]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
PowerPC64 ELFv2 trampoline match
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "objfiles.h"
28 #include "arch-utils.h"
29 #include "regcache.h"
30 #include "regset.h"
31 #include "doublest.h"
32 #include "value.h"
33 #include "parser-defs.h"
34 #include "osabi.h"
35 #include "infcall.h"
36 #include "sim-regno.h"
37 #include "gdb/sim-ppc.h"
38 #include "reggroups.h"
39 #include "dwarf2-frame.h"
40 #include "target-descriptions.h"
41 #include "user-regs.h"
42
43 #include "libbfd.h" /* for bfd_default_set_arch_mach */
44 #include "coff/internal.h" /* for libcoff.h */
45 #include "libcoff.h" /* for xcoff_data */
46 #include "coff/xcoff.h"
47 #include "libxcoff.h"
48
49 #include "elf-bfd.h"
50 #include "elf/ppc.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54 #include "ppc-ravenscar-thread.h"
55
56 #include "gdb_assert.h"
57 #include "dis-asm.h"
58
59 #include "trad-frame.h"
60 #include "frame-unwind.h"
61 #include "frame-base.h"
62
63 #include "features/rs6000/powerpc-32.c"
64 #include "features/rs6000/powerpc-altivec32.c"
65 #include "features/rs6000/powerpc-vsx32.c"
66 #include "features/rs6000/powerpc-403.c"
67 #include "features/rs6000/powerpc-403gc.c"
68 #include "features/rs6000/powerpc-405.c"
69 #include "features/rs6000/powerpc-505.c"
70 #include "features/rs6000/powerpc-601.c"
71 #include "features/rs6000/powerpc-602.c"
72 #include "features/rs6000/powerpc-603.c"
73 #include "features/rs6000/powerpc-604.c"
74 #include "features/rs6000/powerpc-64.c"
75 #include "features/rs6000/powerpc-altivec64.c"
76 #include "features/rs6000/powerpc-vsx64.c"
77 #include "features/rs6000/powerpc-7400.c"
78 #include "features/rs6000/powerpc-750.c"
79 #include "features/rs6000/powerpc-860.c"
80 #include "features/rs6000/powerpc-e500.c"
81 #include "features/rs6000/rs6000.c"
82
83 /* Determine if regnum is an SPE pseudo-register. */
84 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
85 && (regnum) >= (tdep)->ppc_ev0_regnum \
86 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
87
88 /* Determine if regnum is a decimal float pseudo-register. */
89 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
90 && (regnum) >= (tdep)->ppc_dl0_regnum \
91 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
92
93 /* Determine if regnum is a POWER7 VSX register. */
94 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
95 && (regnum) >= (tdep)->ppc_vsr0_regnum \
96 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
97
98 /* Determine if regnum is a POWER7 Extended FP register. */
99 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
100 && (regnum) >= (tdep)->ppc_efpr0_regnum \
101 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
102
103 /* The list of available "set powerpc ..." and "show powerpc ..."
104 commands. */
105 static struct cmd_list_element *setpowerpccmdlist = NULL;
106 static struct cmd_list_element *showpowerpccmdlist = NULL;
107
108 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
109
110 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
111 static const char *const powerpc_vector_strings[] =
112 {
113 "auto",
114 "generic",
115 "altivec",
116 "spe",
117 NULL
118 };
119
120 /* A variable that can be configured by the user. */
121 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
122 static const char *powerpc_vector_abi_string = "auto";
123
124 /* To be used by skip_prologue. */
125
126 struct rs6000_framedata
127 {
128 int offset; /* total size of frame --- the distance
129 by which we decrement sp to allocate
130 the frame */
131 int saved_gpr; /* smallest # of saved gpr */
132 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
133 int saved_fpr; /* smallest # of saved fpr */
134 int saved_vr; /* smallest # of saved vr */
135 int saved_ev; /* smallest # of saved ev */
136 int alloca_reg; /* alloca register number (frame ptr) */
137 char frameless; /* true if frameless functions. */
138 char nosavedpc; /* true if pc not saved. */
139 char used_bl; /* true if link register clobbered */
140 int gpr_offset; /* offset of saved gprs from prev sp */
141 int fpr_offset; /* offset of saved fprs from prev sp */
142 int vr_offset; /* offset of saved vrs from prev sp */
143 int ev_offset; /* offset of saved evs from prev sp */
144 int lr_offset; /* offset of saved lr */
145 int lr_register; /* register of saved lr, if trustworthy */
146 int cr_offset; /* offset of saved cr */
147 int vrsave_offset; /* offset of saved vrsave register */
148 };
149
150
151 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
152 int
153 vsx_register_p (struct gdbarch *gdbarch, int regno)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 if (tdep->ppc_vsr0_regnum < 0)
157 return 0;
158 else
159 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
160 <= tdep->ppc_vsr0_upper_regnum + 31);
161 }
162
163 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
164 int
165 altivec_register_p (struct gdbarch *gdbarch, int regno)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
169 return 0;
170 else
171 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
172 }
173
174
175 /* Return true if REGNO is an SPE register, false otherwise. */
176 int
177 spe_register_p (struct gdbarch *gdbarch, int regno)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180
181 /* Is it a reference to EV0 -- EV31, and do we have those? */
182 if (IS_SPE_PSEUDOREG (tdep, regno))
183 return 1;
184
185 /* Is it a reference to one of the raw upper GPR halves? */
186 if (tdep->ppc_ev0_upper_regnum >= 0
187 && tdep->ppc_ev0_upper_regnum <= regno
188 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
189 return 1;
190
191 /* Is it a reference to the 64-bit accumulator, and do we have that? */
192 if (tdep->ppc_acc_regnum >= 0
193 && tdep->ppc_acc_regnum == regno)
194 return 1;
195
196 /* Is it a reference to the SPE floating-point status and control register,
197 and do we have that? */
198 if (tdep->ppc_spefscr_regnum >= 0
199 && tdep->ppc_spefscr_regnum == regno)
200 return 1;
201
202 return 0;
203 }
204
205
206 /* Return non-zero if the architecture described by GDBARCH has
207 floating-point registers (f0 --- f31 and fpscr). */
208 int
209 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
210 {
211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
212
213 return (tdep->ppc_fp0_regnum >= 0
214 && tdep->ppc_fpscr_regnum >= 0);
215 }
216
217 /* Return non-zero if the architecture described by GDBARCH has
218 VSX registers (vsr0 --- vsr63). */
219 static int
220 ppc_vsx_support_p (struct gdbarch *gdbarch)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
224 return tdep->ppc_vsr0_regnum >= 0;
225 }
226
227 /* Return non-zero if the architecture described by GDBARCH has
228 Altivec registers (vr0 --- vr31, vrsave and vscr). */
229 int
230 ppc_altivec_support_p (struct gdbarch *gdbarch)
231 {
232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
233
234 return (tdep->ppc_vr0_regnum >= 0
235 && tdep->ppc_vrsave_regnum >= 0);
236 }
237
238 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
239 set it to SIM_REGNO.
240
241 This is a helper function for init_sim_regno_table, constructing
242 the table mapping GDB register numbers to sim register numbers; we
243 initialize every element in that table to -1 before we start
244 filling it in. */
245 static void
246 set_sim_regno (int *table, int gdb_regno, int sim_regno)
247 {
248 /* Make sure we don't try to assign any given GDB register a sim
249 register number more than once. */
250 gdb_assert (table[gdb_regno] == -1);
251 table[gdb_regno] = sim_regno;
252 }
253
254
255 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
256 numbers to simulator register numbers, based on the values placed
257 in the ARCH->tdep->ppc_foo_regnum members. */
258 static void
259 init_sim_regno_table (struct gdbarch *arch)
260 {
261 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
262 int total_regs = gdbarch_num_regs (arch);
263 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
264 int i;
265 static const char *const segment_regs[] = {
266 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
267 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
268 };
269
270 /* Presume that all registers not explicitly mentioned below are
271 unavailable from the sim. */
272 for (i = 0; i < total_regs; i++)
273 sim_regno[i] = -1;
274
275 /* General-purpose registers. */
276 for (i = 0; i < ppc_num_gprs; i++)
277 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
278
279 /* Floating-point registers. */
280 if (tdep->ppc_fp0_regnum >= 0)
281 for (i = 0; i < ppc_num_fprs; i++)
282 set_sim_regno (sim_regno,
283 tdep->ppc_fp0_regnum + i,
284 sim_ppc_f0_regnum + i);
285 if (tdep->ppc_fpscr_regnum >= 0)
286 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
287
288 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
289 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
290 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
291
292 /* Segment registers. */
293 for (i = 0; i < ppc_num_srs; i++)
294 {
295 int gdb_regno;
296
297 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
298 if (gdb_regno >= 0)
299 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
300 }
301
302 /* Altivec registers. */
303 if (tdep->ppc_vr0_regnum >= 0)
304 {
305 for (i = 0; i < ppc_num_vrs; i++)
306 set_sim_regno (sim_regno,
307 tdep->ppc_vr0_regnum + i,
308 sim_ppc_vr0_regnum + i);
309
310 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
311 we can treat this more like the other cases. */
312 set_sim_regno (sim_regno,
313 tdep->ppc_vr0_regnum + ppc_num_vrs,
314 sim_ppc_vscr_regnum);
315 }
316 /* vsave is a special-purpose register, so the code below handles it. */
317
318 /* SPE APU (E500) registers. */
319 if (tdep->ppc_ev0_upper_regnum >= 0)
320 for (i = 0; i < ppc_num_gprs; i++)
321 set_sim_regno (sim_regno,
322 tdep->ppc_ev0_upper_regnum + i,
323 sim_ppc_rh0_regnum + i);
324 if (tdep->ppc_acc_regnum >= 0)
325 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
326 /* spefscr is a special-purpose register, so the code below handles it. */
327
328 #ifdef WITH_SIM
329 /* Now handle all special-purpose registers. Verify that they
330 haven't mistakenly been assigned numbers by any of the above
331 code. */
332 for (i = 0; i < sim_ppc_num_sprs; i++)
333 {
334 const char *spr_name = sim_spr_register_name (i);
335 int gdb_regno = -1;
336
337 if (spr_name != NULL)
338 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
339
340 if (gdb_regno != -1)
341 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
342 }
343 #endif
344
345 /* Drop the initialized array into place. */
346 tdep->sim_regno = sim_regno;
347 }
348
349
350 /* Given a GDB register number REG, return the corresponding SIM
351 register number. */
352 static int
353 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356 int sim_regno;
357
358 if (tdep->sim_regno == NULL)
359 init_sim_regno_table (gdbarch);
360
361 gdb_assert (0 <= reg
362 && reg <= gdbarch_num_regs (gdbarch)
363 + gdbarch_num_pseudo_regs (gdbarch));
364 sim_regno = tdep->sim_regno[reg];
365
366 if (sim_regno >= 0)
367 return sim_regno;
368 else
369 return LEGACY_SIM_REGNO_IGNORE;
370 }
371
372 \f
373
374 /* Register set support functions. */
375
376 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
377 Write the register to REGCACHE. */
378
379 void
380 ppc_supply_reg (struct regcache *regcache, int regnum,
381 const gdb_byte *regs, size_t offset, int regsize)
382 {
383 if (regnum != -1 && offset != -1)
384 {
385 if (regsize > 4)
386 {
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 int gdb_regsize = register_size (gdbarch, regnum);
389 if (gdb_regsize < regsize
390 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
391 offset += regsize - gdb_regsize;
392 }
393 regcache_raw_supply (regcache, regnum, regs + offset);
394 }
395 }
396
397 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
398 in a field REGSIZE wide. Zero pad as necessary. */
399
400 void
401 ppc_collect_reg (const struct regcache *regcache, int regnum,
402 gdb_byte *regs, size_t offset, int regsize)
403 {
404 if (regnum != -1 && offset != -1)
405 {
406 if (regsize > 4)
407 {
408 struct gdbarch *gdbarch = get_regcache_arch (regcache);
409 int gdb_regsize = register_size (gdbarch, regnum);
410 if (gdb_regsize < regsize)
411 {
412 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
413 {
414 memset (regs + offset, 0, regsize - gdb_regsize);
415 offset += regsize - gdb_regsize;
416 }
417 else
418 memset (regs + offset + regsize - gdb_regsize, 0,
419 regsize - gdb_regsize);
420 }
421 }
422 regcache_raw_collect (regcache, regnum, regs + offset);
423 }
424 }
425
426 static int
427 ppc_greg_offset (struct gdbarch *gdbarch,
428 struct gdbarch_tdep *tdep,
429 const struct ppc_reg_offsets *offsets,
430 int regnum,
431 int *regsize)
432 {
433 *regsize = offsets->gpr_size;
434 if (regnum >= tdep->ppc_gp0_regnum
435 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
436 return (offsets->r0_offset
437 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
438
439 if (regnum == gdbarch_pc_regnum (gdbarch))
440 return offsets->pc_offset;
441
442 if (regnum == tdep->ppc_ps_regnum)
443 return offsets->ps_offset;
444
445 if (regnum == tdep->ppc_lr_regnum)
446 return offsets->lr_offset;
447
448 if (regnum == tdep->ppc_ctr_regnum)
449 return offsets->ctr_offset;
450
451 *regsize = offsets->xr_size;
452 if (regnum == tdep->ppc_cr_regnum)
453 return offsets->cr_offset;
454
455 if (regnum == tdep->ppc_xer_regnum)
456 return offsets->xer_offset;
457
458 if (regnum == tdep->ppc_mq_regnum)
459 return offsets->mq_offset;
460
461 return -1;
462 }
463
464 static int
465 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
466 const struct ppc_reg_offsets *offsets,
467 int regnum)
468 {
469 if (regnum >= tdep->ppc_fp0_regnum
470 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
471 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
472
473 if (regnum == tdep->ppc_fpscr_regnum)
474 return offsets->fpscr_offset;
475
476 return -1;
477 }
478
479 static int
480 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
481 const struct ppc_reg_offsets *offsets,
482 int regnum)
483 {
484 if (regnum >= tdep->ppc_vr0_regnum
485 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
486 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
487
488 if (regnum == tdep->ppc_vrsave_regnum - 1)
489 return offsets->vscr_offset;
490
491 if (regnum == tdep->ppc_vrsave_regnum)
492 return offsets->vrsave_offset;
493
494 return -1;
495 }
496
497 /* Supply register REGNUM in the general-purpose register set REGSET
498 from the buffer specified by GREGS and LEN to register cache
499 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
500
501 void
502 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
503 int regnum, const void *gregs, size_t len)
504 {
505 struct gdbarch *gdbarch = get_regcache_arch (regcache);
506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
507 const struct ppc_reg_offsets *offsets = regset->descr;
508 size_t offset;
509 int regsize;
510
511 if (regnum == -1)
512 {
513 int i;
514 int gpr_size = offsets->gpr_size;
515
516 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
517 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
518 i++, offset += gpr_size)
519 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
520
521 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
522 gregs, offsets->pc_offset, gpr_size);
523 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
524 gregs, offsets->ps_offset, gpr_size);
525 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
526 gregs, offsets->lr_offset, gpr_size);
527 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
528 gregs, offsets->ctr_offset, gpr_size);
529 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
530 gregs, offsets->cr_offset, offsets->xr_size);
531 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
532 gregs, offsets->xer_offset, offsets->xr_size);
533 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
534 gregs, offsets->mq_offset, offsets->xr_size);
535 return;
536 }
537
538 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
539 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
540 }
541
542 /* Supply register REGNUM in the floating-point register set REGSET
543 from the buffer specified by FPREGS and LEN to register cache
544 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
545
546 void
547 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
548 int regnum, const void *fpregs, size_t len)
549 {
550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
551 struct gdbarch_tdep *tdep;
552 const struct ppc_reg_offsets *offsets;
553 size_t offset;
554
555 if (!ppc_floating_point_unit_p (gdbarch))
556 return;
557
558 tdep = gdbarch_tdep (gdbarch);
559 offsets = regset->descr;
560 if (regnum == -1)
561 {
562 int i;
563
564 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
565 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
566 i++, offset += 8)
567 ppc_supply_reg (regcache, i, fpregs, offset, 8);
568
569 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
570 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
571 return;
572 }
573
574 offset = ppc_fpreg_offset (tdep, offsets, regnum);
575 ppc_supply_reg (regcache, regnum, fpregs, offset,
576 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
577 }
578
579 /* Supply register REGNUM in the VSX register set REGSET
580 from the buffer specified by VSXREGS and LEN to register cache
581 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
582
583 void
584 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
585 int regnum, const void *vsxregs, size_t len)
586 {
587 struct gdbarch *gdbarch = get_regcache_arch (regcache);
588 struct gdbarch_tdep *tdep;
589
590 if (!ppc_vsx_support_p (gdbarch))
591 return;
592
593 tdep = gdbarch_tdep (gdbarch);
594
595 if (regnum == -1)
596 {
597 int i;
598
599 for (i = tdep->ppc_vsr0_upper_regnum;
600 i < tdep->ppc_vsr0_upper_regnum + 32;
601 i++)
602 ppc_supply_reg (regcache, i, vsxregs, 0, 8);
603
604 return;
605 }
606 else
607 ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
608 }
609
610 /* Supply register REGNUM in the Altivec register set REGSET
611 from the buffer specified by VRREGS and LEN to register cache
612 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
613
614 void
615 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
616 int regnum, const void *vrregs, size_t len)
617 {
618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
619 struct gdbarch_tdep *tdep;
620 const struct ppc_reg_offsets *offsets;
621 size_t offset;
622
623 if (!ppc_altivec_support_p (gdbarch))
624 return;
625
626 tdep = gdbarch_tdep (gdbarch);
627 offsets = regset->descr;
628 if (regnum == -1)
629 {
630 int i;
631
632 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
633 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
634 i++, offset += 16)
635 ppc_supply_reg (regcache, i, vrregs, offset, 16);
636
637 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
638 vrregs, offsets->vscr_offset, 4);
639
640 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
641 vrregs, offsets->vrsave_offset, 4);
642 return;
643 }
644
645 offset = ppc_vrreg_offset (tdep, offsets, regnum);
646 if (regnum != tdep->ppc_vrsave_regnum
647 && regnum != tdep->ppc_vrsave_regnum - 1)
648 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
649 else
650 ppc_supply_reg (regcache, regnum,
651 vrregs, offset, 4);
652 }
653
654 /* Collect register REGNUM in the general-purpose register set
655 REGSET from register cache REGCACHE into the buffer specified by
656 GREGS and LEN. If REGNUM is -1, do this for all registers in
657 REGSET. */
658
659 void
660 ppc_collect_gregset (const struct regset *regset,
661 const struct regcache *regcache,
662 int regnum, void *gregs, size_t len)
663 {
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
666 const struct ppc_reg_offsets *offsets = regset->descr;
667 size_t offset;
668 int regsize;
669
670 if (regnum == -1)
671 {
672 int i;
673 int gpr_size = offsets->gpr_size;
674
675 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
676 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
677 i++, offset += gpr_size)
678 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
679
680 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
681 gregs, offsets->pc_offset, gpr_size);
682 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
683 gregs, offsets->ps_offset, gpr_size);
684 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
685 gregs, offsets->lr_offset, gpr_size);
686 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
687 gregs, offsets->ctr_offset, gpr_size);
688 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
689 gregs, offsets->cr_offset, offsets->xr_size);
690 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
691 gregs, offsets->xer_offset, offsets->xr_size);
692 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
693 gregs, offsets->mq_offset, offsets->xr_size);
694 return;
695 }
696
697 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
698 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
699 }
700
701 /* Collect register REGNUM in the floating-point register set
702 REGSET from register cache REGCACHE into the buffer specified by
703 FPREGS and LEN. If REGNUM is -1, do this for all registers in
704 REGSET. */
705
706 void
707 ppc_collect_fpregset (const struct regset *regset,
708 const struct regcache *regcache,
709 int regnum, void *fpregs, size_t len)
710 {
711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
712 struct gdbarch_tdep *tdep;
713 const struct ppc_reg_offsets *offsets;
714 size_t offset;
715
716 if (!ppc_floating_point_unit_p (gdbarch))
717 return;
718
719 tdep = gdbarch_tdep (gdbarch);
720 offsets = regset->descr;
721 if (regnum == -1)
722 {
723 int i;
724
725 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
726 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
727 i++, offset += 8)
728 ppc_collect_reg (regcache, i, fpregs, offset, 8);
729
730 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
731 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
732 return;
733 }
734
735 offset = ppc_fpreg_offset (tdep, offsets, regnum);
736 ppc_collect_reg (regcache, regnum, fpregs, offset,
737 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
738 }
739
740 /* Collect register REGNUM in the VSX register set
741 REGSET from register cache REGCACHE into the buffer specified by
742 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
743 REGSET. */
744
745 void
746 ppc_collect_vsxregset (const struct regset *regset,
747 const struct regcache *regcache,
748 int regnum, void *vsxregs, size_t len)
749 {
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep;
752
753 if (!ppc_vsx_support_p (gdbarch))
754 return;
755
756 tdep = gdbarch_tdep (gdbarch);
757
758 if (regnum == -1)
759 {
760 int i;
761
762 for (i = tdep->ppc_vsr0_upper_regnum;
763 i < tdep->ppc_vsr0_upper_regnum + 32;
764 i++)
765 ppc_collect_reg (regcache, i, vsxregs, 0, 8);
766
767 return;
768 }
769 else
770 ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
771 }
772
773
774 /* Collect register REGNUM in the Altivec register set
775 REGSET from register cache REGCACHE into the buffer specified by
776 VRREGS and LEN. If REGNUM is -1, do this for all registers in
777 REGSET. */
778
779 void
780 ppc_collect_vrregset (const struct regset *regset,
781 const struct regcache *regcache,
782 int regnum, void *vrregs, size_t len)
783 {
784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
785 struct gdbarch_tdep *tdep;
786 const struct ppc_reg_offsets *offsets;
787 size_t offset;
788
789 if (!ppc_altivec_support_p (gdbarch))
790 return;
791
792 tdep = gdbarch_tdep (gdbarch);
793 offsets = regset->descr;
794 if (regnum == -1)
795 {
796 int i;
797
798 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
799 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
800 i++, offset += 16)
801 ppc_collect_reg (regcache, i, vrregs, offset, 16);
802
803 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
804 vrregs, offsets->vscr_offset, 4);
805
806 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
807 vrregs, offsets->vrsave_offset, 4);
808 return;
809 }
810
811 offset = ppc_vrreg_offset (tdep, offsets, regnum);
812 if (regnum != tdep->ppc_vrsave_regnum
813 && regnum != tdep->ppc_vrsave_regnum - 1)
814 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
815 else
816 ppc_collect_reg (regcache, regnum,
817 vrregs, offset, 4);
818 }
819 \f
820
821 static int
822 insn_changes_sp_or_jumps (unsigned long insn)
823 {
824 int opcode = (insn >> 26) & 0x03f;
825 int sd = (insn >> 21) & 0x01f;
826 int a = (insn >> 16) & 0x01f;
827 int subcode = (insn >> 1) & 0x3ff;
828
829 /* Changes the stack pointer. */
830
831 /* NOTE: There are many ways to change the value of a given register.
832 The ways below are those used when the register is R1, the SP,
833 in a funtion's epilogue. */
834
835 if (opcode == 31 && subcode == 444 && a == 1)
836 return 1; /* mr R1,Rn */
837 if (opcode == 14 && sd == 1)
838 return 1; /* addi R1,Rn,simm */
839 if (opcode == 58 && sd == 1)
840 return 1; /* ld R1,ds(Rn) */
841
842 /* Transfers control. */
843
844 if (opcode == 18)
845 return 1; /* b */
846 if (opcode == 16)
847 return 1; /* bc */
848 if (opcode == 19 && subcode == 16)
849 return 1; /* bclr */
850 if (opcode == 19 && subcode == 528)
851 return 1; /* bcctr */
852
853 return 0;
854 }
855
856 /* Return true if we are in the function's epilogue, i.e. after the
857 instruction that destroyed the function's stack frame.
858
859 1) scan forward from the point of execution:
860 a) If you find an instruction that modifies the stack pointer
861 or transfers control (except a return), execution is not in
862 an epilogue, return.
863 b) Stop scanning if you find a return instruction or reach the
864 end of the function or reach the hard limit for the size of
865 an epilogue.
866 2) scan backward from the point of execution:
867 a) If you find an instruction that modifies the stack pointer,
868 execution *is* in an epilogue, return.
869 b) Stop scanning if you reach an instruction that transfers
870 control or the beginning of the function or reach the hard
871 limit for the size of an epilogue. */
872
873 static int
874 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
875 {
876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
877 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
878 bfd_byte insn_buf[PPC_INSN_SIZE];
879 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
880 unsigned long insn;
881 struct frame_info *curfrm;
882
883 /* Find the search limits based on function boundaries and hard limit. */
884
885 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
886 return 0;
887
888 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
889 if (epilogue_start < func_start) epilogue_start = func_start;
890
891 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
892 if (epilogue_end > func_end) epilogue_end = func_end;
893
894 curfrm = get_current_frame ();
895
896 /* Scan forward until next 'blr'. */
897
898 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
899 {
900 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
901 return 0;
902 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
903 if (insn == 0x4e800020)
904 break;
905 /* Assume a bctr is a tail call unless it points strictly within
906 this function. */
907 if (insn == 0x4e800420)
908 {
909 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
910 tdep->ppc_ctr_regnum);
911 if (ctr > func_start && ctr < func_end)
912 return 0;
913 else
914 break;
915 }
916 if (insn_changes_sp_or_jumps (insn))
917 return 0;
918 }
919
920 /* Scan backward until adjustment to stack pointer (R1). */
921
922 for (scan_pc = pc - PPC_INSN_SIZE;
923 scan_pc >= epilogue_start;
924 scan_pc -= PPC_INSN_SIZE)
925 {
926 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
927 return 0;
928 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
929 if (insn_changes_sp_or_jumps (insn))
930 return 1;
931 }
932
933 return 0;
934 }
935
936 /* Get the ith function argument for the current function. */
937 static CORE_ADDR
938 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
939 struct type *type)
940 {
941 return get_frame_register_unsigned (frame, 3 + argi);
942 }
943
944 /* Sequence of bytes for breakpoint instruction. */
945
946 static const unsigned char *
947 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
948 int *bp_size)
949 {
950 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
951 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
952 *bp_size = 4;
953 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
954 return big_breakpoint;
955 else
956 return little_breakpoint;
957 }
958
959 /* Instruction masks for displaced stepping. */
960 #define BRANCH_MASK 0xfc000000
961 #define BP_MASK 0xFC0007FE
962 #define B_INSN 0x48000000
963 #define BC_INSN 0x40000000
964 #define BXL_INSN 0x4c000000
965 #define BP_INSN 0x7C000008
966
967 /* Fix up the state of registers and memory after having single-stepped
968 a displaced instruction. */
969 static void
970 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
971 struct displaced_step_closure *closure,
972 CORE_ADDR from, CORE_ADDR to,
973 struct regcache *regs)
974 {
975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
976 /* Since we use simple_displaced_step_copy_insn, our closure is a
977 copy of the instruction. */
978 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
979 PPC_INSN_SIZE, byte_order);
980 ULONGEST opcode = 0;
981 /* Offset for non PC-relative instructions. */
982 LONGEST offset = PPC_INSN_SIZE;
983
984 opcode = insn & BRANCH_MASK;
985
986 if (debug_displaced)
987 fprintf_unfiltered (gdb_stdlog,
988 "displaced: (ppc) fixup (%s, %s)\n",
989 paddress (gdbarch, from), paddress (gdbarch, to));
990
991
992 /* Handle PC-relative branch instructions. */
993 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
994 {
995 ULONGEST current_pc;
996
997 /* Read the current PC value after the instruction has been executed
998 in a displaced location. Calculate the offset to be applied to the
999 original PC value before the displaced stepping. */
1000 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1001 &current_pc);
1002 offset = current_pc - to;
1003
1004 if (opcode != BXL_INSN)
1005 {
1006 /* Check for AA bit indicating whether this is an absolute
1007 addressing or PC-relative (1: absolute, 0: relative). */
1008 if (!(insn & 0x2))
1009 {
1010 /* PC-relative addressing is being used in the branch. */
1011 if (debug_displaced)
1012 fprintf_unfiltered
1013 (gdb_stdlog,
1014 "displaced: (ppc) branch instruction: %s\n"
1015 "displaced: (ppc) adjusted PC from %s to %s\n",
1016 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1017 paddress (gdbarch, from + offset));
1018
1019 regcache_cooked_write_unsigned (regs,
1020 gdbarch_pc_regnum (gdbarch),
1021 from + offset);
1022 }
1023 }
1024 else
1025 {
1026 /* If we're here, it means we have a branch to LR or CTR. If the
1027 branch was taken, the offset is probably greater than 4 (the next
1028 instruction), so it's safe to assume that an offset of 4 means we
1029 did not take the branch. */
1030 if (offset == PPC_INSN_SIZE)
1031 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1032 from + PPC_INSN_SIZE);
1033 }
1034
1035 /* Check for LK bit indicating whether we should set the link
1036 register to point to the next instruction
1037 (1: Set, 0: Don't set). */
1038 if (insn & 0x1)
1039 {
1040 /* Link register needs to be set to the next instruction's PC. */
1041 regcache_cooked_write_unsigned (regs,
1042 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1043 from + PPC_INSN_SIZE);
1044 if (debug_displaced)
1045 fprintf_unfiltered (gdb_stdlog,
1046 "displaced: (ppc) adjusted LR to %s\n",
1047 paddress (gdbarch, from + PPC_INSN_SIZE));
1048
1049 }
1050 }
1051 /* Check for breakpoints in the inferior. If we've found one, place the PC
1052 right at the breakpoint instruction. */
1053 else if ((insn & BP_MASK) == BP_INSN)
1054 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1055 else
1056 /* Handle any other instructions that do not fit in the categories above. */
1057 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1058 from + offset);
1059 }
1060
1061 /* Always use hardware single-stepping to execute the
1062 displaced instruction. */
1063 static int
1064 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1065 struct displaced_step_closure *closure)
1066 {
1067 return 1;
1068 }
1069
1070 /* Instruction masks used during single-stepping of atomic sequences. */
1071 #define LWARX_MASK 0xfc0007fe
1072 #define LWARX_INSTRUCTION 0x7c000028
1073 #define LDARX_INSTRUCTION 0x7c0000A8
1074 #define STWCX_MASK 0xfc0007ff
1075 #define STWCX_INSTRUCTION 0x7c00012d
1076 #define STDCX_INSTRUCTION 0x7c0001ad
1077
1078 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1079 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1080 is found, attempt to step through it. A breakpoint is placed at the end of
1081 the sequence. */
1082
1083 int
1084 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1085 {
1086 struct gdbarch *gdbarch = get_frame_arch (frame);
1087 struct address_space *aspace = get_frame_address_space (frame);
1088 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1089 CORE_ADDR pc = get_frame_pc (frame);
1090 CORE_ADDR breaks[2] = {-1, -1};
1091 CORE_ADDR loc = pc;
1092 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1093 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1094 int insn_count;
1095 int index;
1096 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1097 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1098 int opcode; /* Branch instruction's OPcode. */
1099 int bc_insn_count = 0; /* Conditional branch instruction count. */
1100
1101 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1102 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1103 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1104 return 0;
1105
1106 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1107 instructions. */
1108 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1109 {
1110 loc += PPC_INSN_SIZE;
1111 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1112
1113 /* Assume that there is at most one conditional branch in the atomic
1114 sequence. If a conditional branch is found, put a breakpoint in
1115 its destination address. */
1116 if ((insn & BRANCH_MASK) == BC_INSN)
1117 {
1118 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1119 int absolute = insn & 2;
1120
1121 if (bc_insn_count >= 1)
1122 return 0; /* More than one conditional branch found, fallback
1123 to the standard single-step code. */
1124
1125 if (absolute)
1126 breaks[1] = immediate;
1127 else
1128 breaks[1] = loc + immediate;
1129
1130 bc_insn_count++;
1131 last_breakpoint++;
1132 }
1133
1134 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1135 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1136 break;
1137 }
1138
1139 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1140 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1141 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1142 return 0;
1143
1144 closing_insn = loc;
1145 loc += PPC_INSN_SIZE;
1146 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1147
1148 /* Insert a breakpoint right after the end of the atomic sequence. */
1149 breaks[0] = loc;
1150
1151 /* Check for duplicated breakpoints. Check also for a breakpoint
1152 placed (branch instruction's destination) anywhere in sequence. */
1153 if (last_breakpoint
1154 && (breaks[1] == breaks[0]
1155 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1156 last_breakpoint = 0;
1157
1158 /* Effectively inserts the breakpoints. */
1159 for (index = 0; index <= last_breakpoint; index++)
1160 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1161
1162 return 1;
1163 }
1164
1165
1166 #define SIGNED_SHORT(x) \
1167 ((sizeof (short) == 2) \
1168 ? ((int)(short)(x)) \
1169 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1170
1171 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1172
1173 /* Limit the number of skipped non-prologue instructions, as the examining
1174 of the prologue is expensive. */
1175 static int max_skip_non_prologue_insns = 10;
1176
1177 /* Return nonzero if the given instruction OP can be part of the prologue
1178 of a function and saves a parameter on the stack. FRAMEP should be
1179 set if one of the previous instructions in the function has set the
1180 Frame Pointer. */
1181
1182 static int
1183 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1184 {
1185 /* Move parameters from argument registers to temporary register. */
1186 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1187 {
1188 /* Rx must be scratch register r0. */
1189 const int rx_regno = (op >> 16) & 31;
1190 /* Ry: Only r3 - r10 are used for parameter passing. */
1191 const int ry_regno = GET_SRC_REG (op);
1192
1193 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1194 {
1195 *r0_contains_arg = 1;
1196 return 1;
1197 }
1198 else
1199 return 0;
1200 }
1201
1202 /* Save a General Purpose Register on stack. */
1203
1204 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1205 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1206 {
1207 /* Rx: Only r3 - r10 are used for parameter passing. */
1208 const int rx_regno = GET_SRC_REG (op);
1209
1210 return (rx_regno >= 3 && rx_regno <= 10);
1211 }
1212
1213 /* Save a General Purpose Register on stack via the Frame Pointer. */
1214
1215 if (framep &&
1216 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1217 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1218 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1219 {
1220 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1221 However, the compiler sometimes uses r0 to hold an argument. */
1222 const int rx_regno = GET_SRC_REG (op);
1223
1224 return ((rx_regno >= 3 && rx_regno <= 10)
1225 || (rx_regno == 0 && *r0_contains_arg));
1226 }
1227
1228 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1229 {
1230 /* Only f2 - f8 are used for parameter passing. */
1231 const int src_regno = GET_SRC_REG (op);
1232
1233 return (src_regno >= 2 && src_regno <= 8);
1234 }
1235
1236 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1237 {
1238 /* Only f2 - f8 are used for parameter passing. */
1239 const int src_regno = GET_SRC_REG (op);
1240
1241 return (src_regno >= 2 && src_regno <= 8);
1242 }
1243
1244 /* Not an insn that saves a parameter on stack. */
1245 return 0;
1246 }
1247
1248 /* Assuming that INSN is a "bl" instruction located at PC, return
1249 nonzero if the destination of the branch is a "blrl" instruction.
1250
1251 This sequence is sometimes found in certain function prologues.
1252 It allows the function to load the LR register with a value that
1253 they can use to access PIC data using PC-relative offsets. */
1254
1255 static int
1256 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1257 {
1258 CORE_ADDR dest;
1259 int immediate;
1260 int absolute;
1261 int dest_insn;
1262
1263 absolute = (int) ((insn >> 1) & 1);
1264 immediate = ((insn & ~3) << 6) >> 6;
1265 if (absolute)
1266 dest = immediate;
1267 else
1268 dest = pc + immediate;
1269
1270 dest_insn = read_memory_integer (dest, 4, byte_order);
1271 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1272 return 1;
1273
1274 return 0;
1275 }
1276
1277 /* Masks for decoding a branch-and-link (bl) instruction.
1278
1279 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1280 The former is anded with the opcode in question; if the result of
1281 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1282 question is a ``bl'' instruction.
1283
1284 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1285 the branch displacement. */
1286
1287 #define BL_MASK 0xfc000001
1288 #define BL_INSTRUCTION 0x48000001
1289 #define BL_DISPLACEMENT_MASK 0x03fffffc
1290
1291 static unsigned long
1292 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1293 {
1294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1295 gdb_byte buf[4];
1296 unsigned long op;
1297
1298 /* Fetch the instruction and convert it to an integer. */
1299 if (target_read_memory (pc, buf, 4))
1300 return 0;
1301 op = extract_unsigned_integer (buf, 4, byte_order);
1302
1303 return op;
1304 }
1305
1306 /* GCC generates several well-known sequences of instructions at the begining
1307 of each function prologue when compiling with -fstack-check. If one of
1308 such sequences starts at START_PC, then return the address of the
1309 instruction immediately past this sequence. Otherwise, return START_PC. */
1310
1311 static CORE_ADDR
1312 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1313 {
1314 CORE_ADDR pc = start_pc;
1315 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1316
1317 /* First possible sequence: A small number of probes.
1318 stw 0, -<some immediate>(1)
1319 [repeat this instruction any (small) number of times]. */
1320
1321 if ((op & 0xffff0000) == 0x90010000)
1322 {
1323 while ((op & 0xffff0000) == 0x90010000)
1324 {
1325 pc = pc + 4;
1326 op = rs6000_fetch_instruction (gdbarch, pc);
1327 }
1328 return pc;
1329 }
1330
1331 /* Second sequence: A probing loop.
1332 addi 12,1,-<some immediate>
1333 lis 0,-<some immediate>
1334 [possibly ori 0,0,<some immediate>]
1335 add 0,12,0
1336 cmpw 0,12,0
1337 beq 0,<disp>
1338 addi 12,12,-<some immediate>
1339 stw 0,0(12)
1340 b <disp>
1341 [possibly one last probe: stw 0,<some immediate>(12)]. */
1342
1343 while (1)
1344 {
1345 /* addi 12,1,-<some immediate> */
1346 if ((op & 0xffff0000) != 0x39810000)
1347 break;
1348
1349 /* lis 0,-<some immediate> */
1350 pc = pc + 4;
1351 op = rs6000_fetch_instruction (gdbarch, pc);
1352 if ((op & 0xffff0000) != 0x3c000000)
1353 break;
1354
1355 pc = pc + 4;
1356 op = rs6000_fetch_instruction (gdbarch, pc);
1357 /* [possibly ori 0,0,<some immediate>] */
1358 if ((op & 0xffff0000) == 0x60000000)
1359 {
1360 pc = pc + 4;
1361 op = rs6000_fetch_instruction (gdbarch, pc);
1362 }
1363 /* add 0,12,0 */
1364 if (op != 0x7c0c0214)
1365 break;
1366
1367 /* cmpw 0,12,0 */
1368 pc = pc + 4;
1369 op = rs6000_fetch_instruction (gdbarch, pc);
1370 if (op != 0x7c0c0000)
1371 break;
1372
1373 /* beq 0,<disp> */
1374 pc = pc + 4;
1375 op = rs6000_fetch_instruction (gdbarch, pc);
1376 if ((op & 0xff9f0001) != 0x41820000)
1377 break;
1378
1379 /* addi 12,12,-<some immediate> */
1380 pc = pc + 4;
1381 op = rs6000_fetch_instruction (gdbarch, pc);
1382 if ((op & 0xffff0000) != 0x398c0000)
1383 break;
1384
1385 /* stw 0,0(12) */
1386 pc = pc + 4;
1387 op = rs6000_fetch_instruction (gdbarch, pc);
1388 if (op != 0x900c0000)
1389 break;
1390
1391 /* b <disp> */
1392 pc = pc + 4;
1393 op = rs6000_fetch_instruction (gdbarch, pc);
1394 if ((op & 0xfc000001) != 0x48000000)
1395 break;
1396
1397 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1398 pc = pc + 4;
1399 op = rs6000_fetch_instruction (gdbarch, pc);
1400 if ((op & 0xffff0000) == 0x900c0000)
1401 {
1402 pc = pc + 4;
1403 op = rs6000_fetch_instruction (gdbarch, pc);
1404 }
1405
1406 /* We found a valid stack-check sequence, return the new PC. */
1407 return pc;
1408 }
1409
1410 /* Third sequence: No probe; instead, a comparizon between the stack size
1411 limit (saved in a run-time global variable) and the current stack
1412 pointer:
1413
1414 addi 0,1,-<some immediate>
1415 lis 12,__gnat_stack_limit@ha
1416 lwz 12,__gnat_stack_limit@l(12)
1417 twllt 0,12
1418
1419 or, with a small variant in the case of a bigger stack frame:
1420 addis 0,1,<some immediate>
1421 addic 0,0,-<some immediate>
1422 lis 12,__gnat_stack_limit@ha
1423 lwz 12,__gnat_stack_limit@l(12)
1424 twllt 0,12
1425 */
1426 while (1)
1427 {
1428 /* addi 0,1,-<some immediate> */
1429 if ((op & 0xffff0000) != 0x38010000)
1430 {
1431 /* small stack frame variant not recognized; try the
1432 big stack frame variant: */
1433
1434 /* addis 0,1,<some immediate> */
1435 if ((op & 0xffff0000) != 0x3c010000)
1436 break;
1437
1438 /* addic 0,0,-<some immediate> */
1439 pc = pc + 4;
1440 op = rs6000_fetch_instruction (gdbarch, pc);
1441 if ((op & 0xffff0000) != 0x30000000)
1442 break;
1443 }
1444
1445 /* lis 12,<some immediate> */
1446 pc = pc + 4;
1447 op = rs6000_fetch_instruction (gdbarch, pc);
1448 if ((op & 0xffff0000) != 0x3d800000)
1449 break;
1450
1451 /* lwz 12,<some immediate>(12) */
1452 pc = pc + 4;
1453 op = rs6000_fetch_instruction (gdbarch, pc);
1454 if ((op & 0xffff0000) != 0x818c0000)
1455 break;
1456
1457 /* twllt 0,12 */
1458 pc = pc + 4;
1459 op = rs6000_fetch_instruction (gdbarch, pc);
1460 if ((op & 0xfffffffe) != 0x7c406008)
1461 break;
1462
1463 /* We found a valid stack-check sequence, return the new PC. */
1464 return pc;
1465 }
1466
1467 /* No stack check code in our prologue, return the start_pc. */
1468 return start_pc;
1469 }
1470
1471 /* return pc value after skipping a function prologue and also return
1472 information about a function frame.
1473
1474 in struct rs6000_framedata fdata:
1475 - frameless is TRUE, if function does not have a frame.
1476 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1477 - offset is the initial size of this stack frame --- the amount by
1478 which we decrement the sp to allocate the frame.
1479 - saved_gpr is the number of the first saved gpr.
1480 - saved_fpr is the number of the first saved fpr.
1481 - saved_vr is the number of the first saved vr.
1482 - saved_ev is the number of the first saved ev.
1483 - alloca_reg is the number of the register used for alloca() handling.
1484 Otherwise -1.
1485 - gpr_offset is the offset of the first saved gpr from the previous frame.
1486 - fpr_offset is the offset of the first saved fpr from the previous frame.
1487 - vr_offset is the offset of the first saved vr from the previous frame.
1488 - ev_offset is the offset of the first saved ev from the previous frame.
1489 - lr_offset is the offset of the saved lr
1490 - cr_offset is the offset of the saved cr
1491 - vrsave_offset is the offset of the saved vrsave register. */
1492
1493 static CORE_ADDR
1494 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1495 struct rs6000_framedata *fdata)
1496 {
1497 CORE_ADDR orig_pc = pc;
1498 CORE_ADDR last_prologue_pc = pc;
1499 CORE_ADDR li_found_pc = 0;
1500 gdb_byte buf[4];
1501 unsigned long op;
1502 long offset = 0;
1503 long vr_saved_offset = 0;
1504 int lr_reg = -1;
1505 int cr_reg = -1;
1506 int vr_reg = -1;
1507 int ev_reg = -1;
1508 long ev_offset = 0;
1509 int vrsave_reg = -1;
1510 int reg;
1511 int framep = 0;
1512 int minimal_toc_loaded = 0;
1513 int prev_insn_was_prologue_insn = 1;
1514 int num_skip_non_prologue_insns = 0;
1515 int r0_contains_arg = 0;
1516 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1517 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1518 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1519
1520 memset (fdata, 0, sizeof (struct rs6000_framedata));
1521 fdata->saved_gpr = -1;
1522 fdata->saved_fpr = -1;
1523 fdata->saved_vr = -1;
1524 fdata->saved_ev = -1;
1525 fdata->alloca_reg = -1;
1526 fdata->frameless = 1;
1527 fdata->nosavedpc = 1;
1528 fdata->lr_register = -1;
1529
1530 pc = rs6000_skip_stack_check (gdbarch, pc);
1531 if (pc >= lim_pc)
1532 pc = lim_pc;
1533
1534 for (;; pc += 4)
1535 {
1536 /* Sometimes it isn't clear if an instruction is a prologue
1537 instruction or not. When we encounter one of these ambiguous
1538 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1539 Otherwise, we'll assume that it really is a prologue instruction. */
1540 if (prev_insn_was_prologue_insn)
1541 last_prologue_pc = pc;
1542
1543 /* Stop scanning if we've hit the limit. */
1544 if (pc >= lim_pc)
1545 break;
1546
1547 prev_insn_was_prologue_insn = 1;
1548
1549 /* Fetch the instruction and convert it to an integer. */
1550 if (target_read_memory (pc, buf, 4))
1551 break;
1552 op = extract_unsigned_integer (buf, 4, byte_order);
1553
1554 if ((op & 0xfc1fffff) == 0x7c0802a6)
1555 { /* mflr Rx */
1556 /* Since shared library / PIC code, which needs to get its
1557 address at runtime, can appear to save more than one link
1558 register vis:
1559
1560 *INDENT-OFF*
1561 stwu r1,-304(r1)
1562 mflr r3
1563 bl 0xff570d0 (blrl)
1564 stw r30,296(r1)
1565 mflr r30
1566 stw r31,300(r1)
1567 stw r3,308(r1);
1568 ...
1569 *INDENT-ON*
1570
1571 remember just the first one, but skip over additional
1572 ones. */
1573 if (lr_reg == -1)
1574 lr_reg = (op & 0x03e00000) >> 21;
1575 if (lr_reg == 0)
1576 r0_contains_arg = 0;
1577 continue;
1578 }
1579 else if ((op & 0xfc1fffff) == 0x7c000026)
1580 { /* mfcr Rx */
1581 cr_reg = (op & 0x03e00000);
1582 if (cr_reg == 0)
1583 r0_contains_arg = 0;
1584 continue;
1585
1586 }
1587 else if ((op & 0xfc1f0000) == 0xd8010000)
1588 { /* stfd Rx,NUM(r1) */
1589 reg = GET_SRC_REG (op);
1590 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1591 {
1592 fdata->saved_fpr = reg;
1593 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1594 }
1595 continue;
1596
1597 }
1598 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1599 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1600 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1601 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1602 {
1603
1604 reg = GET_SRC_REG (op);
1605 if ((op & 0xfc1f0000) == 0xbc010000)
1606 fdata->gpr_mask |= ~((1U << reg) - 1);
1607 else
1608 fdata->gpr_mask |= 1U << reg;
1609 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1610 {
1611 fdata->saved_gpr = reg;
1612 if ((op & 0xfc1f0003) == 0xf8010000)
1613 op &= ~3UL;
1614 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1615 }
1616 continue;
1617
1618 }
1619 else if ((op & 0xffff0000) == 0x3c4c0000
1620 || (op & 0xffff0000) == 0x3c400000
1621 || (op & 0xffff0000) == 0x38420000)
1622 {
1623 /* . 0: addis 2,12,.TOC.-0b@ha
1624 . addi 2,2,.TOC.-0b@l
1625 or
1626 . lis 2,.TOC.@ha
1627 . addi 2,2,.TOC.@l
1628 used by ELFv2 global entry points to set up r2. */
1629 continue;
1630 }
1631 else if (op == 0x60000000)
1632 {
1633 /* nop */
1634 /* Allow nops in the prologue, but do not consider them to
1635 be part of the prologue unless followed by other prologue
1636 instructions. */
1637 prev_insn_was_prologue_insn = 0;
1638 continue;
1639
1640 }
1641 else if ((op & 0xffff0000) == 0x3c000000)
1642 { /* addis 0,0,NUM, used for >= 32k frames */
1643 fdata->offset = (op & 0x0000ffff) << 16;
1644 fdata->frameless = 0;
1645 r0_contains_arg = 0;
1646 continue;
1647
1648 }
1649 else if ((op & 0xffff0000) == 0x60000000)
1650 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1651 fdata->offset |= (op & 0x0000ffff);
1652 fdata->frameless = 0;
1653 r0_contains_arg = 0;
1654 continue;
1655
1656 }
1657 else if (lr_reg >= 0 &&
1658 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1659 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1660 /* stw Rx, NUM(r1) */
1661 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1662 /* stwu Rx, NUM(r1) */
1663 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1664 { /* where Rx == lr */
1665 fdata->lr_offset = offset;
1666 fdata->nosavedpc = 0;
1667 /* Invalidate lr_reg, but don't set it to -1.
1668 That would mean that it had never been set. */
1669 lr_reg = -2;
1670 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1671 (op & 0xfc000000) == 0x90000000) /* stw */
1672 {
1673 /* Does not update r1, so add displacement to lr_offset. */
1674 fdata->lr_offset += SIGNED_SHORT (op);
1675 }
1676 continue;
1677
1678 }
1679 else if (cr_reg >= 0 &&
1680 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1681 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1682 /* stw Rx, NUM(r1) */
1683 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1684 /* stwu Rx, NUM(r1) */
1685 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1686 { /* where Rx == cr */
1687 fdata->cr_offset = offset;
1688 /* Invalidate cr_reg, but don't set it to -1.
1689 That would mean that it had never been set. */
1690 cr_reg = -2;
1691 if ((op & 0xfc000003) == 0xf8000000 ||
1692 (op & 0xfc000000) == 0x90000000)
1693 {
1694 /* Does not update r1, so add displacement to cr_offset. */
1695 fdata->cr_offset += SIGNED_SHORT (op);
1696 }
1697 continue;
1698
1699 }
1700 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1701 {
1702 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1703 prediction bits. If the LR has already been saved, we can
1704 skip it. */
1705 continue;
1706 }
1707 else if (op == 0x48000005)
1708 { /* bl .+4 used in
1709 -mrelocatable */
1710 fdata->used_bl = 1;
1711 continue;
1712
1713 }
1714 else if (op == 0x48000004)
1715 { /* b .+4 (xlc) */
1716 break;
1717
1718 }
1719 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1720 in V.4 -mminimal-toc */
1721 (op & 0xffff0000) == 0x3bde0000)
1722 { /* addi 30,30,foo@l */
1723 continue;
1724
1725 }
1726 else if ((op & 0xfc000001) == 0x48000001)
1727 { /* bl foo,
1728 to save fprs??? */
1729
1730 fdata->frameless = 0;
1731
1732 /* If the return address has already been saved, we can skip
1733 calls to blrl (for PIC). */
1734 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1735 {
1736 fdata->used_bl = 1;
1737 continue;
1738 }
1739
1740 /* Don't skip over the subroutine call if it is not within
1741 the first three instructions of the prologue and either
1742 we have no line table information or the line info tells
1743 us that the subroutine call is not part of the line
1744 associated with the prologue. */
1745 if ((pc - orig_pc) > 8)
1746 {
1747 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1748 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1749
1750 if ((prologue_sal.line == 0)
1751 || (prologue_sal.line != this_sal.line))
1752 break;
1753 }
1754
1755 op = read_memory_integer (pc + 4, 4, byte_order);
1756
1757 /* At this point, make sure this is not a trampoline
1758 function (a function that simply calls another functions,
1759 and nothing else). If the next is not a nop, this branch
1760 was part of the function prologue. */
1761
1762 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1763 break; /* Don't skip over
1764 this branch. */
1765
1766 fdata->used_bl = 1;
1767 continue;
1768 }
1769 /* update stack pointer */
1770 else if ((op & 0xfc1f0000) == 0x94010000)
1771 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1772 fdata->frameless = 0;
1773 fdata->offset = SIGNED_SHORT (op);
1774 offset = fdata->offset;
1775 continue;
1776 }
1777 else if ((op & 0xfc1f016a) == 0x7c01016e)
1778 { /* stwux rX,r1,rY */
1779 /* No way to figure out what r1 is going to be. */
1780 fdata->frameless = 0;
1781 offset = fdata->offset;
1782 continue;
1783 }
1784 else if ((op & 0xfc1f0003) == 0xf8010001)
1785 { /* stdu rX,NUM(r1) */
1786 fdata->frameless = 0;
1787 fdata->offset = SIGNED_SHORT (op & ~3UL);
1788 offset = fdata->offset;
1789 continue;
1790 }
1791 else if ((op & 0xfc1f016a) == 0x7c01016a)
1792 { /* stdux rX,r1,rY */
1793 /* No way to figure out what r1 is going to be. */
1794 fdata->frameless = 0;
1795 offset = fdata->offset;
1796 continue;
1797 }
1798 else if ((op & 0xffff0000) == 0x38210000)
1799 { /* addi r1,r1,SIMM */
1800 fdata->frameless = 0;
1801 fdata->offset += SIGNED_SHORT (op);
1802 offset = fdata->offset;
1803 continue;
1804 }
1805 /* Load up minimal toc pointer. Do not treat an epilogue restore
1806 of r31 as a minimal TOC load. */
1807 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1808 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1809 && !framep
1810 && !minimal_toc_loaded)
1811 {
1812 minimal_toc_loaded = 1;
1813 continue;
1814
1815 /* move parameters from argument registers to local variable
1816 registers */
1817 }
1818 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1819 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1820 (((op >> 21) & 31) <= 10) &&
1821 ((long) ((op >> 16) & 31)
1822 >= fdata->saved_gpr)) /* Rx: local var reg */
1823 {
1824 continue;
1825
1826 /* store parameters in stack */
1827 }
1828 /* Move parameters from argument registers to temporary register. */
1829 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1830 {
1831 continue;
1832
1833 /* Set up frame pointer */
1834 }
1835 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1836 {
1837 fdata->frameless = 0;
1838 framep = 1;
1839 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1840 continue;
1841
1842 /* Another way to set up the frame pointer. */
1843 }
1844 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1845 || op == 0x7c3f0b78)
1846 { /* mr r31, r1 */
1847 fdata->frameless = 0;
1848 framep = 1;
1849 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1850 continue;
1851
1852 /* Another way to set up the frame pointer. */
1853 }
1854 else if ((op & 0xfc1fffff) == 0x38010000)
1855 { /* addi rX, r1, 0x0 */
1856 fdata->frameless = 0;
1857 framep = 1;
1858 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1859 + ((op & ~0x38010000) >> 21));
1860 continue;
1861 }
1862 /* AltiVec related instructions. */
1863 /* Store the vrsave register (spr 256) in another register for
1864 later manipulation, or load a register into the vrsave
1865 register. 2 instructions are used: mfvrsave and
1866 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1867 and mtspr SPR256, Rn. */
1868 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1869 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1870 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1871 {
1872 vrsave_reg = GET_SRC_REG (op);
1873 continue;
1874 }
1875 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1876 {
1877 continue;
1878 }
1879 /* Store the register where vrsave was saved to onto the stack:
1880 rS is the register where vrsave was stored in a previous
1881 instruction. */
1882 /* 100100 sssss 00001 dddddddd dddddddd */
1883 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1884 {
1885 if (vrsave_reg == GET_SRC_REG (op))
1886 {
1887 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1888 vrsave_reg = -1;
1889 }
1890 continue;
1891 }
1892 /* Compute the new value of vrsave, by modifying the register
1893 where vrsave was saved to. */
1894 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1895 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1896 {
1897 continue;
1898 }
1899 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1900 in a pair of insns to save the vector registers on the
1901 stack. */
1902 /* 001110 00000 00000 iiii iiii iiii iiii */
1903 /* 001110 01110 00000 iiii iiii iiii iiii */
1904 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1905 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1906 {
1907 if ((op & 0xffff0000) == 0x38000000)
1908 r0_contains_arg = 0;
1909 li_found_pc = pc;
1910 vr_saved_offset = SIGNED_SHORT (op);
1911
1912 /* This insn by itself is not part of the prologue, unless
1913 if part of the pair of insns mentioned above. So do not
1914 record this insn as part of the prologue yet. */
1915 prev_insn_was_prologue_insn = 0;
1916 }
1917 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1918 /* 011111 sssss 11111 00000 00111001110 */
1919 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1920 {
1921 if (pc == (li_found_pc + 4))
1922 {
1923 vr_reg = GET_SRC_REG (op);
1924 /* If this is the first vector reg to be saved, or if
1925 it has a lower number than others previously seen,
1926 reupdate the frame info. */
1927 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1928 {
1929 fdata->saved_vr = vr_reg;
1930 fdata->vr_offset = vr_saved_offset + offset;
1931 }
1932 vr_saved_offset = -1;
1933 vr_reg = -1;
1934 li_found_pc = 0;
1935 }
1936 }
1937 /* End AltiVec related instructions. */
1938
1939 /* Start BookE related instructions. */
1940 /* Store gen register S at (r31+uimm).
1941 Any register less than r13 is volatile, so we don't care. */
1942 /* 000100 sssss 11111 iiiii 01100100001 */
1943 else if (arch_info->mach == bfd_mach_ppc_e500
1944 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1945 {
1946 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1947 {
1948 unsigned int imm;
1949 ev_reg = GET_SRC_REG (op);
1950 imm = (op >> 11) & 0x1f;
1951 ev_offset = imm * 8;
1952 /* If this is the first vector reg to be saved, or if
1953 it has a lower number than others previously seen,
1954 reupdate the frame info. */
1955 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1956 {
1957 fdata->saved_ev = ev_reg;
1958 fdata->ev_offset = ev_offset + offset;
1959 }
1960 }
1961 continue;
1962 }
1963 /* Store gen register rS at (r1+rB). */
1964 /* 000100 sssss 00001 bbbbb 01100100000 */
1965 else if (arch_info->mach == bfd_mach_ppc_e500
1966 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1967 {
1968 if (pc == (li_found_pc + 4))
1969 {
1970 ev_reg = GET_SRC_REG (op);
1971 /* If this is the first vector reg to be saved, or if
1972 it has a lower number than others previously seen,
1973 reupdate the frame info. */
1974 /* We know the contents of rB from the previous instruction. */
1975 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1976 {
1977 fdata->saved_ev = ev_reg;
1978 fdata->ev_offset = vr_saved_offset + offset;
1979 }
1980 vr_saved_offset = -1;
1981 ev_reg = -1;
1982 li_found_pc = 0;
1983 }
1984 continue;
1985 }
1986 /* Store gen register r31 at (rA+uimm). */
1987 /* 000100 11111 aaaaa iiiii 01100100001 */
1988 else if (arch_info->mach == bfd_mach_ppc_e500
1989 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1990 {
1991 /* Wwe know that the source register is 31 already, but
1992 it can't hurt to compute it. */
1993 ev_reg = GET_SRC_REG (op);
1994 ev_offset = ((op >> 11) & 0x1f) * 8;
1995 /* If this is the first vector reg to be saved, or if
1996 it has a lower number than others previously seen,
1997 reupdate the frame info. */
1998 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1999 {
2000 fdata->saved_ev = ev_reg;
2001 fdata->ev_offset = ev_offset + offset;
2002 }
2003
2004 continue;
2005 }
2006 /* Store gen register S at (r31+r0).
2007 Store param on stack when offset from SP bigger than 4 bytes. */
2008 /* 000100 sssss 11111 00000 01100100000 */
2009 else if (arch_info->mach == bfd_mach_ppc_e500
2010 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2011 {
2012 if (pc == (li_found_pc + 4))
2013 {
2014 if ((op & 0x03e00000) >= 0x01a00000)
2015 {
2016 ev_reg = GET_SRC_REG (op);
2017 /* If this is the first vector reg to be saved, or if
2018 it has a lower number than others previously seen,
2019 reupdate the frame info. */
2020 /* We know the contents of r0 from the previous
2021 instruction. */
2022 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2023 {
2024 fdata->saved_ev = ev_reg;
2025 fdata->ev_offset = vr_saved_offset + offset;
2026 }
2027 ev_reg = -1;
2028 }
2029 vr_saved_offset = -1;
2030 li_found_pc = 0;
2031 continue;
2032 }
2033 }
2034 /* End BookE related instructions. */
2035
2036 else
2037 {
2038 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2039
2040 /* Not a recognized prologue instruction.
2041 Handle optimizer code motions into the prologue by continuing
2042 the search if we have no valid frame yet or if the return
2043 address is not yet saved in the frame. Also skip instructions
2044 if some of the GPRs expected to be saved are not yet saved. */
2045 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2046 && (fdata->gpr_mask & all_mask) == all_mask)
2047 break;
2048
2049 if (op == 0x4e800020 /* blr */
2050 || op == 0x4e800420) /* bctr */
2051 /* Do not scan past epilogue in frameless functions or
2052 trampolines. */
2053 break;
2054 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2055 /* Never skip branches. */
2056 break;
2057
2058 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2059 /* Do not scan too many insns, scanning insns is expensive with
2060 remote targets. */
2061 break;
2062
2063 /* Continue scanning. */
2064 prev_insn_was_prologue_insn = 0;
2065 continue;
2066 }
2067 }
2068
2069 #if 0
2070 /* I have problems with skipping over __main() that I need to address
2071 * sometime. Previously, I used to use misc_function_vector which
2072 * didn't work as well as I wanted to be. -MGO */
2073
2074 /* If the first thing after skipping a prolog is a branch to a function,
2075 this might be a call to an initializer in main(), introduced by gcc2.
2076 We'd like to skip over it as well. Fortunately, xlc does some extra
2077 work before calling a function right after a prologue, thus we can
2078 single out such gcc2 behaviour. */
2079
2080
2081 if ((op & 0xfc000001) == 0x48000001)
2082 { /* bl foo, an initializer function? */
2083 op = read_memory_integer (pc + 4, 4, byte_order);
2084
2085 if (op == 0x4def7b82)
2086 { /* cror 0xf, 0xf, 0xf (nop) */
2087
2088 /* Check and see if we are in main. If so, skip over this
2089 initializer function as well. */
2090
2091 tmp = find_pc_misc_function (pc);
2092 if (tmp >= 0
2093 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2094 return pc + 8;
2095 }
2096 }
2097 #endif /* 0 */
2098
2099 if (pc == lim_pc && lr_reg >= 0)
2100 fdata->lr_register = lr_reg;
2101
2102 fdata->offset = -fdata->offset;
2103 return last_prologue_pc;
2104 }
2105
2106 static CORE_ADDR
2107 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2108 {
2109 struct rs6000_framedata frame;
2110 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2111
2112 /* See if we can determine the end of the prologue via the symbol table.
2113 If so, then return either PC, or the PC after the prologue, whichever
2114 is greater. */
2115 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2116 {
2117 CORE_ADDR post_prologue_pc
2118 = skip_prologue_using_sal (gdbarch, func_addr);
2119 if (post_prologue_pc != 0)
2120 return max (pc, post_prologue_pc);
2121 }
2122
2123 /* Can't determine prologue from the symbol table, need to examine
2124 instructions. */
2125
2126 /* Find an upper limit on the function prologue using the debug
2127 information. If the debug information could not be used to provide
2128 that bound, then use an arbitrary large number as the upper bound. */
2129 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2130 if (limit_pc == 0)
2131 limit_pc = pc + 100; /* Magic. */
2132
2133 /* Do not allow limit_pc to be past the function end, if we know
2134 where that end is... */
2135 if (func_end_addr && limit_pc > func_end_addr)
2136 limit_pc = func_end_addr;
2137
2138 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2139 return pc;
2140 }
2141
2142 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2143 in the prologue of main().
2144
2145 The function below examines the code pointed at by PC and checks to
2146 see if it corresponds to a call to __eabi. If so, it returns the
2147 address of the instruction following that call. Otherwise, it simply
2148 returns PC. */
2149
2150 static CORE_ADDR
2151 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2152 {
2153 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2154 gdb_byte buf[4];
2155 unsigned long op;
2156
2157 if (target_read_memory (pc, buf, 4))
2158 return pc;
2159 op = extract_unsigned_integer (buf, 4, byte_order);
2160
2161 if ((op & BL_MASK) == BL_INSTRUCTION)
2162 {
2163 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2164 CORE_ADDR call_dest = pc + 4 + displ;
2165 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2166
2167 /* We check for ___eabi (three leading underscores) in addition
2168 to __eabi in case the GCC option "-fleading-underscore" was
2169 used to compile the program. */
2170 if (s.minsym != NULL
2171 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
2172 && (strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2173 || strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2174 pc += 4;
2175 }
2176 return pc;
2177 }
2178
2179 /* All the ABI's require 16 byte alignment. */
2180 static CORE_ADDR
2181 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2182 {
2183 return (addr & -16);
2184 }
2185
2186 /* Return whether handle_inferior_event() should proceed through code
2187 starting at PC in function NAME when stepping.
2188
2189 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2190 handle memory references that are too distant to fit in instructions
2191 generated by the compiler. For example, if 'foo' in the following
2192 instruction:
2193
2194 lwz r9,foo(r2)
2195
2196 is greater than 32767, the linker might replace the lwz with a branch to
2197 somewhere in @FIX1 that does the load in 2 instructions and then branches
2198 back to where execution should continue.
2199
2200 GDB should silently step over @FIX code, just like AIX dbx does.
2201 Unfortunately, the linker uses the "b" instruction for the
2202 branches, meaning that the link register doesn't get set.
2203 Therefore, GDB's usual step_over_function () mechanism won't work.
2204
2205 Instead, use the gdbarch_skip_trampoline_code and
2206 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2207 @FIX code. */
2208
2209 static int
2210 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2211 CORE_ADDR pc, const char *name)
2212 {
2213 return name && !strncmp (name, "@FIX", 4);
2214 }
2215
2216 /* Skip code that the user doesn't want to see when stepping:
2217
2218 1. Indirect function calls use a piece of trampoline code to do context
2219 switching, i.e. to set the new TOC table. Skip such code if we are on
2220 its first instruction (as when we have single-stepped to here).
2221
2222 2. Skip shared library trampoline code (which is different from
2223 indirect function call trampolines).
2224
2225 3. Skip bigtoc fixup code.
2226
2227 Result is desired PC to step until, or NULL if we are not in
2228 code that should be skipped. */
2229
2230 static CORE_ADDR
2231 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2232 {
2233 struct gdbarch *gdbarch = get_frame_arch (frame);
2234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2235 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2236 unsigned int ii, op;
2237 int rel;
2238 CORE_ADDR solib_target_pc;
2239 struct bound_minimal_symbol msymbol;
2240
2241 static unsigned trampoline_code[] =
2242 {
2243 0x800b0000, /* l r0,0x0(r11) */
2244 0x90410014, /* st r2,0x14(r1) */
2245 0x7c0903a6, /* mtctr r0 */
2246 0x804b0004, /* l r2,0x4(r11) */
2247 0x816b0008, /* l r11,0x8(r11) */
2248 0x4e800420, /* bctr */
2249 0x4e800020, /* br */
2250 0
2251 };
2252
2253 /* Check for bigtoc fixup code. */
2254 msymbol = lookup_minimal_symbol_by_pc (pc);
2255 if (msymbol.minsym
2256 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2257 SYMBOL_LINKAGE_NAME (msymbol.minsym)))
2258 {
2259 /* Double-check that the third instruction from PC is relative "b". */
2260 op = read_memory_integer (pc + 8, 4, byte_order);
2261 if ((op & 0xfc000003) == 0x48000000)
2262 {
2263 /* Extract bits 6-29 as a signed 24-bit relative word address and
2264 add it to the containing PC. */
2265 rel = ((int)(op << 6) >> 6);
2266 return pc + 8 + rel;
2267 }
2268 }
2269
2270 /* If pc is in a shared library trampoline, return its target. */
2271 solib_target_pc = find_solib_trampoline_target (frame, pc);
2272 if (solib_target_pc)
2273 return solib_target_pc;
2274
2275 for (ii = 0; trampoline_code[ii]; ++ii)
2276 {
2277 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2278 if (op != trampoline_code[ii])
2279 return 0;
2280 }
2281 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2282 addr. */
2283 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2284 return pc;
2285 }
2286
2287 /* ISA-specific vector types. */
2288
2289 static struct type *
2290 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2291 {
2292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2293
2294 if (!tdep->ppc_builtin_type_vec64)
2295 {
2296 const struct builtin_type *bt = builtin_type (gdbarch);
2297
2298 /* The type we're building is this: */
2299 #if 0
2300 union __gdb_builtin_type_vec64
2301 {
2302 int64_t uint64;
2303 float v2_float[2];
2304 int32_t v2_int32[2];
2305 int16_t v4_int16[4];
2306 int8_t v8_int8[8];
2307 };
2308 #endif
2309
2310 struct type *t;
2311
2312 t = arch_composite_type (gdbarch,
2313 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2314 append_composite_type_field (t, "uint64", bt->builtin_int64);
2315 append_composite_type_field (t, "v2_float",
2316 init_vector_type (bt->builtin_float, 2));
2317 append_composite_type_field (t, "v2_int32",
2318 init_vector_type (bt->builtin_int32, 2));
2319 append_composite_type_field (t, "v4_int16",
2320 init_vector_type (bt->builtin_int16, 4));
2321 append_composite_type_field (t, "v8_int8",
2322 init_vector_type (bt->builtin_int8, 8));
2323
2324 TYPE_VECTOR (t) = 1;
2325 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2326 tdep->ppc_builtin_type_vec64 = t;
2327 }
2328
2329 return tdep->ppc_builtin_type_vec64;
2330 }
2331
2332 /* Vector 128 type. */
2333
2334 static struct type *
2335 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2336 {
2337 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2338
2339 if (!tdep->ppc_builtin_type_vec128)
2340 {
2341 const struct builtin_type *bt = builtin_type (gdbarch);
2342
2343 /* The type we're building is this
2344
2345 type = union __ppc_builtin_type_vec128 {
2346 uint128_t uint128;
2347 double v2_double[2];
2348 float v4_float[4];
2349 int32_t v4_int32[4];
2350 int16_t v8_int16[8];
2351 int8_t v16_int8[16];
2352 }
2353 */
2354
2355 struct type *t;
2356
2357 t = arch_composite_type (gdbarch,
2358 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2359 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2360 append_composite_type_field (t, "v2_double",
2361 init_vector_type (bt->builtin_double, 2));
2362 append_composite_type_field (t, "v4_float",
2363 init_vector_type (bt->builtin_float, 4));
2364 append_composite_type_field (t, "v4_int32",
2365 init_vector_type (bt->builtin_int32, 4));
2366 append_composite_type_field (t, "v8_int16",
2367 init_vector_type (bt->builtin_int16, 8));
2368 append_composite_type_field (t, "v16_int8",
2369 init_vector_type (bt->builtin_int8, 16));
2370
2371 TYPE_VECTOR (t) = 1;
2372 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2373 tdep->ppc_builtin_type_vec128 = t;
2374 }
2375
2376 return tdep->ppc_builtin_type_vec128;
2377 }
2378
2379 /* Return the name of register number REGNO, or the empty string if it
2380 is an anonymous register. */
2381
2382 static const char *
2383 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2384 {
2385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2386
2387 /* The upper half "registers" have names in the XML description,
2388 but we present only the low GPRs and the full 64-bit registers
2389 to the user. */
2390 if (tdep->ppc_ev0_upper_regnum >= 0
2391 && tdep->ppc_ev0_upper_regnum <= regno
2392 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2393 return "";
2394
2395 /* Hide the upper halves of the vs0~vs31 registers. */
2396 if (tdep->ppc_vsr0_regnum >= 0
2397 && tdep->ppc_vsr0_upper_regnum <= regno
2398 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2399 return "";
2400
2401 /* Check if the SPE pseudo registers are available. */
2402 if (IS_SPE_PSEUDOREG (tdep, regno))
2403 {
2404 static const char *const spe_regnames[] = {
2405 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2406 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2407 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2408 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2409 };
2410 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2411 }
2412
2413 /* Check if the decimal128 pseudo-registers are available. */
2414 if (IS_DFP_PSEUDOREG (tdep, regno))
2415 {
2416 static const char *const dfp128_regnames[] = {
2417 "dl0", "dl1", "dl2", "dl3",
2418 "dl4", "dl5", "dl6", "dl7",
2419 "dl8", "dl9", "dl10", "dl11",
2420 "dl12", "dl13", "dl14", "dl15"
2421 };
2422 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2423 }
2424
2425 /* Check if this is a VSX pseudo-register. */
2426 if (IS_VSX_PSEUDOREG (tdep, regno))
2427 {
2428 static const char *const vsx_regnames[] = {
2429 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2430 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2431 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2432 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2433 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2434 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2435 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2436 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2437 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2438 };
2439 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2440 }
2441
2442 /* Check if the this is a Extended FP pseudo-register. */
2443 if (IS_EFP_PSEUDOREG (tdep, regno))
2444 {
2445 static const char *const efpr_regnames[] = {
2446 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2447 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2448 "f46", "f47", "f48", "f49", "f50", "f51",
2449 "f52", "f53", "f54", "f55", "f56", "f57",
2450 "f58", "f59", "f60", "f61", "f62", "f63"
2451 };
2452 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2453 }
2454
2455 return tdesc_register_name (gdbarch, regno);
2456 }
2457
2458 /* Return the GDB type object for the "standard" data type of data in
2459 register N. */
2460
2461 static struct type *
2462 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2463 {
2464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2465
2466 /* These are the only pseudo-registers we support. */
2467 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2468 || IS_DFP_PSEUDOREG (tdep, regnum)
2469 || IS_VSX_PSEUDOREG (tdep, regnum)
2470 || IS_EFP_PSEUDOREG (tdep, regnum));
2471
2472 /* These are the e500 pseudo-registers. */
2473 if (IS_SPE_PSEUDOREG (tdep, regnum))
2474 return rs6000_builtin_type_vec64 (gdbarch);
2475 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2476 /* PPC decimal128 pseudo-registers. */
2477 return builtin_type (gdbarch)->builtin_declong;
2478 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2479 /* POWER7 VSX pseudo-registers. */
2480 return rs6000_builtin_type_vec128 (gdbarch);
2481 else
2482 /* POWER7 Extended FP pseudo-registers. */
2483 return builtin_type (gdbarch)->builtin_double;
2484 }
2485
2486 /* Is REGNUM a member of REGGROUP? */
2487 static int
2488 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2489 struct reggroup *group)
2490 {
2491 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2492
2493 /* These are the only pseudo-registers we support. */
2494 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2495 || IS_DFP_PSEUDOREG (tdep, regnum)
2496 || IS_VSX_PSEUDOREG (tdep, regnum)
2497 || IS_EFP_PSEUDOREG (tdep, regnum));
2498
2499 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2500 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2501 return group == all_reggroup || group == vector_reggroup;
2502 else
2503 /* PPC decimal128 or Extended FP pseudo-registers. */
2504 return group == all_reggroup || group == float_reggroup;
2505 }
2506
2507 /* The register format for RS/6000 floating point registers is always
2508 double, we need a conversion if the memory format is float. */
2509
2510 static int
2511 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2512 struct type *type)
2513 {
2514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2515
2516 return (tdep->ppc_fp0_regnum >= 0
2517 && regnum >= tdep->ppc_fp0_regnum
2518 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2519 && TYPE_CODE (type) == TYPE_CODE_FLT
2520 && TYPE_LENGTH (type)
2521 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2522 }
2523
2524 static int
2525 rs6000_register_to_value (struct frame_info *frame,
2526 int regnum,
2527 struct type *type,
2528 gdb_byte *to,
2529 int *optimizedp, int *unavailablep)
2530 {
2531 struct gdbarch *gdbarch = get_frame_arch (frame);
2532 gdb_byte from[MAX_REGISTER_SIZE];
2533
2534 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2535
2536 if (!get_frame_register_bytes (frame, regnum, 0,
2537 register_size (gdbarch, regnum),
2538 from, optimizedp, unavailablep))
2539 return 0;
2540
2541 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2542 to, type);
2543 *optimizedp = *unavailablep = 0;
2544 return 1;
2545 }
2546
2547 static void
2548 rs6000_value_to_register (struct frame_info *frame,
2549 int regnum,
2550 struct type *type,
2551 const gdb_byte *from)
2552 {
2553 struct gdbarch *gdbarch = get_frame_arch (frame);
2554 gdb_byte to[MAX_REGISTER_SIZE];
2555
2556 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2557
2558 convert_typed_floating (from, type,
2559 to, builtin_type (gdbarch)->builtin_double);
2560 put_frame_register (frame, regnum, to);
2561 }
2562
2563 /* The type of a function that moves the value of REG between CACHE
2564 or BUF --- in either direction. */
2565 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2566 int, void *);
2567
2568 /* Move SPE vector register values between a 64-bit buffer and the two
2569 32-bit raw register halves in a regcache. This function handles
2570 both splitting a 64-bit value into two 32-bit halves, and joining
2571 two halves into a whole 64-bit value, depending on the function
2572 passed as the MOVE argument.
2573
2574 EV_REG must be the number of an SPE evN vector register --- a
2575 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2576 64-bit buffer.
2577
2578 Call MOVE once for each 32-bit half of that register, passing
2579 REGCACHE, the number of the raw register corresponding to that
2580 half, and the address of the appropriate half of BUFFER.
2581
2582 For example, passing 'regcache_raw_read' as the MOVE function will
2583 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2584 'regcache_raw_supply' will supply the contents of BUFFER to the
2585 appropriate pair of raw registers in REGCACHE.
2586
2587 You may need to cast away some 'const' qualifiers when passing
2588 MOVE, since this function can't tell at compile-time which of
2589 REGCACHE or BUFFER is acting as the source of the data. If C had
2590 co-variant type qualifiers, ... */
2591
2592 static enum register_status
2593 e500_move_ev_register (move_ev_register_func move,
2594 struct regcache *regcache, int ev_reg, void *buffer)
2595 {
2596 struct gdbarch *arch = get_regcache_arch (regcache);
2597 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2598 int reg_index;
2599 gdb_byte *byte_buffer = buffer;
2600 enum register_status status;
2601
2602 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2603
2604 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2605
2606 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2607 {
2608 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2609 byte_buffer);
2610 if (status == REG_VALID)
2611 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2612 byte_buffer + 4);
2613 }
2614 else
2615 {
2616 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2617 if (status == REG_VALID)
2618 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2619 byte_buffer + 4);
2620 }
2621
2622 return status;
2623 }
2624
2625 static enum register_status
2626 do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2627 {
2628 return regcache_raw_read (regcache, regnum, buffer);
2629 }
2630
2631 static enum register_status
2632 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2633 {
2634 regcache_raw_write (regcache, regnum, buffer);
2635
2636 return REG_VALID;
2637 }
2638
2639 static enum register_status
2640 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2641 int reg_nr, gdb_byte *buffer)
2642 {
2643 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2644 }
2645
2646 static void
2647 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2648 int reg_nr, const gdb_byte *buffer)
2649 {
2650 e500_move_ev_register (do_regcache_raw_write, regcache,
2651 reg_nr, (void *) buffer);
2652 }
2653
2654 /* Read method for DFP pseudo-registers. */
2655 static enum register_status
2656 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2657 int reg_nr, gdb_byte *buffer)
2658 {
2659 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2660 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2661 enum register_status status;
2662
2663 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2664 {
2665 /* Read two FP registers to form a whole dl register. */
2666 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2667 2 * reg_index, buffer);
2668 if (status == REG_VALID)
2669 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2670 2 * reg_index + 1, buffer + 8);
2671 }
2672 else
2673 {
2674 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2675 2 * reg_index + 1, buffer + 8);
2676 if (status == REG_VALID)
2677 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2678 2 * reg_index, buffer);
2679 }
2680
2681 return status;
2682 }
2683
2684 /* Write method for DFP pseudo-registers. */
2685 static void
2686 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2687 int reg_nr, const gdb_byte *buffer)
2688 {
2689 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2690 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2691
2692 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2693 {
2694 /* Write each half of the dl register into a separate
2695 FP register. */
2696 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2697 2 * reg_index, buffer);
2698 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2699 2 * reg_index + 1, buffer + 8);
2700 }
2701 else
2702 {
2703 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2704 2 * reg_index + 1, buffer + 8);
2705 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2706 2 * reg_index, buffer);
2707 }
2708 }
2709
2710 /* Read method for POWER7 VSX pseudo-registers. */
2711 static enum register_status
2712 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2713 int reg_nr, gdb_byte *buffer)
2714 {
2715 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2716 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2717 enum register_status status;
2718
2719 /* Read the portion that overlaps the VMX registers. */
2720 if (reg_index > 31)
2721 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2722 reg_index - 32, buffer);
2723 else
2724 /* Read the portion that overlaps the FPR registers. */
2725 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2726 {
2727 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2728 reg_index, buffer);
2729 if (status == REG_VALID)
2730 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2731 reg_index, buffer + 8);
2732 }
2733 else
2734 {
2735 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2736 reg_index, buffer + 8);
2737 if (status == REG_VALID)
2738 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2739 reg_index, buffer);
2740 }
2741
2742 return status;
2743 }
2744
2745 /* Write method for POWER7 VSX pseudo-registers. */
2746 static void
2747 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2748 int reg_nr, const gdb_byte *buffer)
2749 {
2750 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2751 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2752
2753 /* Write the portion that overlaps the VMX registers. */
2754 if (reg_index > 31)
2755 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2756 reg_index - 32, buffer);
2757 else
2758 /* Write the portion that overlaps the FPR registers. */
2759 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2760 {
2761 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2762 reg_index, buffer);
2763 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2764 reg_index, buffer + 8);
2765 }
2766 else
2767 {
2768 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2769 reg_index, buffer + 8);
2770 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2771 reg_index, buffer);
2772 }
2773 }
2774
2775 /* Read method for POWER7 Extended FP pseudo-registers. */
2776 static enum register_status
2777 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2778 int reg_nr, gdb_byte *buffer)
2779 {
2780 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2781 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2782
2783 /* Read the portion that overlaps the VMX register. */
2784 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index, 0,
2785 register_size (gdbarch, reg_nr), buffer);
2786 }
2787
2788 /* Write method for POWER7 Extended FP pseudo-registers. */
2789 static void
2790 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2791 int reg_nr, const gdb_byte *buffer)
2792 {
2793 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2794 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2795
2796 /* Write the portion that overlaps the VMX register. */
2797 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index, 0,
2798 register_size (gdbarch, reg_nr), buffer);
2799 }
2800
2801 static enum register_status
2802 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2803 struct regcache *regcache,
2804 int reg_nr, gdb_byte *buffer)
2805 {
2806 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2807 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2808
2809 gdb_assert (regcache_arch == gdbarch);
2810
2811 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2812 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2813 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2814 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2815 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2816 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2817 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2818 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2819 else
2820 internal_error (__FILE__, __LINE__,
2821 _("rs6000_pseudo_register_read: "
2822 "called on unexpected register '%s' (%d)"),
2823 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2824 }
2825
2826 static void
2827 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2828 struct regcache *regcache,
2829 int reg_nr, const gdb_byte *buffer)
2830 {
2831 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2832 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2833
2834 gdb_assert (regcache_arch == gdbarch);
2835
2836 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2837 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2838 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2839 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2840 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2841 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2842 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2843 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2844 else
2845 internal_error (__FILE__, __LINE__,
2846 _("rs6000_pseudo_register_write: "
2847 "called on unexpected register '%s' (%d)"),
2848 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2849 }
2850
2851 /* Convert a DBX STABS register number to a GDB register number. */
2852 static int
2853 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2854 {
2855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2856
2857 if (0 <= num && num <= 31)
2858 return tdep->ppc_gp0_regnum + num;
2859 else if (32 <= num && num <= 63)
2860 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2861 specifies registers the architecture doesn't have? Our
2862 callers don't check the value we return. */
2863 return tdep->ppc_fp0_regnum + (num - 32);
2864 else if (77 <= num && num <= 108)
2865 return tdep->ppc_vr0_regnum + (num - 77);
2866 else if (1200 <= num && num < 1200 + 32)
2867 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2868 else
2869 switch (num)
2870 {
2871 case 64:
2872 return tdep->ppc_mq_regnum;
2873 case 65:
2874 return tdep->ppc_lr_regnum;
2875 case 66:
2876 return tdep->ppc_ctr_regnum;
2877 case 76:
2878 return tdep->ppc_xer_regnum;
2879 case 109:
2880 return tdep->ppc_vrsave_regnum;
2881 case 110:
2882 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2883 case 111:
2884 return tdep->ppc_acc_regnum;
2885 case 112:
2886 return tdep->ppc_spefscr_regnum;
2887 default:
2888 return num;
2889 }
2890 }
2891
2892
2893 /* Convert a Dwarf 2 register number to a GDB register number. */
2894 static int
2895 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2896 {
2897 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2898
2899 if (0 <= num && num <= 31)
2900 return tdep->ppc_gp0_regnum + num;
2901 else if (32 <= num && num <= 63)
2902 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2903 specifies registers the architecture doesn't have? Our
2904 callers don't check the value we return. */
2905 return tdep->ppc_fp0_regnum + (num - 32);
2906 else if (1124 <= num && num < 1124 + 32)
2907 return tdep->ppc_vr0_regnum + (num - 1124);
2908 else if (1200 <= num && num < 1200 + 32)
2909 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2910 else
2911 switch (num)
2912 {
2913 case 64:
2914 return tdep->ppc_cr_regnum;
2915 case 67:
2916 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2917 case 99:
2918 return tdep->ppc_acc_regnum;
2919 case 100:
2920 return tdep->ppc_mq_regnum;
2921 case 101:
2922 return tdep->ppc_xer_regnum;
2923 case 108:
2924 return tdep->ppc_lr_regnum;
2925 case 109:
2926 return tdep->ppc_ctr_regnum;
2927 case 356:
2928 return tdep->ppc_vrsave_regnum;
2929 case 612:
2930 return tdep->ppc_spefscr_regnum;
2931 default:
2932 return num;
2933 }
2934 }
2935
2936 /* Translate a .eh_frame register to DWARF register, or adjust a
2937 .debug_frame register. */
2938
2939 static int
2940 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2941 {
2942 /* GCC releases before 3.4 use GCC internal register numbering in
2943 .debug_frame (and .debug_info, et cetera). The numbering is
2944 different from the standard SysV numbering for everything except
2945 for GPRs and FPRs. We can not detect this problem in most cases
2946 - to get accurate debug info for variables living in lr, ctr, v0,
2947 et cetera, use a newer version of GCC. But we must detect
2948 one important case - lr is in column 65 in .debug_frame output,
2949 instead of 108.
2950
2951 GCC 3.4, and the "hammer" branch, have a related problem. They
2952 record lr register saves in .debug_frame as 108, but still record
2953 the return column as 65. We fix that up too.
2954
2955 We can do this because 65 is assigned to fpsr, and GCC never
2956 generates debug info referring to it. To add support for
2957 handwritten debug info that restores fpsr, we would need to add a
2958 producer version check to this. */
2959 if (!eh_frame_p)
2960 {
2961 if (num == 65)
2962 return 108;
2963 else
2964 return num;
2965 }
2966
2967 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2968 internal register numbering; translate that to the standard DWARF2
2969 register numbering. */
2970 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2971 return num;
2972 else if (68 <= num && num <= 75) /* cr0-cr8 */
2973 return num - 68 + 86;
2974 else if (77 <= num && num <= 108) /* vr0-vr31 */
2975 return num - 77 + 1124;
2976 else
2977 switch (num)
2978 {
2979 case 64: /* mq */
2980 return 100;
2981 case 65: /* lr */
2982 return 108;
2983 case 66: /* ctr */
2984 return 109;
2985 case 76: /* xer */
2986 return 101;
2987 case 109: /* vrsave */
2988 return 356;
2989 case 110: /* vscr */
2990 return 67;
2991 case 111: /* spe_acc */
2992 return 99;
2993 case 112: /* spefscr */
2994 return 612;
2995 default:
2996 return num;
2997 }
2998 }
2999 \f
3000
3001 /* Handling the various POWER/PowerPC variants. */
3002
3003 /* Information about a particular processor variant. */
3004
3005 struct variant
3006 {
3007 /* Name of this variant. */
3008 char *name;
3009
3010 /* English description of the variant. */
3011 char *description;
3012
3013 /* bfd_arch_info.arch corresponding to variant. */
3014 enum bfd_architecture arch;
3015
3016 /* bfd_arch_info.mach corresponding to variant. */
3017 unsigned long mach;
3018
3019 /* Target description for this variant. */
3020 struct target_desc **tdesc;
3021 };
3022
3023 static struct variant variants[] =
3024 {
3025 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3026 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3027 {"power", "POWER user-level", bfd_arch_rs6000,
3028 bfd_mach_rs6k, &tdesc_rs6000},
3029 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3030 bfd_mach_ppc_403, &tdesc_powerpc_403},
3031 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3032 bfd_mach_ppc_405, &tdesc_powerpc_405},
3033 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3034 bfd_mach_ppc_601, &tdesc_powerpc_601},
3035 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3036 bfd_mach_ppc_602, &tdesc_powerpc_602},
3037 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3038 bfd_mach_ppc_603, &tdesc_powerpc_603},
3039 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3040 604, &tdesc_powerpc_604},
3041 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3042 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3043 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3044 bfd_mach_ppc_505, &tdesc_powerpc_505},
3045 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3046 bfd_mach_ppc_860, &tdesc_powerpc_860},
3047 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3048 bfd_mach_ppc_750, &tdesc_powerpc_750},
3049 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3050 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3051 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3052 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3053
3054 /* 64-bit */
3055 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3056 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3057 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3058 bfd_mach_ppc_620, &tdesc_powerpc_64},
3059 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3060 bfd_mach_ppc_630, &tdesc_powerpc_64},
3061 {"a35", "PowerPC A35", bfd_arch_powerpc,
3062 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3063 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3064 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3065 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3066 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3067
3068 /* FIXME: I haven't checked the register sets of the following. */
3069 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3070 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3071 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3072 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3073 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3074 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3075
3076 {0, 0, 0, 0, 0}
3077 };
3078
3079 /* Return the variant corresponding to architecture ARCH and machine number
3080 MACH. If no such variant exists, return null. */
3081
3082 static const struct variant *
3083 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3084 {
3085 const struct variant *v;
3086
3087 for (v = variants; v->name; v++)
3088 if (arch == v->arch && mach == v->mach)
3089 return v;
3090
3091 return NULL;
3092 }
3093
3094 static int
3095 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3096 {
3097 if (info->endian == BFD_ENDIAN_BIG)
3098 return print_insn_big_powerpc (memaddr, info);
3099 else
3100 return print_insn_little_powerpc (memaddr, info);
3101 }
3102 \f
3103 static CORE_ADDR
3104 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3105 {
3106 return frame_unwind_register_unsigned (next_frame,
3107 gdbarch_pc_regnum (gdbarch));
3108 }
3109
3110 static struct frame_id
3111 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3112 {
3113 return frame_id_build (get_frame_register_unsigned
3114 (this_frame, gdbarch_sp_regnum (gdbarch)),
3115 get_frame_pc (this_frame));
3116 }
3117
3118 struct rs6000_frame_cache
3119 {
3120 CORE_ADDR base;
3121 CORE_ADDR initial_sp;
3122 struct trad_frame_saved_reg *saved_regs;
3123 };
3124
3125 static struct rs6000_frame_cache *
3126 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3127 {
3128 struct rs6000_frame_cache *cache;
3129 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3131 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3132 struct rs6000_framedata fdata;
3133 int wordsize = tdep->wordsize;
3134 CORE_ADDR func, pc;
3135
3136 if ((*this_cache) != NULL)
3137 return (*this_cache);
3138 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3139 (*this_cache) = cache;
3140 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3141
3142 func = get_frame_func (this_frame);
3143 pc = get_frame_pc (this_frame);
3144 skip_prologue (gdbarch, func, pc, &fdata);
3145
3146 /* Figure out the parent's stack pointer. */
3147
3148 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3149 address of the current frame. Things might be easier if the
3150 ->frame pointed to the outer-most address of the frame. In
3151 the mean time, the address of the prev frame is used as the
3152 base address of this frame. */
3153 cache->base = get_frame_register_unsigned
3154 (this_frame, gdbarch_sp_regnum (gdbarch));
3155
3156 /* If the function appears to be frameless, check a couple of likely
3157 indicators that we have simply failed to find the frame setup.
3158 Two common cases of this are missing symbols (i.e.
3159 get_frame_func returns the wrong address or 0), and assembly
3160 stubs which have a fast exit path but set up a frame on the slow
3161 path.
3162
3163 If the LR appears to return to this function, then presume that
3164 we have an ABI compliant frame that we failed to find. */
3165 if (fdata.frameless && fdata.lr_offset == 0)
3166 {
3167 CORE_ADDR saved_lr;
3168 int make_frame = 0;
3169
3170 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3171 if (func == 0 && saved_lr == pc)
3172 make_frame = 1;
3173 else if (func != 0)
3174 {
3175 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3176 if (func == saved_func)
3177 make_frame = 1;
3178 }
3179
3180 if (make_frame)
3181 {
3182 fdata.frameless = 0;
3183 fdata.lr_offset = tdep->lr_frame_offset;
3184 }
3185 }
3186
3187 if (!fdata.frameless)
3188 /* Frameless really means stackless. */
3189 cache->base
3190 = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
3191
3192 trad_frame_set_value (cache->saved_regs,
3193 gdbarch_sp_regnum (gdbarch), cache->base);
3194
3195 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3196 All fpr's from saved_fpr to fp31 are saved. */
3197
3198 if (fdata.saved_fpr >= 0)
3199 {
3200 int i;
3201 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3202
3203 /* If skip_prologue says floating-point registers were saved,
3204 but the current architecture has no floating-point registers,
3205 then that's strange. But we have no indices to even record
3206 the addresses under, so we just ignore it. */
3207 if (ppc_floating_point_unit_p (gdbarch))
3208 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3209 {
3210 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3211 fpr_addr += 8;
3212 }
3213 }
3214
3215 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3216 All gpr's from saved_gpr to gpr31 are saved (except during the
3217 prologue). */
3218
3219 if (fdata.saved_gpr >= 0)
3220 {
3221 int i;
3222 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3223 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3224 {
3225 if (fdata.gpr_mask & (1U << i))
3226 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3227 gpr_addr += wordsize;
3228 }
3229 }
3230
3231 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3232 All vr's from saved_vr to vr31 are saved. */
3233 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3234 {
3235 if (fdata.saved_vr >= 0)
3236 {
3237 int i;
3238 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3239 for (i = fdata.saved_vr; i < 32; i++)
3240 {
3241 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3242 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3243 }
3244 }
3245 }
3246
3247 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3248 All vr's from saved_ev to ev31 are saved. ????? */
3249 if (tdep->ppc_ev0_regnum != -1)
3250 {
3251 if (fdata.saved_ev >= 0)
3252 {
3253 int i;
3254 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3255 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3256 {
3257 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3258 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3259 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3260 }
3261 }
3262 }
3263
3264 /* If != 0, fdata.cr_offset is the offset from the frame that
3265 holds the CR. */
3266 if (fdata.cr_offset != 0)
3267 cache->saved_regs[tdep->ppc_cr_regnum].addr
3268 = cache->base + fdata.cr_offset;
3269
3270 /* If != 0, fdata.lr_offset is the offset from the frame that
3271 holds the LR. */
3272 if (fdata.lr_offset != 0)
3273 cache->saved_regs[tdep->ppc_lr_regnum].addr
3274 = cache->base + fdata.lr_offset;
3275 else if (fdata.lr_register != -1)
3276 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3277 /* The PC is found in the link register. */
3278 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3279 cache->saved_regs[tdep->ppc_lr_regnum];
3280
3281 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3282 holds the VRSAVE. */
3283 if (fdata.vrsave_offset != 0)
3284 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3285 = cache->base + fdata.vrsave_offset;
3286
3287 if (fdata.alloca_reg < 0)
3288 /* If no alloca register used, then fi->frame is the value of the
3289 %sp for this frame, and it is good enough. */
3290 cache->initial_sp
3291 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3292 else
3293 cache->initial_sp
3294 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3295
3296 return cache;
3297 }
3298
3299 static void
3300 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3301 struct frame_id *this_id)
3302 {
3303 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3304 this_cache);
3305 /* This marks the outermost frame. */
3306 if (info->base == 0)
3307 return;
3308
3309 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3310 }
3311
3312 static struct value *
3313 rs6000_frame_prev_register (struct frame_info *this_frame,
3314 void **this_cache, int regnum)
3315 {
3316 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3317 this_cache);
3318 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3319 }
3320
3321 static const struct frame_unwind rs6000_frame_unwind =
3322 {
3323 NORMAL_FRAME,
3324 default_frame_unwind_stop_reason,
3325 rs6000_frame_this_id,
3326 rs6000_frame_prev_register,
3327 NULL,
3328 default_frame_sniffer
3329 };
3330 \f
3331
3332 static CORE_ADDR
3333 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3334 {
3335 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3336 this_cache);
3337 return info->initial_sp;
3338 }
3339
3340 static const struct frame_base rs6000_frame_base = {
3341 &rs6000_frame_unwind,
3342 rs6000_frame_base_address,
3343 rs6000_frame_base_address,
3344 rs6000_frame_base_address
3345 };
3346
3347 static const struct frame_base *
3348 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3349 {
3350 return &rs6000_frame_base;
3351 }
3352
3353 /* DWARF-2 frame support. Used to handle the detection of
3354 clobbered registers during function calls. */
3355
3356 static void
3357 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3358 struct dwarf2_frame_state_reg *reg,
3359 struct frame_info *this_frame)
3360 {
3361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3362
3363 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3364 non-volatile registers. We will use the same code for both. */
3365
3366 /* Call-saved GP registers. */
3367 if ((regnum >= tdep->ppc_gp0_regnum + 14
3368 && regnum <= tdep->ppc_gp0_regnum + 31)
3369 || (regnum == tdep->ppc_gp0_regnum + 1))
3370 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3371
3372 /* Call-clobbered GP registers. */
3373 if ((regnum >= tdep->ppc_gp0_regnum + 3
3374 && regnum <= tdep->ppc_gp0_regnum + 12)
3375 || (regnum == tdep->ppc_gp0_regnum))
3376 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3377
3378 /* Deal with FP registers, if supported. */
3379 if (tdep->ppc_fp0_regnum >= 0)
3380 {
3381 /* Call-saved FP registers. */
3382 if ((regnum >= tdep->ppc_fp0_regnum + 14
3383 && regnum <= tdep->ppc_fp0_regnum + 31))
3384 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3385
3386 /* Call-clobbered FP registers. */
3387 if ((regnum >= tdep->ppc_fp0_regnum
3388 && regnum <= tdep->ppc_fp0_regnum + 13))
3389 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3390 }
3391
3392 /* Deal with ALTIVEC registers, if supported. */
3393 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3394 {
3395 /* Call-saved Altivec registers. */
3396 if ((regnum >= tdep->ppc_vr0_regnum + 20
3397 && regnum <= tdep->ppc_vr0_regnum + 31)
3398 || regnum == tdep->ppc_vrsave_regnum)
3399 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3400
3401 /* Call-clobbered Altivec registers. */
3402 if ((regnum >= tdep->ppc_vr0_regnum
3403 && regnum <= tdep->ppc_vr0_regnum + 19))
3404 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3405 }
3406
3407 /* Handle PC register and Stack Pointer correctly. */
3408 if (regnum == gdbarch_pc_regnum (gdbarch))
3409 reg->how = DWARF2_FRAME_REG_RA;
3410 else if (regnum == gdbarch_sp_regnum (gdbarch))
3411 reg->how = DWARF2_FRAME_REG_CFA;
3412 }
3413
3414
3415 /* Return true if a .gnu_attributes section exists in BFD and it
3416 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3417 section exists in BFD and it indicates that SPE extensions are in
3418 use. Check the .gnu.attributes section first, as the binary might be
3419 compiled for SPE, but not actually using SPE instructions. */
3420
3421 static int
3422 bfd_uses_spe_extensions (bfd *abfd)
3423 {
3424 asection *sect;
3425 gdb_byte *contents = NULL;
3426 bfd_size_type size;
3427 gdb_byte *ptr;
3428 int success = 0;
3429 int vector_abi;
3430
3431 if (!abfd)
3432 return 0;
3433
3434 #ifdef HAVE_ELF
3435 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3436 could be using the SPE vector abi without actually using any spe
3437 bits whatsoever. But it's close enough for now. */
3438 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3439 Tag_GNU_Power_ABI_Vector);
3440 if (vector_abi == 3)
3441 return 1;
3442 #endif
3443
3444 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3445 if (!sect)
3446 return 0;
3447
3448 size = bfd_get_section_size (sect);
3449 contents = xmalloc (size);
3450 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3451 {
3452 xfree (contents);
3453 return 0;
3454 }
3455
3456 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3457
3458 struct {
3459 uint32 name_len;
3460 uint32 data_len;
3461 uint32 type;
3462 char name[name_len rounded up to 4-byte alignment];
3463 char data[data_len];
3464 };
3465
3466 Technically, there's only supposed to be one such structure in a
3467 given apuinfo section, but the linker is not always vigilant about
3468 merging apuinfo sections from input files. Just go ahead and parse
3469 them all, exiting early when we discover the binary uses SPE
3470 insns.
3471
3472 It's not specified in what endianness the information in this
3473 section is stored. Assume that it's the endianness of the BFD. */
3474 ptr = contents;
3475 while (1)
3476 {
3477 unsigned int name_len;
3478 unsigned int data_len;
3479 unsigned int type;
3480
3481 /* If we can't read the first three fields, we're done. */
3482 if (size < 12)
3483 break;
3484
3485 name_len = bfd_get_32 (abfd, ptr);
3486 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3487 data_len = bfd_get_32 (abfd, ptr + 4);
3488 type = bfd_get_32 (abfd, ptr + 8);
3489 ptr += 12;
3490
3491 /* The name must be "APUinfo\0". */
3492 if (name_len != 8
3493 && strcmp ((const char *) ptr, "APUinfo") != 0)
3494 break;
3495 ptr += name_len;
3496
3497 /* The type must be 2. */
3498 if (type != 2)
3499 break;
3500
3501 /* The data is stored as a series of uint32. The upper half of
3502 each uint32 indicates the particular APU used and the lower
3503 half indicates the revision of that APU. We just care about
3504 the upper half. */
3505
3506 /* Not 4-byte quantities. */
3507 if (data_len & 3U)
3508 break;
3509
3510 while (data_len)
3511 {
3512 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3513 unsigned int apu = apuinfo >> 16;
3514 ptr += 4;
3515 data_len -= 4;
3516
3517 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3518 either. */
3519 if (apu == 0x100 || apu == 0x101)
3520 {
3521 success = 1;
3522 data_len = 0;
3523 }
3524 }
3525
3526 if (success)
3527 break;
3528 }
3529
3530 xfree (contents);
3531 return success;
3532 }
3533
3534 /* Initialize the current architecture based on INFO. If possible, re-use an
3535 architecture from ARCHES, which is a list of architectures already created
3536 during this debugging session.
3537
3538 Called e.g. at program startup, when reading a core file, and when reading
3539 a binary file. */
3540
3541 static struct gdbarch *
3542 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3543 {
3544 struct gdbarch *gdbarch;
3545 struct gdbarch_tdep *tdep;
3546 int wordsize, from_xcoff_exec, from_elf_exec;
3547 enum bfd_architecture arch;
3548 unsigned long mach;
3549 bfd abfd;
3550 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3551 int soft_float;
3552 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3553 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
3554 have_vsx = 0;
3555 int tdesc_wordsize = -1;
3556 const struct target_desc *tdesc = info.target_desc;
3557 struct tdesc_arch_data *tdesc_data = NULL;
3558 int num_pseudoregs = 0;
3559 int cur_reg;
3560
3561 /* INFO may refer to a binary that is not of the PowerPC architecture,
3562 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
3563 In this case, we must not attempt to infer properties of the (PowerPC
3564 side) of the target system from properties of that executable. Trust
3565 the target description instead. */
3566 if (info.abfd
3567 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
3568 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
3569 info.abfd = NULL;
3570
3571 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3572 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3573
3574 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3575 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3576
3577 /* Check word size. If INFO is from a binary file, infer it from
3578 that, else choose a likely default. */
3579 if (from_xcoff_exec)
3580 {
3581 if (bfd_xcoff_is_xcoff64 (info.abfd))
3582 wordsize = 8;
3583 else
3584 wordsize = 4;
3585 }
3586 else if (from_elf_exec)
3587 {
3588 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3589 wordsize = 8;
3590 else
3591 wordsize = 4;
3592 }
3593 else if (tdesc_has_registers (tdesc))
3594 wordsize = -1;
3595 else
3596 {
3597 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3598 wordsize = info.bfd_arch_info->bits_per_word /
3599 info.bfd_arch_info->bits_per_byte;
3600 else
3601 wordsize = 4;
3602 }
3603
3604 /* Get the architecture and machine from the BFD. */
3605 arch = info.bfd_arch_info->arch;
3606 mach = info.bfd_arch_info->mach;
3607
3608 /* For e500 executables, the apuinfo section is of help here. Such
3609 section contains the identifier and revision number of each
3610 Application-specific Processing Unit that is present on the
3611 chip. The content of the section is determined by the assembler
3612 which looks at each instruction and determines which unit (and
3613 which version of it) can execute it. Grovel through the section
3614 looking for relevant e500 APUs. */
3615
3616 if (bfd_uses_spe_extensions (info.abfd))
3617 {
3618 arch = info.bfd_arch_info->arch;
3619 mach = bfd_mach_ppc_e500;
3620 bfd_default_set_arch_mach (&abfd, arch, mach);
3621 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3622 }
3623
3624 /* Find a default target description which describes our register
3625 layout, if we do not already have one. */
3626 if (! tdesc_has_registers (tdesc))
3627 {
3628 const struct variant *v;
3629
3630 /* Choose variant. */
3631 v = find_variant_by_arch (arch, mach);
3632 if (!v)
3633 return NULL;
3634
3635 tdesc = *v->tdesc;
3636 }
3637
3638 gdb_assert (tdesc_has_registers (tdesc));
3639
3640 /* Check any target description for validity. */
3641 if (tdesc_has_registers (tdesc))
3642 {
3643 static const char *const gprs[] = {
3644 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3645 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3646 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3647 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3648 };
3649 static const char *const segment_regs[] = {
3650 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3651 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3652 };
3653 const struct tdesc_feature *feature;
3654 int i, valid_p;
3655 static const char *const msr_names[] = { "msr", "ps" };
3656 static const char *const cr_names[] = { "cr", "cnd" };
3657 static const char *const ctr_names[] = { "ctr", "cnt" };
3658
3659 feature = tdesc_find_feature (tdesc,
3660 "org.gnu.gdb.power.core");
3661 if (feature == NULL)
3662 return NULL;
3663
3664 tdesc_data = tdesc_data_alloc ();
3665
3666 valid_p = 1;
3667 for (i = 0; i < ppc_num_gprs; i++)
3668 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3669 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3670 "pc");
3671 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3672 "lr");
3673 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3674 "xer");
3675
3676 /* Allow alternate names for these registers, to accomodate GDB's
3677 historic naming. */
3678 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3679 PPC_MSR_REGNUM, msr_names);
3680 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3681 PPC_CR_REGNUM, cr_names);
3682 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3683 PPC_CTR_REGNUM, ctr_names);
3684
3685 if (!valid_p)
3686 {
3687 tdesc_data_cleanup (tdesc_data);
3688 return NULL;
3689 }
3690
3691 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3692 "mq");
3693
3694 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3695 if (wordsize == -1)
3696 wordsize = tdesc_wordsize;
3697
3698 feature = tdesc_find_feature (tdesc,
3699 "org.gnu.gdb.power.fpu");
3700 if (feature != NULL)
3701 {
3702 static const char *const fprs[] = {
3703 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3704 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3705 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3706 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3707 };
3708 valid_p = 1;
3709 for (i = 0; i < ppc_num_fprs; i++)
3710 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3711 PPC_F0_REGNUM + i, fprs[i]);
3712 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3713 PPC_FPSCR_REGNUM, "fpscr");
3714
3715 if (!valid_p)
3716 {
3717 tdesc_data_cleanup (tdesc_data);
3718 return NULL;
3719 }
3720 have_fpu = 1;
3721 }
3722 else
3723 have_fpu = 0;
3724
3725 /* The DFP pseudo-registers will be available when there are floating
3726 point registers. */
3727 have_dfp = have_fpu;
3728
3729 feature = tdesc_find_feature (tdesc,
3730 "org.gnu.gdb.power.altivec");
3731 if (feature != NULL)
3732 {
3733 static const char *const vector_regs[] = {
3734 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3735 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3736 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3737 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3738 };
3739
3740 valid_p = 1;
3741 for (i = 0; i < ppc_num_gprs; i++)
3742 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3743 PPC_VR0_REGNUM + i,
3744 vector_regs[i]);
3745 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3746 PPC_VSCR_REGNUM, "vscr");
3747 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3748 PPC_VRSAVE_REGNUM, "vrsave");
3749
3750 if (have_spe || !valid_p)
3751 {
3752 tdesc_data_cleanup (tdesc_data);
3753 return NULL;
3754 }
3755 have_altivec = 1;
3756 }
3757 else
3758 have_altivec = 0;
3759
3760 /* Check for POWER7 VSX registers support. */
3761 feature = tdesc_find_feature (tdesc,
3762 "org.gnu.gdb.power.vsx");
3763
3764 if (feature != NULL)
3765 {
3766 static const char *const vsx_regs[] = {
3767 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3768 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3769 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3770 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3771 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3772 "vs30h", "vs31h"
3773 };
3774
3775 valid_p = 1;
3776
3777 for (i = 0; i < ppc_num_vshrs; i++)
3778 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3779 PPC_VSR0_UPPER_REGNUM + i,
3780 vsx_regs[i]);
3781 if (!valid_p)
3782 {
3783 tdesc_data_cleanup (tdesc_data);
3784 return NULL;
3785 }
3786
3787 have_vsx = 1;
3788 }
3789 else
3790 have_vsx = 0;
3791
3792 /* On machines supporting the SPE APU, the general-purpose registers
3793 are 64 bits long. There are SIMD vector instructions to treat them
3794 as pairs of floats, but the rest of the instruction set treats them
3795 as 32-bit registers, and only operates on their lower halves.
3796
3797 In the GDB regcache, we treat their high and low halves as separate
3798 registers. The low halves we present as the general-purpose
3799 registers, and then we have pseudo-registers that stitch together
3800 the upper and lower halves and present them as pseudo-registers.
3801
3802 Thus, the target description is expected to supply the upper
3803 halves separately. */
3804
3805 feature = tdesc_find_feature (tdesc,
3806 "org.gnu.gdb.power.spe");
3807 if (feature != NULL)
3808 {
3809 static const char *const upper_spe[] = {
3810 "ev0h", "ev1h", "ev2h", "ev3h",
3811 "ev4h", "ev5h", "ev6h", "ev7h",
3812 "ev8h", "ev9h", "ev10h", "ev11h",
3813 "ev12h", "ev13h", "ev14h", "ev15h",
3814 "ev16h", "ev17h", "ev18h", "ev19h",
3815 "ev20h", "ev21h", "ev22h", "ev23h",
3816 "ev24h", "ev25h", "ev26h", "ev27h",
3817 "ev28h", "ev29h", "ev30h", "ev31h"
3818 };
3819
3820 valid_p = 1;
3821 for (i = 0; i < ppc_num_gprs; i++)
3822 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3823 PPC_SPE_UPPER_GP0_REGNUM + i,
3824 upper_spe[i]);
3825 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3826 PPC_SPE_ACC_REGNUM, "acc");
3827 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3828 PPC_SPE_FSCR_REGNUM, "spefscr");
3829
3830 if (have_mq || have_fpu || !valid_p)
3831 {
3832 tdesc_data_cleanup (tdesc_data);
3833 return NULL;
3834 }
3835 have_spe = 1;
3836 }
3837 else
3838 have_spe = 0;
3839 }
3840
3841 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3842 complain for a 32-bit binary on a 64-bit target; we do not yet
3843 support that. For instance, the 32-bit ABI routines expect
3844 32-bit GPRs.
3845
3846 As long as there isn't an explicit target description, we'll
3847 choose one based on the BFD architecture and get a word size
3848 matching the binary (probably powerpc:common or
3849 powerpc:common64). So there is only trouble if a 64-bit target
3850 supplies a 64-bit description while debugging a 32-bit
3851 binary. */
3852 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3853 {
3854 tdesc_data_cleanup (tdesc_data);
3855 return NULL;
3856 }
3857
3858 #ifdef HAVE_ELF
3859 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3860 {
3861 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3862 Tag_GNU_Power_ABI_FP))
3863 {
3864 case 1:
3865 soft_float_flag = AUTO_BOOLEAN_FALSE;
3866 break;
3867 case 2:
3868 soft_float_flag = AUTO_BOOLEAN_TRUE;
3869 break;
3870 default:
3871 break;
3872 }
3873 }
3874
3875 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3876 {
3877 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3878 Tag_GNU_Power_ABI_Vector))
3879 {
3880 case 1:
3881 vector_abi = POWERPC_VEC_GENERIC;
3882 break;
3883 case 2:
3884 vector_abi = POWERPC_VEC_ALTIVEC;
3885 break;
3886 case 3:
3887 vector_abi = POWERPC_VEC_SPE;
3888 break;
3889 default:
3890 break;
3891 }
3892 }
3893 #endif
3894
3895 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3896 soft_float = 1;
3897 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3898 soft_float = 0;
3899 else
3900 soft_float = !have_fpu;
3901
3902 /* If we have a hard float binary or setting but no floating point
3903 registers, downgrade to soft float anyway. We're still somewhat
3904 useful in this scenario. */
3905 if (!soft_float && !have_fpu)
3906 soft_float = 1;
3907
3908 /* Similarly for vector registers. */
3909 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3910 vector_abi = POWERPC_VEC_GENERIC;
3911
3912 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3913 vector_abi = POWERPC_VEC_GENERIC;
3914
3915 if (vector_abi == POWERPC_VEC_AUTO)
3916 {
3917 if (have_altivec)
3918 vector_abi = POWERPC_VEC_ALTIVEC;
3919 else if (have_spe)
3920 vector_abi = POWERPC_VEC_SPE;
3921 else
3922 vector_abi = POWERPC_VEC_GENERIC;
3923 }
3924
3925 /* Do not limit the vector ABI based on available hardware, since we
3926 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3927
3928 /* Find a candidate among extant architectures. */
3929 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3930 arches != NULL;
3931 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3932 {
3933 /* Word size in the various PowerPC bfd_arch_info structs isn't
3934 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3935 separate word size check. */
3936 tdep = gdbarch_tdep (arches->gdbarch);
3937 if (tdep && tdep->soft_float != soft_float)
3938 continue;
3939 if (tdep && tdep->vector_abi != vector_abi)
3940 continue;
3941 if (tdep && tdep->wordsize == wordsize)
3942 {
3943 if (tdesc_data != NULL)
3944 tdesc_data_cleanup (tdesc_data);
3945 return arches->gdbarch;
3946 }
3947 }
3948
3949 /* None found, create a new architecture from INFO, whose bfd_arch_info
3950 validity depends on the source:
3951 - executable useless
3952 - rs6000_host_arch() good
3953 - core file good
3954 - "set arch" trust blindly
3955 - GDB startup useless but harmless */
3956
3957 tdep = XCALLOC (1, struct gdbarch_tdep);
3958 tdep->wordsize = wordsize;
3959 tdep->soft_float = soft_float;
3960 tdep->vector_abi = vector_abi;
3961
3962 gdbarch = gdbarch_alloc (&info, tdep);
3963
3964 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3965 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3966 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3967 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3968 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3969 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3970 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3971 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3972
3973 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3974 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
3975 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
3976 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3977 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3978 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3979 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3980 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3981
3982 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3983 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3984 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3985 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
3986 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3987
3988 /* The XML specification for PowerPC sensibly calls the MSR "msr".
3989 GDB traditionally called it "ps", though, so let GDB add an
3990 alias. */
3991 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3992
3993 if (wordsize == 8)
3994 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3995 else
3996 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3997
3998 /* Set lr_frame_offset. */
3999 if (wordsize == 8)
4000 tdep->lr_frame_offset = 16;
4001 else
4002 tdep->lr_frame_offset = 4;
4003
4004 if (have_spe || have_dfp || have_vsx)
4005 {
4006 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
4007 set_gdbarch_pseudo_register_write (gdbarch,
4008 rs6000_pseudo_register_write);
4009 }
4010
4011 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4012
4013 /* Select instruction printer. */
4014 if (arch == bfd_arch_rs6000)
4015 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
4016 else
4017 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
4018
4019 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
4020
4021 if (have_spe)
4022 num_pseudoregs += 32;
4023 if (have_dfp)
4024 num_pseudoregs += 16;
4025 if (have_vsx)
4026 /* Include both VSX and Extended FP registers. */
4027 num_pseudoregs += 96;
4028
4029 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
4030
4031 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
4032 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
4033 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
4034 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
4035 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4036 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
4037 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4038 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4039 set_gdbarch_char_signed (gdbarch, 0);
4040
4041 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4042 if (wordsize == 8)
4043 /* PPC64 SYSV. */
4044 set_gdbarch_frame_red_zone_size (gdbarch, 288);
4045
4046 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
4047 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
4048 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
4049
4050 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
4051 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
4052
4053 if (wordsize == 4)
4054 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4055 else if (wordsize == 8)
4056 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
4057
4058 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
4059 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
4060 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
4061
4062 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4063 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
4064
4065 /* The value of symbols of type N_SO and N_FUN maybe null when
4066 it shouldn't be. */
4067 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
4068
4069 /* Handles single stepping of atomic sequences. */
4070 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
4071
4072 /* Not sure on this. FIXMEmgo */
4073 set_gdbarch_frame_args_skip (gdbarch, 8);
4074
4075 /* Helpers for function argument information. */
4076 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
4077
4078 /* Trampoline. */
4079 set_gdbarch_in_solib_return_trampoline
4080 (gdbarch, rs6000_in_solib_return_trampoline);
4081 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
4082
4083 /* Hook in the DWARF CFI frame unwinder. */
4084 dwarf2_append_unwinders (gdbarch);
4085 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
4086
4087 /* Frame handling. */
4088 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
4089
4090 /* Setup displaced stepping. */
4091 set_gdbarch_displaced_step_copy_insn (gdbarch,
4092 simple_displaced_step_copy_insn);
4093 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
4094 ppc_displaced_step_hw_singlestep);
4095 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
4096 set_gdbarch_displaced_step_free_closure (gdbarch,
4097 simple_displaced_step_free_closure);
4098 set_gdbarch_displaced_step_location (gdbarch,
4099 displaced_step_at_entry_point);
4100
4101 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
4102
4103 /* Hook in ABI-specific overrides, if they have been registered. */
4104 info.target_desc = tdesc;
4105 info.tdep_info = (void *) tdesc_data;
4106 gdbarch_init_osabi (info, gdbarch);
4107
4108 switch (info.osabi)
4109 {
4110 case GDB_OSABI_LINUX:
4111 case GDB_OSABI_NETBSD_AOUT:
4112 case GDB_OSABI_NETBSD_ELF:
4113 case GDB_OSABI_UNKNOWN:
4114 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4115 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4116 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4117 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4118 break;
4119 default:
4120 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
4121
4122 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4123 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4124 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4125 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4126 }
4127
4128 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
4129 set_tdesc_pseudo_register_reggroup_p (gdbarch,
4130 rs6000_pseudo_register_reggroup_p);
4131 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
4132
4133 /* Override the normal target description method to make the SPE upper
4134 halves anonymous. */
4135 set_gdbarch_register_name (gdbarch, rs6000_register_name);
4136
4137 /* Choose register numbers for all supported pseudo-registers. */
4138 tdep->ppc_ev0_regnum = -1;
4139 tdep->ppc_dl0_regnum = -1;
4140 tdep->ppc_vsr0_regnum = -1;
4141 tdep->ppc_efpr0_regnum = -1;
4142
4143 cur_reg = gdbarch_num_regs (gdbarch);
4144
4145 if (have_spe)
4146 {
4147 tdep->ppc_ev0_regnum = cur_reg;
4148 cur_reg += 32;
4149 }
4150 if (have_dfp)
4151 {
4152 tdep->ppc_dl0_regnum = cur_reg;
4153 cur_reg += 16;
4154 }
4155 if (have_vsx)
4156 {
4157 tdep->ppc_vsr0_regnum = cur_reg;
4158 cur_reg += 64;
4159 tdep->ppc_efpr0_regnum = cur_reg;
4160 cur_reg += 32;
4161 }
4162
4163 gdb_assert (gdbarch_num_regs (gdbarch)
4164 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
4165
4166 /* Register the ravenscar_arch_ops. */
4167 if (mach == bfd_mach_ppc_e500)
4168 register_e500_ravenscar_ops (gdbarch);
4169 else
4170 register_ppc_ravenscar_ops (gdbarch);
4171
4172 return gdbarch;
4173 }
4174
4175 static void
4176 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4177 {
4178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4179
4180 if (tdep == NULL)
4181 return;
4182
4183 /* FIXME: Dump gdbarch_tdep. */
4184 }
4185
4186 /* PowerPC-specific commands. */
4187
4188 static void
4189 set_powerpc_command (char *args, int from_tty)
4190 {
4191 printf_unfiltered (_("\
4192 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
4193 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
4194 }
4195
4196 static void
4197 show_powerpc_command (char *args, int from_tty)
4198 {
4199 cmd_show_list (showpowerpccmdlist, from_tty, "");
4200 }
4201
4202 static void
4203 powerpc_set_soft_float (char *args, int from_tty,
4204 struct cmd_list_element *c)
4205 {
4206 struct gdbarch_info info;
4207
4208 /* Update the architecture. */
4209 gdbarch_info_init (&info);
4210 if (!gdbarch_update_p (info))
4211 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4212 }
4213
4214 static void
4215 powerpc_set_vector_abi (char *args, int from_tty,
4216 struct cmd_list_element *c)
4217 {
4218 struct gdbarch_info info;
4219 enum powerpc_vector_abi vector_abi;
4220
4221 for (vector_abi = POWERPC_VEC_AUTO;
4222 vector_abi != POWERPC_VEC_LAST;
4223 vector_abi++)
4224 if (strcmp (powerpc_vector_abi_string,
4225 powerpc_vector_strings[vector_abi]) == 0)
4226 {
4227 powerpc_vector_abi_global = vector_abi;
4228 break;
4229 }
4230
4231 if (vector_abi == POWERPC_VEC_LAST)
4232 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
4233 powerpc_vector_abi_string);
4234
4235 /* Update the architecture. */
4236 gdbarch_info_init (&info);
4237 if (!gdbarch_update_p (info))
4238 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4239 }
4240
4241 /* Show the current setting of the exact watchpoints flag. */
4242
4243 static void
4244 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
4245 struct cmd_list_element *c,
4246 const char *value)
4247 {
4248 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
4249 }
4250
4251 /* Read a PPC instruction from memory. */
4252
4253 static unsigned int
4254 read_insn (struct frame_info *frame, CORE_ADDR pc)
4255 {
4256 struct gdbarch *gdbarch = get_frame_arch (frame);
4257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4258
4259 return read_memory_unsigned_integer (pc, 4, byte_order);
4260 }
4261
4262 /* Return non-zero if the instructions at PC match the series
4263 described in PATTERN, or zero otherwise. PATTERN is an array of
4264 'struct ppc_insn_pattern' objects, terminated by an entry whose
4265 mask is zero.
4266
4267 When the match is successful, fill INSN[i] with what PATTERN[i]
4268 matched. If PATTERN[i] is optional, and the instruction wasn't
4269 present, set INSN[i] to 0 (which is not a valid PPC instruction).
4270 INSN should have as many elements as PATTERN. Note that, if
4271 PATTERN contains optional instructions which aren't present in
4272 memory, then INSN will have holes, so INSN[i] isn't necessarily the
4273 i'th instruction in memory. */
4274
4275 int
4276 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
4277 struct ppc_insn_pattern *pattern,
4278 unsigned int *insns)
4279 {
4280 int i;
4281 unsigned int insn;
4282
4283 for (i = 0, insn = 0; pattern[i].mask; i++)
4284 {
4285 if (insn == 0)
4286 insn = read_insn (frame, pc);
4287 insns[i] = 0;
4288 if ((insn & pattern[i].mask) == pattern[i].data)
4289 {
4290 insns[i] = insn;
4291 pc += 4;
4292 insn = 0;
4293 }
4294 else if (!pattern[i].optional)
4295 return 0;
4296 }
4297
4298 return 1;
4299 }
4300
4301 /* Return the 'd' field of the d-form instruction INSN, properly
4302 sign-extended. */
4303
4304 CORE_ADDR
4305 ppc_insn_d_field (unsigned int insn)
4306 {
4307 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
4308 }
4309
4310 /* Return the 'ds' field of the ds-form instruction INSN, with the two
4311 zero bits concatenated at the right, and properly
4312 sign-extended. */
4313
4314 CORE_ADDR
4315 ppc_insn_ds_field (unsigned int insn)
4316 {
4317 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
4318 }
4319
4320 /* Initialization code. */
4321
4322 /* -Wmissing-prototypes */
4323 extern initialize_file_ftype _initialize_rs6000_tdep;
4324
4325 void
4326 _initialize_rs6000_tdep (void)
4327 {
4328 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
4329 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
4330
4331 /* Initialize the standard target descriptions. */
4332 initialize_tdesc_powerpc_32 ();
4333 initialize_tdesc_powerpc_altivec32 ();
4334 initialize_tdesc_powerpc_vsx32 ();
4335 initialize_tdesc_powerpc_403 ();
4336 initialize_tdesc_powerpc_403gc ();
4337 initialize_tdesc_powerpc_405 ();
4338 initialize_tdesc_powerpc_505 ();
4339 initialize_tdesc_powerpc_601 ();
4340 initialize_tdesc_powerpc_602 ();
4341 initialize_tdesc_powerpc_603 ();
4342 initialize_tdesc_powerpc_604 ();
4343 initialize_tdesc_powerpc_64 ();
4344 initialize_tdesc_powerpc_altivec64 ();
4345 initialize_tdesc_powerpc_vsx64 ();
4346 initialize_tdesc_powerpc_7400 ();
4347 initialize_tdesc_powerpc_750 ();
4348 initialize_tdesc_powerpc_860 ();
4349 initialize_tdesc_powerpc_e500 ();
4350 initialize_tdesc_rs6000 ();
4351
4352 /* Add root prefix command for all "set powerpc"/"show powerpc"
4353 commands. */
4354 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
4355 _("Various PowerPC-specific commands."),
4356 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
4357
4358 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
4359 _("Various PowerPC-specific commands."),
4360 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
4361
4362 /* Add a command to allow the user to force the ABI. */
4363 add_setshow_auto_boolean_cmd ("soft-float", class_support,
4364 &powerpc_soft_float_global,
4365 _("Set whether to use a soft-float ABI."),
4366 _("Show whether to use a soft-float ABI."),
4367 NULL,
4368 powerpc_set_soft_float, NULL,
4369 &setpowerpccmdlist, &showpowerpccmdlist);
4370
4371 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
4372 &powerpc_vector_abi_string,
4373 _("Set the vector ABI."),
4374 _("Show the vector ABI."),
4375 NULL, powerpc_set_vector_abi, NULL,
4376 &setpowerpccmdlist, &showpowerpccmdlist);
4377
4378 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
4379 &target_exact_watchpoints,
4380 _("\
4381 Set whether to use just one debug register for watchpoints on scalars."),
4382 _("\
4383 Show whether to use just one debug register for watchpoints on scalars."),
4384 _("\
4385 If true, GDB will use only one debug register when watching a variable of\n\
4386 scalar type, thus assuming that the variable is accessed through the address\n\
4387 of its first byte."),
4388 NULL, show_powerpc_exact_watchpoints,
4389 &setpowerpccmdlist, &showpowerpccmdlist);
4390 }