]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/s390-tdep.c
* arm-linux-tdep.c (arm_linux_svr4_fetch_link_map_offsets):
[thirdparty/binutils-gdb.git] / gdb / s390-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
7 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "target.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "objfiles.h"
35 #include "floatformat.h"
36 #include "regcache.h"
37 #include "trad-frame.h"
38 #include "frame-base.h"
39 #include "frame-unwind.h"
40 #include "dwarf2-frame.h"
41 #include "reggroups.h"
42 #include "regset.h"
43 #include "value.h"
44 #include "gdb_assert.h"
45 #include "dis-asm.h"
46 #include "solib-svr4.h"
47
48 #include "s390-tdep.h"
49
50
51 /* The tdep structure. */
52
53 struct gdbarch_tdep
54 {
55 /* ABI version. */
56 enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
57
58 /* Core file register sets. */
59 const struct regset *gregset;
60 int sizeof_gregset;
61
62 const struct regset *fpregset;
63 int sizeof_fpregset;
64 };
65
66
67 /* Register information. */
68
69 struct s390_register_info
70 {
71 char *name;
72 struct type **type;
73 };
74
75 static struct s390_register_info s390_register_info[S390_NUM_TOTAL_REGS] =
76 {
77 /* Program Status Word. */
78 { "pswm", &builtin_type_long },
79 { "pswa", &builtin_type_long },
80
81 /* General Purpose Registers. */
82 { "r0", &builtin_type_long },
83 { "r1", &builtin_type_long },
84 { "r2", &builtin_type_long },
85 { "r3", &builtin_type_long },
86 { "r4", &builtin_type_long },
87 { "r5", &builtin_type_long },
88 { "r6", &builtin_type_long },
89 { "r7", &builtin_type_long },
90 { "r8", &builtin_type_long },
91 { "r9", &builtin_type_long },
92 { "r10", &builtin_type_long },
93 { "r11", &builtin_type_long },
94 { "r12", &builtin_type_long },
95 { "r13", &builtin_type_long },
96 { "r14", &builtin_type_long },
97 { "r15", &builtin_type_long },
98
99 /* Access Registers. */
100 { "acr0", &builtin_type_int },
101 { "acr1", &builtin_type_int },
102 { "acr2", &builtin_type_int },
103 { "acr3", &builtin_type_int },
104 { "acr4", &builtin_type_int },
105 { "acr5", &builtin_type_int },
106 { "acr6", &builtin_type_int },
107 { "acr7", &builtin_type_int },
108 { "acr8", &builtin_type_int },
109 { "acr9", &builtin_type_int },
110 { "acr10", &builtin_type_int },
111 { "acr11", &builtin_type_int },
112 { "acr12", &builtin_type_int },
113 { "acr13", &builtin_type_int },
114 { "acr14", &builtin_type_int },
115 { "acr15", &builtin_type_int },
116
117 /* Floating Point Control Word. */
118 { "fpc", &builtin_type_int },
119
120 /* Floating Point Registers. */
121 { "f0", &builtin_type_double },
122 { "f1", &builtin_type_double },
123 { "f2", &builtin_type_double },
124 { "f3", &builtin_type_double },
125 { "f4", &builtin_type_double },
126 { "f5", &builtin_type_double },
127 { "f6", &builtin_type_double },
128 { "f7", &builtin_type_double },
129 { "f8", &builtin_type_double },
130 { "f9", &builtin_type_double },
131 { "f10", &builtin_type_double },
132 { "f11", &builtin_type_double },
133 { "f12", &builtin_type_double },
134 { "f13", &builtin_type_double },
135 { "f14", &builtin_type_double },
136 { "f15", &builtin_type_double },
137
138 /* Pseudo registers. */
139 { "pc", &builtin_type_void_func_ptr },
140 { "cc", &builtin_type_int },
141 };
142
143 /* Return the name of register REGNUM. */
144 static const char *
145 s390_register_name (int regnum)
146 {
147 gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS);
148 return s390_register_info[regnum].name;
149 }
150
151 /* Return the GDB type object for the "standard" data type of data in
152 register REGNUM. */
153 static struct type *
154 s390_register_type (struct gdbarch *gdbarch, int regnum)
155 {
156 gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS);
157 return *s390_register_info[regnum].type;
158 }
159
160 /* DWARF Register Mapping. */
161
162 static int s390_dwarf_regmap[] =
163 {
164 /* General Purpose Registers. */
165 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
166 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
167 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
168 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
169
170 /* Floating Point Registers. */
171 S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
172 S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
173 S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
174 S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
175
176 /* Control Registers (not mapped). */
177 -1, -1, -1, -1, -1, -1, -1, -1,
178 -1, -1, -1, -1, -1, -1, -1, -1,
179
180 /* Access Registers. */
181 S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
182 S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
183 S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
184 S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
185
186 /* Program Status Word. */
187 S390_PSWM_REGNUM,
188 S390_PSWA_REGNUM
189 };
190
191 /* Convert DWARF register number REG to the appropriate register
192 number used by GDB. */
193 static int
194 s390_dwarf_reg_to_regnum (int reg)
195 {
196 int regnum = -1;
197
198 if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
199 regnum = s390_dwarf_regmap[reg];
200
201 if (regnum == -1)
202 warning (_("Unmapped DWARF Register #%d encountered."), reg);
203
204 return regnum;
205 }
206
207 /* Pseudo registers - PC and condition code. */
208
209 static void
210 s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212 {
213 ULONGEST val;
214
215 switch (regnum)
216 {
217 case S390_PC_REGNUM:
218 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
219 store_unsigned_integer (buf, 4, val & 0x7fffffff);
220 break;
221
222 case S390_CC_REGNUM:
223 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
224 store_unsigned_integer (buf, 4, (val >> 12) & 3);
225 break;
226
227 default:
228 internal_error (__FILE__, __LINE__, _("invalid regnum"));
229 }
230 }
231
232 static void
233 s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
234 int regnum, const gdb_byte *buf)
235 {
236 ULONGEST val, psw;
237
238 switch (regnum)
239 {
240 case S390_PC_REGNUM:
241 val = extract_unsigned_integer (buf, 4);
242 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
243 psw = (psw & 0x80000000) | (val & 0x7fffffff);
244 regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, psw);
245 break;
246
247 case S390_CC_REGNUM:
248 val = extract_unsigned_integer (buf, 4);
249 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
250 psw = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
251 regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
252 break;
253
254 default:
255 internal_error (__FILE__, __LINE__, _("invalid regnum"));
256 }
257 }
258
259 static void
260 s390x_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
261 int regnum, gdb_byte *buf)
262 {
263 ULONGEST val;
264
265 switch (regnum)
266 {
267 case S390_PC_REGNUM:
268 regcache_raw_read (regcache, S390_PSWA_REGNUM, buf);
269 break;
270
271 case S390_CC_REGNUM:
272 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
273 store_unsigned_integer (buf, 4, (val >> 44) & 3);
274 break;
275
276 default:
277 internal_error (__FILE__, __LINE__, _("invalid regnum"));
278 }
279 }
280
281 static void
282 s390x_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
283 int regnum, const gdb_byte *buf)
284 {
285 ULONGEST val, psw;
286
287 switch (regnum)
288 {
289 case S390_PC_REGNUM:
290 regcache_raw_write (regcache, S390_PSWA_REGNUM, buf);
291 break;
292
293 case S390_CC_REGNUM:
294 val = extract_unsigned_integer (buf, 4);
295 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
296 psw = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
297 regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
298 break;
299
300 default:
301 internal_error (__FILE__, __LINE__, _("invalid regnum"));
302 }
303 }
304
305 /* 'float' values are stored in the upper half of floating-point
306 registers, even though we are otherwise a big-endian platform. */
307
308 static int
309 s390_convert_register_p (int regno, struct type *type)
310 {
311 return (regno >= S390_F0_REGNUM && regno <= S390_F15_REGNUM)
312 && TYPE_LENGTH (type) < 8;
313 }
314
315 static void
316 s390_register_to_value (struct frame_info *frame, int regnum,
317 struct type *valtype, gdb_byte *out)
318 {
319 gdb_byte in[8];
320 int len = TYPE_LENGTH (valtype);
321 gdb_assert (len < 8);
322
323 get_frame_register (frame, regnum, in);
324 memcpy (out, in, len);
325 }
326
327 static void
328 s390_value_to_register (struct frame_info *frame, int regnum,
329 struct type *valtype, const gdb_byte *in)
330 {
331 gdb_byte out[8];
332 int len = TYPE_LENGTH (valtype);
333 gdb_assert (len < 8);
334
335 memset (out, 0, 8);
336 memcpy (out, in, len);
337 put_frame_register (frame, regnum, out);
338 }
339
340 /* Register groups. */
341
342 static int
343 s390_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
344 struct reggroup *group)
345 {
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347
348 /* Registers displayed via 'info regs'. */
349 if (group == general_reggroup)
350 return (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM)
351 || regnum == S390_PC_REGNUM
352 || regnum == S390_CC_REGNUM;
353
354 /* Registers displayed via 'info float'. */
355 if (group == float_reggroup)
356 return (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM)
357 || regnum == S390_FPC_REGNUM;
358
359 /* Registers that need to be saved/restored in order to
360 push or pop frames. */
361 if (group == save_reggroup || group == restore_reggroup)
362 return regnum != S390_PSWM_REGNUM && regnum != S390_PSWA_REGNUM;
363
364 return default_register_reggroup_p (gdbarch, regnum, group);
365 }
366
367
368 /* Core file register sets. */
369
370 int s390_regmap_gregset[S390_NUM_REGS] =
371 {
372 /* Program Status Word. */
373 0x00, 0x04,
374 /* General Purpose Registers. */
375 0x08, 0x0c, 0x10, 0x14,
376 0x18, 0x1c, 0x20, 0x24,
377 0x28, 0x2c, 0x30, 0x34,
378 0x38, 0x3c, 0x40, 0x44,
379 /* Access Registers. */
380 0x48, 0x4c, 0x50, 0x54,
381 0x58, 0x5c, 0x60, 0x64,
382 0x68, 0x6c, 0x70, 0x74,
383 0x78, 0x7c, 0x80, 0x84,
384 /* Floating Point Control Word. */
385 -1,
386 /* Floating Point Registers. */
387 -1, -1, -1, -1, -1, -1, -1, -1,
388 -1, -1, -1, -1, -1, -1, -1, -1,
389 };
390
391 int s390x_regmap_gregset[S390_NUM_REGS] =
392 {
393 0x00, 0x08,
394 /* General Purpose Registers. */
395 0x10, 0x18, 0x20, 0x28,
396 0x30, 0x38, 0x40, 0x48,
397 0x50, 0x58, 0x60, 0x68,
398 0x70, 0x78, 0x80, 0x88,
399 /* Access Registers. */
400 0x90, 0x94, 0x98, 0x9c,
401 0xa0, 0xa4, 0xa8, 0xac,
402 0xb0, 0xb4, 0xb8, 0xbc,
403 0xc0, 0xc4, 0xc8, 0xcc,
404 /* Floating Point Control Word. */
405 -1,
406 /* Floating Point Registers. */
407 -1, -1, -1, -1, -1, -1, -1, -1,
408 -1, -1, -1, -1, -1, -1, -1, -1,
409 };
410
411 int s390_regmap_fpregset[S390_NUM_REGS] =
412 {
413 /* Program Status Word. */
414 -1, -1,
415 /* General Purpose Registers. */
416 -1, -1, -1, -1, -1, -1, -1, -1,
417 -1, -1, -1, -1, -1, -1, -1, -1,
418 /* Access Registers. */
419 -1, -1, -1, -1, -1, -1, -1, -1,
420 -1, -1, -1, -1, -1, -1, -1, -1,
421 /* Floating Point Control Word. */
422 0x00,
423 /* Floating Point Registers. */
424 0x08, 0x10, 0x18, 0x20,
425 0x28, 0x30, 0x38, 0x40,
426 0x48, 0x50, 0x58, 0x60,
427 0x68, 0x70, 0x78, 0x80,
428 };
429
430 /* Supply register REGNUM from the register set REGSET to register cache
431 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
432 static void
433 s390_supply_regset (const struct regset *regset, struct regcache *regcache,
434 int regnum, const void *regs, size_t len)
435 {
436 const int *offset = regset->descr;
437 int i;
438
439 for (i = 0; i < S390_NUM_REGS; i++)
440 {
441 if ((regnum == i || regnum == -1) && offset[i] != -1)
442 regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
443 }
444 }
445
446 static const struct regset s390_gregset = {
447 s390_regmap_gregset,
448 s390_supply_regset
449 };
450
451 static const struct regset s390x_gregset = {
452 s390x_regmap_gregset,
453 s390_supply_regset
454 };
455
456 static const struct regset s390_fpregset = {
457 s390_regmap_fpregset,
458 s390_supply_regset
459 };
460
461 /* Return the appropriate register set for the core section identified
462 by SECT_NAME and SECT_SIZE. */
463 const struct regset *
464 s390_regset_from_core_section (struct gdbarch *gdbarch,
465 const char *sect_name, size_t sect_size)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
470 return tdep->gregset;
471
472 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
473 return tdep->fpregset;
474
475 return NULL;
476 }
477
478
479 /* Prologue analysis. */
480
481 /* When we analyze a prologue, we're really doing 'abstract
482 interpretation' or 'pseudo-evaluation': running the function's code
483 in simulation, but using conservative approximations of the values
484 it would have when it actually runs. For example, if our function
485 starts with the instruction:
486
487 ahi r1, 42 # add halfword immediate 42 to r1
488
489 we don't know exactly what value will be in r1 after executing this
490 instruction, but we do know it'll be 42 greater than its original
491 value.
492
493 If we then see an instruction like:
494
495 ahi r1, 22 # add halfword immediate 22 to r1
496
497 we still don't know what r1's value is, but again, we can say it is
498 now 64 greater than its original value.
499
500 If the next instruction were:
501
502 lr r2, r1 # set r2 to r1's value
503
504 then we can say that r2's value is now the original value of r1
505 plus 64. And so on.
506
507 Of course, this can only go so far before it gets unreasonable. If
508 we wanted to be able to say anything about the value of r1 after
509 the instruction:
510
511 xr r1, r3 # exclusive-or r1 and r3, place result in r1
512
513 then things would get pretty complex. But remember, we're just
514 doing a conservative approximation; if exclusive-or instructions
515 aren't relevant to prologues, we can just say r1's value is now
516 'unknown'. We can ignore things that are too complex, if that loss
517 of information is acceptable for our application.
518
519 Once you've reached an instruction that you don't know how to
520 simulate, you stop. Now you examine the state of the registers and
521 stack slots you've kept track of. For example:
522
523 - To see how large your stack frame is, just check the value of sp;
524 if it's the original value of sp minus a constant, then that
525 constant is the stack frame's size. If the sp's value has been
526 marked as 'unknown', then that means the prologue has done
527 something too complex for us to track, and we don't know the
528 frame size.
529
530 - To see whether we've saved the SP in the current frame's back
531 chain slot, we just check whether the current value of the back
532 chain stack slot is the original value of the sp.
533
534 Sure, this takes some work. But prologue analyzers aren't
535 quick-and-simple pattern patching to recognize a few fixed prologue
536 forms any more; they're big, hairy functions. Along with inferior
537 function calls, prologue analysis accounts for a substantial
538 portion of the time needed to stabilize a GDB port. So I think
539 it's worthwhile to look for an approach that will be easier to
540 understand and maintain. In the approach used here:
541
542 - It's easier to see that the analyzer is correct: you just see
543 whether the analyzer properly (albiet conservatively) simulates
544 the effect of each instruction.
545
546 - It's easier to extend the analyzer: you can add support for new
547 instructions, and know that you haven't broken anything that
548 wasn't already broken before.
549
550 - It's orthogonal: to gather new information, you don't need to
551 complicate the code for each instruction. As long as your domain
552 of conservative values is already detailed enough to tell you
553 what you need, then all the existing instruction simulations are
554 already gathering the right data for you.
555
556 A 'struct prologue_value' is a conservative approximation of the
557 real value the register or stack slot will have. */
558
559 struct prologue_value {
560
561 /* What sort of value is this? This determines the interpretation
562 of subsequent fields. */
563 enum {
564
565 /* We don't know anything about the value. This is also used for
566 values we could have kept track of, when doing so would have
567 been too complex and we don't want to bother. The bottom of
568 our lattice. */
569 pv_unknown,
570
571 /* A known constant. K is its value. */
572 pv_constant,
573
574 /* The value that register REG originally had *UPON ENTRY TO THE
575 FUNCTION*, plus K. If K is zero, this means, obviously, just
576 the value REG had upon entry to the function. REG is a GDB
577 register number. Before we start interpreting, we initialize
578 every register R to { pv_register, R, 0 }. */
579 pv_register,
580
581 } kind;
582
583 /* The meanings of the following fields depend on 'kind'; see the
584 comments for the specific 'kind' values. */
585 int reg;
586 CORE_ADDR k;
587 };
588
589
590 /* Set V to be unknown. */
591 static void
592 pv_set_to_unknown (struct prologue_value *v)
593 {
594 v->kind = pv_unknown;
595 }
596
597
598 /* Set V to the constant K. */
599 static void
600 pv_set_to_constant (struct prologue_value *v, CORE_ADDR k)
601 {
602 v->kind = pv_constant;
603 v->k = k;
604 }
605
606
607 /* Set V to the original value of register REG, plus K. */
608 static void
609 pv_set_to_register (struct prologue_value *v, int reg, CORE_ADDR k)
610 {
611 v->kind = pv_register;
612 v->reg = reg;
613 v->k = k;
614 }
615
616
617 /* If one of *A and *B is a constant, and the other isn't, swap the
618 pointers as necessary to ensure that *B points to the constant.
619 This can reduce the number of cases we need to analyze in the
620 functions below. */
621 static void
622 pv_constant_last (struct prologue_value **a,
623 struct prologue_value **b)
624 {
625 if ((*a)->kind == pv_constant
626 && (*b)->kind != pv_constant)
627 {
628 struct prologue_value *temp = *a;
629 *a = *b;
630 *b = temp;
631 }
632 }
633
634
635 /* Set SUM to the sum of A and B. SUM, A, and B may point to the same
636 'struct prologue_value' object. */
637 static void
638 pv_add (struct prologue_value *sum,
639 struct prologue_value *a,
640 struct prologue_value *b)
641 {
642 pv_constant_last (&a, &b);
643
644 /* We can handle adding constants to registers, and other constants. */
645 if (b->kind == pv_constant
646 && (a->kind == pv_register
647 || a->kind == pv_constant))
648 {
649 sum->kind = a->kind;
650 sum->reg = a->reg; /* not meaningful if a is pv_constant, but
651 harmless */
652 sum->k = a->k + b->k;
653 }
654
655 /* Anything else we don't know how to add. We don't have a
656 representation for, say, the sum of two registers, or a multiple
657 of a register's value (adding a register to itself). */
658 else
659 sum->kind = pv_unknown;
660 }
661
662
663 /* Add the constant K to V. */
664 static void
665 pv_add_constant (struct prologue_value *v, CORE_ADDR k)
666 {
667 struct prologue_value pv_k;
668
669 /* Rather than thinking of all the cases we can and can't handle,
670 we'll just let pv_add take care of that for us. */
671 pv_set_to_constant (&pv_k, k);
672 pv_add (v, v, &pv_k);
673 }
674
675
676 /* Subtract B from A, and put the result in DIFF.
677
678 This isn't quite the same as negating B and adding it to A, since
679 we don't have a representation for the negation of anything but a
680 constant. For example, we can't negate { pv_register, R1, 10 },
681 but we do know that { pv_register, R1, 10 } minus { pv_register,
682 R1, 5 } is { pv_constant, <ignored>, 5 }.
683
684 This means, for example, that we can subtract two stack addresses;
685 they're both relative to the original SP. Since the frame pointer
686 is set based on the SP, its value will be the original SP plus some
687 constant (probably zero), so we can use its value just fine. */
688 static void
689 pv_subtract (struct prologue_value *diff,
690 struct prologue_value *a,
691 struct prologue_value *b)
692 {
693 pv_constant_last (&a, &b);
694
695 /* We can subtract a constant from another constant, or from a
696 register. */
697 if (b->kind == pv_constant
698 && (a->kind == pv_register
699 || a->kind == pv_constant))
700 {
701 diff->kind = a->kind;
702 diff->reg = a->reg; /* not always meaningful, but harmless */
703 diff->k = a->k - b->k;
704 }
705
706 /* We can subtract a register from itself, yielding a constant. */
707 else if (a->kind == pv_register
708 && b->kind == pv_register
709 && a->reg == b->reg)
710 {
711 diff->kind = pv_constant;
712 diff->k = a->k - b->k;
713 }
714
715 /* We don't know how to subtract anything else. */
716 else
717 diff->kind = pv_unknown;
718 }
719
720
721 /* Set AND to the logical and of A and B. */
722 static void
723 pv_logical_and (struct prologue_value *and,
724 struct prologue_value *a,
725 struct prologue_value *b)
726 {
727 pv_constant_last (&a, &b);
728
729 /* We can 'and' two constants. */
730 if (a->kind == pv_constant
731 && b->kind == pv_constant)
732 {
733 and->kind = pv_constant;
734 and->k = a->k & b->k;
735 }
736
737 /* We can 'and' anything with the constant zero. */
738 else if (b->kind == pv_constant
739 && b->k == 0)
740 {
741 and->kind = pv_constant;
742 and->k = 0;
743 }
744
745 /* We can 'and' anything with ~0. */
746 else if (b->kind == pv_constant
747 && b->k == ~ (CORE_ADDR) 0)
748 *and = *a;
749
750 /* We can 'and' a register with itself. */
751 else if (a->kind == pv_register
752 && b->kind == pv_register
753 && a->reg == b->reg
754 && a->k == b->k)
755 *and = *a;
756
757 /* Otherwise, we don't know. */
758 else
759 pv_set_to_unknown (and);
760 }
761
762
763 /* Return non-zero iff A and B are identical expressions.
764
765 This is not the same as asking if the two values are equal; the
766 result of such a comparison would have to be a pv_boolean, and
767 asking whether two 'unknown' values were equal would give you
768 pv_maybe. Same for comparing, say, { pv_register, R1, 0 } and {
769 pv_register, R2, 0}. Instead, this is asking whether the two
770 representations are the same. */
771 static int
772 pv_is_identical (struct prologue_value *a,
773 struct prologue_value *b)
774 {
775 if (a->kind != b->kind)
776 return 0;
777
778 switch (a->kind)
779 {
780 case pv_unknown:
781 return 1;
782 case pv_constant:
783 return (a->k == b->k);
784 case pv_register:
785 return (a->reg == b->reg && a->k == b->k);
786 default:
787 gdb_assert (0);
788 }
789 }
790
791
792 /* Return non-zero if A is the original value of register number R
793 plus K, zero otherwise. */
794 static int
795 pv_is_register (struct prologue_value *a, int r, CORE_ADDR k)
796 {
797 return (a->kind == pv_register
798 && a->reg == r
799 && a->k == k);
800 }
801
802
803 /* Decoding S/390 instructions. */
804
805 /* Named opcode values for the S/390 instructions we recognize. Some
806 instructions have their opcode split across two fields; those are the
807 op1_* and op2_* enums. */
808 enum
809 {
810 op1_lhi = 0xa7, op2_lhi = 0x08,
811 op1_lghi = 0xa7, op2_lghi = 0x09,
812 op1_lgfi = 0xc0, op2_lgfi = 0x01,
813 op_lr = 0x18,
814 op_lgr = 0xb904,
815 op_l = 0x58,
816 op1_ly = 0xe3, op2_ly = 0x58,
817 op1_lg = 0xe3, op2_lg = 0x04,
818 op_lm = 0x98,
819 op1_lmy = 0xeb, op2_lmy = 0x98,
820 op1_lmg = 0xeb, op2_lmg = 0x04,
821 op_st = 0x50,
822 op1_sty = 0xe3, op2_sty = 0x50,
823 op1_stg = 0xe3, op2_stg = 0x24,
824 op_std = 0x60,
825 op_stm = 0x90,
826 op1_stmy = 0xeb, op2_stmy = 0x90,
827 op1_stmg = 0xeb, op2_stmg = 0x24,
828 op1_aghi = 0xa7, op2_aghi = 0x0b,
829 op1_ahi = 0xa7, op2_ahi = 0x0a,
830 op1_agfi = 0xc2, op2_agfi = 0x08,
831 op1_afi = 0xc2, op2_afi = 0x09,
832 op1_algfi= 0xc2, op2_algfi= 0x0a,
833 op1_alfi = 0xc2, op2_alfi = 0x0b,
834 op_ar = 0x1a,
835 op_agr = 0xb908,
836 op_a = 0x5a,
837 op1_ay = 0xe3, op2_ay = 0x5a,
838 op1_ag = 0xe3, op2_ag = 0x08,
839 op1_slgfi= 0xc2, op2_slgfi= 0x04,
840 op1_slfi = 0xc2, op2_slfi = 0x05,
841 op_sr = 0x1b,
842 op_sgr = 0xb909,
843 op_s = 0x5b,
844 op1_sy = 0xe3, op2_sy = 0x5b,
845 op1_sg = 0xe3, op2_sg = 0x09,
846 op_nr = 0x14,
847 op_ngr = 0xb980,
848 op_la = 0x41,
849 op1_lay = 0xe3, op2_lay = 0x71,
850 op1_larl = 0xc0, op2_larl = 0x00,
851 op_basr = 0x0d,
852 op_bas = 0x4d,
853 op_bcr = 0x07,
854 op_bc = 0x0d,
855 op1_bras = 0xa7, op2_bras = 0x05,
856 op1_brasl= 0xc0, op2_brasl= 0x05,
857 op1_brc = 0xa7, op2_brc = 0x04,
858 op1_brcl = 0xc0, op2_brcl = 0x04,
859 };
860
861
862 /* Read a single instruction from address AT. */
863
864 #define S390_MAX_INSTR_SIZE 6
865 static int
866 s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
867 {
868 static int s390_instrlen[] = { 2, 4, 4, 6 };
869 int instrlen;
870
871 if (deprecated_read_memory_nobpt (at, &instr[0], 2))
872 return -1;
873 instrlen = s390_instrlen[instr[0] >> 6];
874 if (instrlen > 2)
875 {
876 if (deprecated_read_memory_nobpt (at + 2, &instr[2], instrlen - 2))
877 return -1;
878 }
879 return instrlen;
880 }
881
882
883 /* The functions below are for recognizing and decoding S/390
884 instructions of various formats. Each of them checks whether INSN
885 is an instruction of the given format, with the specified opcodes.
886 If it is, it sets the remaining arguments to the values of the
887 instruction's fields, and returns a non-zero value; otherwise, it
888 returns zero.
889
890 These functions' arguments appear in the order they appear in the
891 instruction, not in the machine-language form. So, opcodes always
892 come first, even though they're sometimes scattered around the
893 instructions. And displacements appear before base and extension
894 registers, as they do in the assembly syntax, not at the end, as
895 they do in the machine language. */
896 static int
897 is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
898 {
899 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
900 {
901 *r1 = (insn[1] >> 4) & 0xf;
902 /* i2 is a 16-bit signed quantity. */
903 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
904 return 1;
905 }
906 else
907 return 0;
908 }
909
910
911 static int
912 is_ril (bfd_byte *insn, int op1, int op2,
913 unsigned int *r1, int *i2)
914 {
915 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
916 {
917 *r1 = (insn[1] >> 4) & 0xf;
918 /* i2 is a signed quantity. If the host 'int' is 32 bits long,
919 no sign extension is necessary, but we don't want to assume
920 that. */
921 *i2 = (((insn[2] << 24)
922 | (insn[3] << 16)
923 | (insn[4] << 8)
924 | (insn[5])) ^ 0x80000000) - 0x80000000;
925 return 1;
926 }
927 else
928 return 0;
929 }
930
931
932 static int
933 is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
934 {
935 if (insn[0] == op)
936 {
937 *r1 = (insn[1] >> 4) & 0xf;
938 *r2 = insn[1] & 0xf;
939 return 1;
940 }
941 else
942 return 0;
943 }
944
945
946 static int
947 is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
948 {
949 if (((insn[0] << 8) | insn[1]) == op)
950 {
951 /* Yes, insn[3]. insn[2] is unused in RRE format. */
952 *r1 = (insn[3] >> 4) & 0xf;
953 *r2 = insn[3] & 0xf;
954 return 1;
955 }
956 else
957 return 0;
958 }
959
960
961 static int
962 is_rs (bfd_byte *insn, int op,
963 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
964 {
965 if (insn[0] == op)
966 {
967 *r1 = (insn[1] >> 4) & 0xf;
968 *r3 = insn[1] & 0xf;
969 *b2 = (insn[2] >> 4) & 0xf;
970 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
971 return 1;
972 }
973 else
974 return 0;
975 }
976
977
978 static int
979 is_rsy (bfd_byte *insn, int op1, int op2,
980 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
981 {
982 if (insn[0] == op1
983 && insn[5] == op2)
984 {
985 *r1 = (insn[1] >> 4) & 0xf;
986 *r3 = insn[1] & 0xf;
987 *b2 = (insn[2] >> 4) & 0xf;
988 /* The 'long displacement' is a 20-bit signed integer. */
989 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
990 ^ 0x80000) - 0x80000;
991 return 1;
992 }
993 else
994 return 0;
995 }
996
997
998 static int
999 is_rx (bfd_byte *insn, int op,
1000 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
1001 {
1002 if (insn[0] == op)
1003 {
1004 *r1 = (insn[1] >> 4) & 0xf;
1005 *x2 = insn[1] & 0xf;
1006 *b2 = (insn[2] >> 4) & 0xf;
1007 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
1008 return 1;
1009 }
1010 else
1011 return 0;
1012 }
1013
1014
1015 static int
1016 is_rxy (bfd_byte *insn, int op1, int op2,
1017 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
1018 {
1019 if (insn[0] == op1
1020 && insn[5] == op2)
1021 {
1022 *r1 = (insn[1] >> 4) & 0xf;
1023 *x2 = insn[1] & 0xf;
1024 *b2 = (insn[2] >> 4) & 0xf;
1025 /* The 'long displacement' is a 20-bit signed integer. */
1026 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
1027 ^ 0x80000) - 0x80000;
1028 return 1;
1029 }
1030 else
1031 return 0;
1032 }
1033
1034
1035 /* Set ADDR to the effective address for an X-style instruction, like:
1036
1037 L R1, D2(X2, B2)
1038
1039 Here, X2 and B2 are registers, and D2 is a signed 20-bit
1040 constant; the effective address is the sum of all three. If either
1041 X2 or B2 are zero, then it doesn't contribute to the sum --- this
1042 means that r0 can't be used as either X2 or B2.
1043
1044 GPR is an array of general register values, indexed by GPR number,
1045 not GDB register number. */
1046 static void
1047 compute_x_addr (struct prologue_value *addr,
1048 struct prologue_value *gpr,
1049 int d2, unsigned int x2, unsigned int b2)
1050 {
1051 /* We can't just add stuff directly in addr; it might alias some of
1052 the registers we need to read. */
1053 struct prologue_value result;
1054
1055 pv_set_to_constant (&result, d2);
1056 if (x2)
1057 pv_add (&result, &result, &gpr[x2]);
1058 if (b2)
1059 pv_add (&result, &result, &gpr[b2]);
1060
1061 *addr = result;
1062 }
1063
1064
1065 #define S390_NUM_GPRS 16
1066 #define S390_NUM_FPRS 16
1067
1068 struct s390_prologue_data {
1069
1070 /* The size of a GPR or FPR. */
1071 int gpr_size;
1072 int fpr_size;
1073
1074 /* The general-purpose registers. */
1075 struct prologue_value gpr[S390_NUM_GPRS];
1076
1077 /* The floating-point registers. */
1078 struct prologue_value fpr[S390_NUM_FPRS];
1079
1080 /* The offset relative to the CFA where the incoming GPR N was saved
1081 by the function prologue. 0 if not saved or unknown. */
1082 int gpr_slot[S390_NUM_GPRS];
1083
1084 /* Likewise for FPRs. */
1085 int fpr_slot[S390_NUM_FPRS];
1086
1087 /* Nonzero if the backchain was saved. This is assumed to be the
1088 case when the incoming SP is saved at the current SP location. */
1089 int back_chain_saved_p;
1090 };
1091
1092 /* Do a SIZE-byte store of VALUE to ADDR. */
1093 static void
1094 s390_store (struct prologue_value *addr,
1095 CORE_ADDR size,
1096 struct prologue_value *value,
1097 struct s390_prologue_data *data)
1098 {
1099 struct prologue_value cfa, offset;
1100 int i;
1101
1102 /* Check whether we are storing the backchain. */
1103 pv_subtract (&offset, &data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
1104
1105 if (offset.kind == pv_constant && offset.k == 0)
1106 if (size == data->gpr_size
1107 && pv_is_register (value, S390_SP_REGNUM, 0))
1108 {
1109 data->back_chain_saved_p = 1;
1110 return;
1111 }
1112
1113
1114 /* Check whether we are storing a register into the stack. */
1115 pv_set_to_register (&cfa, S390_SP_REGNUM, 16 * data->gpr_size + 32);
1116 pv_subtract (&offset, &cfa, addr);
1117
1118 if (offset.kind == pv_constant
1119 && offset.k < INT_MAX && offset.k > 0
1120 && offset.k % data->gpr_size == 0)
1121 {
1122 /* If we are storing the original value of a register, we want to
1123 record the CFA offset. If the same register is stored multiple
1124 times, the stack slot with the highest address counts. */
1125
1126 for (i = 0; i < S390_NUM_GPRS; i++)
1127 if (size == data->gpr_size
1128 && pv_is_register (value, S390_R0_REGNUM + i, 0))
1129 if (data->gpr_slot[i] == 0
1130 || data->gpr_slot[i] > offset.k)
1131 {
1132 data->gpr_slot[i] = offset.k;
1133 return;
1134 }
1135
1136 for (i = 0; i < S390_NUM_FPRS; i++)
1137 if (size == data->fpr_size
1138 && pv_is_register (value, S390_F0_REGNUM + i, 0))
1139 if (data->fpr_slot[i] == 0
1140 || data->fpr_slot[i] > offset.k)
1141 {
1142 data->fpr_slot[i] = offset.k;
1143 return;
1144 }
1145 }
1146
1147
1148 /* Note: If this is some store we cannot identify, you might think we
1149 should forget our cached values, as any of those might have been hit.
1150
1151 However, we make the assumption that the register save areas are only
1152 ever stored to once in any given function, and we do recognize these
1153 stores. Thus every store we cannot recognize does not hit our data. */
1154 }
1155
1156 /* Do a SIZE-byte load from ADDR into VALUE. */
1157 static void
1158 s390_load (struct prologue_value *addr,
1159 CORE_ADDR size,
1160 struct prologue_value *value,
1161 struct s390_prologue_data *data)
1162 {
1163 struct prologue_value cfa, offset;
1164 int i;
1165
1166 /* If it's a load from an in-line constant pool, then we can
1167 simulate that, under the assumption that the code isn't
1168 going to change between the time the processor actually
1169 executed it creating the current frame, and the time when
1170 we're analyzing the code to unwind past that frame. */
1171 if (addr->kind == pv_constant)
1172 {
1173 struct section_table *secp;
1174 secp = target_section_by_addr (&current_target, addr->k);
1175 if (secp != NULL
1176 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1177 & SEC_READONLY))
1178 {
1179 pv_set_to_constant (value, read_memory_integer (addr->k, size));
1180 return;
1181 }
1182 }
1183
1184 /* Check whether we are accessing one of our save slots. */
1185 pv_set_to_register (&cfa, S390_SP_REGNUM, 16 * data->gpr_size + 32);
1186 pv_subtract (&offset, &cfa, addr);
1187
1188 if (offset.kind == pv_constant
1189 && offset.k < INT_MAX && offset.k > 0)
1190 {
1191 for (i = 0; i < S390_NUM_GPRS; i++)
1192 if (offset.k == data->gpr_slot[i])
1193 {
1194 pv_set_to_register (value, S390_R0_REGNUM + i, 0);
1195 return;
1196 }
1197
1198 for (i = 0; i < S390_NUM_FPRS; i++)
1199 if (offset.k == data->fpr_slot[i])
1200 {
1201 pv_set_to_register (value, S390_F0_REGNUM + i, 0);
1202 return;
1203 }
1204 }
1205
1206 /* Otherwise, we don't know the value. */
1207 pv_set_to_unknown (value);
1208 }
1209
1210
1211 /* Analyze the prologue of the function starting at START_PC,
1212 continuing at most until CURRENT_PC. Initialize DATA to
1213 hold all information we find out about the state of the registers
1214 and stack slots. Return the address of the instruction after
1215 the last one that changed the SP, FP, or back chain; or zero
1216 on error. */
1217 static CORE_ADDR
1218 s390_analyze_prologue (struct gdbarch *gdbarch,
1219 CORE_ADDR start_pc,
1220 CORE_ADDR current_pc,
1221 struct s390_prologue_data *data)
1222 {
1223 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1224
1225 /* Our return value:
1226 The address of the instruction after the last one that changed
1227 the SP, FP, or back chain; zero if we got an error trying to
1228 read memory. */
1229 CORE_ADDR result = start_pc;
1230
1231 /* The current PC for our abstract interpretation. */
1232 CORE_ADDR pc;
1233
1234 /* The address of the next instruction after that. */
1235 CORE_ADDR next_pc;
1236
1237 /* Set up everything's initial value. */
1238 {
1239 int i;
1240
1241 /* For the purpose of prologue tracking, we consider the GPR size to
1242 be equal to the ABI word size, even if it is actually larger
1243 (i.e. when running a 32-bit binary under a 64-bit kernel). */
1244 data->gpr_size = word_size;
1245 data->fpr_size = 8;
1246
1247 for (i = 0; i < S390_NUM_GPRS; i++)
1248 pv_set_to_register (&data->gpr[i], S390_R0_REGNUM + i, 0);
1249
1250 for (i = 0; i < S390_NUM_FPRS; i++)
1251 pv_set_to_register (&data->fpr[i], S390_F0_REGNUM + i, 0);
1252
1253 for (i = 0; i < S390_NUM_GPRS; i++)
1254 data->gpr_slot[i] = 0;
1255
1256 for (i = 0; i < S390_NUM_FPRS; i++)
1257 data->fpr_slot[i] = 0;
1258
1259 data->back_chain_saved_p = 0;
1260 }
1261
1262 /* Start interpreting instructions, until we hit the frame's
1263 current PC or the first branch instruction. */
1264 for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
1265 {
1266 bfd_byte insn[S390_MAX_INSTR_SIZE];
1267 int insn_len = s390_readinstruction (insn, pc);
1268
1269 /* Fields for various kinds of instructions. */
1270 unsigned int b2, r1, r2, x2, r3;
1271 int i2, d2;
1272
1273 /* The values of SP and FP before this instruction,
1274 for detecting instructions that change them. */
1275 struct prologue_value pre_insn_sp, pre_insn_fp;
1276 /* Likewise for the flag whether the back chain was saved. */
1277 int pre_insn_back_chain_saved_p;
1278
1279 /* If we got an error trying to read the instruction, report it. */
1280 if (insn_len < 0)
1281 {
1282 result = 0;
1283 break;
1284 }
1285
1286 next_pc = pc + insn_len;
1287
1288 pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1289 pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1290 pre_insn_back_chain_saved_p = data->back_chain_saved_p;
1291
1292 /* LHI r1, i2 --- load halfword immediate */
1293 if (word_size == 4
1294 && is_ri (insn, op1_lhi, op2_lhi, &r1, &i2))
1295 pv_set_to_constant (&data->gpr[r1], i2);
1296
1297 /* LGHI r1, i2 --- load halfword immediate (64-bit version) */
1298 else if (word_size == 8
1299 && is_ri (insn, op1_lghi, op2_lghi, &r1, &i2))
1300 pv_set_to_constant (&data->gpr[r1], i2);
1301
1302 /* LGFI r1, i2 --- load fullword immediate */
1303 else if (is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
1304 pv_set_to_constant (&data->gpr[r1], i2);
1305
1306 /* LR r1, r2 --- load from register */
1307 else if (word_size == 4
1308 && is_rr (insn, op_lr, &r1, &r2))
1309 data->gpr[r1] = data->gpr[r2];
1310
1311 /* LGR r1, r2 --- load from register (64-bit version) */
1312 else if (word_size == 8
1313 && is_rre (insn, op_lgr, &r1, &r2))
1314 data->gpr[r1] = data->gpr[r2];
1315
1316 /* L r1, d2(x2, b2) --- load */
1317 else if (word_size == 4
1318 && is_rx (insn, op_l, &r1, &d2, &x2, &b2))
1319 {
1320 struct prologue_value addr;
1321
1322 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1323 s390_load (&addr, 4, &data->gpr[r1], data);
1324 }
1325
1326 /* LY r1, d2(x2, b2) --- load (long-displacement version) */
1327 else if (word_size == 4
1328 && is_rxy (insn, op1_ly, op2_ly, &r1, &d2, &x2, &b2))
1329 {
1330 struct prologue_value addr;
1331
1332 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1333 s390_load (&addr, 4, &data->gpr[r1], data);
1334 }
1335
1336 /* LG r1, d2(x2, b2) --- load (64-bit version) */
1337 else if (word_size == 8
1338 && is_rxy (insn, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
1339 {
1340 struct prologue_value addr;
1341
1342 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1343 s390_load (&addr, 8, &data->gpr[r1], data);
1344 }
1345
1346 /* ST r1, d2(x2, b2) --- store */
1347 else if (word_size == 4
1348 && is_rx (insn, op_st, &r1, &d2, &x2, &b2))
1349 {
1350 struct prologue_value addr;
1351
1352 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1353 s390_store (&addr, 4, &data->gpr[r1], data);
1354 }
1355
1356 /* STY r1, d2(x2, b2) --- store (long-displacement version) */
1357 else if (word_size == 4
1358 && is_rxy (insn, op1_sty, op2_sty, &r1, &d2, &x2, &b2))
1359 {
1360 struct prologue_value addr;
1361
1362 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1363 s390_store (&addr, 4, &data->gpr[r1], data);
1364 }
1365
1366 /* STG r1, d2(x2, b2) --- store (64-bit version) */
1367 else if (word_size == 8
1368 && is_rxy (insn, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
1369 {
1370 struct prologue_value addr;
1371
1372 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1373 s390_store (&addr, 8, &data->gpr[r1], data);
1374 }
1375
1376 /* STD r1, d2(x2,b2) --- store floating-point register */
1377 else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
1378 {
1379 struct prologue_value addr;
1380
1381 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1382 s390_store (&addr, 8, &data->fpr[r1], data);
1383 }
1384
1385 /* STM r1, r3, d2(b2) --- store multiple */
1386 else if (word_size == 4
1387 && is_rs (insn, op_stm, &r1, &r3, &d2, &b2))
1388 {
1389 int regnum;
1390 int offset;
1391 struct prologue_value addr;
1392
1393 for (regnum = r1, offset = 0;
1394 regnum <= r3;
1395 regnum++, offset += 4)
1396 {
1397 compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
1398 s390_store (&addr, 4, &data->gpr[regnum], data);
1399 }
1400 }
1401
1402 /* STMY r1, r3, d2(b2) --- store multiple (long-displacement version) */
1403 else if (word_size == 4
1404 && is_rsy (insn, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2))
1405 {
1406 int regnum;
1407 int offset;
1408 struct prologue_value addr;
1409
1410 for (regnum = r1, offset = 0;
1411 regnum <= r3;
1412 regnum++, offset += 4)
1413 {
1414 compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
1415 s390_store (&addr, 4, &data->gpr[regnum], data);
1416 }
1417 }
1418
1419 /* STMG r1, r3, d2(b2) --- store multiple (64-bit version) */
1420 else if (word_size == 8
1421 && is_rsy (insn, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
1422 {
1423 int regnum;
1424 int offset;
1425 struct prologue_value addr;
1426
1427 for (regnum = r1, offset = 0;
1428 regnum <= r3;
1429 regnum++, offset += 8)
1430 {
1431 compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
1432 s390_store (&addr, 8, &data->gpr[regnum], data);
1433 }
1434 }
1435
1436 /* AHI r1, i2 --- add halfword immediate */
1437 else if (word_size == 4
1438 && is_ri (insn, op1_ahi, op2_ahi, &r1, &i2))
1439 pv_add_constant (&data->gpr[r1], i2);
1440
1441 /* AGHI r1, i2 --- add halfword immediate (64-bit version) */
1442 else if (word_size == 8
1443 && is_ri (insn, op1_aghi, op2_aghi, &r1, &i2))
1444 pv_add_constant (&data->gpr[r1], i2);
1445
1446 /* AFI r1, i2 --- add fullword immediate */
1447 else if (word_size == 4
1448 && is_ril (insn, op1_afi, op2_afi, &r1, &i2))
1449 pv_add_constant (&data->gpr[r1], i2);
1450
1451 /* AGFI r1, i2 --- add fullword immediate (64-bit version) */
1452 else if (word_size == 8
1453 && is_ril (insn, op1_agfi, op2_agfi, &r1, &i2))
1454 pv_add_constant (&data->gpr[r1], i2);
1455
1456 /* ALFI r1, i2 --- add logical immediate */
1457 else if (word_size == 4
1458 && is_ril (insn, op1_alfi, op2_alfi, &r1, &i2))
1459 pv_add_constant (&data->gpr[r1], (CORE_ADDR)i2 & 0xffffffff);
1460
1461 /* ALGFI r1, i2 --- add logical immediate (64-bit version) */
1462 else if (word_size == 8
1463 && is_ril (insn, op1_algfi, op2_algfi, &r1, &i2))
1464 pv_add_constant (&data->gpr[r1], (CORE_ADDR)i2 & 0xffffffff);
1465
1466 /* AR r1, r2 -- add register */
1467 else if (word_size == 4
1468 && is_rr (insn, op_ar, &r1, &r2))
1469 pv_add (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
1470
1471 /* AGR r1, r2 -- add register (64-bit version) */
1472 else if (word_size == 8
1473 && is_rre (insn, op_agr, &r1, &r2))
1474 pv_add (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
1475
1476 /* A r1, d2(x2, b2) -- add */
1477 else if (word_size == 4
1478 && is_rx (insn, op_a, &r1, &d2, &x2, &b2))
1479 {
1480 struct prologue_value addr;
1481 struct prologue_value value;
1482
1483 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1484 s390_load (&addr, 4, &value, data);
1485
1486 pv_add (&data->gpr[r1], &data->gpr[r1], &value);
1487 }
1488
1489 /* AY r1, d2(x2, b2) -- add (long-displacement version) */
1490 else if (word_size == 4
1491 && is_rxy (insn, op1_ay, op2_ay, &r1, &d2, &x2, &b2))
1492 {
1493 struct prologue_value addr;
1494 struct prologue_value value;
1495
1496 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1497 s390_load (&addr, 4, &value, data);
1498
1499 pv_add (&data->gpr[r1], &data->gpr[r1], &value);
1500 }
1501
1502 /* AG r1, d2(x2, b2) -- add (64-bit version) */
1503 else if (word_size == 8
1504 && is_rxy (insn, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
1505 {
1506 struct prologue_value addr;
1507 struct prologue_value value;
1508
1509 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1510 s390_load (&addr, 8, &value, data);
1511
1512 pv_add (&data->gpr[r1], &data->gpr[r1], &value);
1513 }
1514
1515 /* SLFI r1, i2 --- subtract logical immediate */
1516 else if (word_size == 4
1517 && is_ril (insn, op1_slfi, op2_slfi, &r1, &i2))
1518 pv_add_constant (&data->gpr[r1], -((CORE_ADDR)i2 & 0xffffffff));
1519
1520 /* SLGFI r1, i2 --- subtract logical immediate (64-bit version) */
1521 else if (word_size == 8
1522 && is_ril (insn, op1_slgfi, op2_slgfi, &r1, &i2))
1523 pv_add_constant (&data->gpr[r1], -((CORE_ADDR)i2 & 0xffffffff));
1524
1525 /* SR r1, r2 -- subtract register */
1526 else if (word_size == 4
1527 && is_rr (insn, op_sr, &r1, &r2))
1528 pv_subtract (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
1529
1530 /* SGR r1, r2 -- subtract register (64-bit version) */
1531 else if (word_size == 8
1532 && is_rre (insn, op_sgr, &r1, &r2))
1533 pv_subtract (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
1534
1535 /* S r1, d2(x2, b2) -- subtract */
1536 else if (word_size == 4
1537 && is_rx (insn, op_s, &r1, &d2, &x2, &b2))
1538 {
1539 struct prologue_value addr;
1540 struct prologue_value value;
1541
1542 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1543 s390_load (&addr, 4, &value, data);
1544
1545 pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
1546 }
1547
1548 /* SY r1, d2(x2, b2) -- subtract (long-displacement version) */
1549 else if (word_size == 4
1550 && is_rxy (insn, op1_sy, op2_sy, &r1, &d2, &x2, &b2))
1551 {
1552 struct prologue_value addr;
1553 struct prologue_value value;
1554
1555 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1556 s390_load (&addr, 4, &value, data);
1557
1558 pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
1559 }
1560
1561 /* SG r1, d2(x2, b2) -- subtract (64-bit version) */
1562 else if (word_size == 8
1563 && is_rxy (insn, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
1564 {
1565 struct prologue_value addr;
1566 struct prologue_value value;
1567
1568 compute_x_addr (&addr, data->gpr, d2, x2, b2);
1569 s390_load (&addr, 8, &value, data);
1570
1571 pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
1572 }
1573
1574 /* NR r1, r2 --- logical and */
1575 else if (word_size == 4
1576 && is_rr (insn, op_nr, &r1, &r2))
1577 pv_logical_and (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
1578
1579 /* NGR r1, r2 >--- logical and (64-bit version) */
1580 else if (word_size == 8
1581 && is_rre (insn, op_ngr, &r1, &r2))
1582 pv_logical_and (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
1583
1584 /* LA r1, d2(x2, b2) --- load address */
1585 else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2))
1586 compute_x_addr (&data->gpr[r1], data->gpr, d2, x2, b2);
1587
1588 /* LAY r1, d2(x2, b2) --- load address (long-displacement version) */
1589 else if (is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
1590 compute_x_addr (&data->gpr[r1], data->gpr, d2, x2, b2);
1591
1592 /* LARL r1, i2 --- load address relative long */
1593 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1594 pv_set_to_constant (&data->gpr[r1], pc + i2 * 2);
1595
1596 /* BASR r1, 0 --- branch and save
1597 Since r2 is zero, this saves the PC in r1, but doesn't branch. */
1598 else if (is_rr (insn, op_basr, &r1, &r2)
1599 && r2 == 0)
1600 pv_set_to_constant (&data->gpr[r1], next_pc);
1601
1602 /* BRAS r1, i2 --- branch relative and save */
1603 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
1604 {
1605 pv_set_to_constant (&data->gpr[r1], next_pc);
1606 next_pc = pc + i2 * 2;
1607
1608 /* We'd better not interpret any backward branches. We'll
1609 never terminate. */
1610 if (next_pc <= pc)
1611 break;
1612 }
1613
1614 /* Terminate search when hitting any other branch instruction. */
1615 else if (is_rr (insn, op_basr, &r1, &r2)
1616 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
1617 || is_rr (insn, op_bcr, &r1, &r2)
1618 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1619 || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1620 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1621 || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
1622 break;
1623
1624 else
1625 /* An instruction we don't know how to simulate. The only
1626 safe thing to do would be to set every value we're tracking
1627 to 'unknown'. Instead, we'll be optimistic: we assume that
1628 we *can* interpret every instruction that the compiler uses
1629 to manipulate any of the data we're interested in here --
1630 then we can just ignore anything else. */
1631 ;
1632
1633 /* Record the address after the last instruction that changed
1634 the FP, SP, or backlink. Ignore instructions that changed
1635 them back to their original values --- those are probably
1636 restore instructions. (The back chain is never restored,
1637 just popped.) */
1638 {
1639 struct prologue_value *sp = &data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1640 struct prologue_value *fp = &data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1641
1642 if ((! pv_is_identical (&pre_insn_sp, sp)
1643 && ! pv_is_register (sp, S390_SP_REGNUM, 0))
1644 || (! pv_is_identical (&pre_insn_fp, fp)
1645 && ! pv_is_register (fp, S390_FRAME_REGNUM, 0))
1646 || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
1647 result = next_pc;
1648 }
1649 }
1650
1651 return result;
1652 }
1653
1654 /* Advance PC across any function entry prologue instructions to reach
1655 some "real" code. */
1656 static CORE_ADDR
1657 s390_skip_prologue (CORE_ADDR pc)
1658 {
1659 struct s390_prologue_data data;
1660 CORE_ADDR skip_pc;
1661 skip_pc = s390_analyze_prologue (current_gdbarch, pc, (CORE_ADDR)-1, &data);
1662 return skip_pc ? skip_pc : pc;
1663 }
1664
1665 /* Return true if we are in the functin's epilogue, i.e. after the
1666 instruction that destroyed the function's stack frame. */
1667 static int
1668 s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1669 {
1670 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1671
1672 /* In frameless functions, there's not frame to destroy and thus
1673 we don't care about the epilogue.
1674
1675 In functions with frame, the epilogue sequence is a pair of
1676 a LM-type instruction that restores (amongst others) the
1677 return register %r14 and the stack pointer %r15, followed
1678 by a branch 'br %r14' --or equivalent-- that effects the
1679 actual return.
1680
1681 In that situation, this function needs to return 'true' in
1682 exactly one case: when pc points to that branch instruction.
1683
1684 Thus we try to disassemble the one instructions immediately
1685 preceeding pc and check whether it is an LM-type instruction
1686 modifying the stack pointer.
1687
1688 Note that disassembling backwards is not reliable, so there
1689 is a slight chance of false positives here ... */
1690
1691 bfd_byte insn[6];
1692 unsigned int r1, r3, b2;
1693 int d2;
1694
1695 if (word_size == 4
1696 && !deprecated_read_memory_nobpt (pc - 4, insn, 4)
1697 && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
1698 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1699 return 1;
1700
1701 if (word_size == 4
1702 && !deprecated_read_memory_nobpt (pc - 6, insn, 6)
1703 && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
1704 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1705 return 1;
1706
1707 if (word_size == 8
1708 && !deprecated_read_memory_nobpt (pc - 6, insn, 6)
1709 && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
1710 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1711 return 1;
1712
1713 return 0;
1714 }
1715
1716
1717 /* Normal stack frames. */
1718
1719 struct s390_unwind_cache {
1720
1721 CORE_ADDR func;
1722 CORE_ADDR frame_base;
1723 CORE_ADDR local_base;
1724
1725 struct trad_frame_saved_reg *saved_regs;
1726 };
1727
1728 static int
1729 s390_prologue_frame_unwind_cache (struct frame_info *next_frame,
1730 struct s390_unwind_cache *info)
1731 {
1732 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1733 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1734 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1735 struct s390_prologue_data data;
1736 struct prologue_value *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1737 struct prologue_value *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1738 int i;
1739 CORE_ADDR cfa;
1740 CORE_ADDR func;
1741 CORE_ADDR result;
1742 ULONGEST reg;
1743 CORE_ADDR prev_sp;
1744 int frame_pointer;
1745 int size;
1746
1747 /* Try to find the function start address. If we can't find it, we don't
1748 bother searching for it -- with modern compilers this would be mostly
1749 pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
1750 or else a valid backchain ... */
1751 func = frame_func_unwind (next_frame);
1752 if (!func)
1753 return 0;
1754
1755 /* Try to analyze the prologue. */
1756 result = s390_analyze_prologue (gdbarch, func,
1757 frame_pc_unwind (next_frame), &data);
1758 if (!result)
1759 return 0;
1760
1761 /* If this was successful, we should have found the instruction that
1762 sets the stack pointer register to the previous value of the stack
1763 pointer minus the frame size. */
1764 if (sp->kind != pv_register || sp->reg != S390_SP_REGNUM)
1765 return 0;
1766
1767 /* A frame size of zero at this point can mean either a real
1768 frameless function, or else a failure to find the prologue.
1769 Perform some sanity checks to verify we really have a
1770 frameless function. */
1771 if (sp->k == 0)
1772 {
1773 /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
1774 size zero. This is only possible if the next frame is a sentinel
1775 frame, a dummy frame, or a signal trampoline frame. */
1776 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
1777 needed, instead the code should simpliy rely on its
1778 analysis. */
1779 if (get_frame_type (next_frame) == NORMAL_FRAME)
1780 return 0;
1781
1782 /* If we really have a frameless function, %r14 must be valid
1783 -- in particular, it must point to a different function. */
1784 reg = frame_unwind_register_unsigned (next_frame, S390_RETADDR_REGNUM);
1785 reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
1786 if (get_pc_function_start (reg) == func)
1787 {
1788 /* However, there is one case where it *is* valid for %r14
1789 to point to the same function -- if this is a recursive
1790 call, and we have stopped in the prologue *before* the
1791 stack frame was allocated.
1792
1793 Recognize this case by looking ahead a bit ... */
1794
1795 struct s390_prologue_data data2;
1796 struct prologue_value *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1797
1798 if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
1799 && sp->kind == pv_register
1800 && sp->reg == S390_SP_REGNUM
1801 && sp->k != 0))
1802 return 0;
1803 }
1804 }
1805
1806
1807 /* OK, we've found valid prologue data. */
1808 size = -sp->k;
1809
1810 /* If the frame pointer originally also holds the same value
1811 as the stack pointer, we're probably using it. If it holds
1812 some other value -- even a constant offset -- it is most
1813 likely used as temp register. */
1814 if (pv_is_identical (sp, fp))
1815 frame_pointer = S390_FRAME_REGNUM;
1816 else
1817 frame_pointer = S390_SP_REGNUM;
1818
1819 /* If we've detected a function with stack frame, we'll still have to
1820 treat it as frameless if we're currently within the function epilog
1821 code at a point where the frame pointer has already been restored.
1822 This can only happen in an innermost frame. */
1823 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
1824 instead the code should simpliy rely on its analysis. */
1825 if (size > 0 && get_frame_type (next_frame) != NORMAL_FRAME)
1826 {
1827 /* See the comment in s390_in_function_epilogue_p on why this is
1828 not completely reliable ... */
1829 if (s390_in_function_epilogue_p (gdbarch, frame_pc_unwind (next_frame)))
1830 {
1831 memset (&data, 0, sizeof (data));
1832 size = 0;
1833 frame_pointer = S390_SP_REGNUM;
1834 }
1835 }
1836
1837 /* Once we know the frame register and the frame size, we can unwind
1838 the current value of the frame register from the next frame, and
1839 add back the frame size to arrive that the previous frame's
1840 stack pointer value. */
1841 prev_sp = frame_unwind_register_unsigned (next_frame, frame_pointer) + size;
1842 cfa = prev_sp + 16*word_size + 32;
1843
1844 /* Record the addresses of all register spill slots the prologue parser
1845 has recognized. Consider only registers defined as call-saved by the
1846 ABI; for call-clobbered registers the parser may have recognized
1847 spurious stores. */
1848
1849 for (i = 6; i <= 15; i++)
1850 if (data.gpr_slot[i] != 0)
1851 info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
1852
1853 switch (tdep->abi)
1854 {
1855 case ABI_LINUX_S390:
1856 if (data.fpr_slot[4] != 0)
1857 info->saved_regs[S390_F4_REGNUM].addr = cfa - data.fpr_slot[4];
1858 if (data.fpr_slot[6] != 0)
1859 info->saved_regs[S390_F6_REGNUM].addr = cfa - data.fpr_slot[6];
1860 break;
1861
1862 case ABI_LINUX_ZSERIES:
1863 for (i = 8; i <= 15; i++)
1864 if (data.fpr_slot[i] != 0)
1865 info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
1866 break;
1867 }
1868
1869 /* Function return will set PC to %r14. */
1870 info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
1871
1872 /* In frameless functions, we unwind simply by moving the return
1873 address to the PC. However, if we actually stored to the
1874 save area, use that -- we might only think the function frameless
1875 because we're in the middle of the prologue ... */
1876 if (size == 0
1877 && !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
1878 {
1879 info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
1880 }
1881
1882 /* Another sanity check: unless this is a frameless function,
1883 we should have found spill slots for SP and PC.
1884 If not, we cannot unwind further -- this happens e.g. in
1885 libc's thread_start routine. */
1886 if (size > 0)
1887 {
1888 if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
1889 || !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
1890 prev_sp = -1;
1891 }
1892
1893 /* We use the current value of the frame register as local_base,
1894 and the top of the register save area as frame_base. */
1895 if (prev_sp != -1)
1896 {
1897 info->frame_base = prev_sp + 16*word_size + 32;
1898 info->local_base = prev_sp - size;
1899 }
1900
1901 info->func = func;
1902 return 1;
1903 }
1904
1905 static void
1906 s390_backchain_frame_unwind_cache (struct frame_info *next_frame,
1907 struct s390_unwind_cache *info)
1908 {
1909 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1910 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1911 CORE_ADDR backchain;
1912 ULONGEST reg;
1913 LONGEST sp;
1914
1915 /* Get the backchain. */
1916 reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
1917 backchain = read_memory_unsigned_integer (reg, word_size);
1918
1919 /* A zero backchain terminates the frame chain. As additional
1920 sanity check, let's verify that the spill slot for SP in the
1921 save area pointed to by the backchain in fact links back to
1922 the save area. */
1923 if (backchain != 0
1924 && safe_read_memory_integer (backchain + 15*word_size, word_size, &sp)
1925 && (CORE_ADDR)sp == backchain)
1926 {
1927 /* We don't know which registers were saved, but it will have
1928 to be at least %r14 and %r15. This will allow us to continue
1929 unwinding, but other prev-frame registers may be incorrect ... */
1930 info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
1931 info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
1932
1933 /* Function return will set PC to %r14. */
1934 info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
1935
1936 /* We use the current value of the frame register as local_base,
1937 and the top of the register save area as frame_base. */
1938 info->frame_base = backchain + 16*word_size + 32;
1939 info->local_base = reg;
1940 }
1941
1942 info->func = frame_pc_unwind (next_frame);
1943 }
1944
1945 static struct s390_unwind_cache *
1946 s390_frame_unwind_cache (struct frame_info *next_frame,
1947 void **this_prologue_cache)
1948 {
1949 struct s390_unwind_cache *info;
1950 if (*this_prologue_cache)
1951 return *this_prologue_cache;
1952
1953 info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
1954 *this_prologue_cache = info;
1955 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1956 info->func = -1;
1957 info->frame_base = -1;
1958 info->local_base = -1;
1959
1960 /* Try to use prologue analysis to fill the unwind cache.
1961 If this fails, fall back to reading the stack backchain. */
1962 if (!s390_prologue_frame_unwind_cache (next_frame, info))
1963 s390_backchain_frame_unwind_cache (next_frame, info);
1964
1965 return info;
1966 }
1967
1968 static void
1969 s390_frame_this_id (struct frame_info *next_frame,
1970 void **this_prologue_cache,
1971 struct frame_id *this_id)
1972 {
1973 struct s390_unwind_cache *info
1974 = s390_frame_unwind_cache (next_frame, this_prologue_cache);
1975
1976 if (info->frame_base == -1)
1977 return;
1978
1979 *this_id = frame_id_build (info->frame_base, info->func);
1980 }
1981
1982 static void
1983 s390_frame_prev_register (struct frame_info *next_frame,
1984 void **this_prologue_cache,
1985 int regnum, int *optimizedp,
1986 enum lval_type *lvalp, CORE_ADDR *addrp,
1987 int *realnump, gdb_byte *bufferp)
1988 {
1989 struct s390_unwind_cache *info
1990 = s390_frame_unwind_cache (next_frame, this_prologue_cache);
1991 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1992 optimizedp, lvalp, addrp, realnump, bufferp);
1993 }
1994
1995 static const struct frame_unwind s390_frame_unwind = {
1996 NORMAL_FRAME,
1997 s390_frame_this_id,
1998 s390_frame_prev_register
1999 };
2000
2001 static const struct frame_unwind *
2002 s390_frame_sniffer (struct frame_info *next_frame)
2003 {
2004 return &s390_frame_unwind;
2005 }
2006
2007
2008 /* Code stubs and their stack frames. For things like PLTs and NULL
2009 function calls (where there is no true frame and the return address
2010 is in the RETADDR register). */
2011
2012 struct s390_stub_unwind_cache
2013 {
2014 CORE_ADDR frame_base;
2015 struct trad_frame_saved_reg *saved_regs;
2016 };
2017
2018 static struct s390_stub_unwind_cache *
2019 s390_stub_frame_unwind_cache (struct frame_info *next_frame,
2020 void **this_prologue_cache)
2021 {
2022 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2023 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2024 struct s390_stub_unwind_cache *info;
2025 ULONGEST reg;
2026
2027 if (*this_prologue_cache)
2028 return *this_prologue_cache;
2029
2030 info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
2031 *this_prologue_cache = info;
2032 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2033
2034 /* The return address is in register %r14. */
2035 info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
2036
2037 /* Retrieve stack pointer and determine our frame base. */
2038 reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
2039 info->frame_base = reg + 16*word_size + 32;
2040
2041 return info;
2042 }
2043
2044 static void
2045 s390_stub_frame_this_id (struct frame_info *next_frame,
2046 void **this_prologue_cache,
2047 struct frame_id *this_id)
2048 {
2049 struct s390_stub_unwind_cache *info
2050 = s390_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2051 *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
2052 }
2053
2054 static void
2055 s390_stub_frame_prev_register (struct frame_info *next_frame,
2056 void **this_prologue_cache,
2057 int regnum, int *optimizedp,
2058 enum lval_type *lvalp, CORE_ADDR *addrp,
2059 int *realnump, gdb_byte *bufferp)
2060 {
2061 struct s390_stub_unwind_cache *info
2062 = s390_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2063 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2064 optimizedp, lvalp, addrp, realnump, bufferp);
2065 }
2066
2067 static const struct frame_unwind s390_stub_frame_unwind = {
2068 NORMAL_FRAME,
2069 s390_stub_frame_this_id,
2070 s390_stub_frame_prev_register
2071 };
2072
2073 static const struct frame_unwind *
2074 s390_stub_frame_sniffer (struct frame_info *next_frame)
2075 {
2076 CORE_ADDR pc = frame_pc_unwind (next_frame);
2077 bfd_byte insn[S390_MAX_INSTR_SIZE];
2078
2079 /* If the current PC points to non-readable memory, we assume we
2080 have trapped due to an invalid function pointer call. We handle
2081 the non-existing current function like a PLT stub. */
2082 if (in_plt_section (pc, NULL)
2083 || s390_readinstruction (insn, pc) < 0)
2084 return &s390_stub_frame_unwind;
2085 return NULL;
2086 }
2087
2088
2089 /* Signal trampoline stack frames. */
2090
2091 struct s390_sigtramp_unwind_cache {
2092 CORE_ADDR frame_base;
2093 struct trad_frame_saved_reg *saved_regs;
2094 };
2095
2096 static struct s390_sigtramp_unwind_cache *
2097 s390_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
2098 void **this_prologue_cache)
2099 {
2100 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2101 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2102 struct s390_sigtramp_unwind_cache *info;
2103 ULONGEST this_sp, prev_sp;
2104 CORE_ADDR next_ra, next_cfa, sigreg_ptr;
2105 int i;
2106
2107 if (*this_prologue_cache)
2108 return *this_prologue_cache;
2109
2110 info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
2111 *this_prologue_cache = info;
2112 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2113
2114 this_sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
2115 next_ra = frame_pc_unwind (next_frame);
2116 next_cfa = this_sp + 16*word_size + 32;
2117
2118 /* New-style RT frame:
2119 retcode + alignment (8 bytes)
2120 siginfo (128 bytes)
2121 ucontext (contains sigregs at offset 5 words) */
2122 if (next_ra == next_cfa)
2123 {
2124 sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
2125 }
2126
2127 /* Old-style RT frame and all non-RT frames:
2128 old signal mask (8 bytes)
2129 pointer to sigregs */
2130 else
2131 {
2132 sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8, word_size);
2133 }
2134
2135 /* The sigregs structure looks like this:
2136 long psw_mask;
2137 long psw_addr;
2138 long gprs[16];
2139 int acrs[16];
2140 int fpc;
2141 int __pad;
2142 double fprs[16]; */
2143
2144 /* Let's ignore the PSW mask, it will not be restored anyway. */
2145 sigreg_ptr += word_size;
2146
2147 /* Next comes the PSW address. */
2148 info->saved_regs[S390_PC_REGNUM].addr = sigreg_ptr;
2149 sigreg_ptr += word_size;
2150
2151 /* Then the GPRs. */
2152 for (i = 0; i < 16; i++)
2153 {
2154 info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
2155 sigreg_ptr += word_size;
2156 }
2157
2158 /* Then the ACRs. */
2159 for (i = 0; i < 16; i++)
2160 {
2161 info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
2162 sigreg_ptr += 4;
2163 }
2164
2165 /* The floating-point control word. */
2166 info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
2167 sigreg_ptr += 8;
2168
2169 /* And finally the FPRs. */
2170 for (i = 0; i < 16; i++)
2171 {
2172 info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
2173 sigreg_ptr += 8;
2174 }
2175
2176 /* Restore the previous frame's SP. */
2177 prev_sp = read_memory_unsigned_integer (
2178 info->saved_regs[S390_SP_REGNUM].addr,
2179 word_size);
2180
2181 /* Determine our frame base. */
2182 info->frame_base = prev_sp + 16*word_size + 32;
2183
2184 return info;
2185 }
2186
2187 static void
2188 s390_sigtramp_frame_this_id (struct frame_info *next_frame,
2189 void **this_prologue_cache,
2190 struct frame_id *this_id)
2191 {
2192 struct s390_sigtramp_unwind_cache *info
2193 = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
2194 *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
2195 }
2196
2197 static void
2198 s390_sigtramp_frame_prev_register (struct frame_info *next_frame,
2199 void **this_prologue_cache,
2200 int regnum, int *optimizedp,
2201 enum lval_type *lvalp, CORE_ADDR *addrp,
2202 int *realnump, gdb_byte *bufferp)
2203 {
2204 struct s390_sigtramp_unwind_cache *info
2205 = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
2206 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2207 optimizedp, lvalp, addrp, realnump, bufferp);
2208 }
2209
2210 static const struct frame_unwind s390_sigtramp_frame_unwind = {
2211 SIGTRAMP_FRAME,
2212 s390_sigtramp_frame_this_id,
2213 s390_sigtramp_frame_prev_register
2214 };
2215
2216 static const struct frame_unwind *
2217 s390_sigtramp_frame_sniffer (struct frame_info *next_frame)
2218 {
2219 CORE_ADDR pc = frame_pc_unwind (next_frame);
2220 bfd_byte sigreturn[2];
2221
2222 if (deprecated_read_memory_nobpt (pc, sigreturn, 2))
2223 return NULL;
2224
2225 if (sigreturn[0] != 0x0a /* svc */)
2226 return NULL;
2227
2228 if (sigreturn[1] != 119 /* sigreturn */
2229 && sigreturn[1] != 173 /* rt_sigreturn */)
2230 return NULL;
2231
2232 return &s390_sigtramp_frame_unwind;
2233 }
2234
2235
2236 /* Frame base handling. */
2237
2238 static CORE_ADDR
2239 s390_frame_base_address (struct frame_info *next_frame, void **this_cache)
2240 {
2241 struct s390_unwind_cache *info
2242 = s390_frame_unwind_cache (next_frame, this_cache);
2243 return info->frame_base;
2244 }
2245
2246 static CORE_ADDR
2247 s390_local_base_address (struct frame_info *next_frame, void **this_cache)
2248 {
2249 struct s390_unwind_cache *info
2250 = s390_frame_unwind_cache (next_frame, this_cache);
2251 return info->local_base;
2252 }
2253
2254 static const struct frame_base s390_frame_base = {
2255 &s390_frame_unwind,
2256 s390_frame_base_address,
2257 s390_local_base_address,
2258 s390_local_base_address
2259 };
2260
2261 static CORE_ADDR
2262 s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2263 {
2264 ULONGEST pc;
2265 pc = frame_unwind_register_unsigned (next_frame, S390_PC_REGNUM);
2266 return gdbarch_addr_bits_remove (gdbarch, pc);
2267 }
2268
2269 static CORE_ADDR
2270 s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2271 {
2272 ULONGEST sp;
2273 sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
2274 return gdbarch_addr_bits_remove (gdbarch, sp);
2275 }
2276
2277
2278 /* DWARF-2 frame support. */
2279
2280 static void
2281 s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2282 struct dwarf2_frame_state_reg *reg)
2283 {
2284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2285
2286 switch (tdep->abi)
2287 {
2288 case ABI_LINUX_S390:
2289 /* Call-saved registers. */
2290 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
2291 || regnum == S390_F4_REGNUM
2292 || regnum == S390_F6_REGNUM)
2293 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2294
2295 /* Call-clobbered registers. */
2296 else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
2297 || (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
2298 && regnum != S390_F4_REGNUM && regnum != S390_F6_REGNUM))
2299 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2300
2301 /* The return address column. */
2302 else if (regnum == S390_PC_REGNUM)
2303 reg->how = DWARF2_FRAME_REG_RA;
2304 break;
2305
2306 case ABI_LINUX_ZSERIES:
2307 /* Call-saved registers. */
2308 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
2309 || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM))
2310 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2311
2312 /* Call-clobbered registers. */
2313 else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
2314 || (regnum >= S390_F0_REGNUM && regnum <= S390_F7_REGNUM))
2315 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2316
2317 /* The return address column. */
2318 else if (regnum == S390_PC_REGNUM)
2319 reg->how = DWARF2_FRAME_REG_RA;
2320 break;
2321 }
2322 }
2323
2324
2325 /* Dummy function calls. */
2326
2327 /* Return non-zero if TYPE is an integer-like type, zero otherwise.
2328 "Integer-like" types are those that should be passed the way
2329 integers are: integers, enums, ranges, characters, and booleans. */
2330 static int
2331 is_integer_like (struct type *type)
2332 {
2333 enum type_code code = TYPE_CODE (type);
2334
2335 return (code == TYPE_CODE_INT
2336 || code == TYPE_CODE_ENUM
2337 || code == TYPE_CODE_RANGE
2338 || code == TYPE_CODE_CHAR
2339 || code == TYPE_CODE_BOOL);
2340 }
2341
2342 /* Return non-zero if TYPE is a pointer-like type, zero otherwise.
2343 "Pointer-like" types are those that should be passed the way
2344 pointers are: pointers and references. */
2345 static int
2346 is_pointer_like (struct type *type)
2347 {
2348 enum type_code code = TYPE_CODE (type);
2349
2350 return (code == TYPE_CODE_PTR
2351 || code == TYPE_CODE_REF);
2352 }
2353
2354
2355 /* Return non-zero if TYPE is a `float singleton' or `double
2356 singleton', zero otherwise.
2357
2358 A `T singleton' is a struct type with one member, whose type is
2359 either T or a `T singleton'. So, the following are all float
2360 singletons:
2361
2362 struct { float x };
2363 struct { struct { float x; } x; };
2364 struct { struct { struct { float x; } x; } x; };
2365
2366 ... and so on.
2367
2368 All such structures are passed as if they were floats or doubles,
2369 as the (revised) ABI says. */
2370 static int
2371 is_float_singleton (struct type *type)
2372 {
2373 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2374 {
2375 struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
2376 CHECK_TYPEDEF (singleton_type);
2377
2378 return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
2379 || is_float_singleton (singleton_type));
2380 }
2381
2382 return 0;
2383 }
2384
2385
2386 /* Return non-zero if TYPE is a struct-like type, zero otherwise.
2387 "Struct-like" types are those that should be passed as structs are:
2388 structs and unions.
2389
2390 As an odd quirk, not mentioned in the ABI, GCC passes float and
2391 double singletons as if they were a plain float, double, etc. (The
2392 corresponding union types are handled normally.) So we exclude
2393 those types here. *shrug* */
2394 static int
2395 is_struct_like (struct type *type)
2396 {
2397 enum type_code code = TYPE_CODE (type);
2398
2399 return (code == TYPE_CODE_UNION
2400 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
2401 }
2402
2403
2404 /* Return non-zero if TYPE is a float-like type, zero otherwise.
2405 "Float-like" types are those that should be passed as
2406 floating-point values are.
2407
2408 You'd think this would just be floats, doubles, long doubles, etc.
2409 But as an odd quirk, not mentioned in the ABI, GCC passes float and
2410 double singletons as if they were a plain float, double, etc. (The
2411 corresponding union types are handled normally.) So we include
2412 those types here. *shrug* */
2413 static int
2414 is_float_like (struct type *type)
2415 {
2416 return (TYPE_CODE (type) == TYPE_CODE_FLT
2417 || is_float_singleton (type));
2418 }
2419
2420
2421 static int
2422 is_power_of_two (unsigned int n)
2423 {
2424 return ((n & (n - 1)) == 0);
2425 }
2426
2427 /* Return non-zero if TYPE should be passed as a pointer to a copy,
2428 zero otherwise. */
2429 static int
2430 s390_function_arg_pass_by_reference (struct type *type)
2431 {
2432 unsigned length = TYPE_LENGTH (type);
2433 if (length > 8)
2434 return 1;
2435
2436 /* FIXME: All complex and vector types are also returned by reference. */
2437 return is_struct_like (type) && !is_power_of_two (length);
2438 }
2439
2440 /* Return non-zero if TYPE should be passed in a float register
2441 if possible. */
2442 static int
2443 s390_function_arg_float (struct type *type)
2444 {
2445 unsigned length = TYPE_LENGTH (type);
2446 if (length > 8)
2447 return 0;
2448
2449 return is_float_like (type);
2450 }
2451
2452 /* Return non-zero if TYPE should be passed in an integer register
2453 (or a pair of integer registers) if possible. */
2454 static int
2455 s390_function_arg_integer (struct type *type)
2456 {
2457 unsigned length = TYPE_LENGTH (type);
2458 if (length > 8)
2459 return 0;
2460
2461 return is_integer_like (type)
2462 || is_pointer_like (type)
2463 || (is_struct_like (type) && is_power_of_two (length));
2464 }
2465
2466 /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
2467 word as required for the ABI. */
2468 static LONGEST
2469 extend_simple_arg (struct value *arg)
2470 {
2471 struct type *type = value_type (arg);
2472
2473 /* Even structs get passed in the least significant bits of the
2474 register / memory word. It's not really right to extract them as
2475 an integer, but it does take care of the extension. */
2476 if (TYPE_UNSIGNED (type))
2477 return extract_unsigned_integer (value_contents (arg),
2478 TYPE_LENGTH (type));
2479 else
2480 return extract_signed_integer (value_contents (arg),
2481 TYPE_LENGTH (type));
2482 }
2483
2484
2485 /* Return the alignment required by TYPE. */
2486 static int
2487 alignment_of (struct type *type)
2488 {
2489 int alignment;
2490
2491 if (is_integer_like (type)
2492 || is_pointer_like (type)
2493 || TYPE_CODE (type) == TYPE_CODE_FLT)
2494 alignment = TYPE_LENGTH (type);
2495 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2496 || TYPE_CODE (type) == TYPE_CODE_UNION)
2497 {
2498 int i;
2499
2500 alignment = 1;
2501 for (i = 0; i < TYPE_NFIELDS (type); i++)
2502 {
2503 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
2504
2505 if (field_alignment > alignment)
2506 alignment = field_alignment;
2507 }
2508 }
2509 else
2510 alignment = 1;
2511
2512 /* Check that everything we ever return is a power of two. Lots of
2513 code doesn't want to deal with aligning things to arbitrary
2514 boundaries. */
2515 gdb_assert ((alignment & (alignment - 1)) == 0);
2516
2517 return alignment;
2518 }
2519
2520
2521 /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
2522 place to be passed to a function, as specified by the "GNU/Linux
2523 for S/390 ELF Application Binary Interface Supplement".
2524
2525 SP is the current stack pointer. We must put arguments, links,
2526 padding, etc. whereever they belong, and return the new stack
2527 pointer value.
2528
2529 If STRUCT_RETURN is non-zero, then the function we're calling is
2530 going to return a structure by value; STRUCT_ADDR is the address of
2531 a block we've allocated for it on the stack.
2532
2533 Our caller has taken care of any type promotions needed to satisfy
2534 prototypes or the old K&R argument-passing rules. */
2535 static CORE_ADDR
2536 s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2537 struct regcache *regcache, CORE_ADDR bp_addr,
2538 int nargs, struct value **args, CORE_ADDR sp,
2539 int struct_return, CORE_ADDR struct_addr)
2540 {
2541 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2542 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2543 ULONGEST orig_sp;
2544 int i;
2545
2546 /* If the i'th argument is passed as a reference to a copy, then
2547 copy_addr[i] is the address of the copy we made. */
2548 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
2549
2550 /* Build the reference-to-copy area. */
2551 for (i = 0; i < nargs; i++)
2552 {
2553 struct value *arg = args[i];
2554 struct type *type = value_type (arg);
2555 unsigned length = TYPE_LENGTH (type);
2556
2557 if (s390_function_arg_pass_by_reference (type))
2558 {
2559 sp -= length;
2560 sp = align_down (sp, alignment_of (type));
2561 write_memory (sp, value_contents (arg), length);
2562 copy_addr[i] = sp;
2563 }
2564 }
2565
2566 /* Reserve space for the parameter area. As a conservative
2567 simplification, we assume that everything will be passed on the
2568 stack. Since every argument larger than 8 bytes will be
2569 passed by reference, we use this simple upper bound. */
2570 sp -= nargs * 8;
2571
2572 /* After all that, make sure it's still aligned on an eight-byte
2573 boundary. */
2574 sp = align_down (sp, 8);
2575
2576 /* Finally, place the actual parameters, working from SP towards
2577 higher addresses. The code above is supposed to reserve enough
2578 space for this. */
2579 {
2580 int fr = 0;
2581 int gr = 2;
2582 CORE_ADDR starg = sp;
2583
2584 /* A struct is returned using general register 2. */
2585 if (struct_return)
2586 {
2587 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2588 struct_addr);
2589 gr++;
2590 }
2591
2592 for (i = 0; i < nargs; i++)
2593 {
2594 struct value *arg = args[i];
2595 struct type *type = value_type (arg);
2596 unsigned length = TYPE_LENGTH (type);
2597
2598 if (s390_function_arg_pass_by_reference (type))
2599 {
2600 if (gr <= 6)
2601 {
2602 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2603 copy_addr[i]);
2604 gr++;
2605 }
2606 else
2607 {
2608 write_memory_unsigned_integer (starg, word_size, copy_addr[i]);
2609 starg += word_size;
2610 }
2611 }
2612 else if (s390_function_arg_float (type))
2613 {
2614 /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
2615 the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
2616 if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
2617 {
2618 /* When we store a single-precision value in an FP register,
2619 it occupies the leftmost bits. */
2620 regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
2621 0, length, value_contents (arg));
2622 fr += 2;
2623 }
2624 else
2625 {
2626 /* When we store a single-precision value in a stack slot,
2627 it occupies the rightmost bits. */
2628 starg = align_up (starg + length, word_size);
2629 write_memory (starg - length, value_contents (arg), length);
2630 }
2631 }
2632 else if (s390_function_arg_integer (type) && length <= word_size)
2633 {
2634 if (gr <= 6)
2635 {
2636 /* Integer arguments are always extended to word size. */
2637 regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
2638 extend_simple_arg (arg));
2639 gr++;
2640 }
2641 else
2642 {
2643 /* Integer arguments are always extended to word size. */
2644 write_memory_signed_integer (starg, word_size,
2645 extend_simple_arg (arg));
2646 starg += word_size;
2647 }
2648 }
2649 else if (s390_function_arg_integer (type) && length == 2*word_size)
2650 {
2651 if (gr <= 5)
2652 {
2653 regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
2654 value_contents (arg));
2655 regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
2656 value_contents (arg) + word_size);
2657 gr += 2;
2658 }
2659 else
2660 {
2661 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
2662 in it, then don't go back and use it again later. */
2663 gr = 7;
2664
2665 write_memory (starg, value_contents (arg), length);
2666 starg += length;
2667 }
2668 }
2669 else
2670 internal_error (__FILE__, __LINE__, _("unknown argument type"));
2671 }
2672 }
2673
2674 /* Allocate the standard frame areas: the register save area, the
2675 word reserved for the compiler (which seems kind of meaningless),
2676 and the back chain pointer. */
2677 sp -= 16*word_size + 32;
2678
2679 /* Store return address. */
2680 regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
2681
2682 /* Store updated stack pointer. */
2683 regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
2684
2685 /* We need to return the 'stack part' of the frame ID,
2686 which is actually the top of the register save area. */
2687 return sp + 16*word_size + 32;
2688 }
2689
2690 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
2691 dummy frame. The frame ID's base needs to match the TOS value
2692 returned by push_dummy_call, and the PC match the dummy frame's
2693 breakpoint. */
2694 static struct frame_id
2695 s390_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2696 {
2697 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2698 CORE_ADDR sp = s390_unwind_sp (gdbarch, next_frame);
2699
2700 return frame_id_build (sp + 16*word_size + 32,
2701 frame_pc_unwind (next_frame));
2702 }
2703
2704 static CORE_ADDR
2705 s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2706 {
2707 /* Both the 32- and 64-bit ABI's say that the stack pointer should
2708 always be aligned on an eight-byte boundary. */
2709 return (addr & -8);
2710 }
2711
2712
2713 /* Function return value access. */
2714
2715 static enum return_value_convention
2716 s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
2717 {
2718 int length = TYPE_LENGTH (type);
2719 if (length > 8)
2720 return RETURN_VALUE_STRUCT_CONVENTION;
2721
2722 switch (TYPE_CODE (type))
2723 {
2724 case TYPE_CODE_STRUCT:
2725 case TYPE_CODE_UNION:
2726 case TYPE_CODE_ARRAY:
2727 return RETURN_VALUE_STRUCT_CONVENTION;
2728
2729 default:
2730 return RETURN_VALUE_REGISTER_CONVENTION;
2731 }
2732 }
2733
2734 static enum return_value_convention
2735 s390_return_value (struct gdbarch *gdbarch, struct type *type,
2736 struct regcache *regcache, gdb_byte *out,
2737 const gdb_byte *in)
2738 {
2739 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2740 int length = TYPE_LENGTH (type);
2741 enum return_value_convention rvc =
2742 s390_return_value_convention (gdbarch, type);
2743 if (in)
2744 {
2745 switch (rvc)
2746 {
2747 case RETURN_VALUE_REGISTER_CONVENTION:
2748 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2749 {
2750 /* When we store a single-precision value in an FP register,
2751 it occupies the leftmost bits. */
2752 regcache_cooked_write_part (regcache, S390_F0_REGNUM,
2753 0, length, in);
2754 }
2755 else if (length <= word_size)
2756 {
2757 /* Integer arguments are always extended to word size. */
2758 if (TYPE_UNSIGNED (type))
2759 regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
2760 extract_unsigned_integer (in, length));
2761 else
2762 regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
2763 extract_signed_integer (in, length));
2764 }
2765 else if (length == 2*word_size)
2766 {
2767 regcache_cooked_write (regcache, S390_R2_REGNUM, in);
2768 regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
2769 }
2770 else
2771 internal_error (__FILE__, __LINE__, _("invalid return type"));
2772 break;
2773
2774 case RETURN_VALUE_STRUCT_CONVENTION:
2775 error (_("Cannot set function return value."));
2776 break;
2777 }
2778 }
2779 else if (out)
2780 {
2781 switch (rvc)
2782 {
2783 case RETURN_VALUE_REGISTER_CONVENTION:
2784 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2785 {
2786 /* When we store a single-precision value in an FP register,
2787 it occupies the leftmost bits. */
2788 regcache_cooked_read_part (regcache, S390_F0_REGNUM,
2789 0, length, out);
2790 }
2791 else if (length <= word_size)
2792 {
2793 /* Integer arguments occupy the rightmost bits. */
2794 regcache_cooked_read_part (regcache, S390_R2_REGNUM,
2795 word_size - length, length, out);
2796 }
2797 else if (length == 2*word_size)
2798 {
2799 regcache_cooked_read (regcache, S390_R2_REGNUM, out);
2800 regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
2801 }
2802 else
2803 internal_error (__FILE__, __LINE__, _("invalid return type"));
2804 break;
2805
2806 case RETURN_VALUE_STRUCT_CONVENTION:
2807 error (_("Function return value unknown."));
2808 break;
2809 }
2810 }
2811
2812 return rvc;
2813 }
2814
2815
2816 /* Breakpoints. */
2817
2818 static const gdb_byte *
2819 s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2820 {
2821 static const gdb_byte breakpoint[] = { 0x0, 0x1 };
2822
2823 *lenptr = sizeof (breakpoint);
2824 return breakpoint;
2825 }
2826
2827
2828 /* Address handling. */
2829
2830 static CORE_ADDR
2831 s390_addr_bits_remove (CORE_ADDR addr)
2832 {
2833 return addr & 0x7fffffff;
2834 }
2835
2836 static int
2837 s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
2838 {
2839 if (byte_size == 4)
2840 return TYPE_FLAG_ADDRESS_CLASS_1;
2841 else
2842 return 0;
2843 }
2844
2845 static const char *
2846 s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
2847 {
2848 if (type_flags & TYPE_FLAG_ADDRESS_CLASS_1)
2849 return "mode32";
2850 else
2851 return NULL;
2852 }
2853
2854 static int
2855 s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name,
2856 int *type_flags_ptr)
2857 {
2858 if (strcmp (name, "mode32") == 0)
2859 {
2860 *type_flags_ptr = TYPE_FLAG_ADDRESS_CLASS_1;
2861 return 1;
2862 }
2863 else
2864 return 0;
2865 }
2866
2867 /* Set up gdbarch struct. */
2868
2869 static struct gdbarch *
2870 s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2871 {
2872 struct gdbarch *gdbarch;
2873 struct gdbarch_tdep *tdep;
2874
2875 /* First see if there is already a gdbarch that can satisfy the request. */
2876 arches = gdbarch_list_lookup_by_info (arches, &info);
2877 if (arches != NULL)
2878 return arches->gdbarch;
2879
2880 /* None found: is the request for a s390 architecture? */
2881 if (info.bfd_arch_info->arch != bfd_arch_s390)
2882 return NULL; /* No; then it's not for us. */
2883
2884 /* Yes: create a new gdbarch for the specified machine type. */
2885 tdep = XCALLOC (1, struct gdbarch_tdep);
2886 gdbarch = gdbarch_alloc (&info, tdep);
2887
2888 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
2889 set_gdbarch_char_signed (gdbarch, 0);
2890
2891 /* Amount PC must be decremented by after a breakpoint. This is
2892 often the number of bytes returned by BREAKPOINT_FROM_PC but not
2893 always. */
2894 set_gdbarch_decr_pc_after_break (gdbarch, 2);
2895 /* Stack grows downward. */
2896 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2897 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
2898 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
2899 set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
2900
2901 set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
2902 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
2903 set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
2904 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
2905 set_gdbarch_num_pseudo_regs (gdbarch, S390_NUM_PSEUDO_REGS);
2906 set_gdbarch_register_name (gdbarch, s390_register_name);
2907 set_gdbarch_register_type (gdbarch, s390_register_type);
2908 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
2909 set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
2910 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
2911 set_gdbarch_convert_register_p (gdbarch, s390_convert_register_p);
2912 set_gdbarch_register_to_value (gdbarch, s390_register_to_value);
2913 set_gdbarch_value_to_register (gdbarch, s390_value_to_register);
2914 set_gdbarch_register_reggroup_p (gdbarch, s390_register_reggroup_p);
2915 set_gdbarch_regset_from_core_section (gdbarch,
2916 s390_regset_from_core_section);
2917
2918 /* Inferior function calls. */
2919 set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
2920 set_gdbarch_unwind_dummy_id (gdbarch, s390_unwind_dummy_id);
2921 set_gdbarch_frame_align (gdbarch, s390_frame_align);
2922 set_gdbarch_return_value (gdbarch, s390_return_value);
2923
2924 /* Frame handling. */
2925 dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
2926 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2927 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
2928 frame_unwind_append_sniffer (gdbarch, s390_stub_frame_sniffer);
2929 frame_unwind_append_sniffer (gdbarch, s390_sigtramp_frame_sniffer);
2930 frame_unwind_append_sniffer (gdbarch, s390_frame_sniffer);
2931 frame_base_set_default (gdbarch, &s390_frame_base);
2932 set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
2933 set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
2934
2935 switch (info.bfd_arch_info->mach)
2936 {
2937 case bfd_mach_s390_31:
2938 tdep->abi = ABI_LINUX_S390;
2939
2940 tdep->gregset = &s390_gregset;
2941 tdep->sizeof_gregset = s390_sizeof_gregset;
2942 tdep->fpregset = &s390_fpregset;
2943 tdep->sizeof_fpregset = s390_sizeof_fpregset;
2944
2945 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
2946 set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
2947 set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
2948 set_solib_svr4_fetch_link_map_offsets
2949 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
2950
2951 break;
2952 case bfd_mach_s390_64:
2953 tdep->abi = ABI_LINUX_ZSERIES;
2954
2955 tdep->gregset = &s390x_gregset;
2956 tdep->sizeof_gregset = s390x_sizeof_gregset;
2957 tdep->fpregset = &s390_fpregset;
2958 tdep->sizeof_fpregset = s390_sizeof_fpregset;
2959
2960 set_gdbarch_long_bit (gdbarch, 64);
2961 set_gdbarch_long_long_bit (gdbarch, 64);
2962 set_gdbarch_ptr_bit (gdbarch, 64);
2963 set_gdbarch_pseudo_register_read (gdbarch, s390x_pseudo_register_read);
2964 set_gdbarch_pseudo_register_write (gdbarch, s390x_pseudo_register_write);
2965 set_solib_svr4_fetch_link_map_offsets
2966 (gdbarch, svr4_lp64_fetch_link_map_offsets);
2967 set_gdbarch_address_class_type_flags (gdbarch,
2968 s390_address_class_type_flags);
2969 set_gdbarch_address_class_type_flags_to_name (gdbarch,
2970 s390_address_class_type_flags_to_name);
2971 set_gdbarch_address_class_name_to_type_flags (gdbarch,
2972 s390_address_class_name_to_type_flags);
2973 break;
2974 }
2975
2976 set_gdbarch_print_insn (gdbarch, print_insn_s390);
2977
2978 /* Enable TLS support. */
2979 set_gdbarch_fetch_tls_load_module_address (gdbarch,
2980 svr4_fetch_objfile_link_map);
2981
2982 return gdbarch;
2983 }
2984
2985
2986
2987 extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
2988
2989 void
2990 _initialize_s390_tdep (void)
2991 {
2992
2993 /* Hook us into the gdbarch mechanism. */
2994 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
2995 }