]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
Approved by Kevin Buettner <kevinb@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 /* If the kernel has to deliver a signal, it pushes a sigcontext
63 structure on the stack and then calls the signal handler, passing
64 the address of the sigcontext in an argument register. Usually
65 the signal handler doesn't save this register, so we have to
66 access the sigcontext structure via an offset from the signal handler
67 frame.
68 The following constants were determined by experimentation on AIX 3.2. */
69 #define SIG_FRAME_PC_OFFSET 96
70 #define SIG_FRAME_LR_OFFSET 108
71 #define SIG_FRAME_FP_OFFSET 284
72
73 /* To be used by skip_prologue. */
74
75 struct rs6000_framedata
76 {
77 int offset; /* total size of frame --- the distance
78 by which we decrement sp to allocate
79 the frame */
80 int saved_gpr; /* smallest # of saved gpr */
81 int saved_fpr; /* smallest # of saved fpr */
82 int saved_vr; /* smallest # of saved vr */
83 int saved_ev; /* smallest # of saved ev */
84 int alloca_reg; /* alloca register number (frame ptr) */
85 char frameless; /* true if frameless functions. */
86 char nosavedpc; /* true if pc not saved. */
87 int gpr_offset; /* offset of saved gprs from prev sp */
88 int fpr_offset; /* offset of saved fprs from prev sp */
89 int vr_offset; /* offset of saved vrs from prev sp */
90 int ev_offset; /* offset of saved evs from prev sp */
91 int lr_offset; /* offset of saved lr */
92 int cr_offset; /* offset of saved cr */
93 int vrsave_offset; /* offset of saved vrsave register */
94 };
95
96 /* Description of a single register. */
97
98 struct reg
99 {
100 char *name; /* name of register */
101 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
102 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
103 unsigned char fpr; /* whether register is floating-point */
104 unsigned char pseudo; /* whether register is pseudo */
105 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
106 This is an ISA SPR number, not a GDB
107 register number. */
108 };
109
110 /* Breakpoint shadows for the single step instructions will be kept here. */
111
112 static struct sstep_breaks
113 {
114 /* Address, or 0 if this is not in use. */
115 CORE_ADDR address;
116 /* Shadow contents. */
117 char data[4];
118 }
119 stepBreaks[2];
120
121 /* Hook for determining the TOC address when calling functions in the
122 inferior under AIX. The initialization code in rs6000-nat.c sets
123 this hook to point to find_toc_address. */
124
125 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
126
127 /* Hook to set the current architecture when starting a child process.
128 rs6000-nat.c sets this. */
129
130 void (*rs6000_set_host_arch_hook) (int) = NULL;
131
132 /* Static function prototypes */
133
134 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
135 CORE_ADDR safety);
136 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
137 struct rs6000_framedata *);
138
139 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
140 int
141 altivec_register_p (int regno)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
144 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
145 return 0;
146 else
147 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
148 }
149
150
151 /* Return true if REGNO is an SPE register, false otherwise. */
152 int
153 spe_register_p (int regno)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
156
157 /* Is it a reference to EV0 -- EV31, and do we have those? */
158 if (tdep->ppc_ev0_regnum >= 0
159 && tdep->ppc_ev31_regnum >= 0
160 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
161 return 1;
162
163 /* Is it a reference to one of the raw upper GPR halves? */
164 if (tdep->ppc_ev0_upper_regnum >= 0
165 && tdep->ppc_ev0_upper_regnum <= regno
166 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
167 return 1;
168
169 /* Is it a reference to the 64-bit accumulator, and do we have that? */
170 if (tdep->ppc_acc_regnum >= 0
171 && tdep->ppc_acc_regnum == regno)
172 return 1;
173
174 /* Is it a reference to the SPE floating-point status and control register,
175 and do we have that? */
176 if (tdep->ppc_spefscr_regnum >= 0
177 && tdep->ppc_spefscr_regnum == regno)
178 return 1;
179
180 return 0;
181 }
182
183
184 /* Return non-zero if the architecture described by GDBARCH has
185 floating-point registers (f0 --- f31 and fpscr). */
186 int
187 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
188 {
189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
190
191 return (tdep->ppc_fp0_regnum >= 0
192 && tdep->ppc_fpscr_regnum >= 0);
193 }
194
195
196 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
197 set it to SIM_REGNO.
198
199 This is a helper function for init_sim_regno_table, constructing
200 the table mapping GDB register numbers to sim register numbers; we
201 initialize every element in that table to -1 before we start
202 filling it in. */
203 static void
204 set_sim_regno (int *table, int gdb_regno, int sim_regno)
205 {
206 /* Make sure we don't try to assign any given GDB register a sim
207 register number more than once. */
208 gdb_assert (table[gdb_regno] == -1);
209 table[gdb_regno] = sim_regno;
210 }
211
212
213 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
214 numbers to simulator register numbers, based on the values placed
215 in the ARCH->tdep->ppc_foo_regnum members. */
216 static void
217 init_sim_regno_table (struct gdbarch *arch)
218 {
219 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
220 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
221 const struct reg *regs = tdep->regs;
222 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
223 int i;
224
225 /* Presume that all registers not explicitly mentioned below are
226 unavailable from the sim. */
227 for (i = 0; i < total_regs; i++)
228 sim_regno[i] = -1;
229
230 /* General-purpose registers. */
231 for (i = 0; i < ppc_num_gprs; i++)
232 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
233
234 /* Floating-point registers. */
235 if (tdep->ppc_fp0_regnum >= 0)
236 for (i = 0; i < ppc_num_fprs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_fp0_regnum + i,
239 sim_ppc_f0_regnum + i);
240 if (tdep->ppc_fpscr_regnum >= 0)
241 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
242
243 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
244 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
245 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
246
247 /* Segment registers. */
248 if (tdep->ppc_sr0_regnum >= 0)
249 for (i = 0; i < ppc_num_srs; i++)
250 set_sim_regno (sim_regno,
251 tdep->ppc_sr0_regnum + i,
252 sim_ppc_sr0_regnum + i);
253
254 /* Altivec registers. */
255 if (tdep->ppc_vr0_regnum >= 0)
256 {
257 for (i = 0; i < ppc_num_vrs; i++)
258 set_sim_regno (sim_regno,
259 tdep->ppc_vr0_regnum + i,
260 sim_ppc_vr0_regnum + i);
261
262 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
263 we can treat this more like the other cases. */
264 set_sim_regno (sim_regno,
265 tdep->ppc_vr0_regnum + ppc_num_vrs,
266 sim_ppc_vscr_regnum);
267 }
268 /* vsave is a special-purpose register, so the code below handles it. */
269
270 /* SPE APU (E500) registers. */
271 if (tdep->ppc_ev0_regnum >= 0)
272 for (i = 0; i < ppc_num_gprs; i++)
273 set_sim_regno (sim_regno,
274 tdep->ppc_ev0_regnum + i,
275 sim_ppc_ev0_regnum + i);
276 if (tdep->ppc_ev0_upper_regnum >= 0)
277 for (i = 0; i < ppc_num_gprs; i++)
278 set_sim_regno (sim_regno,
279 tdep->ppc_ev0_upper_regnum + i,
280 sim_ppc_rh0_regnum + i);
281 if (tdep->ppc_acc_regnum >= 0)
282 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
283 /* spefscr is a special-purpose register, so the code below handles it. */
284
285 /* Now handle all special-purpose registers. Verify that they
286 haven't mistakenly been assigned numbers by any of the above
287 code). */
288 for (i = 0; i < total_regs; i++)
289 if (regs[i].spr_num >= 0)
290 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
291
292 /* Drop the initialized array into place. */
293 tdep->sim_regno = sim_regno;
294 }
295
296
297 /* Given a GDB register number REG, return the corresponding SIM
298 register number. */
299 static int
300 rs6000_register_sim_regno (int reg)
301 {
302 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
303 int sim_regno;
304
305 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
306 sim_regno = tdep->sim_regno[reg];
307
308 if (sim_regno >= 0)
309 return sim_regno;
310 else
311 return LEGACY_SIM_REGNO_IGNORE;
312 }
313
314 \f
315
316 /* Register set support functions. */
317
318 static void
319 ppc_supply_reg (struct regcache *regcache, int regnum,
320 const char *regs, size_t offset)
321 {
322 if (regnum != -1 && offset != -1)
323 regcache_raw_supply (regcache, regnum, regs + offset);
324 }
325
326 static void
327 ppc_collect_reg (const struct regcache *regcache, int regnum,
328 char *regs, size_t offset)
329 {
330 if (regnum != -1 && offset != -1)
331 regcache_raw_collect (regcache, regnum, regs + offset);
332 }
333
334 /* Supply register REGNUM in the general-purpose register set REGSET
335 from the buffer specified by GREGS and LEN to register cache
336 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
337
338 void
339 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
340 int regnum, const void *gregs, size_t len)
341 {
342 struct gdbarch *gdbarch = get_regcache_arch (regcache);
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 const struct ppc_reg_offsets *offsets = regset->descr;
345 size_t offset;
346 int i;
347
348 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
349 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
350 i++, offset += 4)
351 {
352 if (regnum == -1 || regnum == i)
353 ppc_supply_reg (regcache, i, gregs, offset);
354 }
355
356 if (regnum == -1 || regnum == PC_REGNUM)
357 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
358 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
359 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
360 gregs, offsets->ps_offset);
361 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
362 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
363 gregs, offsets->cr_offset);
364 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
365 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
366 gregs, offsets->lr_offset);
367 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
368 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
369 gregs, offsets->ctr_offset);
370 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
371 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
372 gregs, offsets->cr_offset);
373 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
374 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
375 }
376
377 /* Supply register REGNUM in the floating-point register set REGSET
378 from the buffer specified by FPREGS and LEN to register cache
379 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
380
381 void
382 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
383 int regnum, const void *fpregs, size_t len)
384 {
385 struct gdbarch *gdbarch = get_regcache_arch (regcache);
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387 const struct ppc_reg_offsets *offsets = regset->descr;
388 size_t offset;
389 int i;
390
391 gdb_assert (ppc_floating_point_unit_p (gdbarch));
392
393 offset = offsets->f0_offset;
394 for (i = tdep->ppc_fp0_regnum;
395 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
396 i++, offset += 4)
397 {
398 if (regnum == -1 || regnum == i)
399 ppc_supply_reg (regcache, i, fpregs, offset);
400 }
401
402 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
403 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
404 fpregs, offsets->fpscr_offset);
405 }
406
407 /* Collect register REGNUM in the general-purpose register set
408 REGSET. from register cache REGCACHE into the buffer specified by
409 GREGS and LEN. If REGNUM is -1, do this for all registers in
410 REGSET. */
411
412 void
413 ppc_collect_gregset (const struct regset *regset,
414 const struct regcache *regcache,
415 int regnum, void *gregs, size_t len)
416 {
417 struct gdbarch *gdbarch = get_regcache_arch (regcache);
418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419 const struct ppc_reg_offsets *offsets = regset->descr;
420 size_t offset;
421 int i;
422
423 offset = offsets->r0_offset;
424 for (i = tdep->ppc_gp0_regnum;
425 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
426 i++, offset += 4)
427 {
428 if (regnum == -1 || regnum == i)
429 ppc_collect_reg (regcache, i, gregs, offset);
430 }
431
432 if (regnum == -1 || regnum == PC_REGNUM)
433 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
434 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
435 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
436 gregs, offsets->ps_offset);
437 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
438 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
439 gregs, offsets->cr_offset);
440 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
441 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
442 gregs, offsets->lr_offset);
443 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
444 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
445 gregs, offsets->ctr_offset);
446 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
447 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
448 gregs, offsets->xer_offset);
449 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
450 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
451 gregs, offsets->mq_offset);
452 }
453
454 /* Collect register REGNUM in the floating-point register set
455 REGSET. from register cache REGCACHE into the buffer specified by
456 FPREGS and LEN. If REGNUM is -1, do this for all registers in
457 REGSET. */
458
459 void
460 ppc_collect_fpregset (const struct regset *regset,
461 const struct regcache *regcache,
462 int regnum, void *fpregs, size_t len)
463 {
464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
466 const struct ppc_reg_offsets *offsets = regset->descr;
467 size_t offset;
468 int i;
469
470 gdb_assert (ppc_floating_point_unit_p (gdbarch));
471
472 offset = offsets->f0_offset;
473 for (i = tdep->ppc_fp0_regnum;
474 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
475 i++, offset += 4)
476 {
477 if (regnum == -1 || regnum == i)
478 ppc_collect_reg (regcache, regnum, fpregs, offset);
479 }
480
481 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
482 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
483 fpregs, offsets->fpscr_offset);
484 }
485 \f
486
487 /* Read a LEN-byte address from debugged memory address MEMADDR. */
488
489 static CORE_ADDR
490 read_memory_addr (CORE_ADDR memaddr, int len)
491 {
492 return read_memory_unsigned_integer (memaddr, len);
493 }
494
495 static CORE_ADDR
496 rs6000_skip_prologue (CORE_ADDR pc)
497 {
498 struct rs6000_framedata frame;
499 pc = skip_prologue (pc, 0, &frame);
500 return pc;
501 }
502
503
504 /* Fill in fi->saved_regs */
505
506 struct frame_extra_info
507 {
508 /* Functions calling alloca() change the value of the stack
509 pointer. We need to use initial stack pointer (which is saved in
510 r31 by gcc) in such cases. If a compiler emits traceback table,
511 then we should use the alloca register specified in traceback
512 table. FIXME. */
513 CORE_ADDR initial_sp; /* initial stack pointer. */
514 };
515
516 /* Get the ith function argument for the current function. */
517 static CORE_ADDR
518 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
519 struct type *type)
520 {
521 CORE_ADDR addr;
522 get_frame_register (frame, 3 + argi, &addr);
523 return addr;
524 }
525
526 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
527
528 static CORE_ADDR
529 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
530 {
531 CORE_ADDR dest;
532 int immediate;
533 int absolute;
534 int ext_op;
535
536 absolute = (int) ((instr >> 1) & 1);
537
538 switch (opcode)
539 {
540 case 18:
541 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
542 if (absolute)
543 dest = immediate;
544 else
545 dest = pc + immediate;
546 break;
547
548 case 16:
549 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
550 if (absolute)
551 dest = immediate;
552 else
553 dest = pc + immediate;
554 break;
555
556 case 19:
557 ext_op = (instr >> 1) & 0x3ff;
558
559 if (ext_op == 16) /* br conditional register */
560 {
561 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
562
563 /* If we are about to return from a signal handler, dest is
564 something like 0x3c90. The current frame is a signal handler
565 caller frame, upon completion of the sigreturn system call
566 execution will return to the saved PC in the frame. */
567 if (dest < TEXT_SEGMENT_BASE)
568 {
569 struct frame_info *fi;
570
571 fi = get_current_frame ();
572 if (fi != NULL)
573 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
574 gdbarch_tdep (current_gdbarch)->wordsize);
575 }
576 }
577
578 else if (ext_op == 528) /* br cond to count reg */
579 {
580 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
581
582 /* If we are about to execute a system call, dest is something
583 like 0x22fc or 0x3b00. Upon completion the system call
584 will return to the address in the link register. */
585 if (dest < TEXT_SEGMENT_BASE)
586 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
587 }
588 else
589 return -1;
590 break;
591
592 default:
593 return -1;
594 }
595 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
596 }
597
598
599 /* Sequence of bytes for breakpoint instruction. */
600
601 const static unsigned char *
602 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
603 {
604 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
605 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
606 *bp_size = 4;
607 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
608 return big_breakpoint;
609 else
610 return little_breakpoint;
611 }
612
613
614 /* AIX does not support PT_STEP. Simulate it. */
615
616 void
617 rs6000_software_single_step (enum target_signal signal,
618 int insert_breakpoints_p)
619 {
620 CORE_ADDR dummy;
621 int breakp_sz;
622 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
623 int ii, insn;
624 CORE_ADDR loc;
625 CORE_ADDR breaks[2];
626 int opcode;
627
628 if (insert_breakpoints_p)
629 {
630
631 loc = read_pc ();
632
633 insn = read_memory_integer (loc, 4);
634
635 breaks[0] = loc + breakp_sz;
636 opcode = insn >> 26;
637 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
638
639 /* Don't put two breakpoints on the same address. */
640 if (breaks[1] == breaks[0])
641 breaks[1] = -1;
642
643 stepBreaks[1].address = 0;
644
645 for (ii = 0; ii < 2; ++ii)
646 {
647
648 /* ignore invalid breakpoint. */
649 if (breaks[ii] == -1)
650 continue;
651 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
652 stepBreaks[ii].address = breaks[ii];
653 }
654
655 }
656 else
657 {
658
659 /* remove step breakpoints. */
660 for (ii = 0; ii < 2; ++ii)
661 if (stepBreaks[ii].address != 0)
662 target_remove_breakpoint (stepBreaks[ii].address,
663 stepBreaks[ii].data);
664 }
665 errno = 0; /* FIXME, don't ignore errors! */
666 /* What errors? {read,write}_memory call error(). */
667 }
668
669
670 /* return pc value after skipping a function prologue and also return
671 information about a function frame.
672
673 in struct rs6000_framedata fdata:
674 - frameless is TRUE, if function does not have a frame.
675 - nosavedpc is TRUE, if function does not save %pc value in its frame.
676 - offset is the initial size of this stack frame --- the amount by
677 which we decrement the sp to allocate the frame.
678 - saved_gpr is the number of the first saved gpr.
679 - saved_fpr is the number of the first saved fpr.
680 - saved_vr is the number of the first saved vr.
681 - saved_ev is the number of the first saved ev.
682 - alloca_reg is the number of the register used for alloca() handling.
683 Otherwise -1.
684 - gpr_offset is the offset of the first saved gpr from the previous frame.
685 - fpr_offset is the offset of the first saved fpr from the previous frame.
686 - vr_offset is the offset of the first saved vr from the previous frame.
687 - ev_offset is the offset of the first saved ev from the previous frame.
688 - lr_offset is the offset of the saved lr
689 - cr_offset is the offset of the saved cr
690 - vrsave_offset is the offset of the saved vrsave register
691 */
692
693 #define SIGNED_SHORT(x) \
694 ((sizeof (short) == 2) \
695 ? ((int)(short)(x)) \
696 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
697
698 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
699
700 /* Limit the number of skipped non-prologue instructions, as the examining
701 of the prologue is expensive. */
702 static int max_skip_non_prologue_insns = 10;
703
704 /* Given PC representing the starting address of a function, and
705 LIM_PC which is the (sloppy) limit to which to scan when looking
706 for a prologue, attempt to further refine this limit by using
707 the line data in the symbol table. If successful, a better guess
708 on where the prologue ends is returned, otherwise the previous
709 value of lim_pc is returned. */
710
711 /* FIXME: cagney/2004-02-14: This function and logic have largely been
712 superseded by skip_prologue_using_sal. */
713
714 static CORE_ADDR
715 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
716 {
717 struct symtab_and_line prologue_sal;
718
719 prologue_sal = find_pc_line (pc, 0);
720 if (prologue_sal.line != 0)
721 {
722 int i;
723 CORE_ADDR addr = prologue_sal.end;
724
725 /* Handle the case in which compiler's optimizer/scheduler
726 has moved instructions into the prologue. We scan ahead
727 in the function looking for address ranges whose corresponding
728 line number is less than or equal to the first one that we
729 found for the function. (It can be less than when the
730 scheduler puts a body instruction before the first prologue
731 instruction.) */
732 for (i = 2 * max_skip_non_prologue_insns;
733 i > 0 && (lim_pc == 0 || addr < lim_pc);
734 i--)
735 {
736 struct symtab_and_line sal;
737
738 sal = find_pc_line (addr, 0);
739 if (sal.line == 0)
740 break;
741 if (sal.line <= prologue_sal.line
742 && sal.symtab == prologue_sal.symtab)
743 {
744 prologue_sal = sal;
745 }
746 addr = sal.end;
747 }
748
749 if (lim_pc == 0 || prologue_sal.end < lim_pc)
750 lim_pc = prologue_sal.end;
751 }
752 return lim_pc;
753 }
754
755 /* Return nonzero if the given instruction OP can be part of the prologue
756 of a function and saves a parameter on the stack. FRAMEP should be
757 set if one of the previous instructions in the function has set the
758 Frame Pointer. */
759
760 static int
761 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
762 {
763 /* Move parameters from argument registers to temporary register. */
764 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
765 {
766 /* Rx must be scratch register r0. */
767 const int rx_regno = (op >> 16) & 31;
768 /* Ry: Only r3 - r10 are used for parameter passing. */
769 const int ry_regno = GET_SRC_REG (op);
770
771 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
772 {
773 *r0_contains_arg = 1;
774 return 1;
775 }
776 else
777 return 0;
778 }
779
780 /* Save a General Purpose Register on stack. */
781
782 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
783 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
784 {
785 /* Rx: Only r3 - r10 are used for parameter passing. */
786 const int rx_regno = GET_SRC_REG (op);
787
788 return (rx_regno >= 3 && rx_regno <= 10);
789 }
790
791 /* Save a General Purpose Register on stack via the Frame Pointer. */
792
793 if (framep &&
794 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
795 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
796 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
797 {
798 /* Rx: Usually, only r3 - r10 are used for parameter passing.
799 However, the compiler sometimes uses r0 to hold an argument. */
800 const int rx_regno = GET_SRC_REG (op);
801
802 return ((rx_regno >= 3 && rx_regno <= 10)
803 || (rx_regno == 0 && *r0_contains_arg));
804 }
805
806 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
807 {
808 /* Only f2 - f8 are used for parameter passing. */
809 const int src_regno = GET_SRC_REG (op);
810
811 return (src_regno >= 2 && src_regno <= 8);
812 }
813
814 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
815 {
816 /* Only f2 - f8 are used for parameter passing. */
817 const int src_regno = GET_SRC_REG (op);
818
819 return (src_regno >= 2 && src_regno <= 8);
820 }
821
822 /* Not an insn that saves a parameter on stack. */
823 return 0;
824 }
825
826 static CORE_ADDR
827 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
828 {
829 CORE_ADDR orig_pc = pc;
830 CORE_ADDR last_prologue_pc = pc;
831 CORE_ADDR li_found_pc = 0;
832 char buf[4];
833 unsigned long op;
834 long offset = 0;
835 long vr_saved_offset = 0;
836 int lr_reg = -1;
837 int cr_reg = -1;
838 int vr_reg = -1;
839 int ev_reg = -1;
840 long ev_offset = 0;
841 int vrsave_reg = -1;
842 int reg;
843 int framep = 0;
844 int minimal_toc_loaded = 0;
845 int prev_insn_was_prologue_insn = 1;
846 int num_skip_non_prologue_insns = 0;
847 int r0_contains_arg = 0;
848 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
850
851 /* Attempt to find the end of the prologue when no limit is specified.
852 Note that refine_prologue_limit() has been written so that it may
853 be used to "refine" the limits of non-zero PC values too, but this
854 is only safe if we 1) trust the line information provided by the
855 compiler and 2) iterate enough to actually find the end of the
856 prologue.
857
858 It may become a good idea at some point (for both performance and
859 accuracy) to unconditionally call refine_prologue_limit(). But,
860 until we can make a clear determination that this is beneficial,
861 we'll play it safe and only use it to obtain a limit when none
862 has been specified. */
863 if (lim_pc == 0)
864 lim_pc = refine_prologue_limit (pc, lim_pc);
865
866 memset (fdata, 0, sizeof (struct rs6000_framedata));
867 fdata->saved_gpr = -1;
868 fdata->saved_fpr = -1;
869 fdata->saved_vr = -1;
870 fdata->saved_ev = -1;
871 fdata->alloca_reg = -1;
872 fdata->frameless = 1;
873 fdata->nosavedpc = 1;
874
875 for (;; pc += 4)
876 {
877 /* Sometimes it isn't clear if an instruction is a prologue
878 instruction or not. When we encounter one of these ambiguous
879 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
880 Otherwise, we'll assume that it really is a prologue instruction. */
881 if (prev_insn_was_prologue_insn)
882 last_prologue_pc = pc;
883
884 /* Stop scanning if we've hit the limit. */
885 if (lim_pc != 0 && pc >= lim_pc)
886 break;
887
888 prev_insn_was_prologue_insn = 1;
889
890 /* Fetch the instruction and convert it to an integer. */
891 if (target_read_memory (pc, buf, 4))
892 break;
893 op = extract_signed_integer (buf, 4);
894
895 if ((op & 0xfc1fffff) == 0x7c0802a6)
896 { /* mflr Rx */
897 /* Since shared library / PIC code, which needs to get its
898 address at runtime, can appear to save more than one link
899 register vis:
900
901 *INDENT-OFF*
902 stwu r1,-304(r1)
903 mflr r3
904 bl 0xff570d0 (blrl)
905 stw r30,296(r1)
906 mflr r30
907 stw r31,300(r1)
908 stw r3,308(r1);
909 ...
910 *INDENT-ON*
911
912 remember just the first one, but skip over additional
913 ones. */
914 if (lr_reg < 0)
915 lr_reg = (op & 0x03e00000);
916 if (lr_reg == 0)
917 r0_contains_arg = 0;
918 continue;
919 }
920 else if ((op & 0xfc1fffff) == 0x7c000026)
921 { /* mfcr Rx */
922 cr_reg = (op & 0x03e00000);
923 if (cr_reg == 0)
924 r0_contains_arg = 0;
925 continue;
926
927 }
928 else if ((op & 0xfc1f0000) == 0xd8010000)
929 { /* stfd Rx,NUM(r1) */
930 reg = GET_SRC_REG (op);
931 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
932 {
933 fdata->saved_fpr = reg;
934 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
935 }
936 continue;
937
938 }
939 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
940 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
941 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
942 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
943 {
944
945 reg = GET_SRC_REG (op);
946 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
947 {
948 fdata->saved_gpr = reg;
949 if ((op & 0xfc1f0003) == 0xf8010000)
950 op &= ~3UL;
951 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
952 }
953 continue;
954
955 }
956 else if ((op & 0xffff0000) == 0x60000000)
957 {
958 /* nop */
959 /* Allow nops in the prologue, but do not consider them to
960 be part of the prologue unless followed by other prologue
961 instructions. */
962 prev_insn_was_prologue_insn = 0;
963 continue;
964
965 }
966 else if ((op & 0xffff0000) == 0x3c000000)
967 { /* addis 0,0,NUM, used
968 for >= 32k frames */
969 fdata->offset = (op & 0x0000ffff) << 16;
970 fdata->frameless = 0;
971 r0_contains_arg = 0;
972 continue;
973
974 }
975 else if ((op & 0xffff0000) == 0x60000000)
976 { /* ori 0,0,NUM, 2nd ha
977 lf of >= 32k frames */
978 fdata->offset |= (op & 0x0000ffff);
979 fdata->frameless = 0;
980 r0_contains_arg = 0;
981 continue;
982
983 }
984 else if (lr_reg >= 0 &&
985 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
986 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
987 /* stw Rx, NUM(r1) */
988 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
989 /* stwu Rx, NUM(r1) */
990 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
991 { /* where Rx == lr */
992 fdata->lr_offset = offset;
993 fdata->nosavedpc = 0;
994 /* Invalidate lr_reg, but don't set it to -1.
995 That would mean that it had never been set. */
996 lr_reg = -2;
997 if ((op & 0xfc000003) == 0xf8000000 || /* std */
998 (op & 0xfc000000) == 0x90000000) /* stw */
999 {
1000 /* Does not update r1, so add displacement to lr_offset. */
1001 fdata->lr_offset += SIGNED_SHORT (op);
1002 }
1003 continue;
1004
1005 }
1006 else if (cr_reg >= 0 &&
1007 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1008 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1009 /* stw Rx, NUM(r1) */
1010 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1011 /* stwu Rx, NUM(r1) */
1012 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1013 { /* where Rx == cr */
1014 fdata->cr_offset = offset;
1015 /* Invalidate cr_reg, but don't set it to -1.
1016 That would mean that it had never been set. */
1017 cr_reg = -2;
1018 if ((op & 0xfc000003) == 0xf8000000 ||
1019 (op & 0xfc000000) == 0x90000000)
1020 {
1021 /* Does not update r1, so add displacement to cr_offset. */
1022 fdata->cr_offset += SIGNED_SHORT (op);
1023 }
1024 continue;
1025
1026 }
1027 else if (op == 0x48000005)
1028 { /* bl .+4 used in
1029 -mrelocatable */
1030 continue;
1031
1032 }
1033 else if (op == 0x48000004)
1034 { /* b .+4 (xlc) */
1035 break;
1036
1037 }
1038 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1039 in V.4 -mminimal-toc */
1040 (op & 0xffff0000) == 0x3bde0000)
1041 { /* addi 30,30,foo@l */
1042 continue;
1043
1044 }
1045 else if ((op & 0xfc000001) == 0x48000001)
1046 { /* bl foo,
1047 to save fprs??? */
1048
1049 fdata->frameless = 0;
1050 /* Don't skip over the subroutine call if it is not within
1051 the first three instructions of the prologue and either
1052 we have no line table information or the line info tells
1053 us that the subroutine call is not part of the line
1054 associated with the prologue. */
1055 if ((pc - orig_pc) > 8)
1056 {
1057 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1058 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1059
1060 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1061 break;
1062 }
1063
1064 op = read_memory_integer (pc + 4, 4);
1065
1066 /* At this point, make sure this is not a trampoline
1067 function (a function that simply calls another functions,
1068 and nothing else). If the next is not a nop, this branch
1069 was part of the function prologue. */
1070
1071 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1072 break; /* don't skip over
1073 this branch */
1074 continue;
1075
1076 }
1077 /* update stack pointer */
1078 else if ((op & 0xfc1f0000) == 0x94010000)
1079 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1080 fdata->frameless = 0;
1081 fdata->offset = SIGNED_SHORT (op);
1082 offset = fdata->offset;
1083 continue;
1084 }
1085 else if ((op & 0xfc1f016a) == 0x7c01016e)
1086 { /* stwux rX,r1,rY */
1087 /* no way to figure out what r1 is going to be */
1088 fdata->frameless = 0;
1089 offset = fdata->offset;
1090 continue;
1091 }
1092 else if ((op & 0xfc1f0003) == 0xf8010001)
1093 { /* stdu rX,NUM(r1) */
1094 fdata->frameless = 0;
1095 fdata->offset = SIGNED_SHORT (op & ~3UL);
1096 offset = fdata->offset;
1097 continue;
1098 }
1099 else if ((op & 0xfc1f016a) == 0x7c01016a)
1100 { /* stdux rX,r1,rY */
1101 /* no way to figure out what r1 is going to be */
1102 fdata->frameless = 0;
1103 offset = fdata->offset;
1104 continue;
1105 }
1106 /* Load up minimal toc pointer */
1107 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1108 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1109 && !minimal_toc_loaded)
1110 {
1111 minimal_toc_loaded = 1;
1112 continue;
1113
1114 /* move parameters from argument registers to local variable
1115 registers */
1116 }
1117 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1118 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1119 (((op >> 21) & 31) <= 10) &&
1120 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1121 {
1122 continue;
1123
1124 /* store parameters in stack */
1125 }
1126 /* Move parameters from argument registers to temporary register. */
1127 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1128 {
1129 continue;
1130
1131 /* Set up frame pointer */
1132 }
1133 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1134 || op == 0x7c3f0b78)
1135 { /* mr r31, r1 */
1136 fdata->frameless = 0;
1137 framep = 1;
1138 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1139 continue;
1140
1141 /* Another way to set up the frame pointer. */
1142 }
1143 else if ((op & 0xfc1fffff) == 0x38010000)
1144 { /* addi rX, r1, 0x0 */
1145 fdata->frameless = 0;
1146 framep = 1;
1147 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1148 + ((op & ~0x38010000) >> 21));
1149 continue;
1150 }
1151 /* AltiVec related instructions. */
1152 /* Store the vrsave register (spr 256) in another register for
1153 later manipulation, or load a register into the vrsave
1154 register. 2 instructions are used: mfvrsave and
1155 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1156 and mtspr SPR256, Rn. */
1157 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1158 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1159 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1160 {
1161 vrsave_reg = GET_SRC_REG (op);
1162 continue;
1163 }
1164 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1165 {
1166 continue;
1167 }
1168 /* Store the register where vrsave was saved to onto the stack:
1169 rS is the register where vrsave was stored in a previous
1170 instruction. */
1171 /* 100100 sssss 00001 dddddddd dddddddd */
1172 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1173 {
1174 if (vrsave_reg == GET_SRC_REG (op))
1175 {
1176 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1177 vrsave_reg = -1;
1178 }
1179 continue;
1180 }
1181 /* Compute the new value of vrsave, by modifying the register
1182 where vrsave was saved to. */
1183 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1184 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1185 {
1186 continue;
1187 }
1188 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1189 in a pair of insns to save the vector registers on the
1190 stack. */
1191 /* 001110 00000 00000 iiii iiii iiii iiii */
1192 /* 001110 01110 00000 iiii iiii iiii iiii */
1193 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1194 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1195 {
1196 if ((op & 0xffff0000) == 0x38000000)
1197 r0_contains_arg = 0;
1198 li_found_pc = pc;
1199 vr_saved_offset = SIGNED_SHORT (op);
1200
1201 /* This insn by itself is not part of the prologue, unless
1202 if part of the pair of insns mentioned above. So do not
1203 record this insn as part of the prologue yet. */
1204 prev_insn_was_prologue_insn = 0;
1205 }
1206 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1207 /* 011111 sssss 11111 00000 00111001110 */
1208 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1209 {
1210 if (pc == (li_found_pc + 4))
1211 {
1212 vr_reg = GET_SRC_REG (op);
1213 /* If this is the first vector reg to be saved, or if
1214 it has a lower number than others previously seen,
1215 reupdate the frame info. */
1216 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1217 {
1218 fdata->saved_vr = vr_reg;
1219 fdata->vr_offset = vr_saved_offset + offset;
1220 }
1221 vr_saved_offset = -1;
1222 vr_reg = -1;
1223 li_found_pc = 0;
1224 }
1225 }
1226 /* End AltiVec related instructions. */
1227
1228 /* Start BookE related instructions. */
1229 /* Store gen register S at (r31+uimm).
1230 Any register less than r13 is volatile, so we don't care. */
1231 /* 000100 sssss 11111 iiiii 01100100001 */
1232 else if (arch_info->mach == bfd_mach_ppc_e500
1233 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1234 {
1235 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1236 {
1237 unsigned int imm;
1238 ev_reg = GET_SRC_REG (op);
1239 imm = (op >> 11) & 0x1f;
1240 ev_offset = imm * 8;
1241 /* If this is the first vector reg to be saved, or if
1242 it has a lower number than others previously seen,
1243 reupdate the frame info. */
1244 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1245 {
1246 fdata->saved_ev = ev_reg;
1247 fdata->ev_offset = ev_offset + offset;
1248 }
1249 }
1250 continue;
1251 }
1252 /* Store gen register rS at (r1+rB). */
1253 /* 000100 sssss 00001 bbbbb 01100100000 */
1254 else if (arch_info->mach == bfd_mach_ppc_e500
1255 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1256 {
1257 if (pc == (li_found_pc + 4))
1258 {
1259 ev_reg = GET_SRC_REG (op);
1260 /* If this is the first vector reg to be saved, or if
1261 it has a lower number than others previously seen,
1262 reupdate the frame info. */
1263 /* We know the contents of rB from the previous instruction. */
1264 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1265 {
1266 fdata->saved_ev = ev_reg;
1267 fdata->ev_offset = vr_saved_offset + offset;
1268 }
1269 vr_saved_offset = -1;
1270 ev_reg = -1;
1271 li_found_pc = 0;
1272 }
1273 continue;
1274 }
1275 /* Store gen register r31 at (rA+uimm). */
1276 /* 000100 11111 aaaaa iiiii 01100100001 */
1277 else if (arch_info->mach == bfd_mach_ppc_e500
1278 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1279 {
1280 /* Wwe know that the source register is 31 already, but
1281 it can't hurt to compute it. */
1282 ev_reg = GET_SRC_REG (op);
1283 ev_offset = ((op >> 11) & 0x1f) * 8;
1284 /* If this is the first vector reg to be saved, or if
1285 it has a lower number than others previously seen,
1286 reupdate the frame info. */
1287 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1288 {
1289 fdata->saved_ev = ev_reg;
1290 fdata->ev_offset = ev_offset + offset;
1291 }
1292
1293 continue;
1294 }
1295 /* Store gen register S at (r31+r0).
1296 Store param on stack when offset from SP bigger than 4 bytes. */
1297 /* 000100 sssss 11111 00000 01100100000 */
1298 else if (arch_info->mach == bfd_mach_ppc_e500
1299 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1300 {
1301 if (pc == (li_found_pc + 4))
1302 {
1303 if ((op & 0x03e00000) >= 0x01a00000)
1304 {
1305 ev_reg = GET_SRC_REG (op);
1306 /* If this is the first vector reg to be saved, or if
1307 it has a lower number than others previously seen,
1308 reupdate the frame info. */
1309 /* We know the contents of r0 from the previous
1310 instruction. */
1311 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1312 {
1313 fdata->saved_ev = ev_reg;
1314 fdata->ev_offset = vr_saved_offset + offset;
1315 }
1316 ev_reg = -1;
1317 }
1318 vr_saved_offset = -1;
1319 li_found_pc = 0;
1320 continue;
1321 }
1322 }
1323 /* End BookE related instructions. */
1324
1325 else
1326 {
1327 /* Not a recognized prologue instruction.
1328 Handle optimizer code motions into the prologue by continuing
1329 the search if we have no valid frame yet or if the return
1330 address is not yet saved in the frame. */
1331 if (fdata->frameless == 0
1332 && (lr_reg == -1 || fdata->nosavedpc == 0))
1333 break;
1334
1335 if (op == 0x4e800020 /* blr */
1336 || op == 0x4e800420) /* bctr */
1337 /* Do not scan past epilogue in frameless functions or
1338 trampolines. */
1339 break;
1340 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1341 /* Never skip branches. */
1342 break;
1343
1344 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1345 /* Do not scan too many insns, scanning insns is expensive with
1346 remote targets. */
1347 break;
1348
1349 /* Continue scanning. */
1350 prev_insn_was_prologue_insn = 0;
1351 continue;
1352 }
1353 }
1354
1355 #if 0
1356 /* I have problems with skipping over __main() that I need to address
1357 * sometime. Previously, I used to use misc_function_vector which
1358 * didn't work as well as I wanted to be. -MGO */
1359
1360 /* If the first thing after skipping a prolog is a branch to a function,
1361 this might be a call to an initializer in main(), introduced by gcc2.
1362 We'd like to skip over it as well. Fortunately, xlc does some extra
1363 work before calling a function right after a prologue, thus we can
1364 single out such gcc2 behaviour. */
1365
1366
1367 if ((op & 0xfc000001) == 0x48000001)
1368 { /* bl foo, an initializer function? */
1369 op = read_memory_integer (pc + 4, 4);
1370
1371 if (op == 0x4def7b82)
1372 { /* cror 0xf, 0xf, 0xf (nop) */
1373
1374 /* Check and see if we are in main. If so, skip over this
1375 initializer function as well. */
1376
1377 tmp = find_pc_misc_function (pc);
1378 if (tmp >= 0
1379 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1380 return pc + 8;
1381 }
1382 }
1383 #endif /* 0 */
1384
1385 fdata->offset = -fdata->offset;
1386 return last_prologue_pc;
1387 }
1388
1389
1390 /*************************************************************************
1391 Support for creating pushing a dummy frame into the stack, and popping
1392 frames, etc.
1393 *************************************************************************/
1394
1395
1396 /* All the ABI's require 16 byte alignment. */
1397 static CORE_ADDR
1398 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1399 {
1400 return (addr & -16);
1401 }
1402
1403 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1404 the first eight words of the argument list (that might be less than
1405 eight parameters if some parameters occupy more than one word) are
1406 passed in r3..r10 registers. float and double parameters are
1407 passed in fpr's, in addition to that. Rest of the parameters if any
1408 are passed in user stack. There might be cases in which half of the
1409 parameter is copied into registers, the other half is pushed into
1410 stack.
1411
1412 Stack must be aligned on 64-bit boundaries when synthesizing
1413 function calls.
1414
1415 If the function is returning a structure, then the return address is passed
1416 in r3, then the first 7 words of the parameters can be passed in registers,
1417 starting from r4. */
1418
1419 static CORE_ADDR
1420 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1421 struct regcache *regcache, CORE_ADDR bp_addr,
1422 int nargs, struct value **args, CORE_ADDR sp,
1423 int struct_return, CORE_ADDR struct_addr)
1424 {
1425 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1426 int ii;
1427 int len = 0;
1428 int argno; /* current argument number */
1429 int argbytes; /* current argument byte */
1430 char tmp_buffer[50];
1431 int f_argno = 0; /* current floating point argno */
1432 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1433 CORE_ADDR func_addr = find_function_addr (function, NULL);
1434
1435 struct value *arg = 0;
1436 struct type *type;
1437
1438 CORE_ADDR saved_sp;
1439
1440 /* The calling convention this function implements assumes the
1441 processor has floating-point registers. We shouldn't be using it
1442 on PPC variants that lack them. */
1443 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1444
1445 /* The first eight words of ther arguments are passed in registers.
1446 Copy them appropriately. */
1447 ii = 0;
1448
1449 /* If the function is returning a `struct', then the first word
1450 (which will be passed in r3) is used for struct return address.
1451 In that case we should advance one word and start from r4
1452 register to copy parameters. */
1453 if (struct_return)
1454 {
1455 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1456 struct_addr);
1457 ii++;
1458 }
1459
1460 /*
1461 effectively indirect call... gcc does...
1462
1463 return_val example( float, int);
1464
1465 eabi:
1466 float in fp0, int in r3
1467 offset of stack on overflow 8/16
1468 for varargs, must go by type.
1469 power open:
1470 float in r3&r4, int in r5
1471 offset of stack on overflow different
1472 both:
1473 return in r3 or f0. If no float, must study how gcc emulates floats;
1474 pay attention to arg promotion.
1475 User may have to cast\args to handle promotion correctly
1476 since gdb won't know if prototype supplied or not.
1477 */
1478
1479 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1480 {
1481 int reg_size = register_size (current_gdbarch, ii + 3);
1482
1483 arg = args[argno];
1484 type = check_typedef (value_type (arg));
1485 len = TYPE_LENGTH (type);
1486
1487 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1488 {
1489
1490 /* Floating point arguments are passed in fpr's, as well as gpr's.
1491 There are 13 fpr's reserved for passing parameters. At this point
1492 there is no way we would run out of them. */
1493
1494 gdb_assert (len <= 8);
1495
1496 regcache_cooked_write (regcache,
1497 tdep->ppc_fp0_regnum + 1 + f_argno,
1498 VALUE_CONTENTS (arg));
1499 ++f_argno;
1500 }
1501
1502 if (len > reg_size)
1503 {
1504
1505 /* Argument takes more than one register. */
1506 while (argbytes < len)
1507 {
1508 char word[MAX_REGISTER_SIZE];
1509 memset (word, 0, reg_size);
1510 memcpy (word,
1511 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1512 (len - argbytes) > reg_size
1513 ? reg_size : len - argbytes);
1514 regcache_cooked_write (regcache,
1515 tdep->ppc_gp0_regnum + 3 + ii,
1516 word);
1517 ++ii, argbytes += reg_size;
1518
1519 if (ii >= 8)
1520 goto ran_out_of_registers_for_arguments;
1521 }
1522 argbytes = 0;
1523 --ii;
1524 }
1525 else
1526 {
1527 /* Argument can fit in one register. No problem. */
1528 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1529 char word[MAX_REGISTER_SIZE];
1530
1531 memset (word, 0, reg_size);
1532 memcpy (word, VALUE_CONTENTS (arg), len);
1533 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1534 }
1535 ++argno;
1536 }
1537
1538 ran_out_of_registers_for_arguments:
1539
1540 saved_sp = read_sp ();
1541
1542 /* Location for 8 parameters are always reserved. */
1543 sp -= wordsize * 8;
1544
1545 /* Another six words for back chain, TOC register, link register, etc. */
1546 sp -= wordsize * 6;
1547
1548 /* Stack pointer must be quadword aligned. */
1549 sp &= -16;
1550
1551 /* If there are more arguments, allocate space for them in
1552 the stack, then push them starting from the ninth one. */
1553
1554 if ((argno < nargs) || argbytes)
1555 {
1556 int space = 0, jj;
1557
1558 if (argbytes)
1559 {
1560 space += ((len - argbytes + 3) & -4);
1561 jj = argno + 1;
1562 }
1563 else
1564 jj = argno;
1565
1566 for (; jj < nargs; ++jj)
1567 {
1568 struct value *val = args[jj];
1569 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1570 }
1571
1572 /* Add location required for the rest of the parameters. */
1573 space = (space + 15) & -16;
1574 sp -= space;
1575
1576 /* This is another instance we need to be concerned about
1577 securing our stack space. If we write anything underneath %sp
1578 (r1), we might conflict with the kernel who thinks he is free
1579 to use this area. So, update %sp first before doing anything
1580 else. */
1581
1582 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1583
1584 /* If the last argument copied into the registers didn't fit there
1585 completely, push the rest of it into stack. */
1586
1587 if (argbytes)
1588 {
1589 write_memory (sp + 24 + (ii * 4),
1590 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1591 len - argbytes);
1592 ++argno;
1593 ii += ((len - argbytes + 3) & -4) / 4;
1594 }
1595
1596 /* Push the rest of the arguments into stack. */
1597 for (; argno < nargs; ++argno)
1598 {
1599
1600 arg = args[argno];
1601 type = check_typedef (value_type (arg));
1602 len = TYPE_LENGTH (type);
1603
1604
1605 /* Float types should be passed in fpr's, as well as in the
1606 stack. */
1607 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1608 {
1609
1610 gdb_assert (len <= 8);
1611
1612 regcache_cooked_write (regcache,
1613 tdep->ppc_fp0_regnum + 1 + f_argno,
1614 VALUE_CONTENTS (arg));
1615 ++f_argno;
1616 }
1617
1618 write_memory (sp + 24 + (ii * 4),
1619 (char *) VALUE_CONTENTS (arg),
1620 len);
1621 ii += ((len + 3) & -4) / 4;
1622 }
1623 }
1624
1625 /* Set the stack pointer. According to the ABI, the SP is meant to
1626 be set _before_ the corresponding stack space is used. On AIX,
1627 this even applies when the target has been completely stopped!
1628 Not doing this can lead to conflicts with the kernel which thinks
1629 that it still has control over this not-yet-allocated stack
1630 region. */
1631 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1632
1633 /* Set back chain properly. */
1634 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1635 write_memory (sp, tmp_buffer, 4);
1636
1637 /* Point the inferior function call's return address at the dummy's
1638 breakpoint. */
1639 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1640
1641 /* Set the TOC register, get the value from the objfile reader
1642 which, in turn, gets it from the VMAP table. */
1643 if (rs6000_find_toc_address_hook != NULL)
1644 {
1645 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1646 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1647 }
1648
1649 target_store_registers (-1);
1650 return sp;
1651 }
1652
1653 /* PowerOpen always puts structures in memory. Vectors, which were
1654 added later, do get returned in a register though. */
1655
1656 static int
1657 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1658 {
1659 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1660 && TYPE_VECTOR (value_type))
1661 return 0;
1662 return 1;
1663 }
1664
1665 static void
1666 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1667 {
1668 int offset = 0;
1669 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1670
1671 /* The calling convention this function implements assumes the
1672 processor has floating-point registers. We shouldn't be using it
1673 on PPC variants that lack them. */
1674 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1675
1676 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1677 {
1678
1679 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1680 We need to truncate the return value into float size (4 byte) if
1681 necessary. */
1682
1683 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1684 (tdep->ppc_fp0_regnum + 1)],
1685 builtin_type_double,
1686 valbuf,
1687 valtype);
1688 }
1689 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1690 && TYPE_LENGTH (valtype) == 16
1691 && TYPE_VECTOR (valtype))
1692 {
1693 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1694 TYPE_LENGTH (valtype));
1695 }
1696 else
1697 {
1698 /* return value is copied starting from r3. */
1699 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1700 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1701 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
1702
1703 memcpy (valbuf,
1704 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1705 TYPE_LENGTH (valtype));
1706 }
1707 }
1708
1709 /* Return whether handle_inferior_event() should proceed through code
1710 starting at PC in function NAME when stepping.
1711
1712 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1713 handle memory references that are too distant to fit in instructions
1714 generated by the compiler. For example, if 'foo' in the following
1715 instruction:
1716
1717 lwz r9,foo(r2)
1718
1719 is greater than 32767, the linker might replace the lwz with a branch to
1720 somewhere in @FIX1 that does the load in 2 instructions and then branches
1721 back to where execution should continue.
1722
1723 GDB should silently step over @FIX code, just like AIX dbx does.
1724 Unfortunately, the linker uses the "b" instruction for the branches,
1725 meaning that the link register doesn't get set. Therefore, GDB's usual
1726 step_over_function() mechanism won't work.
1727
1728 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1729 in handle_inferior_event() to skip past @FIX code. */
1730
1731 int
1732 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1733 {
1734 return name && !strncmp (name, "@FIX", 4);
1735 }
1736
1737 /* Skip code that the user doesn't want to see when stepping:
1738
1739 1. Indirect function calls use a piece of trampoline code to do context
1740 switching, i.e. to set the new TOC table. Skip such code if we are on
1741 its first instruction (as when we have single-stepped to here).
1742
1743 2. Skip shared library trampoline code (which is different from
1744 indirect function call trampolines).
1745
1746 3. Skip bigtoc fixup code.
1747
1748 Result is desired PC to step until, or NULL if we are not in
1749 code that should be skipped. */
1750
1751 CORE_ADDR
1752 rs6000_skip_trampoline_code (CORE_ADDR pc)
1753 {
1754 unsigned int ii, op;
1755 int rel;
1756 CORE_ADDR solib_target_pc;
1757 struct minimal_symbol *msymbol;
1758
1759 static unsigned trampoline_code[] =
1760 {
1761 0x800b0000, /* l r0,0x0(r11) */
1762 0x90410014, /* st r2,0x14(r1) */
1763 0x7c0903a6, /* mtctr r0 */
1764 0x804b0004, /* l r2,0x4(r11) */
1765 0x816b0008, /* l r11,0x8(r11) */
1766 0x4e800420, /* bctr */
1767 0x4e800020, /* br */
1768 0
1769 };
1770
1771 /* Check for bigtoc fixup code. */
1772 msymbol = lookup_minimal_symbol_by_pc (pc);
1773 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1774 {
1775 /* Double-check that the third instruction from PC is relative "b". */
1776 op = read_memory_integer (pc + 8, 4);
1777 if ((op & 0xfc000003) == 0x48000000)
1778 {
1779 /* Extract bits 6-29 as a signed 24-bit relative word address and
1780 add it to the containing PC. */
1781 rel = ((int)(op << 6) >> 6);
1782 return pc + 8 + rel;
1783 }
1784 }
1785
1786 /* If pc is in a shared library trampoline, return its target. */
1787 solib_target_pc = find_solib_trampoline_target (pc);
1788 if (solib_target_pc)
1789 return solib_target_pc;
1790
1791 for (ii = 0; trampoline_code[ii]; ++ii)
1792 {
1793 op = read_memory_integer (pc + (ii * 4), 4);
1794 if (op != trampoline_code[ii])
1795 return 0;
1796 }
1797 ii = read_register (11); /* r11 holds destination addr */
1798 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1799 return pc;
1800 }
1801
1802 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1803 isn't available with that word size, return 0. */
1804
1805 static int
1806 regsize (const struct reg *reg, int wordsize)
1807 {
1808 return wordsize == 8 ? reg->sz64 : reg->sz32;
1809 }
1810
1811 /* Return the name of register number N, or null if no such register exists
1812 in the current architecture. */
1813
1814 static const char *
1815 rs6000_register_name (int n)
1816 {
1817 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1818 const struct reg *reg = tdep->regs + n;
1819
1820 if (!regsize (reg, tdep->wordsize))
1821 return NULL;
1822 return reg->name;
1823 }
1824
1825 /* Return the GDB type object for the "standard" data type
1826 of data in register N. */
1827
1828 static struct type *
1829 rs6000_register_type (struct gdbarch *gdbarch, int n)
1830 {
1831 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1832 const struct reg *reg = tdep->regs + n;
1833
1834 if (reg->fpr)
1835 return builtin_type_double;
1836 else
1837 {
1838 int size = regsize (reg, tdep->wordsize);
1839 switch (size)
1840 {
1841 case 0:
1842 return builtin_type_int0;
1843 case 4:
1844 return builtin_type_uint32;
1845 case 8:
1846 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1847 return builtin_type_vec64;
1848 else
1849 return builtin_type_uint64;
1850 break;
1851 case 16:
1852 return builtin_type_vec128;
1853 break;
1854 default:
1855 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1856 n, size);
1857 }
1858 }
1859 }
1860
1861 /* The register format for RS/6000 floating point registers is always
1862 double, we need a conversion if the memory format is float. */
1863
1864 static int
1865 rs6000_convert_register_p (int regnum, struct type *type)
1866 {
1867 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1868
1869 return (reg->fpr
1870 && TYPE_CODE (type) == TYPE_CODE_FLT
1871 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
1872 }
1873
1874 static void
1875 rs6000_register_to_value (struct frame_info *frame,
1876 int regnum,
1877 struct type *type,
1878 void *to)
1879 {
1880 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1881 char from[MAX_REGISTER_SIZE];
1882
1883 gdb_assert (reg->fpr);
1884 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1885
1886 get_frame_register (frame, regnum, from);
1887 convert_typed_floating (from, builtin_type_double, to, type);
1888 }
1889
1890 static void
1891 rs6000_value_to_register (struct frame_info *frame,
1892 int regnum,
1893 struct type *type,
1894 const void *from)
1895 {
1896 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1897 char to[MAX_REGISTER_SIZE];
1898
1899 gdb_assert (reg->fpr);
1900 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1901
1902 convert_typed_floating (from, type, to, builtin_type_double);
1903 put_frame_register (frame, regnum, to);
1904 }
1905
1906 /* Move SPE vector register values between a 64-bit buffer and the two
1907 32-bit raw register halves in a regcache. This function handles
1908 both splitting a 64-bit value into two 32-bit halves, and joining
1909 two halves into a whole 64-bit value, depending on the function
1910 passed as the MOVE argument.
1911
1912 EV_REG must be the number of an SPE evN vector register --- a
1913 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1914 64-bit buffer.
1915
1916 Call MOVE once for each 32-bit half of that register, passing
1917 REGCACHE, the number of the raw register corresponding to that
1918 half, and the address of the appropriate half of BUFFER.
1919
1920 For example, passing 'regcache_raw_read' as the MOVE function will
1921 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1922 'regcache_raw_supply' will supply the contents of BUFFER to the
1923 appropriate pair of raw registers in REGCACHE.
1924
1925 You may need to cast away some 'const' qualifiers when passing
1926 MOVE, since this function can't tell at compile-time which of
1927 REGCACHE or BUFFER is acting as the source of the data. If C had
1928 co-variant type qualifiers, ... */
1929 static void
1930 e500_move_ev_register (void (*move) (struct regcache *regcache,
1931 int regnum, void *buf),
1932 struct regcache *regcache, int ev_reg,
1933 void *buffer)
1934 {
1935 struct gdbarch *arch = get_regcache_arch (regcache);
1936 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1937 int reg_index;
1938 char *byte_buffer = buffer;
1939
1940 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1941 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1942
1943 reg_index = ev_reg - tdep->ppc_ev0_regnum;
1944
1945 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1946 {
1947 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
1948 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
1949 }
1950 else
1951 {
1952 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
1953 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
1954 }
1955 }
1956
1957 static void
1958 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1959 int reg_nr, void *buffer)
1960 {
1961 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1962 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1963
1964 gdb_assert (regcache_arch == gdbarch);
1965
1966 if (tdep->ppc_ev0_regnum <= reg_nr
1967 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1968 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
1969 else
1970 internal_error (__FILE__, __LINE__,
1971 "e500_pseudo_register_read: "
1972 "called on unexpected register '%s' (%d)",
1973 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
1974 }
1975
1976 static void
1977 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1978 int reg_nr, const void *buffer)
1979 {
1980 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1981 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1982
1983 gdb_assert (regcache_arch == gdbarch);
1984
1985 if (tdep->ppc_ev0_regnum <= reg_nr
1986 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1987 e500_move_ev_register ((void (*) (struct regcache *, int, void *))
1988 regcache_raw_write,
1989 regcache, reg_nr, (void *) buffer);
1990 else
1991 internal_error (__FILE__, __LINE__,
1992 "e500_pseudo_register_read: "
1993 "called on unexpected register '%s' (%d)",
1994 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
1995 }
1996
1997 /* The E500 needs a custom reggroup function: it has anonymous raw
1998 registers, and default_register_reggroup_p assumes that anonymous
1999 registers are not members of any reggroup. */
2000 static int
2001 e500_register_reggroup_p (struct gdbarch *gdbarch,
2002 int regnum,
2003 struct reggroup *group)
2004 {
2005 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2006
2007 /* The save and restore register groups need to include the
2008 upper-half registers, even though they're anonymous. */
2009 if ((group == save_reggroup
2010 || group == restore_reggroup)
2011 && (tdep->ppc_ev0_upper_regnum <= regnum
2012 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2013 return 1;
2014
2015 /* In all other regards, the default reggroup definition is fine. */
2016 return default_register_reggroup_p (gdbarch, regnum, group);
2017 }
2018
2019 /* Convert a DBX STABS register number to a GDB register number. */
2020 static int
2021 rs6000_stab_reg_to_regnum (int num)
2022 {
2023 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2024
2025 if (0 <= num && num <= 31)
2026 return tdep->ppc_gp0_regnum + num;
2027 else if (32 <= num && num <= 63)
2028 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2029 specifies registers the architecture doesn't have? Our
2030 callers don't check the value we return. */
2031 return tdep->ppc_fp0_regnum + (num - 32);
2032 else if (77 <= num && num <= 108)
2033 return tdep->ppc_vr0_regnum + (num - 77);
2034 else if (1200 <= num && num < 1200 + 32)
2035 return tdep->ppc_ev0_regnum + (num - 1200);
2036 else
2037 switch (num)
2038 {
2039 case 64:
2040 return tdep->ppc_mq_regnum;
2041 case 65:
2042 return tdep->ppc_lr_regnum;
2043 case 66:
2044 return tdep->ppc_ctr_regnum;
2045 case 76:
2046 return tdep->ppc_xer_regnum;
2047 case 109:
2048 return tdep->ppc_vrsave_regnum;
2049 case 110:
2050 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2051 case 111:
2052 return tdep->ppc_acc_regnum;
2053 case 112:
2054 return tdep->ppc_spefscr_regnum;
2055 default:
2056 return num;
2057 }
2058 }
2059
2060
2061 /* Convert a Dwarf 2 register number to a GDB register number. */
2062 static int
2063 rs6000_dwarf2_reg_to_regnum (int num)
2064 {
2065 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2066
2067 if (0 <= num && num <= 31)
2068 return tdep->ppc_gp0_regnum + num;
2069 else if (32 <= num && num <= 63)
2070 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2071 specifies registers the architecture doesn't have? Our
2072 callers don't check the value we return. */
2073 return tdep->ppc_fp0_regnum + (num - 32);
2074 else if (1124 <= num && num < 1124 + 32)
2075 return tdep->ppc_vr0_regnum + (num - 1124);
2076 else if (1200 <= num && num < 1200 + 32)
2077 return tdep->ppc_ev0_regnum + (num - 1200);
2078 else
2079 switch (num)
2080 {
2081 case 67:
2082 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2083 case 99:
2084 return tdep->ppc_acc_regnum;
2085 case 100:
2086 return tdep->ppc_mq_regnum;
2087 case 101:
2088 return tdep->ppc_xer_regnum;
2089 case 108:
2090 return tdep->ppc_lr_regnum;
2091 case 109:
2092 return tdep->ppc_ctr_regnum;
2093 case 356:
2094 return tdep->ppc_vrsave_regnum;
2095 case 612:
2096 return tdep->ppc_spefscr_regnum;
2097 default:
2098 return num;
2099 }
2100 }
2101
2102
2103 static void
2104 rs6000_store_return_value (struct type *type,
2105 struct regcache *regcache,
2106 const void *valbuf)
2107 {
2108 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2110 int regnum = -1;
2111
2112 /* The calling convention this function implements assumes the
2113 processor has floating-point registers. We shouldn't be using it
2114 on PPC variants that lack them. */
2115 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2116
2117 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2118 /* Floating point values are returned starting from FPR1 and up.
2119 Say a double_double_double type could be returned in
2120 FPR1/FPR2/FPR3 triple. */
2121 regnum = tdep->ppc_fp0_regnum + 1;
2122 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2123 {
2124 if (TYPE_LENGTH (type) == 16
2125 && TYPE_VECTOR (type))
2126 regnum = tdep->ppc_vr0_regnum + 2;
2127 else
2128 internal_error (__FILE__, __LINE__,
2129 "rs6000_store_return_value: "
2130 "unexpected array return type");
2131 }
2132 else
2133 /* Everything else is returned in GPR3 and up. */
2134 regnum = tdep->ppc_gp0_regnum + 3;
2135
2136 {
2137 size_t bytes_written = 0;
2138
2139 while (bytes_written < TYPE_LENGTH (type))
2140 {
2141 /* How much of this value can we write to this register? */
2142 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2143 register_size (gdbarch, regnum));
2144 regcache_cooked_write_part (regcache, regnum,
2145 0, bytes_to_write,
2146 (char *) valbuf + bytes_written);
2147 regnum++;
2148 bytes_written += bytes_to_write;
2149 }
2150 }
2151 }
2152
2153
2154 /* Extract from an array REGBUF containing the (raw) register state
2155 the address in which a function should return its structure value,
2156 as a CORE_ADDR (or an expression that can be used as one). */
2157
2158 static CORE_ADDR
2159 rs6000_extract_struct_value_address (struct regcache *regcache)
2160 {
2161 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2162 function call GDB knows the address of the struct return value
2163 and hence, should not need to call this function. Unfortunately,
2164 the current call_function_by_hand() code only saves the most
2165 recent struct address leading to occasional calls. The code
2166 should instead maintain a stack of such addresses (in the dummy
2167 frame object). */
2168 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2169 really got no idea where the return value is being stored. While
2170 r3, on function entry, contained the address it will have since
2171 been reused (scratch) and hence wouldn't be valid */
2172 return 0;
2173 }
2174
2175 /* Hook called when a new child process is started. */
2176
2177 void
2178 rs6000_create_inferior (int pid)
2179 {
2180 if (rs6000_set_host_arch_hook)
2181 rs6000_set_host_arch_hook (pid);
2182 }
2183 \f
2184 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2185
2186 Usually a function pointer's representation is simply the address
2187 of the function. On the RS/6000 however, a function pointer is
2188 represented by a pointer to a TOC entry. This TOC entry contains
2189 three words, the first word is the address of the function, the
2190 second word is the TOC pointer (r2), and the third word is the
2191 static chain value. Throughout GDB it is currently assumed that a
2192 function pointer contains the address of the function, which is not
2193 easy to fix. In addition, the conversion of a function address to
2194 a function pointer would require allocation of a TOC entry in the
2195 inferior's memory space, with all its drawbacks. To be able to
2196 call C++ virtual methods in the inferior (which are called via
2197 function pointers), find_function_addr uses this function to get the
2198 function address from a function pointer. */
2199
2200 /* Return real function address if ADDR (a function pointer) is in the data
2201 space and is therefore a special function pointer. */
2202
2203 static CORE_ADDR
2204 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2205 CORE_ADDR addr,
2206 struct target_ops *targ)
2207 {
2208 struct obj_section *s;
2209
2210 s = find_pc_section (addr);
2211 if (s && s->the_bfd_section->flags & SEC_CODE)
2212 return addr;
2213
2214 /* ADDR is in the data space, so it's a special function pointer. */
2215 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2216 }
2217 \f
2218
2219 /* Handling the various POWER/PowerPC variants. */
2220
2221
2222 /* The arrays here called registers_MUMBLE hold information about available
2223 registers.
2224
2225 For each family of PPC variants, I've tried to isolate out the
2226 common registers and put them up front, so that as long as you get
2227 the general family right, GDB will correctly identify the registers
2228 common to that family. The common register sets are:
2229
2230 For the 60x family: hid0 hid1 iabr dabr pir
2231
2232 For the 505 and 860 family: eie eid nri
2233
2234 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2235 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2236 pbu1 pbl2 pbu2
2237
2238 Most of these register groups aren't anything formal. I arrived at
2239 them by looking at the registers that occurred in more than one
2240 processor.
2241
2242 Note: kevinb/2002-04-30: Support for the fpscr register was added
2243 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2244 for Power. For PowerPC, slot 70 was unused and was already in the
2245 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2246 slot 70 was being used for "mq", so the next available slot (71)
2247 was chosen. It would have been nice to be able to make the
2248 register numbers the same across processor cores, but this wasn't
2249 possible without either 1) renumbering some registers for some
2250 processors or 2) assigning fpscr to a really high slot that's
2251 larger than any current register number. Doing (1) is bad because
2252 existing stubs would break. Doing (2) is undesirable because it
2253 would introduce a really large gap between fpscr and the rest of
2254 the registers for most processors. */
2255
2256 /* Convenience macros for populating register arrays. */
2257
2258 /* Within another macro, convert S to a string. */
2259
2260 #define STR(s) #s
2261
2262 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2263 and 64 bits on 64-bit systems. */
2264 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2265
2266 /* Return a struct reg defining register NAME that's 32 bits on all
2267 systems. */
2268 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2269
2270 /* Return a struct reg defining register NAME that's 64 bits on all
2271 systems. */
2272 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2273
2274 /* Return a struct reg defining register NAME that's 128 bits on all
2275 systems. */
2276 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2277
2278 /* Return a struct reg defining floating-point register NAME. */
2279 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2280
2281 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2282 long on all systems. */
2283 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2284
2285 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2286 systems and that doesn't exist on 64-bit systems. */
2287 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2288
2289 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2290 systems and that doesn't exist on 32-bit systems. */
2291 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2292
2293 /* Return a struct reg placeholder for a register that doesn't exist. */
2294 #define R0 { 0, 0, 0, 0, 0, -1 }
2295
2296 /* Return a struct reg defining an anonymous raw register that's 32
2297 bits on all systems. */
2298 #define A4 { 0, 4, 4, 0, 0, -1 }
2299
2300 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2301 32-bit systems and 64 bits on 64-bit systems. */
2302 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2303
2304 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2305 all systems. */
2306 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2307
2308 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2309 all systems, and whose SPR number is NUMBER. */
2310 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2311
2312 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2313 64-bit systems and that doesn't exist on 32-bit systems. */
2314 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2315
2316 /* UISA registers common across all architectures, including POWER. */
2317
2318 #define COMMON_UISA_REGS \
2319 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2320 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2321 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2322 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2323 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2324 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2325 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2326 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2327 /* 64 */ R(pc), R(ps)
2328
2329 /* UISA-level SPRs for PowerPC. */
2330 #define PPC_UISA_SPRS \
2331 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2332
2333 /* UISA-level SPRs for PowerPC without floating point support. */
2334 #define PPC_UISA_NOFP_SPRS \
2335 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2336
2337 /* Segment registers, for PowerPC. */
2338 #define PPC_SEGMENT_REGS \
2339 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2340 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2341 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2342 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2343
2344 /* OEA SPRs for PowerPC. */
2345 #define PPC_OEA_SPRS \
2346 /* 87 */ S4(pvr), \
2347 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2348 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2349 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2350 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2351 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2352 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2353 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2354 /* 116 */ S4(dec), S(dabr), S4(ear)
2355
2356 /* AltiVec registers. */
2357 #define PPC_ALTIVEC_REGS \
2358 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2359 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2360 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2361 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2362 /*151*/R4(vscr), R4(vrsave)
2363
2364
2365 /* On machines supporting the SPE APU, the general-purpose registers
2366 are 64 bits long. There are SIMD vector instructions to treat them
2367 as pairs of floats, but the rest of the instruction set treats them
2368 as 32-bit registers, and only operates on their lower halves.
2369
2370 In the GDB regcache, we treat their high and low halves as separate
2371 registers. The low halves we present as the general-purpose
2372 registers, and then we have pseudo-registers that stitch together
2373 the upper and lower halves and present them as pseudo-registers. */
2374
2375 /* SPE GPR lower halves --- raw registers. */
2376 #define PPC_SPE_GP_REGS \
2377 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2378 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2379 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2380 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2381
2382 /* SPE GPR upper halves --- anonymous raw registers. */
2383 #define PPC_SPE_UPPER_GP_REGS \
2384 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2385 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2386 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2387 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2388
2389 /* SPE GPR vector registers --- pseudo registers based on underlying
2390 gprs and the anonymous upper half raw registers. */
2391 #define PPC_EV_PSEUDO_REGS \
2392 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2393 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2394 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2395 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2396
2397 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2398 user-level SPR's. */
2399 static const struct reg registers_power[] =
2400 {
2401 COMMON_UISA_REGS,
2402 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2403 /* 71 */ R4(fpscr)
2404 };
2405
2406 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2407 view of the PowerPC. */
2408 static const struct reg registers_powerpc[] =
2409 {
2410 COMMON_UISA_REGS,
2411 PPC_UISA_SPRS,
2412 PPC_ALTIVEC_REGS
2413 };
2414
2415 /* IBM PowerPC 403.
2416
2417 Some notes about the "tcr" special-purpose register:
2418 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2419 403's programmable interval timer, fixed interval timer, and
2420 watchdog timer.
2421 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2422 watchdog timer, and nothing else.
2423
2424 Some of the fields are similar between the two, but they're not
2425 compatible with each other. Since the two variants have different
2426 registers, with different numbers, but the same name, we can't
2427 splice the register name to get the SPR number. */
2428 static const struct reg registers_403[] =
2429 {
2430 COMMON_UISA_REGS,
2431 PPC_UISA_SPRS,
2432 PPC_SEGMENT_REGS,
2433 PPC_OEA_SPRS,
2434 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2435 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2436 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2437 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2438 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2439 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2440 };
2441
2442 /* IBM PowerPC 403GC.
2443 See the comments about 'tcr' for the 403, above. */
2444 static const struct reg registers_403GC[] =
2445 {
2446 COMMON_UISA_REGS,
2447 PPC_UISA_SPRS,
2448 PPC_SEGMENT_REGS,
2449 PPC_OEA_SPRS,
2450 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2451 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2452 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2453 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2454 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2455 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2456 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2457 /* 147 */ S(tbhu), S(tblu)
2458 };
2459
2460 /* Motorola PowerPC 505. */
2461 static const struct reg registers_505[] =
2462 {
2463 COMMON_UISA_REGS,
2464 PPC_UISA_SPRS,
2465 PPC_SEGMENT_REGS,
2466 PPC_OEA_SPRS,
2467 /* 119 */ S(eie), S(eid), S(nri)
2468 };
2469
2470 /* Motorola PowerPC 860 or 850. */
2471 static const struct reg registers_860[] =
2472 {
2473 COMMON_UISA_REGS,
2474 PPC_UISA_SPRS,
2475 PPC_SEGMENT_REGS,
2476 PPC_OEA_SPRS,
2477 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2478 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2479 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2480 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2481 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2482 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2483 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2484 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2485 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2486 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2487 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2488 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2489 };
2490
2491 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2492 for reading and writing RTCU and RTCL. However, how one reads and writes a
2493 register is the stub's problem. */
2494 static const struct reg registers_601[] =
2495 {
2496 COMMON_UISA_REGS,
2497 PPC_UISA_SPRS,
2498 PPC_SEGMENT_REGS,
2499 PPC_OEA_SPRS,
2500 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2501 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2502 };
2503
2504 /* Motorola PowerPC 602.
2505 See the notes under the 403 about 'tcr'. */
2506 static const struct reg registers_602[] =
2507 {
2508 COMMON_UISA_REGS,
2509 PPC_UISA_SPRS,
2510 PPC_SEGMENT_REGS,
2511 PPC_OEA_SPRS,
2512 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2513 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2514 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2515 };
2516
2517 /* Motorola/IBM PowerPC 603 or 603e. */
2518 static const struct reg registers_603[] =
2519 {
2520 COMMON_UISA_REGS,
2521 PPC_UISA_SPRS,
2522 PPC_SEGMENT_REGS,
2523 PPC_OEA_SPRS,
2524 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2525 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2526 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2527 };
2528
2529 /* Motorola PowerPC 604 or 604e. */
2530 static const struct reg registers_604[] =
2531 {
2532 COMMON_UISA_REGS,
2533 PPC_UISA_SPRS,
2534 PPC_SEGMENT_REGS,
2535 PPC_OEA_SPRS,
2536 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2537 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2538 /* 127 */ S(sia), S(sda)
2539 };
2540
2541 /* Motorola/IBM PowerPC 750 or 740. */
2542 static const struct reg registers_750[] =
2543 {
2544 COMMON_UISA_REGS,
2545 PPC_UISA_SPRS,
2546 PPC_SEGMENT_REGS,
2547 PPC_OEA_SPRS,
2548 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2549 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2550 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2551 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2552 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2553 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2554 };
2555
2556
2557 /* Motorola PowerPC 7400. */
2558 static const struct reg registers_7400[] =
2559 {
2560 /* gpr0-gpr31, fpr0-fpr31 */
2561 COMMON_UISA_REGS,
2562 /* cr, lr, ctr, xer, fpscr */
2563 PPC_UISA_SPRS,
2564 /* sr0-sr15 */
2565 PPC_SEGMENT_REGS,
2566 PPC_OEA_SPRS,
2567 /* vr0-vr31, vrsave, vscr */
2568 PPC_ALTIVEC_REGS
2569 /* FIXME? Add more registers? */
2570 };
2571
2572 /* Motorola e500. */
2573 static const struct reg registers_e500[] =
2574 {
2575 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2576 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2577 /* 64 .. 65 */ R(pc), R(ps),
2578 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2579 /* 71 .. 72 */ R8(acc), S4(spefscr),
2580 /* NOTE: Add new registers here the end of the raw register
2581 list and just before the first pseudo register. */
2582 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2583 };
2584
2585 /* Information about a particular processor variant. */
2586
2587 struct variant
2588 {
2589 /* Name of this variant. */
2590 char *name;
2591
2592 /* English description of the variant. */
2593 char *description;
2594
2595 /* bfd_arch_info.arch corresponding to variant. */
2596 enum bfd_architecture arch;
2597
2598 /* bfd_arch_info.mach corresponding to variant. */
2599 unsigned long mach;
2600
2601 /* Number of real registers. */
2602 int nregs;
2603
2604 /* Number of pseudo registers. */
2605 int npregs;
2606
2607 /* Number of total registers (the sum of nregs and npregs). */
2608 int num_tot_regs;
2609
2610 /* Table of register names; registers[R] is the name of the register
2611 number R. */
2612 const struct reg *regs;
2613 };
2614
2615 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2616
2617 static int
2618 num_registers (const struct reg *reg_list, int num_tot_regs)
2619 {
2620 int i;
2621 int nregs = 0;
2622
2623 for (i = 0; i < num_tot_regs; i++)
2624 if (!reg_list[i].pseudo)
2625 nregs++;
2626
2627 return nregs;
2628 }
2629
2630 static int
2631 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2632 {
2633 int i;
2634 int npregs = 0;
2635
2636 for (i = 0; i < num_tot_regs; i++)
2637 if (reg_list[i].pseudo)
2638 npregs ++;
2639
2640 return npregs;
2641 }
2642
2643 /* Information in this table comes from the following web sites:
2644 IBM: http://www.chips.ibm.com:80/products/embedded/
2645 Motorola: http://www.mot.com/SPS/PowerPC/
2646
2647 I'm sure I've got some of the variant descriptions not quite right.
2648 Please report any inaccuracies you find to GDB's maintainer.
2649
2650 If you add entries to this table, please be sure to allow the new
2651 value as an argument to the --with-cpu flag, in configure.in. */
2652
2653 static struct variant variants[] =
2654 {
2655
2656 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2657 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2658 registers_powerpc},
2659 {"power", "POWER user-level", bfd_arch_rs6000,
2660 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2661 registers_power},
2662 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2663 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2664 registers_403},
2665 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2666 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2667 registers_601},
2668 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2669 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2670 registers_602},
2671 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2672 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2673 registers_603},
2674 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2675 604, -1, -1, tot_num_registers (registers_604),
2676 registers_604},
2677 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2678 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2679 registers_403GC},
2680 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2681 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2682 registers_505},
2683 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2684 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2685 registers_860},
2686 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2687 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2688 registers_750},
2689 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2690 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2691 registers_7400},
2692 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2693 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2694 registers_e500},
2695
2696 /* 64-bit */
2697 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2698 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2699 registers_powerpc},
2700 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2701 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2702 registers_powerpc},
2703 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2704 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2705 registers_powerpc},
2706 {"a35", "PowerPC A35", bfd_arch_powerpc,
2707 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2708 registers_powerpc},
2709 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2710 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2711 registers_powerpc},
2712 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2713 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2714 registers_powerpc},
2715
2716 /* FIXME: I haven't checked the register sets of the following. */
2717 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2718 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2719 registers_power},
2720 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2721 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2722 registers_power},
2723 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2724 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2725 registers_power},
2726
2727 {0, 0, 0, 0, 0, 0, 0, 0}
2728 };
2729
2730 /* Initialize the number of registers and pseudo registers in each variant. */
2731
2732 static void
2733 init_variants (void)
2734 {
2735 struct variant *v;
2736
2737 for (v = variants; v->name; v++)
2738 {
2739 if (v->nregs == -1)
2740 v->nregs = num_registers (v->regs, v->num_tot_regs);
2741 if (v->npregs == -1)
2742 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2743 }
2744 }
2745
2746 /* Return the variant corresponding to architecture ARCH and machine number
2747 MACH. If no such variant exists, return null. */
2748
2749 static const struct variant *
2750 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2751 {
2752 const struct variant *v;
2753
2754 for (v = variants; v->name; v++)
2755 if (arch == v->arch && mach == v->mach)
2756 return v;
2757
2758 return NULL;
2759 }
2760
2761 static int
2762 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2763 {
2764 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2765 return print_insn_big_powerpc (memaddr, info);
2766 else
2767 return print_insn_little_powerpc (memaddr, info);
2768 }
2769 \f
2770 static CORE_ADDR
2771 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2772 {
2773 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2774 }
2775
2776 static struct frame_id
2777 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2778 {
2779 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2780 SP_REGNUM),
2781 frame_pc_unwind (next_frame));
2782 }
2783
2784 struct rs6000_frame_cache
2785 {
2786 CORE_ADDR base;
2787 CORE_ADDR initial_sp;
2788 struct trad_frame_saved_reg *saved_regs;
2789 };
2790
2791 static struct rs6000_frame_cache *
2792 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2793 {
2794 struct rs6000_frame_cache *cache;
2795 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2796 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2797 struct rs6000_framedata fdata;
2798 int wordsize = tdep->wordsize;
2799
2800 if ((*this_cache) != NULL)
2801 return (*this_cache);
2802 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2803 (*this_cache) = cache;
2804 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2805
2806 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2807 &fdata);
2808
2809 /* If there were any saved registers, figure out parent's stack
2810 pointer. */
2811 /* The following is true only if the frame doesn't have a call to
2812 alloca(), FIXME. */
2813
2814 if (fdata.saved_fpr == 0
2815 && fdata.saved_gpr == 0
2816 && fdata.saved_vr == 0
2817 && fdata.saved_ev == 0
2818 && fdata.lr_offset == 0
2819 && fdata.cr_offset == 0
2820 && fdata.vr_offset == 0
2821 && fdata.ev_offset == 0)
2822 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2823 else
2824 {
2825 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2826 address of the current frame. Things might be easier if the
2827 ->frame pointed to the outer-most address of the frame. In
2828 the mean time, the address of the prev frame is used as the
2829 base address of this frame. */
2830 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2831 if (!fdata.frameless)
2832 /* Frameless really means stackless. */
2833 cache->base = read_memory_addr (cache->base, wordsize);
2834 }
2835 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2836
2837 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2838 All fpr's from saved_fpr to fp31 are saved. */
2839
2840 if (fdata.saved_fpr >= 0)
2841 {
2842 int i;
2843 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2844
2845 /* If skip_prologue says floating-point registers were saved,
2846 but the current architecture has no floating-point registers,
2847 then that's strange. But we have no indices to even record
2848 the addresses under, so we just ignore it. */
2849 if (ppc_floating_point_unit_p (gdbarch))
2850 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2851 {
2852 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2853 fpr_addr += 8;
2854 }
2855 }
2856
2857 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2858 All gpr's from saved_gpr to gpr31 are saved. */
2859
2860 if (fdata.saved_gpr >= 0)
2861 {
2862 int i;
2863 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2864 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2865 {
2866 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2867 gpr_addr += wordsize;
2868 }
2869 }
2870
2871 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2872 All vr's from saved_vr to vr31 are saved. */
2873 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2874 {
2875 if (fdata.saved_vr >= 0)
2876 {
2877 int i;
2878 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2879 for (i = fdata.saved_vr; i < 32; i++)
2880 {
2881 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2882 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2883 }
2884 }
2885 }
2886
2887 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2888 All vr's from saved_ev to ev31 are saved. ????? */
2889 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2890 {
2891 if (fdata.saved_ev >= 0)
2892 {
2893 int i;
2894 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2895 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2896 {
2897 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2898 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2899 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2900 }
2901 }
2902 }
2903
2904 /* If != 0, fdata.cr_offset is the offset from the frame that
2905 holds the CR. */
2906 if (fdata.cr_offset != 0)
2907 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2908
2909 /* If != 0, fdata.lr_offset is the offset from the frame that
2910 holds the LR. */
2911 if (fdata.lr_offset != 0)
2912 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2913 /* The PC is found in the link register. */
2914 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2915
2916 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2917 holds the VRSAVE. */
2918 if (fdata.vrsave_offset != 0)
2919 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2920
2921 if (fdata.alloca_reg < 0)
2922 /* If no alloca register used, then fi->frame is the value of the
2923 %sp for this frame, and it is good enough. */
2924 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2925 else
2926 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2927 fdata.alloca_reg);
2928
2929 return cache;
2930 }
2931
2932 static void
2933 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2934 struct frame_id *this_id)
2935 {
2936 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2937 this_cache);
2938 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2939 }
2940
2941 static void
2942 rs6000_frame_prev_register (struct frame_info *next_frame,
2943 void **this_cache,
2944 int regnum, int *optimizedp,
2945 enum lval_type *lvalp, CORE_ADDR *addrp,
2946 int *realnump, void *valuep)
2947 {
2948 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2949 this_cache);
2950 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2951 optimizedp, lvalp, addrp, realnump, valuep);
2952 }
2953
2954 static const struct frame_unwind rs6000_frame_unwind =
2955 {
2956 NORMAL_FRAME,
2957 rs6000_frame_this_id,
2958 rs6000_frame_prev_register
2959 };
2960
2961 static const struct frame_unwind *
2962 rs6000_frame_sniffer (struct frame_info *next_frame)
2963 {
2964 return &rs6000_frame_unwind;
2965 }
2966
2967 \f
2968
2969 static CORE_ADDR
2970 rs6000_frame_base_address (struct frame_info *next_frame,
2971 void **this_cache)
2972 {
2973 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2974 this_cache);
2975 return info->initial_sp;
2976 }
2977
2978 static const struct frame_base rs6000_frame_base = {
2979 &rs6000_frame_unwind,
2980 rs6000_frame_base_address,
2981 rs6000_frame_base_address,
2982 rs6000_frame_base_address
2983 };
2984
2985 static const struct frame_base *
2986 rs6000_frame_base_sniffer (struct frame_info *next_frame)
2987 {
2988 return &rs6000_frame_base;
2989 }
2990
2991 /* Initialize the current architecture based on INFO. If possible, re-use an
2992 architecture from ARCHES, which is a list of architectures already created
2993 during this debugging session.
2994
2995 Called e.g. at program startup, when reading a core file, and when reading
2996 a binary file. */
2997
2998 static struct gdbarch *
2999 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3000 {
3001 struct gdbarch *gdbarch;
3002 struct gdbarch_tdep *tdep;
3003 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3004 struct reg *regs;
3005 const struct variant *v;
3006 enum bfd_architecture arch;
3007 unsigned long mach;
3008 bfd abfd;
3009 int sysv_abi;
3010 asection *sect;
3011
3012 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3013 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3014
3015 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3016 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3017
3018 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3019
3020 /* Check word size. If INFO is from a binary file, infer it from
3021 that, else choose a likely default. */
3022 if (from_xcoff_exec)
3023 {
3024 if (bfd_xcoff_is_xcoff64 (info.abfd))
3025 wordsize = 8;
3026 else
3027 wordsize = 4;
3028 }
3029 else if (from_elf_exec)
3030 {
3031 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3032 wordsize = 8;
3033 else
3034 wordsize = 4;
3035 }
3036 else
3037 {
3038 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3039 wordsize = info.bfd_arch_info->bits_per_word /
3040 info.bfd_arch_info->bits_per_byte;
3041 else
3042 wordsize = 4;
3043 }
3044
3045 /* Find a candidate among extant architectures. */
3046 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3047 arches != NULL;
3048 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3049 {
3050 /* Word size in the various PowerPC bfd_arch_info structs isn't
3051 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3052 separate word size check. */
3053 tdep = gdbarch_tdep (arches->gdbarch);
3054 if (tdep && tdep->wordsize == wordsize)
3055 return arches->gdbarch;
3056 }
3057
3058 /* None found, create a new architecture from INFO, whose bfd_arch_info
3059 validity depends on the source:
3060 - executable useless
3061 - rs6000_host_arch() good
3062 - core file good
3063 - "set arch" trust blindly
3064 - GDB startup useless but harmless */
3065
3066 if (!from_xcoff_exec)
3067 {
3068 arch = info.bfd_arch_info->arch;
3069 mach = info.bfd_arch_info->mach;
3070 }
3071 else
3072 {
3073 arch = bfd_arch_powerpc;
3074 bfd_default_set_arch_mach (&abfd, arch, 0);
3075 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3076 mach = info.bfd_arch_info->mach;
3077 }
3078 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3079 tdep->wordsize = wordsize;
3080
3081 /* For e500 executables, the apuinfo section is of help here. Such
3082 section contains the identifier and revision number of each
3083 Application-specific Processing Unit that is present on the
3084 chip. The content of the section is determined by the assembler
3085 which looks at each instruction and determines which unit (and
3086 which version of it) can execute it. In our case we just look for
3087 the existance of the section. */
3088
3089 if (info.abfd)
3090 {
3091 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3092 if (sect)
3093 {
3094 arch = info.bfd_arch_info->arch;
3095 mach = bfd_mach_ppc_e500;
3096 bfd_default_set_arch_mach (&abfd, arch, mach);
3097 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3098 }
3099 }
3100
3101 gdbarch = gdbarch_alloc (&info, tdep);
3102
3103 /* Initialize the number of real and pseudo registers in each variant. */
3104 init_variants ();
3105
3106 /* Choose variant. */
3107 v = find_variant_by_arch (arch, mach);
3108 if (!v)
3109 return NULL;
3110
3111 tdep->regs = v->regs;
3112
3113 tdep->ppc_gp0_regnum = 0;
3114 tdep->ppc_toc_regnum = 2;
3115 tdep->ppc_ps_regnum = 65;
3116 tdep->ppc_cr_regnum = 66;
3117 tdep->ppc_lr_regnum = 67;
3118 tdep->ppc_ctr_regnum = 68;
3119 tdep->ppc_xer_regnum = 69;
3120 if (v->mach == bfd_mach_ppc_601)
3121 tdep->ppc_mq_regnum = 124;
3122 else if (arch == bfd_arch_rs6000)
3123 tdep->ppc_mq_regnum = 70;
3124 else
3125 tdep->ppc_mq_regnum = -1;
3126 tdep->ppc_fp0_regnum = 32;
3127 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3128 tdep->ppc_sr0_regnum = 71;
3129 tdep->ppc_vr0_regnum = -1;
3130 tdep->ppc_vrsave_regnum = -1;
3131 tdep->ppc_ev0_upper_regnum = -1;
3132 tdep->ppc_ev0_regnum = -1;
3133 tdep->ppc_ev31_regnum = -1;
3134 tdep->ppc_acc_regnum = -1;
3135 tdep->ppc_spefscr_regnum = -1;
3136
3137 set_gdbarch_pc_regnum (gdbarch, 64);
3138 set_gdbarch_sp_regnum (gdbarch, 1);
3139 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3140 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3141 if (sysv_abi && wordsize == 8)
3142 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3143 else if (sysv_abi && wordsize == 4)
3144 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3145 else
3146 {
3147 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
3148 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
3149 }
3150
3151 /* Set lr_frame_offset. */
3152 if (wordsize == 8)
3153 tdep->lr_frame_offset = 16;
3154 else if (sysv_abi)
3155 tdep->lr_frame_offset = 4;
3156 else
3157 tdep->lr_frame_offset = 8;
3158
3159 if (v->arch == bfd_arch_rs6000)
3160 tdep->ppc_sr0_regnum = -1;
3161 else if (v->arch == bfd_arch_powerpc)
3162 switch (v->mach)
3163 {
3164 case bfd_mach_ppc:
3165 tdep->ppc_sr0_regnum = -1;
3166 tdep->ppc_vr0_regnum = 71;
3167 tdep->ppc_vrsave_regnum = 104;
3168 break;
3169 case bfd_mach_ppc_7400:
3170 tdep->ppc_vr0_regnum = 119;
3171 tdep->ppc_vrsave_regnum = 152;
3172 break;
3173 case bfd_mach_ppc_e500:
3174 tdep->ppc_toc_regnum = -1;
3175 tdep->ppc_ev0_upper_regnum = 32;
3176 tdep->ppc_ev0_regnum = 73;
3177 tdep->ppc_ev31_regnum = 104;
3178 tdep->ppc_acc_regnum = 71;
3179 tdep->ppc_spefscr_regnum = 72;
3180 tdep->ppc_fp0_regnum = -1;
3181 tdep->ppc_fpscr_regnum = -1;
3182 tdep->ppc_sr0_regnum = -1;
3183 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3184 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3185 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3186 break;
3187
3188 case bfd_mach_ppc64:
3189 case bfd_mach_ppc_620:
3190 case bfd_mach_ppc_630:
3191 case bfd_mach_ppc_a35:
3192 case bfd_mach_ppc_rs64ii:
3193 case bfd_mach_ppc_rs64iii:
3194 /* These processor's register sets don't have segment registers. */
3195 tdep->ppc_sr0_regnum = -1;
3196 break;
3197 }
3198 else
3199 internal_error (__FILE__, __LINE__,
3200 "rs6000_gdbarch_init: "
3201 "received unexpected BFD 'arch' value");
3202
3203 /* Sanity check on registers. */
3204 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3205
3206 /* Select instruction printer. */
3207 if (arch == bfd_arch_rs6000)
3208 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3209 else
3210 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3211
3212 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3213
3214 set_gdbarch_num_regs (gdbarch, v->nregs);
3215 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3216 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3217 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3218
3219 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3220 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3221 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3222 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3223 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3224 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3225 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3226 if (sysv_abi)
3227 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3228 else
3229 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3230 set_gdbarch_char_signed (gdbarch, 0);
3231
3232 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3233 if (sysv_abi && wordsize == 8)
3234 /* PPC64 SYSV. */
3235 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3236 else if (!sysv_abi && wordsize == 4)
3237 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3238 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3239 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3240 224. */
3241 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3242
3243 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3244 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3245 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3246
3247 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3248 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3249 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3250 is correct for the SysV ABI when the wordsize is 8, but I'm also
3251 fairly certain that ppc_sysv_abi_push_arguments() will give even
3252 worse results since it only works for 32-bit code. So, for the moment,
3253 we're better off calling rs6000_push_arguments() since it works for
3254 64-bit code. At some point in the future, this matter needs to be
3255 revisited. */
3256 if (sysv_abi && wordsize == 4)
3257 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3258 else if (sysv_abi && wordsize == 8)
3259 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3260 else
3261 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3262
3263 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3264
3265 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3266 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3267 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3268
3269 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3270 for the descriptor and ".FN" for the entry-point -- a user
3271 specifying "break FN" will unexpectedly end up with a breakpoint
3272 on the descriptor and not the function. This architecture method
3273 transforms any breakpoints on descriptors into breakpoints on the
3274 corresponding entry point. */
3275 if (sysv_abi && wordsize == 8)
3276 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3277
3278 /* Not sure on this. FIXMEmgo */
3279 set_gdbarch_frame_args_skip (gdbarch, 8);
3280
3281 if (!sysv_abi)
3282 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3283
3284 if (!sysv_abi)
3285 {
3286 /* Handle RS/6000 function pointers (which are really function
3287 descriptors). */
3288 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3289 rs6000_convert_from_func_ptr_addr);
3290 }
3291
3292 /* Helpers for function argument information. */
3293 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3294
3295 /* Hook in ABI-specific overrides, if they have been registered. */
3296 gdbarch_init_osabi (info, gdbarch);
3297
3298 switch (info.osabi)
3299 {
3300 case GDB_OSABI_NETBSD_AOUT:
3301 case GDB_OSABI_NETBSD_ELF:
3302 case GDB_OSABI_UNKNOWN:
3303 case GDB_OSABI_LINUX:
3304 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3305 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3306 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3307 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3308 break;
3309 default:
3310 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3311
3312 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3313 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3314 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3315 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3316 }
3317
3318 if (from_xcoff_exec)
3319 {
3320 /* NOTE: jimix/2003-06-09: This test should really check for
3321 GDB_OSABI_AIX when that is defined and becomes
3322 available. (Actually, once things are properly split apart,
3323 the test goes away.) */
3324 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3325 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3326 }
3327
3328 init_sim_regno_table (gdbarch);
3329
3330 return gdbarch;
3331 }
3332
3333 static void
3334 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3335 {
3336 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3337
3338 if (tdep == NULL)
3339 return;
3340
3341 /* FIXME: Dump gdbarch_tdep. */
3342 }
3343
3344 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3345
3346 static void
3347 rs6000_info_powerpc_command (char *args, int from_tty)
3348 {
3349 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3350 }
3351
3352 /* Initialization code. */
3353
3354 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3355
3356 void
3357 _initialize_rs6000_tdep (void)
3358 {
3359 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3360 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3361
3362 /* Add root prefix command for "info powerpc" commands */
3363 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3364 "Various POWERPC info specific commands.",
3365 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3366 }