
2545
2546 if (tdep->ppc_ev0_regnum <= reg_nr
2547 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2548 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2549 regcache_raw_write,
2550 regcache, reg_nr, (gdb_byte *) buffer);
2551 else
2552 internal_error (__FILE__, __LINE__,
2553 _("e500_pseudo_register_read: "
2554 "called on unexpected register '%s' (%d)"),
2555 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2556 }
2557
2558 /* Convert a DBX STABS register number to a GDB register number. */
2559 static int
2560 rs6000_stab_reg_to_regnum (int num)
2561 {
2562 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2563
2564 if (0 <= num && num <= 31)
2565 return tdep->ppc_gp0_regnum + num;
2566 else if (32 <= num && num <= 63)
2567 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2568 specifies registers the architecture doesn't have? Our
2569 callers don't check the value we return. */
2570 return tdep->ppc_fp0_regnum + (num - 32);
2571 else if (77 <= num && num <= 108)
2572 return tdep->ppc_vr0_regnum + (num - 77);
2573 else if (1200 <= num && num < 1200 + 32)
2574 return tdep->ppc_ev0_regnum + (num - 1200);
2575 else
2576 switch (num)
2577 {
2578 case 64:
2579 return tdep->ppc_mq_regnum;
2580 case 65:
2581 return tdep->ppc_lr_regnum;
2582 case 66:
2583 return tdep->ppc_ctr_regnum;
2584 case 76:
2585 return tdep->ppc_xer_regnum;
2586 case 109:
2587 return tdep->ppc_vrsave_regnum;
2588 case 110:
2589 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2590 case 111:
2591 return tdep->ppc_acc_regnum;
2592 case 112:
2593 return tdep->ppc_spefscr_regnum;
2594 default:
2595 return num;
2596 }
2597 }
2598
2599
2600 /* Convert a Dwarf 2 register number to a GDB register number. */
2601 static int
2602 rs6000_dwarf2_reg_to_regnum (int num)
2603 {
2604 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2605
2606 if (0 <= num && num <= 31)
2607 return tdep->ppc_gp0_regnum + num;
2608 else if (32 <= num && num <= 63)
2609 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2610 specifies registers the architecture doesn't have? Our
2611 callers don't check the value we return. */
2612 return tdep->ppc_fp0_regnum + (num - 32);
2613 else if (1124 <= num && num < 1124 + 32)
2614 return tdep->ppc_vr0_regnum + (num - 1124);
2615 else if (1200 <= num && num < 1200 + 32)
2616 return tdep->ppc_ev0_regnum + (num - 1200);
2617 else
2618 switch (num)
2619 {
2620 case 64:
2621 return tdep->ppc_cr_regnum;
2622 case 67:
2623 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2624 case 99:
2625 return tdep->ppc_acc_regnum;
2626 case 100:
2627 return tdep->ppc_mq_regnum;
2628 case 101:
2629 return tdep->ppc_xer_regnum;
2630 case 108:
2631 return tdep->ppc_lr_regnum;
2632 case 109:
2633 return tdep->ppc_ctr_regnum;
2634 case 356:
2635 return tdep->ppc_vrsave_regnum;
2636 case 612:
2637 return tdep->ppc_spefscr_regnum;
2638 default:
2639 return num;
2640 }
2641 }
2642
2643 /* Translate a .eh_frame register to DWARF register, or adjust a
2644 .debug_frame register. */
2645
2646 static int
2647 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2648 {
2649 /* GCC releases before 3.4 use GCC internal register numbering in
2650 .debug_frame (and .debug_info, et cetera). The numbering is
2651 different from the standard SysV numbering for everything except
2652 for GPRs and FPRs. We can not detect this problem in most cases
2653 - to get accurate debug info for variables living in lr, ctr, v0,
2654 et cetera, use a newer version of GCC. But we must detect
2655 one important case - lr is in column 65 in .debug_frame output,
2656 instead of 108.
2657
2658 GCC 3.4, and the "hammer" branch, have a related problem. They
2659 record lr register saves in .debug_frame as 108, but still record
2660 the return column as 65. We fix that up too.
2661
2662 We can do this because 65 is assigned to fpsr, and GCC never
2663 generates debug info referring to it. To add support for
2664 handwritten debug info that restores fpsr, we would need to add a
2665 producer version check to this. */
2666 if (!eh_frame_p)
2667 {
2668 if (num == 65)
2669 return 108;
2670 else
2671 return num;
2672 }
2673
2674 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2675 internal register numbering; translate that to the standard DWARF2
2676 register numbering. */
2677 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2678 return num;
2679 else if (68 <= num && num <= 75) /* cr0-cr8 */
2680 return num - 68 + 86;
2681 else if (77 <= num && num <= 108) /* vr0-vr31 */
2682 return num - 77 + 1124;
2683 else
2684 switch (num)
2685 {
2686 case 64: /* mq */
2687 return 100;
2688 case 65: /* lr */
2689 return 108;
2690 case 66: /* ctr */
2691 return 109;
2692 case 76: /* xer */
2693 return 101;
2694 case 109: /* vrsave */
2695 return 356;
2696 case 110: /* vscr */
2697 return 67;
2698 case 111: /* spe_acc */
2699 return 99;
2700 case 112: /* spefscr */
2701 return 612;
2702 default:
2703 return num;
2704 }
2705 }
2706 \f
2707 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2708
2709 Usually a function pointer's representation is simply the address
2710 of the function. On the RS/6000 however, a function pointer is
2711 represented by a pointer to an OPD entry. This OPD entry contains
2712 three words, the first word is the address of the function, the
2713 second word is the TOC pointer (r2), and the third word is the
2714 static chain value. Throughout GDB it is currently assumed that a
2715 function pointer contains the address of the function, which is not
2716 easy to fix. In addition, the conversion of a function address to
2717 a function pointer would require allocation of an OPD entry in the
2718 inferior's memory space, with all its drawbacks. To be able to
2719 call C++ virtual methods in the inferior (which are called via
2720 function pointers), find_function_addr uses this function to get the
2721 function address from a function pointer. */
2722
2723 /* Return real function address if ADDR (a function pointer) is in the data
2724 space and is therefore a special function pointer. */
2725
2726 static CORE_ADDR
2727 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2728 CORE_ADDR addr,
2729 struct target_ops *targ)
2730 {
2731 struct obj_section *s;
2732
2733 s = find_pc_section (addr);
2734 if (s && s->the_bfd_section->flags & SEC_CODE)
2735 return addr;
2736
2737 /* ADDR is in the data space, so it's a special function pointer. */
2738 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
2739 }
2740 \f
2741
2742 /* Handling the various POWER/PowerPC variants. */
2743
2744 /* Information about a particular processor variant. */
2745
2746 struct variant
2747 {
2748 /* Name of this variant. */
2749 char *name;
2750
2751 /* English description of the variant. */
2752 char *description;
2753
2754 /* bfd_arch_info.arch corresponding to variant. */
2755 enum bfd_architecture arch;
2756
2757 /* bfd_arch_info.mach corresponding to variant. */
2758 unsigned long mach;
2759
2760 /* Target description for this variant. */
2761 struct target_desc **tdesc;
2762 };
2763
2764 static struct variant variants[] =
2765 {
2766 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2767 bfd_mach_ppc, &tdesc_powerpc_32},
2768 {"power", "POWER user-level", bfd_arch_rs6000,
2769 bfd_mach_rs6k, &tdesc_rs6000},
2770 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2771 bfd_mach_ppc_403, &tdesc_powerpc_403},
2772 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2773 bfd_mach_ppc_601, &tdesc_powerpc_601},
2774 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2775 bfd_mach_ppc_602, &tdesc_powerpc_602},
2776 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2777 bfd_mach_ppc_603, &tdesc_powerpc_603},
2778 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2779 604, &tdesc_powerpc_604},
2780 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2781 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
2782 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2783 bfd_mach_ppc_505, &tdesc_powerpc_505},
2784 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2785 bfd_mach_ppc_860, &tdesc_powerpc_860},
2786 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2787 bfd_mach_ppc_750, &tdesc_powerpc_750},
2788 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2789 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
2790 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2791 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
2792
2793 /* 64-bit */
2794 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2795 bfd_mach_ppc64, &tdesc_powerpc_64},
2796 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2797 bfd_mach_ppc_620, &tdesc_powerpc_64},
2798 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2799 bfd_mach_ppc_630, &tdesc_powerpc_64},
2800 {"a35", "PowerPC A35", bfd_arch_powerpc,
2801 bfd_mach_ppc_a35, &tdesc_powerpc_64},
2802 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2803 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
2804 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2805 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
2806
2807 /* FIXME: I haven't checked the register sets of the following. */
2808 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2809 bfd_mach_rs6k_rs1, &tdesc_rs6000},
2810 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2811 bfd_mach_rs6k_rsc, &tdesc_rs6000},
2812 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2813 bfd_mach_rs6k_rs2, &tdesc_rs6000},
2814
2815 {0, 0, 0, 0, 0}
2816 };
2817
2818 /* Return the variant corresponding to architecture ARCH and machine number
2819 MACH. If no such variant exists, return null. */
2820
2821 static const struct variant *
2822 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2823 {
2824 const struct variant *v;
2825
2826 for (v = variants; v->name; v++)
2827 if (arch == v->arch && mach == v->mach)
2828 return v;
2829
2830 return NULL;
2831 }
2832
2833 static int
2834 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2835 {
2836 if (!info->disassembler_options)
2837 info->disassembler_options = "any";
2838
2839 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2840 return print_insn_big_powerpc (memaddr, info);
2841 else
2842 return print_insn_little_powerpc (memaddr, info);
2843 }
2844 \f
2845 static CORE_ADDR
2846 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2847 {
2848 return frame_unwind_register_unsigned (next_frame,
2849 gdbarch_pc_regnum (gdbarch));
2850 }
2851
2852 static struct frame_id
2853 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2854 {
2855 return frame_id_build (frame_unwind_register_unsigned
2856 (next_frame, gdbarch_sp_regnum (gdbarch)),
2857 frame_pc_unwind (next_frame));
2858 }
2859
2860 struct rs6000_frame_cache
2861 {
2862 CORE_ADDR base;
2863 CORE_ADDR initial_sp;
2864 struct trad_frame_saved_reg *saved_regs;
2865 };
2866
2867 static struct rs6000_frame_cache *
2868 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2869 {
2870 struct rs6000_frame_cache *cache;
2871 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2873 struct rs6000_framedata fdata;
2874 int wordsize = tdep->wordsize;
2875 CORE_ADDR func, pc;
2876
2877 if ((*this_cache) != NULL)
2878 return (*this_cache);
2879 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2880 (*this_cache) = cache;
2881 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2882
2883 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2884 pc = frame_pc_unwind (next_frame);
2885 skip_prologue (func, pc, &fdata);
2886
2887 /* Figure out the parent's stack pointer. */
2888
2889 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2890 address of the current frame. Things might be easier if the
2891 ->frame pointed to the outer-most address of the frame. In
2892 the mean time, the address of the prev frame is used as the
2893 base address of this frame. */
2894 cache->base = frame_unwind_register_unsigned
2895 (next_frame, gdbarch_sp_regnum (gdbarch));
2896
2897 /* If the function appears to be frameless, check a couple of likely
2898 indicators that we have simply failed to find the frame setup.
2899 Two common cases of this are missing symbols (i.e.
2900 frame_func_unwind returns the wrong address or 0), and assembly
2901 stubs which have a fast exit path but set up a frame on the slow
2902 path.
2903
2904 If the LR appears to return to this function, then presume that
2905 we have an ABI compliant frame that we failed to find. */
2906 if (fdata.frameless && fdata.lr_offset == 0)
2907 {
2908 CORE_ADDR saved_lr;
2909 int make_frame = 0;
2910
2911 saved_lr = frame_unwind_register_unsigned (next_frame,
2912 tdep->ppc_lr_regnum);
2913 if (func == 0 && saved_lr == pc)
2914 make_frame = 1;
2915 else if (func != 0)
2916 {
2917 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
2918 if (func == saved_func)
2919 make_frame = 1;
2920 }
2921
2922 if (make_frame)
2923 {
2924 fdata.frameless = 0;
2925 fdata.lr_offset = tdep->lr_frame_offset;
2926 }
2927 }
2928
2929 if (!fdata.frameless)
2930 /* Frameless really means stackless. */
2931 cache->base = read_memory_addr (cache->base, wordsize);
2932
2933 trad_frame_set_value (cache->saved_regs,
2934 gdbarch_sp_regnum (gdbarch), cache->base);
2935
2936 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2937 All fpr's from saved_fpr to fp31 are saved. */
2938
2939 if (fdata.saved_fpr >= 0)
2940 {
2941 int i;
2942 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2943
2944 /* If skip_prologue says floating-point registers were saved,
2945 but the current architecture has no floating-point registers,
2946 then that's strange. But we have no indices to even record
2947 the addresses under, so we just ignore it. */
2948 if (ppc_floating_point_unit_p (gdbarch))
2949 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2950 {
2951 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2952 fpr_addr += 8;
2953 }
2954 }
2955
2956 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2957 All gpr's from saved_gpr to gpr31 are saved. */
2958
2959 if (fdata.saved_gpr >= 0)
2960 {
2961 int i;
2962 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2963 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2964 {
2965 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2966 gpr_addr += wordsize;
2967 }
2968 }
2969
2970 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2971 All vr's from saved_vr to vr31 are saved. */
2972 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2973 {
2974 if (fdata.saved_vr >= 0)
2975 {
2976 int i;
2977 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2978 for (i = fdata.saved_vr; i < 32; i++)
2979 {
2980 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2981 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2982 }
2983 }
2984 }
2985
2986 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2987 All vr's from saved_ev to ev31 are saved. ????? */
2988 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2989 {
2990 if (fdata.saved_ev >= 0)
2991 {
2992 int i;
2993 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2994 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2995 {
2996 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2997 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2998 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2999 }
3000 }
3001 }
3002
3003 /* If != 0, fdata.cr_offset is the offset from the frame that
3004 holds the CR. */
3005 if (fdata.cr_offset != 0)
3006 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3007
3008 /* If != 0, fdata.lr_offset is the offset from the frame that
3009 holds the LR. */
3010 if (fdata.lr_offset != 0)
3011 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3012 /* The PC is found in the link register. */
3013 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3014 cache->saved_regs[tdep->ppc_lr_regnum];
3015
3016 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3017 holds the VRSAVE. */
3018 if (fdata.vrsave_offset != 0)
3019 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3020
3021 if (fdata.alloca_reg < 0)
3022 /* If no alloca register used, then fi->frame is the value of the
3023 %sp for this frame, and it is good enough. */
3024 cache->initial_sp = frame_unwind_register_unsigned
3025 (next_frame, gdbarch_sp_regnum (gdbarch));
3026 else
3027 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3028 fdata.alloca_reg);
3029
3030 return cache;
3031 }
3032
3033 static void
3034 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3035 struct frame_id *this_id)
3036 {
3037 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3038 this_cache);
3039 (*this_id) = frame_id_build (info->base,
3040 frame_func_unwind (next_frame, NORMAL_FRAME));
3041 }
3042
3043 static void
3044 rs6000_frame_prev_register (struct frame_info *next_frame,
3045 void **this_cache,
3046 int regnum, int *optimizedp,
3047 enum lval_type *lvalp, CORE_ADDR *addrp,
3048 int *realnump, gdb_byte *valuep)
3049 {
3050 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3051 this_cache);
3052 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3053 optimizedp, lvalp, addrp, realnump, valuep);
3054 }
3055
3056 static const struct frame_unwind rs6000_frame_unwind =
3057 {
3058 NORMAL_FRAME,
3059 rs6000_frame_this_id,
3060 rs6000_frame_prev_register
3061 };
3062
3063 static const struct frame_unwind *
3064 rs6000_frame_sniffer (struct frame_info *next_frame)
3065 {
3066 return &rs6000_frame_unwind;
3067 }
3068
3069 \f
3070
3071 static CORE_ADDR
3072 rs6000_frame_base_address (struct frame_info *next_frame,
3073 void **this_cache)
3074 {
3075 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3076 this_cache);
3077 return info->initial_sp;
3078 }
3079
3080 static const struct frame_base rs6000_frame_base = {
3081 &rs6000_frame_unwind,
3082 rs6000_frame_base_address,
3083 rs6000_frame_base_address,
3084 rs6000_frame_base_address
3085 };
3086
3087 static const struct frame_base *
3088 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3089 {
3090 return &rs6000_frame_base;
3091 }
3092
3093 /* DWARF-2 frame support. Used to handle the detection of
3094 clobbered registers during function calls. */
3095
3096 static void
3097 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3098 struct dwarf2_frame_state_reg *reg,
3099 struct frame_info *next_frame)
3100 {
3101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3102
3103 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3104 non-volatile registers. We will use the same code for both. */
3105
3106 /* Call-saved GP registers. */
3107 if ((regnum >= tdep->ppc_gp0_regnum + 14
3108 && regnum <= tdep->ppc_gp0_regnum + 31)
3109 || (regnum == tdep->ppc_gp0_regnum + 1))
3110 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3111
3112 /* Call-clobbered GP registers. */
3113 if ((regnum >= tdep->ppc_gp0_regnum + 3
3114 && regnum <= tdep->ppc_gp0_regnum + 12)
3115 || (regnum == tdep->ppc_gp0_regnum))
3116 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3117
3118 /* Deal with FP registers, if supported. */
3119 if (tdep->ppc_fp0_regnum >= 0)
3120 {
3121 /* Call-saved FP registers. */
3122 if ((regnum >= tdep->ppc_fp0_regnum + 14
3123 && regnum <= tdep->ppc_fp0_regnum + 31))
3124 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3125
3126 /* Call-clobbered FP registers. */
3127 if ((regnum >= tdep->ppc_fp0_regnum
3128 && regnum <= tdep->ppc_fp0_regnum + 13))
3129 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3130 }
3131
3132 /* Deal with ALTIVEC registers, if supported. */
3133 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3134 {
3135 /* Call-saved Altivec registers. */
3136 if ((regnum >= tdep->ppc_vr0_regnum + 20
3137 && regnum <= tdep->ppc_vr0_regnum + 31)
3138 || regnum == tdep->ppc_vrsave_regnum)
3139 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3140
3141 /* Call-clobbered Altivec registers. */
3142 if ((regnum >= tdep->ppc_vr0_regnum
3143 && regnum <= tdep->ppc_vr0_regnum + 19))
3144 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3145 }
3146
3147 /* Handle PC register and Stack Pointer correctly. */
3148 if (regnum == gdbarch_pc_regnum (gdbarch))
3149 reg->how = DWARF2_FRAME_REG_RA;
3150 else if (regnum == gdbarch_sp_regnum (gdbarch))
3151 reg->how = DWARF2_FRAME_REG_CFA;
3152 }
3153
3154
3155 /* Initialize the current architecture based on INFO. If possible, re-use an
3156 architecture from ARCHES, which is a list of architectures already created
3157 during this debugging session.
3158
3159 Called e.g. at program startup, when reading a core file, and when reading
3160 a binary file. */
3161
3162 static struct gdbarch *
3163 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3164 {
3165 struct gdbarch *gdbarch;
3166 struct gdbarch_tdep *tdep;
3167 int wordsize, from_xcoff_exec, from_elf_exec;
3168 enum bfd_architecture arch;
3169 unsigned long mach;
3170 bfd abfd;
3171 int sysv_abi;
3172 asection *sect;
3173 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3174 int soft_float;
3175 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3176 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0;
3177 int tdesc_wordsize = -1;
3178 const struct target_desc *tdesc = info.target_desc;
3179 struct tdesc_arch_data *tdesc_data = NULL;
3180 int num_sprs = 0;
3181
3182 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3183 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3184
3185 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3186 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3187
3188 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3189
3190 /* Check word size. If INFO is from a binary file, infer it from
3191 that, else choose a likely default. */
3192 if (from_xcoff_exec)
3193 {
3194 if (bfd_xcoff_is_xcoff64 (info.abfd))
3195 wordsize = 8;
3196 else
3197 wordsize = 4;
3198 }
3199 else if (from_elf_exec)
3200 {
3201 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3202 wordsize = 8;
3203 else
3204 wordsize = 4;
3205 }
3206 else if (tdesc_has_registers (tdesc))
3207 wordsize = -1;
3208 else
3209 {
3210 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3211 wordsize = info.bfd_arch_info->bits_per_word /
3212 info.bfd_arch_info->bits_per_byte;
3213 else
3214 wordsize = 4;
3215 }
3216
3217 if (!from_xcoff_exec)
3218 {
3219 arch = info.bfd_arch_info->arch;
3220 mach = info.bfd_arch_info->mach;
3221 }
3222 else
3223 {
3224 arch = bfd_arch_powerpc;
3225 bfd_default_set_arch_mach (&abfd, arch, 0);
3226 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3227 mach = info.bfd_arch_info->mach;
3228 }
3229
3230 /* For e500 executables, the apuinfo section is of help here. Such
3231 section contains the identifier and revision number of each
3232 Application-specific Processing Unit that is present on the
3233 chip. The content of the section is determined by the assembler
3234 which looks at each instruction and determines which unit (and
3235 which version of it) can execute it. In our case we just look for
3236 the existance of the section. */
3237
3238 if (info.abfd)
3239 {
3240 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3241 if (sect)
3242 {
3243 arch = info.bfd_arch_info->arch;
3244 mach = bfd_mach_ppc_e500;
3245 bfd_default_set_arch_mach (&abfd, arch, mach);
3246 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3247 }
3248 }
3249
3250 /* Find a default target description which describes our register
3251 layout, if we do not already have one. */
3252 if (! tdesc_has_registers (tdesc))
3253 {
3254 const struct variant *v;
3255
3256 /* Choose variant. */
3257 v = find_variant_by_arch (arch, mach);
3258 if (!v)
3259 return NULL;
3260
3261 tdesc = *v->tdesc;
3262 }
3263
3264 gdb_assert (tdesc_has_registers (tdesc));
3265
3266 /* Check any target description for validity. */
3267 if (tdesc_has_registers (tdesc))
3268 {
3269 static const char *const gprs[] = {
3270 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3271 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3272 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3273 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3274 };
3275 static const char *const segment_regs[] = {
3276 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3277 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3278 };
3279 const struct tdesc_feature *feature;
3280 int i, valid_p;
3281 static const char *const msr_names[] = { "msr", "ps" };
3282 static const char *const cr_names[] = { "cr", "cnd" };
3283 static const char *const ctr_names[] = { "ctr", "cnt" };
3284
3285 feature = tdesc_find_feature (tdesc,
3286 "org.gnu.gdb.power.core");
3287 if (feature == NULL)
3288 return NULL;
3289
3290 tdesc_data = tdesc_data_alloc ();
3291
3292 valid_p = 1;
3293 for (i = 0; i < ppc_num_gprs; i++)
3294 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3295 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3296 "pc");
3297 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3298 "lr");
3299 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3300 "xer");
3301
3302 /* Allow alternate names for these registers, to accomodate GDB's
3303 historic naming. */
3304 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3305 PPC_MSR_REGNUM, msr_names);
3306 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3307 PPC_CR_REGNUM, cr_names);
3308 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3309 PPC_CTR_REGNUM, ctr_names);
3310
3311 if (!valid_p)
3312 {
3313 tdesc_data_cleanup (tdesc_data);
3314 return NULL;
3315 }
3316
3317 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3318 "mq");
3319
3320 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3321 if (wordsize == -1)
3322 wordsize = tdesc_wordsize;
3323
3324 feature = tdesc_find_feature (tdesc,
3325 "org.gnu.gdb.power.fpu");
3326 if (feature != NULL)
3327 {
3328 static const char *const fprs[] = {
3329 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3330 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3331 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3332 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3333 };
3334 valid_p = 1;
3335 for (i = 0; i < ppc_num_fprs; i++)
3336 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3337 PPC_F0_REGNUM + i, fprs[i]);
3338 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3339 PPC_FPSCR_REGNUM, "fpscr");
3340
3341 if (!valid_p)
3342 {
3343 tdesc_data_cleanup (tdesc_data);
3344 return NULL;
3345 }
3346 have_fpu = 1;
3347 }
3348 else
3349 have_fpu = 0;
3350
3351 feature = tdesc_find_feature (tdesc,
3352 "org.gnu.gdb.power.altivec");
3353 if (feature != NULL)
3354 {
3355 static const char *const vector_regs[] = {
3356 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3357 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3358 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3359 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3360 };
3361
3362 valid_p = 1;
3363 for (i = 0; i < ppc_num_gprs; i++)
3364 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3365 PPC_VR0_REGNUM + i,
3366 vector_regs[i]);
3367 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3368 PPC_VSCR_REGNUM, "vscr");
3369 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3370 PPC_VRSAVE_REGNUM, "vrsave");
3371
3372 if (have_spe || !valid_p)
3373 {
3374 tdesc_data_cleanup (tdesc_data);
3375 return NULL;
3376 }
3377 have_altivec = 1;
3378 }
3379 else
3380 have_altivec = 0;
3381
3382 /* On machines supporting the SPE APU, the general-purpose registers
3383 are 64 bits long. There are SIMD vector instructions to treat them
3384 as pairs of floats, but the rest of the instruction set treats them
3385 as 32-bit registers, and only operates on their lower halves.
3386
3387 In the GDB regcache, we treat their high and low halves as separate
3388 registers. The low halves we present as the general-purpose
3389 registers, and then we have pseudo-registers that stitch together
3390 the upper and lower halves and present them as pseudo-registers.
3391
3392 Thus, the target description is expected to supply the upper
3393 halves separately. */
3394
3395 feature = tdesc_find_feature (tdesc,
3396 "org.gnu.gdb.power.spe");
3397 if (feature != NULL)
3398 {
3399 static const char *const upper_spe[] = {
3400 "ev0h", "ev1h", "ev2h", "ev3h",
3401 "ev4h", "ev5h", "ev6h", "ev7h",
3402 "ev8h", "ev9h", "ev10h", "ev11h",
3403 "ev12h", "ev13h", "ev14h", "ev15h",
3404 "ev16h", "ev17h", "ev18h", "ev19h",
3405 "ev20h", "ev21h", "ev22h", "ev23h",
3406 "ev24h", "ev25h", "ev26h", "ev27h",
3407 "ev28h", "ev29h", "ev30h", "ev31h"
3408 };
3409
3410 valid_p = 1;
3411 for (i = 0; i < ppc_num_gprs; i++)
3412 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3413 PPC_SPE_UPPER_GP0_REGNUM + i,
3414 upper_spe[i]);
3415 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3416 PPC_SPE_ACC_REGNUM, "acc");
3417 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3418 PPC_SPE_FSCR_REGNUM, "spefscr");
3419
3420 if (have_mq || have_fpu || !valid_p)
3421 {
3422 tdesc_data_cleanup (tdesc_data);
3423 return NULL;
3424 }
3425 have_spe = 1;
3426 }
3427 else
3428 have_spe = 0;
3429 }
3430
3431 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3432 complain for a 32-bit binary on a 64-bit target; we do not yet
3433 support that. For instance, the 32-bit ABI routines expect
3434 32-bit GPRs.
3435
3436 As long as there isn't an explicit target description, we'll
3437 choose one based on the BFD architecture and get a word size
3438 matching the binary (probably powerpc:common or
3439 powerpc:common64). So there is only trouble if a 64-bit target
3440 supplies a 64-bit description while debugging a 32-bit
3441 binary. */
3442 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3443 {
3444 tdesc_data_cleanup (tdesc_data);
3445 return NULL;
3446 }
3447
3448 #ifdef HAVE_ELF
3449 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3450 {
3451 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3452 Tag_GNU_Power_ABI_FP))
3453 {
3454 case 1:
3455 soft_float_flag = AUTO_BOOLEAN_FALSE;
3456 break;
3457 case 2:
3458 soft_float_flag = AUTO_BOOLEAN_TRUE;
3459 break;
3460 default:
3461 break;
3462 }
3463 }
3464
3465 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3466 {
3467 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3468 Tag_GNU_Power_ABI_Vector))
3469 {
3470 case 1:
3471 vector_abi = POWERPC_VEC_GENERIC;
3472 break;
3473 case 2:
3474 vector_abi = POWERPC_VEC_ALTIVEC;
3475 break;
3476 case 3:
3477 vector_abi = POWERPC_VEC_SPE;
3478 break;
3479 default:
3480 break;
3481 }
3482 }
3483 #endif
3484
3485 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3486 soft_float = 1;
3487 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3488 soft_float = 0;
3489 else
3490 soft_float = !have_fpu;
3491
3492 /* If we have a hard float binary or setting but no floating point
3493 registers, downgrade to soft float anyway. We're still somewhat
3494 useful in this scenario. */
3495 if (!soft_float && !have_fpu)
3496 soft_float = 1;
3497
3498 /* Similarly for vector registers. */
3499 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3500 vector_abi = POWERPC_VEC_GENERIC;
3501
3502 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3503 vector_abi = POWERPC_VEC_GENERIC;
3504
3505 if (vector_abi == POWERPC_VEC_AUTO)
3506 {
3507 if (have_altivec)
3508 vector_abi = POWERPC_VEC_ALTIVEC;
3509 else if (have_spe)
3510 vector_abi = POWERPC_VEC_SPE;
3511 else
3512 vector_abi = POWERPC_VEC_GENERIC;
3513 }
3514
3515 /* Do not limit the vector ABI based on available hardware, since we
3516 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3517
3518 /* Find a candidate among extant architectures. */
3519 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3520 arches != NULL;
3521 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3522 {
3523 /* Word size in the various PowerPC bfd_arch_info structs isn't
3524 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3525 separate word size check. */
3526 tdep = gdbarch_tdep (arches->gdbarch);
3527 if (tdep && tdep->soft_float != soft_float)
3528 continue;
3529 if (tdep && tdep->vector_abi != vector_abi)
3530 continue;
3531 if (tdep && tdep->wordsize == wordsize)
3532 {
3533 if (tdesc_data != NULL)
3534 tdesc_data_cleanup (tdesc_data);
3535 return arches->gdbarch;
3536 }
3537 }
3538
3539 /* None found, create a new architecture from INFO, whose bfd_arch_info
3540 validity depends on the source:
3541 - executable useless
3542 - rs6000_host_arch() good
3543 - core file good
3544 - "set arch" trust blindly
3545 - GDB startup useless but harmless */
3546
3547 tdep = XCALLOC (1, struct gdbarch_tdep);
3548 tdep->wordsize = wordsize;
3549 tdep->soft_float = soft_float;
3550 tdep->vector_abi = vector_abi;
3551
3552 gdbarch = gdbarch_alloc (&info, tdep);
3553
3554 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3555 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3556 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3557 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3558 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3559 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3560 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3561 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3562
3563 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3564 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
3565 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3566 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3567 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3568 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3569 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3570
3571 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3572 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3573 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3574 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
3575 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3576
3577 /* The XML specification for PowerPC sensibly calls the MSR "msr".
3578 GDB traditionally called it "ps", though, so let GDB add an
3579 alias. */
3580 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3581
3582 if (sysv_abi && wordsize == 8)
3583 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3584 else if (sysv_abi && wordsize == 4)
3585 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3586 else
3587 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3588
3589 /* Set lr_frame_offset. */
3590 if (wordsize == 8)
3591 tdep->lr_frame_offset = 16;
3592 else if (sysv_abi)
3593 tdep->lr_frame_offset = 4;
3594 else
3595 tdep->lr_frame_offset = 8;
3596
3597 if (have_spe)
3598 {
3599 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3600 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3601 }
3602
3603 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3604
3605 /* Select instruction printer. */
3606 if (arch == bfd_arch_rs6000)
3607 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3608 else
3609 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3610
3611 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS + num_sprs);
3612 set_gdbarch_num_pseudo_regs (gdbarch, have_spe ? 32 : 0);
3613
3614 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3615 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3616 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3617 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3618 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3619 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3620 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3621 if (sysv_abi)
3622 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3623 else
3624 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3625 set_gdbarch_char_signed (gdbarch, 0);
3626
3627 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3628 if (sysv_abi && wordsize == 8)
3629 /* PPC64 SYSV. */
3630 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3631 else if (!sysv_abi && wordsize == 4)
3632 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3633 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3634 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3635 224. */
3636 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3637
3638 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3639 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3640 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3641
3642 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3643 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3644
3645 if (sysv_abi && wordsize == 4)
3646 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3647 else if (sysv_abi && wordsize == 8)
3648 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3649 else
3650 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3651
3652 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3653 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3654
3655 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3656 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3657
3658 /* The value of symbols of type N_SO and N_FUN maybe null when
3659 it shouldn't be. */
3660 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
3661
3662 /* Handles single stepping of atomic sequences. */
3663 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3664
3665 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3666 for the descriptor and ".FN" for the entry-point -- a user
3667 specifying "break FN" will unexpectedly end up with a breakpoint
3668 on the descriptor and not the function. This architecture method
3669 transforms any breakpoints on descriptors into breakpoints on the
3670 corresponding entry point. */
3671 if (sysv_abi && wordsize == 8)
3672 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3673
3674 /* Not sure on this. FIXMEmgo */
3675 set_gdbarch_frame_args_skip (gdbarch, 8);
3676
3677 if (!sysv_abi)
3678 {
3679 /* Handle RS/6000 function pointers (which are really function
3680 descriptors). */
3681 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3682 rs6000_convert_from_func_ptr_addr);
3683 }
3684
3685 /* Helpers for function argument information. */
3686 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3687
3688 /* Trampoline. */
3689 set_gdbarch_in_solib_return_trampoline
3690 (gdbarch, rs6000_in_solib_return_trampoline);
3691 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3692
3693 /* Hook in the DWARF CFI frame unwinder. */
3694 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3695 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3696
3697 /* Frame handling. */
3698 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
3699
3700 /* Hook in ABI-specific overrides, if they have been registered. */
3701 gdbarch_init_osabi (info, gdbarch);
3702
3703 switch (info.osabi)
3704 {
3705 case GDB_OSABI_LINUX:
3706 case GDB_OSABI_NETBSD_AOUT:
3707 case GDB_OSABI_NETBSD_ELF:
3708 case GDB_OSABI_UNKNOWN:
3709 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3710 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3711 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3712 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3713 break;
3714 default:
3715 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3716
3717 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3718 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3719 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3720 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3721 }
3722
3723 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
3724 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3725 rs6000_pseudo_register_reggroup_p);
3726 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3727
3728 /* Override the normal target description method to make the SPE upper
3729 halves anonymous. */
3730 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3731
3732 /* Recording the numbering of pseudo registers. */
3733 tdep->ppc_ev0_regnum = have_spe ? gdbarch_num_regs (gdbarch) : -1;
3734 tdep->ppc_ev31_regnum = have_spe ? tdep->ppc_ev0_regnum + 31 : -1;
3735
3736 return gdbarch;
3737 }
3738
3739 static void
3740 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3741 {
3742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3743
3744 if (tdep == NULL)
3745 return;
3746
3747 /* FIXME: Dump gdbarch_tdep. */
3748 }
3749
3750 /* PowerPC-specific commands. */
3751
3752 static void
3753 set_powerpc_command (char *args, int from_tty)
3754 {
3755 printf_unfiltered (_("\
3756 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
3757 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
3758 }
3759
3760 static void
3761 show_powerpc_command (char *args, int from_tty)
3762 {
3763 cmd_show_list (showpowerpccmdlist, from_tty, "");
3764 }
3765
3766 static void
3767 powerpc_set_soft_float (char *args, int from_tty,
3768 struct cmd_list_element *c)
3769 {
3770 struct gdbarch_info info;
3771
3772 /* Update the architecture. */
3773 gdbarch_info_init (&info);
3774 if (!gdbarch_update_p (info))
3775 internal_error (__FILE__, __LINE__, "could not update architecture");
3776 }
3777
3778 static void
3779 powerpc_set_vector_abi (char *args, int from_tty,
3780 struct cmd_list_element *c)
3781 {
3782 struct gdbarch_info info;
3783 enum powerpc_vector_abi vector_abi;
3784
3785 for (vector_abi = POWERPC_VEC_AUTO;
3786 vector_abi != POWERPC_VEC_LAST;
3787 vector_abi++)
3788 if (strcmp (powerpc_vector_abi_string,
3789 powerpc_vector_strings[vector_abi]) == 0)
3790 {
3791 powerpc_vector_abi_global = vector_abi;
3792 break;
3793 }
3794
3795 if (vector_abi == POWERPC_VEC_LAST)
3796 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
3797 powerpc_vector_abi_string);
3798
3799 /* Update the architecture. */
3800 gdbarch_info_init (&info);
3801 if (!gdbarch_update_p (info))
3802 internal_error (__FILE__, __LINE__, "could not update architecture");
3803 }
3804
3805 /* Initialization code. */
3806
3807 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3808
3809 void
3810 _initialize_rs6000_tdep (void)
3811 {
3812 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3813 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3814
3815 /* Initialize the standard target descriptions. */
3816 initialize_tdesc_powerpc_32 ();
3817 initialize_tdesc_powerpc_403 ();
3818 initialize_tdesc_powerpc_403gc ();
3819 initialize_tdesc_powerpc_505 ();
3820 initialize_tdesc_powerpc_601 ();
3821 initialize_tdesc_powerpc_602 ();
3822 initialize_tdesc_powerpc_603 ();
3823 initialize_tdesc_powerpc_604 ();
3824 initialize_tdesc_powerpc_64 ();
3825 initialize_tdesc_powerpc_7400 ();
3826 initialize_tdesc_powerpc_750 ();
3827 initialize_tdesc_powerpc_860 ();
3828 initialize_tdesc_powerpc_e500 ();
3829 initialize_tdesc_rs6000 ();
3830
3831 /* Add root prefix command for all "set powerpc"/"show powerpc"
3832 commands. */
3833 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
3834 _("Various PowerPC-specific commands."),
3835 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
3836
3837 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
3838 _("Various PowerPC-specific commands."),
3839 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
3840
3841 /* Add a command to allow the user to force the ABI. */
3842 add_setshow_auto_boolean_cmd ("soft-float", class_support,
3843 &powerpc_soft_float_global,
3844 _("Set whether to use a soft-float ABI."),
3845 _("Show whether to use a soft-float ABI."),
3846 NULL,
3847 powerpc_set_soft_float, NULL,
3848 &setpowerpccmdlist, &showpowerpccmdlist);
3849
3850 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
3851 &powerpc_vector_abi_string,
3852 _("Set the vector ABI."),
3853 _("Show the vector ABI."),
3854 NULL, powerpc_set_vector_abi, NULL,
3855 &setpowerpccmdlist, &showpowerpccmdlist);
3856 }