]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sh-tdep.c
Remove cleanup from print_mention_exception
[thirdparty/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "target-float.h"
38 #include "osabi.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "objfiles.h"
42
43 #include "sh-tdep.h"
44
45 #include "elf-bfd.h"
46 #include "solib-svr4.h"
47
48 /* sh flags */
49 #include "elf/sh.h"
50 #include "dwarf2.h"
51 /* registers numbers shared with the simulator. */
52 #include "gdb/sim-sh.h"
53 #include <algorithm>
54
55 /* List of "set sh ..." and "show sh ..." commands. */
56 static struct cmd_list_element *setshcmdlist = NULL;
57 static struct cmd_list_element *showshcmdlist = NULL;
58
59 static const char sh_cc_gcc[] = "gcc";
60 static const char sh_cc_renesas[] = "renesas";
61 static const char *const sh_cc_enum[] = {
62 sh_cc_gcc,
63 sh_cc_renesas,
64 NULL
65 };
66
67 static const char *sh_active_calling_convention = sh_cc_gcc;
68
69 #define SH_NUM_REGS 67
70
71 struct sh_frame_cache
72 {
73 /* Base address. */
74 CORE_ADDR base;
75 LONGEST sp_offset;
76 CORE_ADDR pc;
77
78 /* Flag showing that a frame has been created in the prologue code. */
79 int uses_fp;
80
81 /* Saved registers. */
82 CORE_ADDR saved_regs[SH_NUM_REGS];
83 CORE_ADDR saved_sp;
84 };
85
86 static int
87 sh_is_renesas_calling_convention (struct type *func_type)
88 {
89 int val = 0;
90
91 if (func_type)
92 {
93 func_type = check_typedef (func_type);
94
95 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
96 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
97
98 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
99 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
100 val = 1;
101 }
102
103 if (sh_active_calling_convention == sh_cc_renesas)
104 val = 1;
105
106 return val;
107 }
108
109 static const char *
110 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
111 {
112 static const char *register_names[] = {
113 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
114 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
115 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
116 "", "",
117 "", "", "", "", "", "", "", "",
118 "", "", "", "", "", "", "", "",
119 "", "",
120 "", "", "", "", "", "", "", "",
121 "", "", "", "", "", "", "", "",
122 "", "", "", "", "", "", "", "",
123 };
124 if (reg_nr < 0)
125 return NULL;
126 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
127 return NULL;
128 return register_names[reg_nr];
129 }
130
131 static const char *
132 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
133 {
134 static const char *register_names[] = {
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
138 "", "",
139 "", "", "", "", "", "", "", "",
140 "", "", "", "", "", "", "", "",
141 "ssr", "spc",
142 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
143 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
144 "", "", "", "", "", "", "", "",
145 };
146 if (reg_nr < 0)
147 return NULL;
148 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
149 return NULL;
150 return register_names[reg_nr];
151 }
152
153 static const char *
154 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
155 {
156 static const char *register_names[] = {
157 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
158 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
159 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
160 "fpul", "fpscr",
161 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
162 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
163 "ssr", "spc",
164 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
165 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
166 "", "", "", "", "", "", "", "",
167 };
168 if (reg_nr < 0)
169 return NULL;
170 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
171 return NULL;
172 return register_names[reg_nr];
173 }
174
175 static const char *
176 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
177 {
178 static const char *register_names[] = {
179 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
180 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
181 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
182 "fpul", "fpscr",
183 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
184 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
185 "", "",
186 "", "", "", "", "", "", "", "",
187 "", "", "", "", "", "", "", "",
188 "", "", "", "", "", "", "", "",
189 };
190 if (reg_nr < 0)
191 return NULL;
192 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
193 return NULL;
194 return register_names[reg_nr];
195 }
196
197 static const char *
198 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
199 {
200 static const char *register_names[] = {
201 /* general registers 0-15 */
202 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
203 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
204 /* 16 - 22 */
205 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
206 /* 23, 24 */
207 "fpul", "fpscr",
208 /* floating point registers 25 - 40 */
209 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
210 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
211 /* 41, 42 */
212 "", "",
213 /* 43 - 62. Banked registers. The bank number used is determined by
214 the bank register (63). */
215 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
216 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
217 "machb", "ivnb", "prb", "gbrb", "maclb",
218 /* 63: register bank number, not a real register but used to
219 communicate the register bank currently get/set. This register
220 is hidden to the user, who manipulates it using the pseudo
221 register called "bank" (67). See below. */
222 "",
223 /* 64 - 66 */
224 "ibcr", "ibnr", "tbr",
225 /* 67: register bank number, the user visible pseudo register. */
226 "bank",
227 /* double precision (pseudo) 68 - 75 */
228 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
229 };
230 if (reg_nr < 0)
231 return NULL;
232 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
233 return NULL;
234 return register_names[reg_nr];
235 }
236
237 static const char *
238 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
239 {
240 static const char *register_names[] = {
241 /* general registers 0-15 */
242 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
243 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
244 /* 16 - 22 */
245 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
246 /* 23, 24 */
247 "", "",
248 /* floating point registers 25 - 40 */
249 "", "", "", "", "", "", "", "",
250 "", "", "", "", "", "", "", "",
251 /* 41, 42 */
252 "", "",
253 /* 43 - 62. Banked registers. The bank number used is determined by
254 the bank register (63). */
255 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
256 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
257 "machb", "ivnb", "prb", "gbrb", "maclb",
258 /* 63: register bank number, not a real register but used to
259 communicate the register bank currently get/set. This register
260 is hidden to the user, who manipulates it using the pseudo
261 register called "bank" (67). See below. */
262 "",
263 /* 64 - 66 */
264 "ibcr", "ibnr", "tbr",
265 /* 67: register bank number, the user visible pseudo register. */
266 "bank",
267 /* double precision (pseudo) 68 - 75 */
268 "", "", "", "", "", "", "", "",
269 };
270 if (reg_nr < 0)
271 return NULL;
272 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
273 return NULL;
274 return register_names[reg_nr];
275 }
276
277 static const char *
278 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
279 {
280 static const char *register_names[] = {
281 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
282 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
283 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
284 "", "dsr",
285 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
286 "y0", "y1", "", "", "", "", "", "mod",
287 "", "",
288 "rs", "re", "", "", "", "", "", "",
289 "", "", "", "", "", "", "", "",
290 "", "", "", "", "", "", "", "",
291 };
292 if (reg_nr < 0)
293 return NULL;
294 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
295 return NULL;
296 return register_names[reg_nr];
297 }
298
299 static const char *
300 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
301 {
302 static const char *register_names[] = {
303 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
304 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
305 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
306 "", "dsr",
307 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
308 "y0", "y1", "", "", "", "", "", "mod",
309 "ssr", "spc",
310 "rs", "re", "", "", "", "", "", "",
311 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
312 "", "", "", "", "", "", "", "",
313 "", "", "", "", "", "", "", "",
314 };
315 if (reg_nr < 0)
316 return NULL;
317 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
318 return NULL;
319 return register_names[reg_nr];
320 }
321
322 static const char *
323 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
324 {
325 static const char *register_names[] = {
326 /* general registers 0-15 */
327 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
328 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
329 /* 16 - 22 */
330 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
331 /* 23, 24 */
332 "fpul", "fpscr",
333 /* floating point registers 25 - 40 */
334 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
335 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
336 /* 41, 42 */
337 "ssr", "spc",
338 /* bank 0 43 - 50 */
339 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
340 /* bank 1 51 - 58 */
341 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
342 /* 59 - 66 */
343 "", "", "", "", "", "", "", "",
344 /* pseudo bank register. */
345 "",
346 /* double precision (pseudo) 68 - 75 */
347 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
348 /* vectors (pseudo) 76 - 79 */
349 "fv0", "fv4", "fv8", "fv12",
350 /* FIXME: missing XF */
351 /* FIXME: missing XD */
352 };
353 if (reg_nr < 0)
354 return NULL;
355 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
356 return NULL;
357 return register_names[reg_nr];
358 }
359
360 static const char *
361 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
362 {
363 static const char *register_names[] = {
364 /* general registers 0-15 */
365 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
366 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
367 /* 16 - 22 */
368 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
369 /* 23, 24 */
370 "", "",
371 /* floating point registers 25 - 40 -- not for nofpu target */
372 "", "", "", "", "", "", "", "",
373 "", "", "", "", "", "", "", "",
374 /* 41, 42 */
375 "ssr", "spc",
376 /* bank 0 43 - 50 */
377 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
378 /* bank 1 51 - 58 */
379 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
380 /* 59 - 66 */
381 "", "", "", "", "", "", "", "",
382 /* pseudo bank register. */
383 "",
384 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
385 "", "", "", "", "", "", "", "",
386 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
387 "", "", "", "",
388 };
389 if (reg_nr < 0)
390 return NULL;
391 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
392 return NULL;
393 return register_names[reg_nr];
394 }
395
396 static const char *
397 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
398 {
399 static const char *register_names[] = {
400 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
401 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
402 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
403 "", "dsr",
404 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
405 "y0", "y1", "", "", "", "", "", "mod",
406 "ssr", "spc",
407 "rs", "re", "", "", "", "", "", "",
408 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
409 "", "", "", "", "", "", "", "",
410 "", "", "", "", "", "", "", "",
411 };
412 if (reg_nr < 0)
413 return NULL;
414 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
415 return NULL;
416 return register_names[reg_nr];
417 }
418
419 /* Implement the breakpoint_kind_from_pc gdbarch method. */
420
421 static int
422 sh_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
423 {
424 return 2;
425 }
426
427 /* Implement the sw_breakpoint_from_kind gdbarch method. */
428
429 static const gdb_byte *
430 sh_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
431 {
432 *size = kind;
433
434 /* For remote stub targets, trapa #20 is used. */
435 if (strcmp (target_shortname, "remote") == 0)
436 {
437 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
438 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
439
440 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
441 return big_remote_breakpoint;
442 else
443 return little_remote_breakpoint;
444 }
445 else
446 {
447 /* 0xc3c3 is trapa #c3, and it works in big and little endian
448 modes. */
449 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
450
451 return breakpoint;
452 }
453 }
454
455 /* Prologue looks like
456 mov.l r14,@-r15
457 sts.l pr,@-r15
458 mov.l <regs>,@-r15
459 sub <room_for_loca_vars>,r15
460 mov r15,r14
461
462 Actually it can be more complicated than this but that's it, basically. */
463
464 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
465 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
466
467 /* JSR @Rm 0100mmmm00001011 */
468 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
469
470 /* STS.L PR,@-r15 0100111100100010
471 r15-4-->r15, PR-->(r15) */
472 #define IS_STS(x) ((x) == 0x4f22)
473
474 /* STS.L MACL,@-r15 0100111100010010
475 r15-4-->r15, MACL-->(r15) */
476 #define IS_MACL_STS(x) ((x) == 0x4f12)
477
478 /* MOV.L Rm,@-r15 00101111mmmm0110
479 r15-4-->r15, Rm-->(R15) */
480 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
481
482 /* MOV r15,r14 0110111011110011
483 r15-->r14 */
484 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
485
486 /* ADD #imm,r15 01111111iiiiiiii
487 r15+imm-->r15 */
488 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
489
490 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
491 #define IS_SHLL_R3(x) ((x) == 0x4300)
492
493 /* ADD r3,r15 0011111100111100
494 r15+r3-->r15 */
495 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
496
497 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
498 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
499 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
500 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
501 make this entirely clear. */
502 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
503 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
504
505 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
506 #define IS_MOV_ARG_TO_REG(x) \
507 (((x) & 0xf00f) == 0x6003 && \
508 ((x) & 0x00f0) >= 0x0040 && \
509 ((x) & 0x00f0) <= 0x0070)
510 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
511 #define IS_MOV_ARG_TO_IND_R14(x) \
512 (((x) & 0xff0f) == 0x2e02 && \
513 ((x) & 0x00f0) >= 0x0040 && \
514 ((x) & 0x00f0) <= 0x0070)
515 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
516 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
517 (((x) & 0xff00) == 0x1e00 && \
518 ((x) & 0x00f0) >= 0x0040 && \
519 ((x) & 0x00f0) <= 0x0070)
520
521 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
522 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
523 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
524 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
525 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
526 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
527 /* SUB Rn,R15 00111111nnnn1000 */
528 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
529
530 #define FPSCR_SZ (1 << 20)
531
532 /* The following instructions are used for epilogue testing. */
533 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
534 #define IS_RTS(x) ((x) == 0x000b)
535 #define IS_LDS(x) ((x) == 0x4f26)
536 #define IS_MACL_LDS(x) ((x) == 0x4f16)
537 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
538 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
539 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
540
541 static CORE_ADDR
542 sh_analyze_prologue (struct gdbarch *gdbarch,
543 CORE_ADDR pc, CORE_ADDR limit_pc,
544 struct sh_frame_cache *cache, ULONGEST fpscr)
545 {
546 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
547 ULONGEST inst;
548 int offset;
549 int sav_offset = 0;
550 int r3_val = 0;
551 int reg, sav_reg = -1;
552
553 cache->uses_fp = 0;
554 for (; pc < limit_pc; pc += 2)
555 {
556 inst = read_memory_unsigned_integer (pc, 2, byte_order);
557 /* See where the registers will be saved to. */
558 if (IS_PUSH (inst))
559 {
560 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
561 cache->sp_offset += 4;
562 }
563 else if (IS_STS (inst))
564 {
565 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
566 cache->sp_offset += 4;
567 }
568 else if (IS_MACL_STS (inst))
569 {
570 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
571 cache->sp_offset += 4;
572 }
573 else if (IS_MOV_R3 (inst))
574 {
575 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
576 }
577 else if (IS_SHLL_R3 (inst))
578 {
579 r3_val <<= 1;
580 }
581 else if (IS_ADD_R3SP (inst))
582 {
583 cache->sp_offset += -r3_val;
584 }
585 else if (IS_ADD_IMM_SP (inst))
586 {
587 offset = ((inst & 0xff) ^ 0x80) - 0x80;
588 cache->sp_offset -= offset;
589 }
590 else if (IS_MOVW_PCREL_TO_REG (inst))
591 {
592 if (sav_reg < 0)
593 {
594 reg = GET_TARGET_REG (inst);
595 if (reg < 14)
596 {
597 sav_reg = reg;
598 offset = (inst & 0xff) << 1;
599 sav_offset =
600 read_memory_integer ((pc + 4) + offset, 2, byte_order);
601 }
602 }
603 }
604 else if (IS_MOVL_PCREL_TO_REG (inst))
605 {
606 if (sav_reg < 0)
607 {
608 reg = GET_TARGET_REG (inst);
609 if (reg < 14)
610 {
611 sav_reg = reg;
612 offset = (inst & 0xff) << 2;
613 sav_offset =
614 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
615 4, byte_order);
616 }
617 }
618 }
619 else if (IS_MOVI20 (inst)
620 && (pc + 2 < limit_pc))
621 {
622 if (sav_reg < 0)
623 {
624 reg = GET_TARGET_REG (inst);
625 if (reg < 14)
626 {
627 sav_reg = reg;
628 sav_offset = GET_SOURCE_REG (inst) << 16;
629 /* MOVI20 is a 32 bit instruction! */
630 pc += 2;
631 sav_offset
632 |= read_memory_unsigned_integer (pc, 2, byte_order);
633 /* Now sav_offset contains an unsigned 20 bit value.
634 It must still get sign extended. */
635 if (sav_offset & 0x00080000)
636 sav_offset |= 0xfff00000;
637 }
638 }
639 }
640 else if (IS_SUB_REG_FROM_SP (inst))
641 {
642 reg = GET_SOURCE_REG (inst);
643 if (sav_reg > 0 && reg == sav_reg)
644 {
645 sav_reg = -1;
646 }
647 cache->sp_offset += sav_offset;
648 }
649 else if (IS_FPUSH (inst))
650 {
651 if (fpscr & FPSCR_SZ)
652 {
653 cache->sp_offset += 8;
654 }
655 else
656 {
657 cache->sp_offset += 4;
658 }
659 }
660 else if (IS_MOV_SP_FP (inst))
661 {
662 pc += 2;
663 /* Don't go any further than six more instructions. */
664 limit_pc = std::min (limit_pc, pc + (2 * 6));
665
666 cache->uses_fp = 1;
667 /* At this point, only allow argument register moves to other
668 registers or argument register moves to @(X,fp) which are
669 moving the register arguments onto the stack area allocated
670 by a former add somenumber to SP call. Don't allow moving
671 to an fp indirect address above fp + cache->sp_offset. */
672 for (; pc < limit_pc; pc += 2)
673 {
674 inst = read_memory_integer (pc, 2, byte_order);
675 if (IS_MOV_ARG_TO_IND_R14 (inst))
676 {
677 reg = GET_SOURCE_REG (inst);
678 if (cache->sp_offset > 0)
679 cache->saved_regs[reg] = cache->sp_offset;
680 }
681 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
682 {
683 reg = GET_SOURCE_REG (inst);
684 offset = (inst & 0xf) * 4;
685 if (cache->sp_offset > offset)
686 cache->saved_regs[reg] = cache->sp_offset - offset;
687 }
688 else if (IS_MOV_ARG_TO_REG (inst))
689 continue;
690 else
691 break;
692 }
693 break;
694 }
695 else if (IS_JSR (inst))
696 {
697 /* We have found a jsr that has been scheduled into the prologue.
698 If we continue the scan and return a pc someplace after this,
699 then setting a breakpoint on this function will cause it to
700 appear to be called after the function it is calling via the
701 jsr, which will be very confusing. Most likely the next
702 instruction is going to be IS_MOV_SP_FP in the delay slot. If
703 so, note that before returning the current pc. */
704 if (pc + 2 < limit_pc)
705 {
706 inst = read_memory_integer (pc + 2, 2, byte_order);
707 if (IS_MOV_SP_FP (inst))
708 cache->uses_fp = 1;
709 }
710 break;
711 }
712 #if 0 /* This used to just stop when it found an instruction
713 that was not considered part of the prologue. Now,
714 we just keep going looking for likely
715 instructions. */
716 else
717 break;
718 #endif
719 }
720
721 return pc;
722 }
723
724 /* Skip any prologue before the guts of a function. */
725 static CORE_ADDR
726 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
727 {
728 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
729 struct sh_frame_cache cache;
730
731 /* See if we can determine the end of the prologue via the symbol table.
732 If so, then return either PC, or the PC after the prologue, whichever
733 is greater. */
734 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
735 {
736 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
737 if (post_prologue_pc != 0)
738 return std::max (pc, post_prologue_pc);
739 }
740
741 /* Can't determine prologue from the symbol table, need to examine
742 instructions. */
743
744 /* Find an upper limit on the function prologue using the debug
745 information. If the debug information could not be used to provide
746 that bound, then use an arbitrary large number as the upper bound. */
747 limit_pc = skip_prologue_using_sal (gdbarch, pc);
748 if (limit_pc == 0)
749 /* Don't go any further than 28 instructions. */
750 limit_pc = pc + (2 * 28);
751
752 /* Do not allow limit_pc to be past the function end, if we know
753 where that end is... */
754 if (func_end_addr != 0)
755 limit_pc = std::min (limit_pc, func_end_addr);
756
757 cache.sp_offset = -4;
758 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
759 if (cache.uses_fp)
760 pc = post_prologue_pc;
761
762 return pc;
763 }
764
765 /* The ABI says:
766
767 Aggregate types not bigger than 8 bytes that have the same size and
768 alignment as one of the integer scalar types are returned in the
769 same registers as the integer type they match.
770
771 For example, a 2-byte aligned structure with size 2 bytes has the
772 same size and alignment as a short int, and will be returned in R0.
773 A 4-byte aligned structure with size 8 bytes has the same size and
774 alignment as a long long int, and will be returned in R0 and R1.
775
776 When an aggregate type is returned in R0 and R1, R0 contains the
777 first four bytes of the aggregate, and R1 contains the
778 remainder. If the size of the aggregate type is not a multiple of 4
779 bytes, the aggregate is tail-padded up to a multiple of 4
780 bytes. The value of the padding is undefined. For little-endian
781 targets the padding will appear at the most significant end of the
782 last element, for big-endian targets the padding appears at the
783 least significant end of the last element.
784
785 All other aggregate types are returned by address. The caller
786 function passes the address of an area large enough to hold the
787 aggregate value in R2. The called function stores the result in
788 this location.
789
790 To reiterate, structs smaller than 8 bytes could also be returned
791 in memory, if they don't pass the "same size and alignment as an
792 integer type" rule.
793
794 For example, in
795
796 struct s { char c[3]; } wibble;
797 struct s foo(void) { return wibble; }
798
799 the return value from foo() will be in memory, not
800 in R0, because there is no 3-byte integer type.
801
802 Similarly, in
803
804 struct s { char c[2]; } wibble;
805 struct s foo(void) { return wibble; }
806
807 because a struct containing two chars has alignment 1, that matches
808 type char, but size 2, that matches type short. There's no integer
809 type that has alignment 1 and size 2, so the struct is returned in
810 memory. */
811
812 static int
813 sh_use_struct_convention (int renesas_abi, struct type *type)
814 {
815 int len = TYPE_LENGTH (type);
816 int nelem = TYPE_NFIELDS (type);
817
818 /* The Renesas ABI returns aggregate types always on stack. */
819 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
820 || TYPE_CODE (type) == TYPE_CODE_UNION))
821 return 1;
822
823 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
824 fit in two registers anyway) use struct convention. */
825 if (len != 1 && len != 2 && len != 4 && len != 8)
826 return 1;
827
828 /* Scalar types and aggregate types with exactly one field are aligned
829 by definition. They are returned in registers. */
830 if (nelem <= 1)
831 return 0;
832
833 /* If the first field in the aggregate has the same length as the entire
834 aggregate type, the type is returned in registers. */
835 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
836 return 0;
837
838 /* If the size of the aggregate is 8 bytes and the first field is
839 of size 4 bytes its alignment is equal to long long's alignment,
840 so it's returned in registers. */
841 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
842 return 0;
843
844 /* Otherwise use struct convention. */
845 return 1;
846 }
847
848 static int
849 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
850 {
851 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
852 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
853 return 1;
854 return sh_use_struct_convention (renesas_abi, type);
855 }
856
857 static CORE_ADDR
858 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
859 {
860 return sp & ~3;
861 }
862
863 /* Function: push_dummy_call (formerly push_arguments)
864 Setup the function arguments for calling a function in the inferior.
865
866 On the Renesas SH architecture, there are four registers (R4 to R7)
867 which are dedicated for passing function arguments. Up to the first
868 four arguments (depending on size) may go into these registers.
869 The rest go on the stack.
870
871 MVS: Except on SH variants that have floating point registers.
872 In that case, float and double arguments are passed in the same
873 manner, but using FP registers instead of GP registers.
874
875 Arguments that are smaller than 4 bytes will still take up a whole
876 register or a whole 32-bit word on the stack, and will be
877 right-justified in the register or the stack word. This includes
878 chars, shorts, and small aggregate types.
879
880 Arguments that are larger than 4 bytes may be split between two or
881 more registers. If there are not enough registers free, an argument
882 may be passed partly in a register (or registers), and partly on the
883 stack. This includes doubles, long longs, and larger aggregates.
884 As far as I know, there is no upper limit to the size of aggregates
885 that will be passed in this way; in other words, the convention of
886 passing a pointer to a large aggregate instead of a copy is not used.
887
888 MVS: The above appears to be true for the SH variants that do not
889 have an FPU, however those that have an FPU appear to copy the
890 aggregate argument onto the stack (and not place it in registers)
891 if it is larger than 16 bytes (four GP registers).
892
893 An exceptional case exists for struct arguments (and possibly other
894 aggregates such as arrays) if the size is larger than 4 bytes but
895 not a multiple of 4 bytes. In this case the argument is never split
896 between the registers and the stack, but instead is copied in its
897 entirety onto the stack, AND also copied into as many registers as
898 there is room for. In other words, space in registers permitting,
899 two copies of the same argument are passed in. As far as I can tell,
900 only the one on the stack is used, although that may be a function
901 of the level of compiler optimization. I suspect this is a compiler
902 bug. Arguments of these odd sizes are left-justified within the
903 word (as opposed to arguments smaller than 4 bytes, which are
904 right-justified).
905
906 If the function is to return an aggregate type such as a struct, it
907 is either returned in the normal return value register R0 (if its
908 size is no greater than one byte), or else the caller must allocate
909 space into which the callee will copy the return value (if the size
910 is greater than one byte). In this case, a pointer to the return
911 value location is passed into the callee in register R2, which does
912 not displace any of the other arguments passed in via registers R4
913 to R7. */
914
915 /* Helper function to justify value in register according to endianess. */
916 static const gdb_byte *
917 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
918 {
919 static gdb_byte valbuf[4];
920
921 memset (valbuf, 0, sizeof (valbuf));
922 if (len < 4)
923 {
924 /* value gets right-justified in the register or stack word. */
925 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
926 memcpy (valbuf + (4 - len), value_contents (val), len);
927 else
928 memcpy (valbuf, value_contents (val), len);
929 return valbuf;
930 }
931 return value_contents (val);
932 }
933
934 /* Helper function to eval number of bytes to allocate on stack. */
935 static CORE_ADDR
936 sh_stack_allocsize (int nargs, struct value **args)
937 {
938 int stack_alloc = 0;
939 while (nargs-- > 0)
940 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
941 return stack_alloc;
942 }
943
944 /* Helper functions for getting the float arguments right. Registers usage
945 depends on the ABI and the endianess. The comments should enlighten how
946 it's intended to work. */
947
948 /* This array stores which of the float arg registers are already in use. */
949 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
950
951 /* This function just resets the above array to "no reg used so far". */
952 static void
953 sh_init_flt_argreg (void)
954 {
955 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
956 }
957
958 /* This function returns the next register to use for float arg passing.
959 It returns either a valid value between FLOAT_ARG0_REGNUM and
960 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
961 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
962
963 Note that register number 0 in flt_argreg_array corresponds with the
964 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
965 29) the parity of the register number is preserved, which is important
966 for the double register passing test (see the "argreg & 1" test below). */
967 static int
968 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
969 {
970 int argreg;
971
972 /* First search for the next free register. */
973 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
974 ++argreg)
975 if (!flt_argreg_array[argreg])
976 break;
977
978 /* No register left? */
979 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
980 return FLOAT_ARGLAST_REGNUM + 1;
981
982 if (len == 8)
983 {
984 /* Doubles are always starting in a even register number. */
985 if (argreg & 1)
986 {
987 /* In gcc ABI, the skipped register is lost for further argument
988 passing now. Not so in Renesas ABI. */
989 if (!sh_is_renesas_calling_convention (func_type))
990 flt_argreg_array[argreg] = 1;
991
992 ++argreg;
993
994 /* No register left? */
995 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
996 return FLOAT_ARGLAST_REGNUM + 1;
997 }
998 /* Also mark the next register as used. */
999 flt_argreg_array[argreg + 1] = 1;
1000 }
1001 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1002 && !sh_is_renesas_calling_convention (func_type))
1003 {
1004 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
1005 if (!flt_argreg_array[argreg + 1])
1006 ++argreg;
1007 }
1008 flt_argreg_array[argreg] = 1;
1009 return FLOAT_ARG0_REGNUM + argreg;
1010 }
1011
1012 /* Helper function which figures out, if a type is treated like a float type.
1013
1014 The FPU ABIs have a special way how to treat types as float types.
1015 Structures with exactly one member, which is of type float or double, are
1016 treated exactly as the base types float or double:
1017
1018 struct sf {
1019 float f;
1020 };
1021
1022 struct sd {
1023 double d;
1024 };
1025
1026 are handled the same way as just
1027
1028 float f;
1029
1030 double d;
1031
1032 As a result, arguments of these struct types are pushed into floating point
1033 registers exactly as floats or doubles, using the same decision algorithm.
1034
1035 The same is valid if these types are used as function return types. The
1036 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1037 or even using struct convention as it is for other structs. */
1038
1039 static int
1040 sh_treat_as_flt_p (struct type *type)
1041 {
1042 /* Ordinary float types are obviously treated as float. */
1043 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1044 return 1;
1045 /* Otherwise non-struct types are not treated as float. */
1046 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1047 return 0;
1048 /* Otherwise structs with more than one memeber are not treated as float. */
1049 if (TYPE_NFIELDS (type) != 1)
1050 return 0;
1051 /* Otherwise if the type of that member is float, the whole type is
1052 treated as float. */
1053 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1054 return 1;
1055 /* Otherwise it's not treated as float. */
1056 return 0;
1057 }
1058
1059 static CORE_ADDR
1060 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1061 struct value *function,
1062 struct regcache *regcache,
1063 CORE_ADDR bp_addr, int nargs,
1064 struct value **args,
1065 CORE_ADDR sp, int struct_return,
1066 CORE_ADDR struct_addr)
1067 {
1068 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1069 int stack_offset = 0;
1070 int argreg = ARG0_REGNUM;
1071 int flt_argreg = 0;
1072 int argnum;
1073 struct type *func_type = value_type (function);
1074 struct type *type;
1075 CORE_ADDR regval;
1076 const gdb_byte *val;
1077 int len, reg_size = 0;
1078 int pass_on_stack = 0;
1079 int treat_as_flt;
1080 int last_reg_arg = INT_MAX;
1081
1082 /* The Renesas ABI expects all varargs arguments, plus the last
1083 non-vararg argument to be on the stack, no matter how many
1084 registers have been used so far. */
1085 if (sh_is_renesas_calling_convention (func_type)
1086 && TYPE_VARARGS (func_type))
1087 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1088
1089 /* First force sp to a 4-byte alignment. */
1090 sp = sh_frame_align (gdbarch, sp);
1091
1092 /* Make room on stack for args. */
1093 sp -= sh_stack_allocsize (nargs, args);
1094
1095 /* Initialize float argument mechanism. */
1096 sh_init_flt_argreg ();
1097
1098 /* Now load as many as possible of the first arguments into
1099 registers, and push the rest onto the stack. There are 16 bytes
1100 in four registers available. Loop thru args from first to last. */
1101 for (argnum = 0; argnum < nargs; argnum++)
1102 {
1103 type = value_type (args[argnum]);
1104 len = TYPE_LENGTH (type);
1105 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1106
1107 /* Some decisions have to be made how various types are handled.
1108 This also differs in different ABIs. */
1109 pass_on_stack = 0;
1110
1111 /* Find out the next register to use for a floating point value. */
1112 treat_as_flt = sh_treat_as_flt_p (type);
1113 if (treat_as_flt)
1114 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1115 /* In Renesas ABI, long longs and aggregate types are always passed
1116 on stack. */
1117 else if (sh_is_renesas_calling_convention (func_type)
1118 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1119 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1120 || TYPE_CODE (type) == TYPE_CODE_UNION))
1121 pass_on_stack = 1;
1122 /* In contrast to non-FPU CPUs, arguments are never split between
1123 registers and stack. If an argument doesn't fit in the remaining
1124 registers it's always pushed entirely on the stack. */
1125 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1126 pass_on_stack = 1;
1127
1128 while (len > 0)
1129 {
1130 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1131 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1132 || pass_on_stack))
1133 || argnum > last_reg_arg)
1134 {
1135 /* The data goes entirely on the stack, 4-byte aligned. */
1136 reg_size = (len + 3) & ~3;
1137 write_memory (sp + stack_offset, val, reg_size);
1138 stack_offset += reg_size;
1139 }
1140 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1141 {
1142 /* Argument goes in a float argument register. */
1143 reg_size = register_size (gdbarch, flt_argreg);
1144 regval = extract_unsigned_integer (val, reg_size, byte_order);
1145 /* In little endian mode, float types taking two registers
1146 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1147 be stored swapped in the argument registers. The below
1148 code first writes the first 32 bits in the next but one
1149 register, increments the val and len values accordingly
1150 and then proceeds as normal by writing the second 32 bits
1151 into the next register. */
1152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1153 && TYPE_LENGTH (type) == 2 * reg_size)
1154 {
1155 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1156 regval);
1157 val += reg_size;
1158 len -= reg_size;
1159 regval = extract_unsigned_integer (val, reg_size,
1160 byte_order);
1161 }
1162 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1163 }
1164 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1165 {
1166 /* there's room in a register */
1167 reg_size = register_size (gdbarch, argreg);
1168 regval = extract_unsigned_integer (val, reg_size, byte_order);
1169 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1170 }
1171 /* Store the value one register at a time or in one step on
1172 stack. */
1173 len -= reg_size;
1174 val += reg_size;
1175 }
1176 }
1177
1178 if (struct_return)
1179 {
1180 if (sh_is_renesas_calling_convention (func_type))
1181 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1182 the stack and store the struct return address there. */
1183 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1184 else
1185 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1186 its own dedicated register. */
1187 regcache_cooked_write_unsigned (regcache,
1188 STRUCT_RETURN_REGNUM, struct_addr);
1189 }
1190
1191 /* Store return address. */
1192 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1193
1194 /* Update stack pointer. */
1195 regcache_cooked_write_unsigned (regcache,
1196 gdbarch_sp_regnum (gdbarch), sp);
1197
1198 return sp;
1199 }
1200
1201 static CORE_ADDR
1202 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1203 struct value *function,
1204 struct regcache *regcache,
1205 CORE_ADDR bp_addr,
1206 int nargs, struct value **args,
1207 CORE_ADDR sp, int struct_return,
1208 CORE_ADDR struct_addr)
1209 {
1210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1211 int stack_offset = 0;
1212 int argreg = ARG0_REGNUM;
1213 int argnum;
1214 struct type *func_type = value_type (function);
1215 struct type *type;
1216 CORE_ADDR regval;
1217 const gdb_byte *val;
1218 int len, reg_size = 0;
1219 int pass_on_stack = 0;
1220 int last_reg_arg = INT_MAX;
1221
1222 /* The Renesas ABI expects all varargs arguments, plus the last
1223 non-vararg argument to be on the stack, no matter how many
1224 registers have been used so far. */
1225 if (sh_is_renesas_calling_convention (func_type)
1226 && TYPE_VARARGS (func_type))
1227 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1228
1229 /* First force sp to a 4-byte alignment. */
1230 sp = sh_frame_align (gdbarch, sp);
1231
1232 /* Make room on stack for args. */
1233 sp -= sh_stack_allocsize (nargs, args);
1234
1235 /* Now load as many as possible of the first arguments into
1236 registers, and push the rest onto the stack. There are 16 bytes
1237 in four registers available. Loop thru args from first to last. */
1238 for (argnum = 0; argnum < nargs; argnum++)
1239 {
1240 type = value_type (args[argnum]);
1241 len = TYPE_LENGTH (type);
1242 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1243
1244 /* Some decisions have to be made how various types are handled.
1245 This also differs in different ABIs. */
1246 pass_on_stack = 0;
1247 /* Renesas ABI pushes doubles and long longs entirely on stack.
1248 Same goes for aggregate types. */
1249 if (sh_is_renesas_calling_convention (func_type)
1250 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1251 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1252 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1253 || TYPE_CODE (type) == TYPE_CODE_UNION))
1254 pass_on_stack = 1;
1255 while (len > 0)
1256 {
1257 if (argreg > ARGLAST_REGNUM || pass_on_stack
1258 || argnum > last_reg_arg)
1259 {
1260 /* The remainder of the data goes entirely on the stack,
1261 4-byte aligned. */
1262 reg_size = (len + 3) & ~3;
1263 write_memory (sp + stack_offset, val, reg_size);
1264 stack_offset += reg_size;
1265 }
1266 else if (argreg <= ARGLAST_REGNUM)
1267 {
1268 /* There's room in a register. */
1269 reg_size = register_size (gdbarch, argreg);
1270 regval = extract_unsigned_integer (val, reg_size, byte_order);
1271 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1272 }
1273 /* Store the value reg_size bytes at a time. This means that things
1274 larger than reg_size bytes may go partly in registers and partly
1275 on the stack. */
1276 len -= reg_size;
1277 val += reg_size;
1278 }
1279 }
1280
1281 if (struct_return)
1282 {
1283 if (sh_is_renesas_calling_convention (func_type))
1284 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1285 the stack and store the struct return address there. */
1286 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1287 else
1288 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1289 its own dedicated register. */
1290 regcache_cooked_write_unsigned (regcache,
1291 STRUCT_RETURN_REGNUM, struct_addr);
1292 }
1293
1294 /* Store return address. */
1295 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1296
1297 /* Update stack pointer. */
1298 regcache_cooked_write_unsigned (regcache,
1299 gdbarch_sp_regnum (gdbarch), sp);
1300
1301 return sp;
1302 }
1303
1304 /* Find a function's return value in the appropriate registers (in
1305 regbuf), and copy it into valbuf. Extract from an array REGBUF
1306 containing the (raw) register state a function return value of type
1307 TYPE, and copy that, in virtual format, into VALBUF. */
1308 static void
1309 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1310 gdb_byte *valbuf)
1311 {
1312 struct gdbarch *gdbarch = regcache->arch ();
1313 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1314 int len = TYPE_LENGTH (type);
1315
1316 if (len <= 4)
1317 {
1318 ULONGEST c;
1319
1320 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1321 store_unsigned_integer (valbuf, len, byte_order, c);
1322 }
1323 else if (len == 8)
1324 {
1325 int i, regnum = R0_REGNUM;
1326 for (i = 0; i < len; i += 4)
1327 regcache_raw_read (regcache, regnum++, valbuf + i);
1328 }
1329 else
1330 error (_("bad size for return value"));
1331 }
1332
1333 static void
1334 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1335 gdb_byte *valbuf)
1336 {
1337 struct gdbarch *gdbarch = regcache->arch ();
1338 if (sh_treat_as_flt_p (type))
1339 {
1340 int len = TYPE_LENGTH (type);
1341 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1342 for (i = 0; i < len; i += 4)
1343 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1344 regcache_raw_read (regcache, regnum++,
1345 valbuf + len - 4 - i);
1346 else
1347 regcache_raw_read (regcache, regnum++, valbuf + i);
1348 }
1349 else
1350 sh_extract_return_value_nofpu (type, regcache, valbuf);
1351 }
1352
1353 /* Write into appropriate registers a function return value
1354 of type TYPE, given in virtual format.
1355 If the architecture is sh4 or sh3e, store a function's return value
1356 in the R0 general register or in the FP0 floating point register,
1357 depending on the type of the return value. In all the other cases
1358 the result is stored in r0, left-justified. */
1359 static void
1360 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1361 const gdb_byte *valbuf)
1362 {
1363 struct gdbarch *gdbarch = regcache->arch ();
1364 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1365 ULONGEST val;
1366 int len = TYPE_LENGTH (type);
1367
1368 if (len <= 4)
1369 {
1370 val = extract_unsigned_integer (valbuf, len, byte_order);
1371 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1372 }
1373 else
1374 {
1375 int i, regnum = R0_REGNUM;
1376 for (i = 0; i < len; i += 4)
1377 regcache_raw_write (regcache, regnum++, valbuf + i);
1378 }
1379 }
1380
1381 static void
1382 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1383 const gdb_byte *valbuf)
1384 {
1385 struct gdbarch *gdbarch = regcache->arch ();
1386 if (sh_treat_as_flt_p (type))
1387 {
1388 int len = TYPE_LENGTH (type);
1389 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1390 for (i = 0; i < len; i += 4)
1391 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1392 regcache_raw_write (regcache, regnum++,
1393 valbuf + len - 4 - i);
1394 else
1395 regcache_raw_write (regcache, regnum++, valbuf + i);
1396 }
1397 else
1398 sh_store_return_value_nofpu (type, regcache, valbuf);
1399 }
1400
1401 static enum return_value_convention
1402 sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
1403 struct type *type, struct regcache *regcache,
1404 gdb_byte *readbuf, const gdb_byte *writebuf)
1405 {
1406 struct type *func_type = function ? value_type (function) : NULL;
1407
1408 if (sh_use_struct_convention_nofpu (
1409 sh_is_renesas_calling_convention (func_type), type))
1410 return RETURN_VALUE_STRUCT_CONVENTION;
1411 if (writebuf)
1412 sh_store_return_value_nofpu (type, regcache, writebuf);
1413 else if (readbuf)
1414 sh_extract_return_value_nofpu (type, regcache, readbuf);
1415 return RETURN_VALUE_REGISTER_CONVENTION;
1416 }
1417
1418 static enum return_value_convention
1419 sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
1420 struct type *type, struct regcache *regcache,
1421 gdb_byte *readbuf, const gdb_byte *writebuf)
1422 {
1423 struct type *func_type = function ? value_type (function) : NULL;
1424
1425 if (sh_use_struct_convention (
1426 sh_is_renesas_calling_convention (func_type), type))
1427 return RETURN_VALUE_STRUCT_CONVENTION;
1428 if (writebuf)
1429 sh_store_return_value_fpu (type, regcache, writebuf);
1430 else if (readbuf)
1431 sh_extract_return_value_fpu (type, regcache, readbuf);
1432 return RETURN_VALUE_REGISTER_CONVENTION;
1433 }
1434
1435 static struct type *
1436 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1437 {
1438 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1439 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1440 return builtin_type (gdbarch)->builtin_float;
1441 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1442 return builtin_type (gdbarch)->builtin_double;
1443 else
1444 return builtin_type (gdbarch)->builtin_int;
1445 }
1446
1447 /* Return the GDB type object for the "standard" data type
1448 of data in register N. */
1449 static struct type *
1450 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1451 {
1452 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1453 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1454 return builtin_type (gdbarch)->builtin_float;
1455 else
1456 return builtin_type (gdbarch)->builtin_int;
1457 }
1458
1459 static struct type *
1460 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
1461 {
1462 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1463 0, high);
1464 }
1465
1466 static struct type *
1467 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1468 {
1469 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1470 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1471 return builtin_type (gdbarch)->builtin_float;
1472 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1473 return builtin_type (gdbarch)->builtin_double;
1474 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1475 return sh_sh4_build_float_register_type (gdbarch, 3);
1476 else
1477 return builtin_type (gdbarch)->builtin_int;
1478 }
1479
1480 static struct type *
1481 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1482 {
1483 return builtin_type (gdbarch)->builtin_int;
1484 }
1485
1486 /* Is a register in a reggroup?
1487 The default code in reggroup.c doesn't identify system registers, some
1488 float registers or any of the vector registers.
1489 TODO: sh2a and dsp registers. */
1490 static int
1491 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1492 struct reggroup *reggroup)
1493 {
1494 if (gdbarch_register_name (gdbarch, regnum) == NULL
1495 || *gdbarch_register_name (gdbarch, regnum) == '\0')
1496 return 0;
1497
1498 if (reggroup == float_reggroup
1499 && (regnum == FPUL_REGNUM
1500 || regnum == FPSCR_REGNUM))
1501 return 1;
1502
1503 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1504 {
1505 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1506 return 1;
1507 if (reggroup == general_reggroup)
1508 return 0;
1509 }
1510
1511 if (regnum == VBR_REGNUM
1512 || regnum == SR_REGNUM
1513 || regnum == FPSCR_REGNUM
1514 || regnum == SSR_REGNUM
1515 || regnum == SPC_REGNUM)
1516 {
1517 if (reggroup == system_reggroup)
1518 return 1;
1519 if (reggroup == general_reggroup)
1520 return 0;
1521 }
1522
1523 /* The default code can cope with any other registers. */
1524 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1525 }
1526
1527 /* On the sh4, the DRi pseudo registers are problematic if the target
1528 is little endian. When the user writes one of those registers, for
1529 instance with 'set var $dr0=1', we want the double to be stored
1530 like this:
1531 fr0 = 0x00 0x00 0xf0 0x3f
1532 fr1 = 0x00 0x00 0x00 0x00
1533
1534 This corresponds to little endian byte order & big endian word
1535 order. However if we let gdb write the register w/o conversion, it
1536 will write fr0 and fr1 this way:
1537 fr0 = 0x00 0x00 0x00 0x00
1538 fr1 = 0x00 0x00 0xf0 0x3f
1539 because it will consider fr0 and fr1 as a single LE stretch of memory.
1540
1541 To achieve what we want we must force gdb to store things in
1542 floatformat_ieee_double_littlebyte_bigword (which is defined in
1543 include/floatformat.h and libiberty/floatformat.c.
1544
1545 In case the target is big endian, there is no problem, the
1546 raw bytes will look like:
1547 fr0 = 0x3f 0xf0 0x00 0x00
1548 fr1 = 0x00 0x00 0x00 0x00
1549
1550 The other pseudo registers (the FVs) also don't pose a problem
1551 because they are stored as 4 individual FP elements. */
1552
1553 static struct type *
1554 sh_littlebyte_bigword_type (struct gdbarch *gdbarch)
1555 {
1556 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1557
1558 if (tdep->sh_littlebyte_bigword_type == NULL)
1559 tdep->sh_littlebyte_bigword_type
1560 = arch_float_type (gdbarch, -1, "builtin_type_sh_littlebyte_bigword",
1561 floatformats_ieee_double_littlebyte_bigword);
1562
1563 return tdep->sh_littlebyte_bigword_type;
1564 }
1565
1566 static void
1567 sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1568 struct type *type, gdb_byte *from, gdb_byte *to)
1569 {
1570 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1571 {
1572 /* It is a no-op. */
1573 memcpy (to, from, register_size (gdbarch, regnum));
1574 return;
1575 }
1576
1577 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1578 target_float_convert (from, sh_littlebyte_bigword_type (gdbarch),
1579 to, type);
1580 else
1581 error
1582 ("sh_register_convert_to_virtual called with non DR register number");
1583 }
1584
1585 static void
1586 sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1587 int regnum, const gdb_byte *from, gdb_byte *to)
1588 {
1589 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1590 {
1591 /* It is a no-op. */
1592 memcpy (to, from, register_size (gdbarch, regnum));
1593 return;
1594 }
1595
1596 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1597 target_float_convert (from, type,
1598 to, sh_littlebyte_bigword_type (gdbarch));
1599 else
1600 error (_("sh_register_convert_to_raw called with non DR register number"));
1601 }
1602
1603 /* For vectors of 4 floating point registers. */
1604 static int
1605 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1606 {
1607 int fp_regnum;
1608
1609 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1610 + (fv_regnum - FV0_REGNUM) * 4;
1611 return fp_regnum;
1612 }
1613
1614 /* For double precision floating point registers, i.e 2 fp regs. */
1615 static int
1616 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1617 {
1618 int fp_regnum;
1619
1620 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1621 + (dr_regnum - DR0_REGNUM) * 2;
1622 return fp_regnum;
1623 }
1624
1625 /* Concatenate PORTIONS contiguous raw registers starting at
1626 BASE_REGNUM into BUFFER. */
1627
1628 static enum register_status
1629 pseudo_register_read_portions (struct gdbarch *gdbarch,
1630 readable_regcache *regcache,
1631 int portions,
1632 int base_regnum, gdb_byte *buffer)
1633 {
1634 int portion;
1635
1636 for (portion = 0; portion < portions; portion++)
1637 {
1638 enum register_status status;
1639 gdb_byte *b;
1640
1641 b = buffer + register_size (gdbarch, base_regnum) * portion;
1642 status = regcache->raw_read (base_regnum + portion, b);
1643 if (status != REG_VALID)
1644 return status;
1645 }
1646
1647 return REG_VALID;
1648 }
1649
1650 static enum register_status
1651 sh_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
1652 int reg_nr, gdb_byte *buffer)
1653 {
1654 int base_regnum;
1655 enum register_status status;
1656
1657 if (reg_nr == PSEUDO_BANK_REGNUM)
1658 return regcache->raw_read (BANK_REGNUM, buffer);
1659 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1660 {
1661 /* Enough space for two float registers. */
1662 gdb_byte temp_buffer[4 * 2];
1663 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1664
1665 /* Build the value in the provided buffer. */
1666 /* Read the real regs for which this one is an alias. */
1667 status = pseudo_register_read_portions (gdbarch, regcache,
1668 2, base_regnum, temp_buffer);
1669 if (status == REG_VALID)
1670 {
1671 /* We must pay attention to the endiannes. */
1672 sh_register_convert_to_virtual (gdbarch, reg_nr,
1673 register_type (gdbarch, reg_nr),
1674 temp_buffer, buffer);
1675 }
1676 return status;
1677 }
1678 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1679 {
1680 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1681
1682 /* Read the real regs for which this one is an alias. */
1683 return pseudo_register_read_portions (gdbarch, regcache,
1684 4, base_regnum, buffer);
1685 }
1686 else
1687 gdb_assert_not_reached ("invalid pseudo register number");
1688 }
1689
1690 static void
1691 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1692 int reg_nr, const gdb_byte *buffer)
1693 {
1694 int base_regnum, portion;
1695
1696 if (reg_nr == PSEUDO_BANK_REGNUM)
1697 {
1698 /* When the bank register is written to, the whole register bank
1699 is switched and all values in the bank registers must be read
1700 from the target/sim again. We're just invalidating the regcache
1701 so that a re-read happens next time it's necessary. */
1702 int bregnum;
1703
1704 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1705 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1706 regcache_invalidate (regcache, bregnum);
1707 }
1708 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1709 {
1710 /* Enough space for two float registers. */
1711 gdb_byte temp_buffer[4 * 2];
1712 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1713
1714 /* We must pay attention to the endiannes. */
1715 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1716 reg_nr, buffer, temp_buffer);
1717
1718 /* Write the real regs for which this one is an alias. */
1719 for (portion = 0; portion < 2; portion++)
1720 regcache_raw_write (regcache, base_regnum + portion,
1721 (temp_buffer
1722 + register_size (gdbarch,
1723 base_regnum) * portion));
1724 }
1725 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1726 {
1727 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1728
1729 /* Write the real regs for which this one is an alias. */
1730 for (portion = 0; portion < 4; portion++)
1731 regcache_raw_write (regcache, base_regnum + portion,
1732 (buffer
1733 + register_size (gdbarch,
1734 base_regnum) * portion));
1735 }
1736 }
1737
1738 static int
1739 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
1740 {
1741 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1742 return legacy_register_sim_regno (gdbarch, nr);
1743 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1744 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1745 if (nr == MOD_REGNUM)
1746 return SIM_SH_MOD_REGNUM;
1747 if (nr == RS_REGNUM)
1748 return SIM_SH_RS_REGNUM;
1749 if (nr == RE_REGNUM)
1750 return SIM_SH_RE_REGNUM;
1751 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1752 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1753 return nr;
1754 }
1755
1756 static int
1757 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
1758 {
1759 switch (nr)
1760 {
1761 case TBR_REGNUM:
1762 return SIM_SH_TBR_REGNUM;
1763 case IBNR_REGNUM:
1764 return SIM_SH_IBNR_REGNUM;
1765 case IBCR_REGNUM:
1766 return SIM_SH_IBCR_REGNUM;
1767 case BANK_REGNUM:
1768 return SIM_SH_BANK_REGNUM;
1769 case MACLB_REGNUM:
1770 return SIM_SH_BANK_MACL_REGNUM;
1771 case GBRB_REGNUM:
1772 return SIM_SH_BANK_GBR_REGNUM;
1773 case PRB_REGNUM:
1774 return SIM_SH_BANK_PR_REGNUM;
1775 case IVNB_REGNUM:
1776 return SIM_SH_BANK_IVN_REGNUM;
1777 case MACHB_REGNUM:
1778 return SIM_SH_BANK_MACH_REGNUM;
1779 default:
1780 break;
1781 }
1782 return legacy_register_sim_regno (gdbarch, nr);
1783 }
1784
1785 /* Set up the register unwinding such that call-clobbered registers are
1786 not displayed in frames >0 because the true value is not certain.
1787 The 'undefined' registers will show up as 'not available' unless the
1788 CFI says otherwise.
1789
1790 This function is currently set up for SH4 and compatible only. */
1791
1792 static void
1793 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1794 struct dwarf2_frame_state_reg *reg,
1795 struct frame_info *this_frame)
1796 {
1797 /* Mark the PC as the destination for the return address. */
1798 if (regnum == gdbarch_pc_regnum (gdbarch))
1799 reg->how = DWARF2_FRAME_REG_RA;
1800
1801 /* Mark the stack pointer as the call frame address. */
1802 else if (regnum == gdbarch_sp_regnum (gdbarch))
1803 reg->how = DWARF2_FRAME_REG_CFA;
1804
1805 /* The above was taken from the default init_reg in dwarf2-frame.c
1806 while the below is SH specific. */
1807
1808 /* Caller save registers. */
1809 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1810 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1811 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1812 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1813 || (regnum == MACH_REGNUM)
1814 || (regnum == MACL_REGNUM)
1815 || (regnum == FPUL_REGNUM)
1816 || (regnum == SR_REGNUM))
1817 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1818
1819 /* Callee save registers. */
1820 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1821 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1822 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1823 || (regnum == FV0_REGNUM+3))
1824 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1825
1826 /* Other registers. These are not in the ABI and may or may not
1827 mean anything in frames >0 so don't show them. */
1828 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1829 || (regnum == GBR_REGNUM)
1830 || (regnum == VBR_REGNUM)
1831 || (regnum == FPSCR_REGNUM)
1832 || (regnum == SSR_REGNUM)
1833 || (regnum == SPC_REGNUM))
1834 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1835 }
1836
1837 static struct sh_frame_cache *
1838 sh_alloc_frame_cache (void)
1839 {
1840 struct sh_frame_cache *cache;
1841 int i;
1842
1843 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1844
1845 /* Base address. */
1846 cache->base = 0;
1847 cache->saved_sp = 0;
1848 cache->sp_offset = 0;
1849 cache->pc = 0;
1850
1851 /* Frameless until proven otherwise. */
1852 cache->uses_fp = 0;
1853
1854 /* Saved registers. We initialize these to -1 since zero is a valid
1855 offset (that's where fp is supposed to be stored). */
1856 for (i = 0; i < SH_NUM_REGS; i++)
1857 {
1858 cache->saved_regs[i] = -1;
1859 }
1860
1861 return cache;
1862 }
1863
1864 static struct sh_frame_cache *
1865 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1866 {
1867 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1868 struct sh_frame_cache *cache;
1869 CORE_ADDR current_pc;
1870 int i;
1871
1872 if (*this_cache)
1873 return (struct sh_frame_cache *) *this_cache;
1874
1875 cache = sh_alloc_frame_cache ();
1876 *this_cache = cache;
1877
1878 /* In principle, for normal frames, fp holds the frame pointer,
1879 which holds the base address for the current stack frame.
1880 However, for functions that don't need it, the frame pointer is
1881 optional. For these "frameless" functions the frame pointer is
1882 actually the frame pointer of the calling frame. */
1883 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1884 if (cache->base == 0)
1885 return cache;
1886
1887 cache->pc = get_frame_func (this_frame);
1888 current_pc = get_frame_pc (this_frame);
1889 if (cache->pc != 0)
1890 {
1891 ULONGEST fpscr;
1892
1893 /* Check for the existence of the FPSCR register. If it exists,
1894 fetch its value for use in prologue analysis. Passing a zero
1895 value is the best choice for architecture variants upon which
1896 there's no FPSCR register. */
1897 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1898 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1899 else
1900 fpscr = 0;
1901
1902 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
1903 }
1904
1905 if (!cache->uses_fp)
1906 {
1907 /* We didn't find a valid frame, which means that CACHE->base
1908 currently holds the frame pointer for our calling frame. If
1909 we're at the start of a function, or somewhere half-way its
1910 prologue, the function's frame probably hasn't been fully
1911 setup yet. Try to reconstruct the base address for the stack
1912 frame by looking at the stack pointer. For truly "frameless"
1913 functions this might work too. */
1914 cache->base = get_frame_register_unsigned
1915 (this_frame, gdbarch_sp_regnum (gdbarch));
1916 }
1917
1918 /* Now that we have the base address for the stack frame we can
1919 calculate the value of sp in the calling frame. */
1920 cache->saved_sp = cache->base + cache->sp_offset;
1921
1922 /* Adjust all the saved registers such that they contain addresses
1923 instead of offsets. */
1924 for (i = 0; i < SH_NUM_REGS; i++)
1925 if (cache->saved_regs[i] != -1)
1926 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1927
1928 return cache;
1929 }
1930
1931 static struct value *
1932 sh_frame_prev_register (struct frame_info *this_frame,
1933 void **this_cache, int regnum)
1934 {
1935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1936 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1937
1938 gdb_assert (regnum >= 0);
1939
1940 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1941 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1942
1943 /* The PC of the previous frame is stored in the PR register of
1944 the current frame. Frob regnum so that we pull the value from
1945 the correct place. */
1946 if (regnum == gdbarch_pc_regnum (gdbarch))
1947 regnum = PR_REGNUM;
1948
1949 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1950 return frame_unwind_got_memory (this_frame, regnum,
1951 cache->saved_regs[regnum]);
1952
1953 return frame_unwind_got_register (this_frame, regnum, regnum);
1954 }
1955
1956 static void
1957 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
1958 struct frame_id *this_id)
1959 {
1960 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1961
1962 /* This marks the outermost frame. */
1963 if (cache->base == 0)
1964 return;
1965
1966 *this_id = frame_id_build (cache->saved_sp, cache->pc);
1967 }
1968
1969 static const struct frame_unwind sh_frame_unwind = {
1970 NORMAL_FRAME,
1971 default_frame_unwind_stop_reason,
1972 sh_frame_this_id,
1973 sh_frame_prev_register,
1974 NULL,
1975 default_frame_sniffer
1976 };
1977
1978 static CORE_ADDR
1979 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1980 {
1981 return frame_unwind_register_unsigned (next_frame,
1982 gdbarch_sp_regnum (gdbarch));
1983 }
1984
1985 static CORE_ADDR
1986 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1987 {
1988 return frame_unwind_register_unsigned (next_frame,
1989 gdbarch_pc_regnum (gdbarch));
1990 }
1991
1992 static struct frame_id
1993 sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1994 {
1995 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1996 gdbarch_sp_regnum (gdbarch));
1997 return frame_id_build (sp, get_frame_pc (this_frame));
1998 }
1999
2000 static CORE_ADDR
2001 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
2002 {
2003 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
2004
2005 return cache->base;
2006 }
2007
2008 static const struct frame_base sh_frame_base = {
2009 &sh_frame_unwind,
2010 sh_frame_base_address,
2011 sh_frame_base_address,
2012 sh_frame_base_address
2013 };
2014
2015 static struct sh_frame_cache *
2016 sh_make_stub_cache (struct frame_info *this_frame)
2017 {
2018 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2019 struct sh_frame_cache *cache;
2020
2021 cache = sh_alloc_frame_cache ();
2022
2023 cache->saved_sp
2024 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2025
2026 return cache;
2027 }
2028
2029 static void
2030 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2031 struct frame_id *this_id)
2032 {
2033 struct sh_frame_cache *cache;
2034
2035 if (*this_cache == NULL)
2036 *this_cache = sh_make_stub_cache (this_frame);
2037 cache = (struct sh_frame_cache *) *this_cache;
2038
2039 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2040 }
2041
2042 static int
2043 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2044 struct frame_info *this_frame,
2045 void **this_prologue_cache)
2046 {
2047 CORE_ADDR addr_in_block;
2048
2049 addr_in_block = get_frame_address_in_block (this_frame);
2050 if (in_plt_section (addr_in_block))
2051 return 1;
2052
2053 return 0;
2054 }
2055
2056 static const struct frame_unwind sh_stub_unwind =
2057 {
2058 NORMAL_FRAME,
2059 default_frame_unwind_stop_reason,
2060 sh_stub_this_id,
2061 sh_frame_prev_register,
2062 NULL,
2063 sh_stub_unwind_sniffer
2064 };
2065
2066 /* Implement the stack_frame_destroyed_p gdbarch method.
2067
2068 The epilogue is defined here as the area at the end of a function,
2069 either on the `ret' instruction itself or after an instruction which
2070 destroys the function's stack frame. */
2071
2072 static int
2073 sh_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2074 {
2075 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2076 CORE_ADDR func_addr = 0, func_end = 0;
2077
2078 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2079 {
2080 ULONGEST inst;
2081 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2082 for a nop and some fixed data (e.g. big offsets) which are
2083 unfortunately also treated as part of the function (which
2084 means, they are below func_end. */
2085 CORE_ADDR addr = func_end - 28;
2086 if (addr < func_addr + 4)
2087 addr = func_addr + 4;
2088 if (pc < addr)
2089 return 0;
2090
2091 /* First search forward until hitting an rts. */
2092 while (addr < func_end
2093 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2094 addr += 2;
2095 if (addr >= func_end)
2096 return 0;
2097
2098 /* At this point we should find a mov.l @r15+,r14 instruction,
2099 either before or after the rts. If not, then the function has
2100 probably no "normal" epilogue and we bail out here. */
2101 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2102 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2103 byte_order)))
2104 addr -= 2;
2105 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2106 byte_order)))
2107 return 0;
2108
2109 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2110
2111 /* Step over possible lds.l @r15+,macl. */
2112 if (IS_MACL_LDS (inst))
2113 {
2114 addr -= 2;
2115 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2116 }
2117
2118 /* Step over possible lds.l @r15+,pr. */
2119 if (IS_LDS (inst))
2120 {
2121 addr -= 2;
2122 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2123 }
2124
2125 /* Step over possible mov r14,r15. */
2126 if (IS_MOV_FP_SP (inst))
2127 {
2128 addr -= 2;
2129 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2130 }
2131
2132 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2133 instructions. */
2134 while (addr > func_addr + 4
2135 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2136 {
2137 addr -= 2;
2138 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2139 }
2140
2141 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2142 That's allowed for the epilogue. */
2143 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2144 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2145 && addr > func_addr + 6
2146 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2147 byte_order)))
2148 addr -= 4;
2149
2150 if (pc >= addr)
2151 return 1;
2152 }
2153 return 0;
2154 }
2155
2156
2157 /* Supply register REGNUM from the buffer specified by REGS and LEN
2158 in the register set REGSET to register cache REGCACHE.
2159 REGTABLE specifies where each register can be found in REGS.
2160 If REGNUM is -1, do this for all registers in REGSET. */
2161
2162 void
2163 sh_corefile_supply_regset (const struct regset *regset,
2164 struct regcache *regcache,
2165 int regnum, const void *regs, size_t len)
2166 {
2167 struct gdbarch *gdbarch = regcache->arch ();
2168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2169 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2170 ? tdep->core_gregmap
2171 : tdep->core_fpregmap);
2172 int i;
2173
2174 for (i = 0; regmap[i].regnum != -1; i++)
2175 {
2176 if ((regnum == -1 || regnum == regmap[i].regnum)
2177 && regmap[i].offset + 4 <= len)
2178 regcache_raw_supply (regcache, regmap[i].regnum,
2179 (char *)regs + regmap[i].offset);
2180 }
2181 }
2182
2183 /* Collect register REGNUM in the register set REGSET from register cache
2184 REGCACHE into the buffer specified by REGS and LEN.
2185 REGTABLE specifies where each register can be found in REGS.
2186 If REGNUM is -1, do this for all registers in REGSET. */
2187
2188 void
2189 sh_corefile_collect_regset (const struct regset *regset,
2190 const struct regcache *regcache,
2191 int regnum, void *regs, size_t len)
2192 {
2193 struct gdbarch *gdbarch = regcache->arch ();
2194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2195 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2196 ? tdep->core_gregmap
2197 : tdep->core_fpregmap);
2198 int i;
2199
2200 for (i = 0; regmap[i].regnum != -1; i++)
2201 {
2202 if ((regnum == -1 || regnum == regmap[i].regnum)
2203 && regmap[i].offset + 4 <= len)
2204 regcache_raw_collect (regcache, regmap[i].regnum,
2205 (char *)regs + regmap[i].offset);
2206 }
2207 }
2208
2209 /* The following two regsets have the same contents, so it is tempting to
2210 unify them, but they are distiguished by their address, so don't. */
2211
2212 const struct regset sh_corefile_gregset =
2213 {
2214 NULL,
2215 sh_corefile_supply_regset,
2216 sh_corefile_collect_regset
2217 };
2218
2219 static const struct regset sh_corefile_fpregset =
2220 {
2221 NULL,
2222 sh_corefile_supply_regset,
2223 sh_corefile_collect_regset
2224 };
2225
2226 static void
2227 sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
2228 iterate_over_regset_sections_cb *cb,
2229 void *cb_data,
2230 const struct regcache *regcache)
2231 {
2232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2233
2234 if (tdep->core_gregmap != NULL)
2235 cb (".reg", tdep->sizeof_gregset, &sh_corefile_gregset, NULL, cb_data);
2236
2237 if (tdep->core_fpregmap != NULL)
2238 cb (".reg2", tdep->sizeof_fpregset, &sh_corefile_fpregset, NULL, cb_data);
2239 }
2240
2241 /* This is the implementation of gdbarch method
2242 return_in_first_hidden_param_p. */
2243
2244 static int
2245 sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2246 struct type *type)
2247 {
2248 return 0;
2249 }
2250
2251 \f
2252
2253 static struct gdbarch *
2254 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2255 {
2256 struct gdbarch *gdbarch;
2257 struct gdbarch_tdep *tdep;
2258
2259 /* If there is already a candidate, use it. */
2260 arches = gdbarch_list_lookup_by_info (arches, &info);
2261 if (arches != NULL)
2262 return arches->gdbarch;
2263
2264 /* None found, create a new architecture from the information
2265 provided. */
2266 tdep = XCNEW (struct gdbarch_tdep);
2267 gdbarch = gdbarch_alloc (&info, tdep);
2268
2269 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2270 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2271 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2272 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2273
2274 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2275 set_gdbarch_wchar_signed (gdbarch, 0);
2276
2277 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2278 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2279 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2280 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2281
2282 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2283 set_gdbarch_sp_regnum (gdbarch, 15);
2284 set_gdbarch_pc_regnum (gdbarch, 16);
2285 set_gdbarch_fp0_regnum (gdbarch, -1);
2286 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2287
2288 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2289 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2290
2291 set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh_breakpoint_kind_from_pc);
2292 set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh_sw_breakpoint_from_kind);
2293
2294 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2295
2296 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2297
2298 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2299 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2300
2301 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2302 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2303 sh_return_in_first_hidden_param_p);
2304
2305 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2306
2307 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2308 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2309 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2310 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
2311 frame_base_set_default (gdbarch, &sh_frame_base);
2312
2313 set_gdbarch_stack_frame_destroyed_p (gdbarch, sh_stack_frame_destroyed_p);
2314
2315 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2316
2317 set_gdbarch_iterate_over_regset_sections
2318 (gdbarch, sh_iterate_over_regset_sections);
2319
2320 switch (info.bfd_arch_info->mach)
2321 {
2322 case bfd_mach_sh:
2323 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2324 break;
2325
2326 case bfd_mach_sh2:
2327 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2328 break;
2329
2330 case bfd_mach_sh2e:
2331 /* doubles on sh2e and sh3e are actually 4 byte. */
2332 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2333 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2334
2335 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2336 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2337 set_gdbarch_fp0_regnum (gdbarch, 25);
2338 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2339 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2340 break;
2341
2342 case bfd_mach_sh2a:
2343 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2344 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2345 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2346
2347 set_gdbarch_fp0_regnum (gdbarch, 25);
2348 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2349 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2350 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2351 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2352 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2353 break;
2354
2355 case bfd_mach_sh2a_nofpu:
2356 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2357 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2358
2359 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2360 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2361 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2362 break;
2363
2364 case bfd_mach_sh_dsp:
2365 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2366 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2367 break;
2368
2369 case bfd_mach_sh3:
2370 case bfd_mach_sh3_nommu:
2371 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2372 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2373 break;
2374
2375 case bfd_mach_sh3e:
2376 case bfd_mach_sh2a_or_sh3e:
2377 /* doubles on sh2e and sh3e are actually 4 byte. */
2378 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2379 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2380
2381 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2382 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2383 set_gdbarch_fp0_regnum (gdbarch, 25);
2384 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2385 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2386 break;
2387
2388 case bfd_mach_sh3_dsp:
2389 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2390 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2391 break;
2392
2393 case bfd_mach_sh4:
2394 case bfd_mach_sh4a:
2395 case bfd_mach_sh2a_or_sh4:
2396 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2397 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2398 set_gdbarch_fp0_regnum (gdbarch, 25);
2399 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2400 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2401 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2402 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2403 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2404 break;
2405
2406 case bfd_mach_sh4_nofpu:
2407 case bfd_mach_sh4a_nofpu:
2408 case bfd_mach_sh4_nommu_nofpu:
2409 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2410 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2411 break;
2412
2413 case bfd_mach_sh4al_dsp:
2414 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2415 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2416 break;
2417
2418 default:
2419 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2420 break;
2421 }
2422
2423 /* Hook in ABI-specific overrides, if they have been registered. */
2424 gdbarch_init_osabi (info, gdbarch);
2425
2426 dwarf2_append_unwinders (gdbarch);
2427 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
2428 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
2429
2430 return gdbarch;
2431 }
2432
2433 static void
2434 show_sh_command (const char *args, int from_tty)
2435 {
2436 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2437 }
2438
2439 static void
2440 set_sh_command (const char *args, int from_tty)
2441 {
2442 printf_unfiltered
2443 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2444 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2445 }
2446
2447 void
2448 _initialize_sh_tdep (void)
2449 {
2450 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2451
2452 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2453 &setshcmdlist, "set sh ", 0, &setlist);
2454 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2455 &showshcmdlist, "show sh ", 0, &showlist);
2456
2457 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2458 &sh_active_calling_convention,
2459 _("Set calling convention used when calling target "
2460 "functions from GDB."),
2461 _("Show calling convention used when calling target "
2462 "functions from GDB."),
2463 _("gcc - Use GCC calling convention (default).\n"
2464 "renesas - Enforce Renesas calling convention."),
2465 NULL, NULL,
2466 &setshcmdlist, &showshcmdlist);
2467 }