]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sh-tdep.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "dwarf2-frame.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "value.h"
38 #include "dis-asm.h"
39 #include "inferior.h"
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "arch-utils.h"
43 #include "floatformat.h"
44 #include "regcache.h"
45 #include "doublest.h"
46 #include "osabi.h"
47 #include "reggroups.h"
48
49 #include "sh-tdep.h"
50
51 #include "elf-bfd.h"
52 #include "solib-svr4.h"
53
54 /* sh flags */
55 #include "elf/sh.h"
56 /* registers numbers shared with the simulator */
57 #include "gdb/sim-sh.h"
58
59 static void (*sh_show_regs) (void);
60
61 #define SH_NUM_REGS 67
62
63 struct sh_frame_cache
64 {
65 /* Base address. */
66 CORE_ADDR base;
67 LONGEST sp_offset;
68 CORE_ADDR pc;
69
70 /* Flag showing that a frame has been created in the prologue code. */
71 int uses_fp;
72
73 /* Saved registers. */
74 CORE_ADDR saved_regs[SH_NUM_REGS];
75 CORE_ADDR saved_sp;
76 };
77
78 static const char *
79 sh_sh_register_name (int reg_nr)
80 {
81 static char *register_names[] = {
82 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
83 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
84 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
85 "", "",
86 "", "", "", "", "", "", "", "",
87 "", "", "", "", "", "", "", "",
88 "", "",
89 "", "", "", "", "", "", "", "",
90 "", "", "", "", "", "", "", "",
91 "", "", "", "", "", "", "", "",
92 };
93 if (reg_nr < 0)
94 return NULL;
95 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
96 return NULL;
97 return register_names[reg_nr];
98 }
99
100 static const char *
101 sh_sh3_register_name (int reg_nr)
102 {
103 static char *register_names[] = {
104 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
105 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
106 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
107 "", "",
108 "", "", "", "", "", "", "", "",
109 "", "", "", "", "", "", "", "",
110 "ssr", "spc",
111 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
112 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
113 "", "", "", "", "", "", "", "",
114 };
115 if (reg_nr < 0)
116 return NULL;
117 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
118 return NULL;
119 return register_names[reg_nr];
120 }
121
122 static const char *
123 sh_sh3e_register_name (int reg_nr)
124 {
125 static char *register_names[] = {
126 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
127 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
128 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
129 "fpul", "fpscr",
130 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
131 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
132 "ssr", "spc",
133 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
134 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
135 "", "", "", "", "", "", "", "",
136 };
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
140 return NULL;
141 return register_names[reg_nr];
142 }
143
144 static const char *
145 sh_sh2e_register_name (int reg_nr)
146 {
147 static char *register_names[] = {
148 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
149 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
150 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
151 "fpul", "fpscr",
152 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
153 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
154 "", "",
155 "", "", "", "", "", "", "", "",
156 "", "", "", "", "", "", "", "",
157 "", "", "", "", "", "", "", "",
158 };
159 if (reg_nr < 0)
160 return NULL;
161 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
162 return NULL;
163 return register_names[reg_nr];
164 }
165
166 static const char *
167 sh_sh2a_register_name (int reg_nr)
168 {
169 static char *register_names[] = {
170 /* general registers 0-15 */
171 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
172 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
173 /* 16 - 22 */
174 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
175 /* 23, 24 */
176 "fpul", "fpscr",
177 /* floating point registers 25 - 40 */
178 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
179 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
180 /* 41, 42 */
181 "", "",
182 /* 43 - 62. Banked registers. The bank number used is determined by
183 the bank register (63). */
184 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
185 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
186 "machb", "ivnb", "prb", "gbrb", "maclb",
187 /* 63: register bank number, not a real register but used to
188 communicate the register bank currently get/set. This register
189 is hidden to the user, who manipulates it using the pseudo
190 register called "bank" (67). See below. */
191 "",
192 /* 64 - 66 */
193 "ibcr", "ibnr", "tbr",
194 /* 67: register bank number, the user visible pseudo register. */
195 "bank",
196 /* double precision (pseudo) 68 - 75 */
197 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
198 };
199 if (reg_nr < 0)
200 return NULL;
201 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
202 return NULL;
203 return register_names[reg_nr];
204 }
205
206 static const char *
207 sh_sh2a_nofpu_register_name (int reg_nr)
208 {
209 static char *register_names[] = {
210 /* general registers 0-15 */
211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
213 /* 16 - 22 */
214 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
215 /* 23, 24 */
216 "", "",
217 /* floating point registers 25 - 40 */
218 "", "", "", "", "", "", "", "",
219 "", "", "", "", "", "", "", "",
220 /* 41, 42 */
221 "", "",
222 /* 43 - 62. Banked registers. The bank number used is determined by
223 the bank register (63). */
224 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
225 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
226 "machb", "ivnb", "prb", "gbrb", "maclb",
227 /* 63: register bank number, not a real register but used to
228 communicate the register bank currently get/set. This register
229 is hidden to the user, who manipulates it using the pseudo
230 register called "bank" (67). See below. */
231 "",
232 /* 64 - 66 */
233 "ibcr", "ibnr", "tbr",
234 /* 67: register bank number, the user visible pseudo register. */
235 "bank",
236 /* double precision (pseudo) 68 - 75 */
237 "", "", "", "", "", "", "", "",
238 };
239 if (reg_nr < 0)
240 return NULL;
241 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
242 return NULL;
243 return register_names[reg_nr];
244 }
245
246 static const char *
247 sh_sh_dsp_register_name (int reg_nr)
248 {
249 static char *register_names[] = {
250 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
251 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
252 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
253 "", "dsr",
254 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
255 "y0", "y1", "", "", "", "", "", "mod",
256 "", "",
257 "rs", "re", "", "", "", "", "", "",
258 "", "", "", "", "", "", "", "",
259 "", "", "", "", "", "", "", "",
260 };
261 if (reg_nr < 0)
262 return NULL;
263 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
264 return NULL;
265 return register_names[reg_nr];
266 }
267
268 static const char *
269 sh_sh3_dsp_register_name (int reg_nr)
270 {
271 static char *register_names[] = {
272 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
273 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
274 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
275 "", "dsr",
276 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
277 "y0", "y1", "", "", "", "", "", "mod",
278 "ssr", "spc",
279 "rs", "re", "", "", "", "", "", "",
280 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
281 "", "", "", "", "", "", "", "",
282 "", "", "", "", "", "", "", "",
283 };
284 if (reg_nr < 0)
285 return NULL;
286 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
287 return NULL;
288 return register_names[reg_nr];
289 }
290
291 static const char *
292 sh_sh4_register_name (int reg_nr)
293 {
294 static char *register_names[] = {
295 /* general registers 0-15 */
296 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
297 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
298 /* 16 - 22 */
299 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
300 /* 23, 24 */
301 "fpul", "fpscr",
302 /* floating point registers 25 - 40 */
303 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
304 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
305 /* 41, 42 */
306 "ssr", "spc",
307 /* bank 0 43 - 50 */
308 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
309 /* bank 1 51 - 58 */
310 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
311 "", "", "", "", "", "", "", "",
312 /* pseudo bank register. */
313 "",
314 /* double precision (pseudo) 59 - 66 */
315 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
316 /* vectors (pseudo) 67 - 70 */
317 "fv0", "fv4", "fv8", "fv12",
318 /* FIXME: missing XF 71 - 86 */
319 /* FIXME: missing XD 87 - 94 */
320 };
321 if (reg_nr < 0)
322 return NULL;
323 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
324 return NULL;
325 return register_names[reg_nr];
326 }
327
328 static const char *
329 sh_sh4_nofpu_register_name (int reg_nr)
330 {
331 static char *register_names[] = {
332 /* general registers 0-15 */
333 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
334 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
335 /* 16 - 22 */
336 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
337 /* 23, 24 */
338 "", "",
339 /* floating point registers 25 - 40 -- not for nofpu target */
340 "", "", "", "", "", "", "", "",
341 "", "", "", "", "", "", "", "",
342 /* 41, 42 */
343 "ssr", "spc",
344 /* bank 0 43 - 50 */
345 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
346 /* bank 1 51 - 58 */
347 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
348 "", "", "", "", "", "", "", "",
349 /* pseudo bank register. */
350 "",
351 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
352 "", "", "", "", "", "", "", "",
353 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
354 "", "", "", "",
355 };
356 if (reg_nr < 0)
357 return NULL;
358 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
359 return NULL;
360 return register_names[reg_nr];
361 }
362
363 static const char *
364 sh_sh4al_dsp_register_name (int reg_nr)
365 {
366 static char *register_names[] = {
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
369 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
370 "", "dsr",
371 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
372 "y0", "y1", "", "", "", "", "", "mod",
373 "ssr", "spc",
374 "rs", "re", "", "", "", "", "", "",
375 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
376 "", "", "", "", "", "", "", "",
377 "", "", "", "", "", "", "", "",
378 };
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
382 return NULL;
383 return register_names[reg_nr];
384 }
385
386 static const unsigned char *
387 sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
388 {
389 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
390 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
391
392 *lenptr = sizeof (breakpoint);
393 return breakpoint;
394 }
395
396 /* Prologue looks like
397 mov.l r14,@-r15
398 sts.l pr,@-r15
399 mov.l <regs>,@-r15
400 sub <room_for_loca_vars>,r15
401 mov r15,r14
402
403 Actually it can be more complicated than this but that's it, basically.
404 */
405
406 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
407 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
408
409 /* JSR @Rm 0100mmmm00001011 */
410 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
411
412 /* STS.L PR,@-r15 0100111100100010
413 r15-4-->r15, PR-->(r15) */
414 #define IS_STS(x) ((x) == 0x4f22)
415
416 /* STS.L MACL,@-r15 0100111100010010
417 r15-4-->r15, MACL-->(r15) */
418 #define IS_MACL_STS(x) ((x) == 0x4f12)
419
420 /* MOV.L Rm,@-r15 00101111mmmm0110
421 r15-4-->r15, Rm-->(R15) */
422 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
423
424 /* MOV r15,r14 0110111011110011
425 r15-->r14 */
426 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
427
428 /* ADD #imm,r15 01111111iiiiiiii
429 r15+imm-->r15 */
430 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
431
432 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
433 #define IS_SHLL_R3(x) ((x) == 0x4300)
434
435 /* ADD r3,r15 0011111100111100
436 r15+r3-->r15 */
437 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
438
439 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
440 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
441 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
442 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
443 make this entirely clear. */
444 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
445 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
446
447 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
448 #define IS_MOV_ARG_TO_REG(x) \
449 (((x) & 0xf00f) == 0x6003 && \
450 ((x) & 0x00f0) >= 0x0040 && \
451 ((x) & 0x00f0) <= 0x0070)
452 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
453 #define IS_MOV_ARG_TO_IND_R14(x) \
454 (((x) & 0xff0f) == 0x2e02 && \
455 ((x) & 0x00f0) >= 0x0040 && \
456 ((x) & 0x00f0) <= 0x0070)
457 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
458 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
459 (((x) & 0xff00) == 0x1e00 && \
460 ((x) & 0x00f0) >= 0x0040 && \
461 ((x) & 0x00f0) <= 0x0070)
462
463 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
464 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
465 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
466 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
467 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
468 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
469 /* SUB Rn,R15 00111111nnnn1000 */
470 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
471
472 #define FPSCR_SZ (1 << 20)
473
474 /* The following instructions are used for epilogue testing. */
475 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
476 #define IS_RTS(x) ((x) == 0x000b)
477 #define IS_LDS(x) ((x) == 0x4f26)
478 #define IS_MACL_LDS(x) ((x) == 0x4f16)
479 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
480 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
481 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
482
483 /* Disassemble an instruction. */
484 static int
485 gdb_print_insn_sh (bfd_vma memaddr, disassemble_info * info)
486 {
487 info->endian = TARGET_BYTE_ORDER;
488 return print_insn_sh (memaddr, info);
489 }
490
491 static CORE_ADDR
492 sh_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
493 struct sh_frame_cache *cache)
494 {
495 ULONGEST inst;
496 CORE_ADDR opc;
497 int offset;
498 int sav_offset = 0;
499 int r3_val = 0;
500 int reg, sav_reg = -1;
501
502 if (pc >= current_pc)
503 return current_pc;
504
505 cache->uses_fp = 0;
506 for (opc = pc + (2 * 28); pc < opc; pc += 2)
507 {
508 inst = read_memory_unsigned_integer (pc, 2);
509 /* See where the registers will be saved to */
510 if (IS_PUSH (inst))
511 {
512 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
513 cache->sp_offset += 4;
514 }
515 else if (IS_STS (inst))
516 {
517 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
518 cache->sp_offset += 4;
519 }
520 else if (IS_MACL_STS (inst))
521 {
522 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
523 cache->sp_offset += 4;
524 }
525 else if (IS_MOV_R3 (inst))
526 {
527 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
528 }
529 else if (IS_SHLL_R3 (inst))
530 {
531 r3_val <<= 1;
532 }
533 else if (IS_ADD_R3SP (inst))
534 {
535 cache->sp_offset += -r3_val;
536 }
537 else if (IS_ADD_IMM_SP (inst))
538 {
539 offset = ((inst & 0xff) ^ 0x80) - 0x80;
540 cache->sp_offset -= offset;
541 }
542 else if (IS_MOVW_PCREL_TO_REG (inst))
543 {
544 if (sav_reg < 0)
545 {
546 reg = GET_TARGET_REG (inst);
547 if (reg < 14)
548 {
549 sav_reg = reg;
550 offset = (inst & 0xff) << 1;
551 sav_offset =
552 read_memory_integer ((pc + 4) + offset, 2);
553 }
554 }
555 }
556 else if (IS_MOVL_PCREL_TO_REG (inst))
557 {
558 if (sav_reg < 0)
559 {
560 reg = GET_TARGET_REG (inst);
561 if (reg < 14)
562 {
563 sav_reg = reg;
564 offset = (inst & 0xff) << 2;
565 sav_offset =
566 read_memory_integer (((pc & 0xfffffffc) + 4) + offset, 4);
567 }
568 }
569 }
570 else if (IS_MOVI20 (inst))
571 {
572 if (sav_reg < 0)
573 {
574 reg = GET_TARGET_REG (inst);
575 if (reg < 14)
576 {
577 sav_reg = reg;
578 sav_offset = GET_SOURCE_REG (inst) << 16;
579 /* MOVI20 is a 32 bit instruction! */
580 pc += 2;
581 sav_offset |= read_memory_unsigned_integer (pc, 2);
582 /* Now sav_offset contains an unsigned 20 bit value.
583 It must still get sign extended. */
584 if (sav_offset & 0x00080000)
585 sav_offset |= 0xfff00000;
586 }
587 }
588 }
589 else if (IS_SUB_REG_FROM_SP (inst))
590 {
591 reg = GET_SOURCE_REG (inst);
592 if (sav_reg > 0 && reg == sav_reg)
593 {
594 sav_reg = -1;
595 }
596 cache->sp_offset += sav_offset;
597 }
598 else if (IS_FPUSH (inst))
599 {
600 if (read_register (FPSCR_REGNUM) & FPSCR_SZ)
601 {
602 cache->sp_offset += 8;
603 }
604 else
605 {
606 cache->sp_offset += 4;
607 }
608 }
609 else if (IS_MOV_SP_FP (inst))
610 {
611 cache->uses_fp = 1;
612 /* At this point, only allow argument register moves to other
613 registers or argument register moves to @(X,fp) which are
614 moving the register arguments onto the stack area allocated
615 by a former add somenumber to SP call. Don't allow moving
616 to an fp indirect address above fp + cache->sp_offset. */
617 pc += 2;
618 for (opc = pc + 12; pc < opc; pc += 2)
619 {
620 inst = read_memory_integer (pc, 2);
621 if (IS_MOV_ARG_TO_IND_R14 (inst))
622 {
623 reg = GET_SOURCE_REG (inst);
624 if (cache->sp_offset > 0)
625 cache->saved_regs[reg] = cache->sp_offset;
626 }
627 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
628 {
629 reg = GET_SOURCE_REG (inst);
630 offset = (inst & 0xf) * 4;
631 if (cache->sp_offset > offset)
632 cache->saved_regs[reg] = cache->sp_offset - offset;
633 }
634 else if (IS_MOV_ARG_TO_REG (inst))
635 continue;
636 else
637 break;
638 }
639 break;
640 }
641 else if (IS_JSR (inst))
642 {
643 /* We have found a jsr that has been scheduled into the prologue.
644 If we continue the scan and return a pc someplace after this,
645 then setting a breakpoint on this function will cause it to
646 appear to be called after the function it is calling via the
647 jsr, which will be very confusing. Most likely the next
648 instruction is going to be IS_MOV_SP_FP in the delay slot. If
649 so, note that before returning the current pc. */
650 inst = read_memory_integer (pc + 2, 2);
651 if (IS_MOV_SP_FP (inst))
652 cache->uses_fp = 1;
653 break;
654 }
655 #if 0 /* This used to just stop when it found an instruction that
656 was not considered part of the prologue. Now, we just
657 keep going looking for likely instructions. */
658 else
659 break;
660 #endif
661 }
662
663 return pc;
664 }
665
666 /* Skip any prologue before the guts of a function */
667
668 /* Skip the prologue using the debug information. If this fails we'll
669 fall back on the 'guess' method below. */
670 static CORE_ADDR
671 after_prologue (CORE_ADDR pc)
672 {
673 struct symtab_and_line sal;
674 CORE_ADDR func_addr, func_end;
675
676 /* If we can not find the symbol in the partial symbol table, then
677 there is no hope we can determine the function's start address
678 with this code. */
679 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
680 return 0;
681
682 /* Get the line associated with FUNC_ADDR. */
683 sal = find_pc_line (func_addr, 0);
684
685 /* There are only two cases to consider. First, the end of the source line
686 is within the function bounds. In that case we return the end of the
687 source line. Second is the end of the source line extends beyond the
688 bounds of the current function. We need to use the slow code to
689 examine instructions in that case. */
690 if (sal.end < func_end)
691 return sal.end;
692 else
693 return 0;
694 }
695
696 static CORE_ADDR
697 sh_skip_prologue (CORE_ADDR start_pc)
698 {
699 CORE_ADDR pc;
700 struct sh_frame_cache cache;
701
702 /* See if we can determine the end of the prologue via the symbol table.
703 If so, then return either PC, or the PC after the prologue, whichever
704 is greater. */
705 pc = after_prologue (start_pc);
706
707 /* If after_prologue returned a useful address, then use it. Else
708 fall back on the instruction skipping code. */
709 if (pc)
710 return max (pc, start_pc);
711
712 cache.sp_offset = -4;
713 pc = sh_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
714 if (!cache.uses_fp)
715 return start_pc;
716
717 return pc;
718 }
719
720 /* The ABI says:
721
722 Aggregate types not bigger than 8 bytes that have the same size and
723 alignment as one of the integer scalar types are returned in the
724 same registers as the integer type they match.
725
726 For example, a 2-byte aligned structure with size 2 bytes has the
727 same size and alignment as a short int, and will be returned in R0.
728 A 4-byte aligned structure with size 8 bytes has the same size and
729 alignment as a long long int, and will be returned in R0 and R1.
730
731 When an aggregate type is returned in R0 and R1, R0 contains the
732 first four bytes of the aggregate, and R1 contains the
733 remainder. If the size of the aggregate type is not a multiple of 4
734 bytes, the aggregate is tail-padded up to a multiple of 4
735 bytes. The value of the padding is undefined. For little-endian
736 targets the padding will appear at the most significant end of the
737 last element, for big-endian targets the padding appears at the
738 least significant end of the last element.
739
740 All other aggregate types are returned by address. The caller
741 function passes the address of an area large enough to hold the
742 aggregate value in R2. The called function stores the result in
743 this location.
744
745 To reiterate, structs smaller than 8 bytes could also be returned
746 in memory, if they don't pass the "same size and alignment as an
747 integer type" rule.
748
749 For example, in
750
751 struct s { char c[3]; } wibble;
752 struct s foo(void) { return wibble; }
753
754 the return value from foo() will be in memory, not
755 in R0, because there is no 3-byte integer type.
756
757 Similarly, in
758
759 struct s { char c[2]; } wibble;
760 struct s foo(void) { return wibble; }
761
762 because a struct containing two chars has alignment 1, that matches
763 type char, but size 2, that matches type short. There's no integer
764 type that has alignment 1 and size 2, so the struct is returned in
765 memory.
766
767 */
768
769 static int
770 sh_use_struct_convention (int gcc_p, struct type *type)
771 {
772 int len = TYPE_LENGTH (type);
773 int nelem = TYPE_NFIELDS (type);
774
775 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
776 fit in two registers anyway) use struct convention. */
777 if (len != 1 && len != 2 && len != 4 && len != 8)
778 return 1;
779
780 /* Scalar types and aggregate types with exactly one field are aligned
781 by definition. They are returned in registers. */
782 if (nelem <= 1)
783 return 0;
784
785 /* If the first field in the aggregate has the same length as the entire
786 aggregate type, the type is returned in registers. */
787 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
788 return 0;
789
790 /* If the size of the aggregate is 8 bytes and the first field is
791 of size 4 bytes its alignment is equal to long long's alignment,
792 so it's returned in registers. */
793 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
794 return 0;
795
796 /* Otherwise use struct convention. */
797 return 1;
798 }
799
800 /* Extract from an array REGBUF containing the (raw) register state
801 the address in which a function should return its structure value,
802 as a CORE_ADDR (or an expression that can be used as one). */
803 static CORE_ADDR
804 sh_extract_struct_value_address (struct regcache *regcache)
805 {
806 ULONGEST addr;
807
808 regcache_cooked_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &addr);
809 return addr;
810 }
811
812 static CORE_ADDR
813 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
814 {
815 return sp & ~3;
816 }
817
818 /* Function: push_dummy_call (formerly push_arguments)
819 Setup the function arguments for calling a function in the inferior.
820
821 On the Renesas SH architecture, there are four registers (R4 to R7)
822 which are dedicated for passing function arguments. Up to the first
823 four arguments (depending on size) may go into these registers.
824 The rest go on the stack.
825
826 MVS: Except on SH variants that have floating point registers.
827 In that case, float and double arguments are passed in the same
828 manner, but using FP registers instead of GP registers.
829
830 Arguments that are smaller than 4 bytes will still take up a whole
831 register or a whole 32-bit word on the stack, and will be
832 right-justified in the register or the stack word. This includes
833 chars, shorts, and small aggregate types.
834
835 Arguments that are larger than 4 bytes may be split between two or
836 more registers. If there are not enough registers free, an argument
837 may be passed partly in a register (or registers), and partly on the
838 stack. This includes doubles, long longs, and larger aggregates.
839 As far as I know, there is no upper limit to the size of aggregates
840 that will be passed in this way; in other words, the convention of
841 passing a pointer to a large aggregate instead of a copy is not used.
842
843 MVS: The above appears to be true for the SH variants that do not
844 have an FPU, however those that have an FPU appear to copy the
845 aggregate argument onto the stack (and not place it in registers)
846 if it is larger than 16 bytes (four GP registers).
847
848 An exceptional case exists for struct arguments (and possibly other
849 aggregates such as arrays) if the size is larger than 4 bytes but
850 not a multiple of 4 bytes. In this case the argument is never split
851 between the registers and the stack, but instead is copied in its
852 entirety onto the stack, AND also copied into as many registers as
853 there is room for. In other words, space in registers permitting,
854 two copies of the same argument are passed in. As far as I can tell,
855 only the one on the stack is used, although that may be a function
856 of the level of compiler optimization. I suspect this is a compiler
857 bug. Arguments of these odd sizes are left-justified within the
858 word (as opposed to arguments smaller than 4 bytes, which are
859 right-justified).
860
861 If the function is to return an aggregate type such as a struct, it
862 is either returned in the normal return value register R0 (if its
863 size is no greater than one byte), or else the caller must allocate
864 space into which the callee will copy the return value (if the size
865 is greater than one byte). In this case, a pointer to the return
866 value location is passed into the callee in register R2, which does
867 not displace any of the other arguments passed in via registers R4
868 to R7. */
869
870 /* Helper function to justify value in register according to endianess. */
871 static char *
872 sh_justify_value_in_reg (struct value *val, int len)
873 {
874 static char valbuf[4];
875
876 memset (valbuf, 0, sizeof (valbuf));
877 if (len < 4)
878 {
879 /* value gets right-justified in the register or stack word */
880 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
881 memcpy (valbuf + (4 - len), (char *) value_contents (val), len);
882 else
883 memcpy (valbuf, (char *) value_contents (val), len);
884 return valbuf;
885 }
886 return (char *) value_contents (val);
887 }
888
889 /* Helper function to eval number of bytes to allocate on stack. */
890 static CORE_ADDR
891 sh_stack_allocsize (int nargs, struct value **args)
892 {
893 int stack_alloc = 0;
894 while (nargs-- > 0)
895 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
896 return stack_alloc;
897 }
898
899 /* Helper functions for getting the float arguments right. Registers usage
900 depends on the ABI and the endianess. The comments should enlighten how
901 it's intended to work. */
902
903 /* This array stores which of the float arg registers are already in use. */
904 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
905
906 /* This function just resets the above array to "no reg used so far". */
907 static void
908 sh_init_flt_argreg (void)
909 {
910 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
911 }
912
913 /* This function returns the next register to use for float arg passing.
914 It returns either a valid value between FLOAT_ARG0_REGNUM and
915 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
916 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
917
918 Note that register number 0 in flt_argreg_array corresponds with the
919 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
920 29) the parity of the register number is preserved, which is important
921 for the double register passing test (see the "argreg & 1" test below). */
922 static int
923 sh_next_flt_argreg (int len)
924 {
925 int argreg;
926
927 /* First search for the next free register. */
928 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
929 ++argreg)
930 if (!flt_argreg_array[argreg])
931 break;
932
933 /* No register left? */
934 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
935 return FLOAT_ARGLAST_REGNUM + 1;
936
937 if (len == 8)
938 {
939 /* Doubles are always starting in a even register number. */
940 if (argreg & 1)
941 {
942 flt_argreg_array[argreg] = 1;
943
944 ++argreg;
945
946 /* No register left? */
947 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
948 return FLOAT_ARGLAST_REGNUM + 1;
949 }
950 /* Also mark the next register as used. */
951 flt_argreg_array[argreg + 1] = 1;
952 }
953 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
954 {
955 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
956 if (!flt_argreg_array[argreg + 1])
957 ++argreg;
958 }
959 flt_argreg_array[argreg] = 1;
960 return FLOAT_ARG0_REGNUM + argreg;
961 }
962
963 /* Helper function which figures out, if a type is treated like a float type.
964
965 The FPU ABIs have a special way how to treat types as float types.
966 Structures with exactly one member, which is of type float or double, are
967 treated exactly as the base types float or double:
968
969 struct sf {
970 float f;
971 };
972
973 struct sd {
974 double d;
975 };
976
977 are handled the same way as just
978
979 float f;
980
981 double d;
982
983 As a result, arguments of these struct types are pushed into floating point
984 registers exactly as floats or doubles, using the same decision algorithm.
985
986 The same is valid if these types are used as function return types. The
987 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
988 or even using struct convention as it is for other structs. */
989
990 static int
991 sh_treat_as_flt_p (struct type *type)
992 {
993 int len = TYPE_LENGTH (type);
994
995 /* Ordinary float types are obviously treated as float. */
996 if (TYPE_CODE (type) == TYPE_CODE_FLT)
997 return 1;
998 /* Otherwise non-struct types are not treated as float. */
999 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1000 return 0;
1001 /* Otherwise structs with more than one memeber are not treated as float. */
1002 if (TYPE_NFIELDS (type) != 1)
1003 return 0;
1004 /* Otherwise if the type of that member is float, the whole type is
1005 treated as float. */
1006 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1007 return 1;
1008 /* Otherwise it's not treated as float. */
1009 return 0;
1010 }
1011
1012 static CORE_ADDR
1013 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1014 struct value *function,
1015 struct regcache *regcache,
1016 CORE_ADDR bp_addr, int nargs,
1017 struct value **args,
1018 CORE_ADDR sp, int struct_return,
1019 CORE_ADDR struct_addr)
1020 {
1021 int stack_offset = 0;
1022 int argreg = ARG0_REGNUM;
1023 int flt_argreg = 0;
1024 int argnum;
1025 struct type *type;
1026 CORE_ADDR regval;
1027 char *val;
1028 int len, reg_size = 0;
1029 int pass_on_stack = 0;
1030 int treat_as_flt;
1031
1032 /* first force sp to a 4-byte alignment */
1033 sp = sh_frame_align (gdbarch, sp);
1034
1035 if (struct_return)
1036 regcache_cooked_write_unsigned (regcache,
1037 STRUCT_RETURN_REGNUM, struct_addr);
1038
1039 /* make room on stack for args */
1040 sp -= sh_stack_allocsize (nargs, args);
1041
1042 /* Initialize float argument mechanism. */
1043 sh_init_flt_argreg ();
1044
1045 /* Now load as many as possible of the first arguments into
1046 registers, and push the rest onto the stack. There are 16 bytes
1047 in four registers available. Loop thru args from first to last. */
1048 for (argnum = 0; argnum < nargs; argnum++)
1049 {
1050 type = value_type (args[argnum]);
1051 len = TYPE_LENGTH (type);
1052 val = sh_justify_value_in_reg (args[argnum], len);
1053
1054 /* Some decisions have to be made how various types are handled.
1055 This also differs in different ABIs. */
1056 pass_on_stack = 0;
1057
1058 /* Find out the next register to use for a floating point value. */
1059 treat_as_flt = sh_treat_as_flt_p (type);
1060 if (treat_as_flt)
1061 flt_argreg = sh_next_flt_argreg (len);
1062 /* In contrast to non-FPU CPUs, arguments are never split between
1063 registers and stack. If an argument doesn't fit in the remaining
1064 registers it's always pushed entirely on the stack. */
1065 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1066 pass_on_stack = 1;
1067
1068 while (len > 0)
1069 {
1070 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1071 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1072 || pass_on_stack)))
1073 {
1074 /* The data goes entirely on the stack, 4-byte aligned. */
1075 reg_size = (len + 3) & ~3;
1076 write_memory (sp + stack_offset, val, reg_size);
1077 stack_offset += reg_size;
1078 }
1079 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1080 {
1081 /* Argument goes in a float argument register. */
1082 reg_size = register_size (gdbarch, flt_argreg);
1083 regval = extract_unsigned_integer (val, reg_size);
1084 /* In little endian mode, float types taking two registers
1085 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1086 be stored swapped in the argument registers. The below
1087 code first writes the first 32 bits in the next but one
1088 register, increments the val and len values accordingly
1089 and then proceeds as normal by writing the second 32 bits
1090 into the next register. */
1091 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE
1092 && TYPE_LENGTH (type) == 2 * reg_size)
1093 {
1094 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1095 regval);
1096 val += reg_size;
1097 len -= reg_size;
1098 regval = extract_unsigned_integer (val, reg_size);
1099 }
1100 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1101 }
1102 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1103 {
1104 /* there's room in a register */
1105 reg_size = register_size (gdbarch, argreg);
1106 regval = extract_unsigned_integer (val, reg_size);
1107 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1108 }
1109 /* Store the value one register at a time or in one step on stack. */
1110 len -= reg_size;
1111 val += reg_size;
1112 }
1113 }
1114
1115 /* Store return address. */
1116 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1117
1118 /* Update stack pointer. */
1119 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1120
1121 return sp;
1122 }
1123
1124 static CORE_ADDR
1125 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1126 struct value *function,
1127 struct regcache *regcache,
1128 CORE_ADDR bp_addr,
1129 int nargs, struct value **args,
1130 CORE_ADDR sp, int struct_return,
1131 CORE_ADDR struct_addr)
1132 {
1133 int stack_offset = 0;
1134 int argreg = ARG0_REGNUM;
1135 int argnum;
1136 struct type *type;
1137 CORE_ADDR regval;
1138 char *val;
1139 int len, reg_size;
1140
1141 /* first force sp to a 4-byte alignment */
1142 sp = sh_frame_align (gdbarch, sp);
1143
1144 if (struct_return)
1145 regcache_cooked_write_unsigned (regcache,
1146 STRUCT_RETURN_REGNUM, struct_addr);
1147
1148 /* make room on stack for args */
1149 sp -= sh_stack_allocsize (nargs, args);
1150
1151 /* Now load as many as possible of the first arguments into
1152 registers, and push the rest onto the stack. There are 16 bytes
1153 in four registers available. Loop thru args from first to last. */
1154 for (argnum = 0; argnum < nargs; argnum++)
1155 {
1156 type = value_type (args[argnum]);
1157 len = TYPE_LENGTH (type);
1158 val = sh_justify_value_in_reg (args[argnum], len);
1159
1160 while (len > 0)
1161 {
1162 if (argreg > ARGLAST_REGNUM)
1163 {
1164 /* The remainder of the data goes entirely on the stack,
1165 4-byte aligned. */
1166 reg_size = (len + 3) & ~3;
1167 write_memory (sp + stack_offset, val, reg_size);
1168 stack_offset += reg_size;
1169 }
1170 else if (argreg <= ARGLAST_REGNUM)
1171 {
1172 /* there's room in a register */
1173 reg_size = register_size (gdbarch, argreg);
1174 regval = extract_unsigned_integer (val, reg_size);
1175 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1176 }
1177 /* Store the value reg_size bytes at a time. This means that things
1178 larger than reg_size bytes may go partly in registers and partly
1179 on the stack. */
1180 len -= reg_size;
1181 val += reg_size;
1182 }
1183 }
1184
1185 /* Store return address. */
1186 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1187
1188 /* Update stack pointer. */
1189 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1190
1191 return sp;
1192 }
1193
1194 /* Find a function's return value in the appropriate registers (in
1195 regbuf), and copy it into valbuf. Extract from an array REGBUF
1196 containing the (raw) register state a function return value of type
1197 TYPE, and copy that, in virtual format, into VALBUF. */
1198 static void
1199 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1200 void *valbuf)
1201 {
1202 int len = TYPE_LENGTH (type);
1203 int return_register = R0_REGNUM;
1204 int offset;
1205
1206 if (len <= 4)
1207 {
1208 ULONGEST c;
1209
1210 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1211 store_unsigned_integer (valbuf, len, c);
1212 }
1213 else if (len == 8)
1214 {
1215 int i, regnum = R0_REGNUM;
1216 for (i = 0; i < len; i += 4)
1217 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1218 }
1219 else
1220 error (_("bad size for return value"));
1221 }
1222
1223 static void
1224 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1225 void *valbuf)
1226 {
1227 if (sh_treat_as_flt_p (type))
1228 {
1229 int len = TYPE_LENGTH (type);
1230 int i, regnum = FP0_REGNUM;
1231 for (i = 0; i < len; i += 4)
1232 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1233 regcache_raw_read (regcache, regnum++, (char *) valbuf + len - 4 - i);
1234 else
1235 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1236 }
1237 else
1238 sh_extract_return_value_nofpu (type, regcache, valbuf);
1239 }
1240
1241 /* Write into appropriate registers a function return value
1242 of type TYPE, given in virtual format.
1243 If the architecture is sh4 or sh3e, store a function's return value
1244 in the R0 general register or in the FP0 floating point register,
1245 depending on the type of the return value. In all the other cases
1246 the result is stored in r0, left-justified. */
1247 static void
1248 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1249 const void *valbuf)
1250 {
1251 ULONGEST val;
1252 int len = TYPE_LENGTH (type);
1253
1254 if (len <= 4)
1255 {
1256 val = extract_unsigned_integer (valbuf, len);
1257 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1258 }
1259 else
1260 {
1261 int i, regnum = R0_REGNUM;
1262 for (i = 0; i < len; i += 4)
1263 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1264 }
1265 }
1266
1267 static void
1268 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1269 const void *valbuf)
1270 {
1271 if (sh_treat_as_flt_p (type))
1272 {
1273 int len = TYPE_LENGTH (type);
1274 int i, regnum = FP0_REGNUM;
1275 for (i = 0; i < len; i += 4)
1276 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1277 regcache_raw_write (regcache, regnum++,
1278 (char *) valbuf + len - 4 - i);
1279 else
1280 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1281 }
1282 else
1283 sh_store_return_value_nofpu (type, regcache, valbuf);
1284 }
1285
1286 static enum return_value_convention
1287 sh_return_value_nofpu (struct gdbarch *gdbarch, struct type *type,
1288 struct regcache *regcache,
1289 gdb_byte *readbuf, const gdb_byte *writebuf)
1290 {
1291 if (sh_use_struct_convention (0, type))
1292 return RETURN_VALUE_STRUCT_CONVENTION;
1293 if (writebuf)
1294 sh_store_return_value_nofpu (type, regcache, writebuf);
1295 else if (readbuf)
1296 sh_extract_return_value_nofpu (type, regcache, readbuf);
1297 return RETURN_VALUE_REGISTER_CONVENTION;
1298 }
1299
1300 static enum return_value_convention
1301 sh_return_value_fpu (struct gdbarch *gdbarch, struct type *type,
1302 struct regcache *regcache,
1303 gdb_byte *readbuf, const gdb_byte *writebuf)
1304 {
1305 if (sh_use_struct_convention (0, type))
1306 return RETURN_VALUE_STRUCT_CONVENTION;
1307 if (writebuf)
1308 sh_store_return_value_fpu (type, regcache, writebuf);
1309 else if (readbuf)
1310 sh_extract_return_value_fpu (type, regcache, readbuf);
1311 return RETURN_VALUE_REGISTER_CONVENTION;
1312 }
1313
1314 /* Print the registers in a form similar to the E7000 */
1315
1316 static void
1317 sh_generic_show_regs (void)
1318 {
1319 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1320 paddr (read_register (PC_REGNUM)),
1321 (long) read_register (SR_REGNUM),
1322 (long) read_register (PR_REGNUM),
1323 (long) read_register (MACH_REGNUM));
1324
1325 printf_filtered (
1326 " GBR %08lx VBR %08lx MACL %08lx\n",
1327 (long) read_register (GBR_REGNUM),
1328 (long) read_register (VBR_REGNUM),
1329 (long) read_register (MACL_REGNUM));
1330
1331 printf_filtered
1332 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1333 (long) read_register (0), (long) read_register (1),
1334 (long) read_register (2), (long) read_register (3),
1335 (long) read_register (4), (long) read_register (5),
1336 (long) read_register (6), (long) read_register (7));
1337 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1338 (long) read_register (8), (long) read_register (9),
1339 (long) read_register (10), (long) read_register (11),
1340 (long) read_register (12), (long) read_register (13),
1341 (long) read_register (14), (long) read_register (15));
1342 }
1343
1344 static void
1345 sh3_show_regs (void)
1346 {
1347 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1348 paddr (read_register (PC_REGNUM)),
1349 (long) read_register (SR_REGNUM),
1350 (long) read_register (PR_REGNUM),
1351 (long) read_register (MACH_REGNUM));
1352
1353 printf_filtered (
1354 " GBR %08lx VBR %08lx MACL %08lx\n",
1355 (long) read_register (GBR_REGNUM),
1356 (long) read_register (VBR_REGNUM),
1357 (long) read_register (MACL_REGNUM));
1358 printf_filtered (" SSR %08lx SPC %08lx\n",
1359 (long) read_register (SSR_REGNUM),
1360 (long) read_register (SPC_REGNUM));
1361
1362 printf_filtered
1363 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1364 (long) read_register (0), (long) read_register (1),
1365 (long) read_register (2), (long) read_register (3),
1366 (long) read_register (4), (long) read_register (5),
1367 (long) read_register (6), (long) read_register (7));
1368 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1369 (long) read_register (8), (long) read_register (9),
1370 (long) read_register (10), (long) read_register (11),
1371 (long) read_register (12), (long) read_register (13),
1372 (long) read_register (14), (long) read_register (15));
1373 }
1374
1375
1376 static void
1377 sh2e_show_regs (void)
1378 {
1379 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1380 paddr (read_register (PC_REGNUM)),
1381 (long) read_register (SR_REGNUM),
1382 (long) read_register (PR_REGNUM),
1383 (long) read_register (MACH_REGNUM));
1384
1385 printf_filtered (
1386 " GBR %08lx VBR %08lx MACL %08lx\n",
1387 (long) read_register (GBR_REGNUM),
1388 (long) read_register (VBR_REGNUM),
1389 (long) read_register (MACL_REGNUM));
1390 printf_filtered (
1391 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1392 (long) read_register (SSR_REGNUM),
1393 (long) read_register (SPC_REGNUM),
1394 (long) read_register (FPUL_REGNUM),
1395 (long) read_register (FPSCR_REGNUM));
1396
1397 printf_filtered
1398 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1399 (long) read_register (0), (long) read_register (1),
1400 (long) read_register (2), (long) read_register (3),
1401 (long) read_register (4), (long) read_register (5),
1402 (long) read_register (6), (long) read_register (7));
1403 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1404 (long) read_register (8), (long) read_register (9),
1405 (long) read_register (10), (long) read_register (11),
1406 (long) read_register (12), (long) read_register (13),
1407 (long) read_register (14), (long) read_register (15));
1408
1409 printf_filtered ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1410 (long) read_register (FP0_REGNUM + 0),
1411 (long) read_register (FP0_REGNUM + 1),
1412 (long) read_register (FP0_REGNUM + 2),
1413 (long) read_register (FP0_REGNUM + 3),
1414 (long) read_register (FP0_REGNUM + 4),
1415 (long) read_register (FP0_REGNUM + 5),
1416 (long) read_register (FP0_REGNUM + 6),
1417 (long) read_register (FP0_REGNUM + 7));
1418 printf_filtered ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1419 (long) read_register (FP0_REGNUM + 8),
1420 (long) read_register (FP0_REGNUM + 9),
1421 (long) read_register (FP0_REGNUM + 10),
1422 (long) read_register (FP0_REGNUM + 11),
1423 (long) read_register (FP0_REGNUM + 12),
1424 (long) read_register (FP0_REGNUM + 13),
1425 (long) read_register (FP0_REGNUM + 14),
1426 (long) read_register (FP0_REGNUM + 15));
1427 }
1428
1429 static void
1430 sh2a_show_regs (void)
1431 {
1432 int pr = read_register (FPSCR_REGNUM) & 0x80000;
1433 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1434 paddr (read_register (PC_REGNUM)),
1435 (long) read_register (SR_REGNUM),
1436 (long) read_register (PR_REGNUM),
1437 (long) read_register (MACH_REGNUM));
1438
1439 printf_filtered (
1440 " GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1441 (long) read_register (GBR_REGNUM),
1442 (long) read_register (VBR_REGNUM),
1443 (long) read_register (TBR_REGNUM),
1444 (long) read_register (MACL_REGNUM));
1445 printf_filtered (
1446 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1447 (long) read_register (SSR_REGNUM),
1448 (long) read_register (SPC_REGNUM),
1449 (long) read_register (FPUL_REGNUM),
1450 (long) read_register (FPSCR_REGNUM));
1451
1452 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1453 (long) read_register (0), (long) read_register (1),
1454 (long) read_register (2), (long) read_register (3),
1455 (long) read_register (4), (long) read_register (5),
1456 (long) read_register (6), (long) read_register (7));
1457 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1458 (long) read_register (8), (long) read_register (9),
1459 (long) read_register (10), (long) read_register (11),
1460 (long) read_register (12), (long) read_register (13),
1461 (long) read_register (14), (long) read_register (15));
1462
1463 printf_filtered (
1464 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1465 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1466 (long) read_register (FP0_REGNUM + 0),
1467 (long) read_register (FP0_REGNUM + 1),
1468 (long) read_register (FP0_REGNUM + 2),
1469 (long) read_register (FP0_REGNUM + 3),
1470 (long) read_register (FP0_REGNUM + 4),
1471 (long) read_register (FP0_REGNUM + 5),
1472 (long) read_register (FP0_REGNUM + 6),
1473 (long) read_register (FP0_REGNUM + 7));
1474 printf_filtered (
1475 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1476 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1477 (long) read_register (FP0_REGNUM + 8),
1478 (long) read_register (FP0_REGNUM + 9),
1479 (long) read_register (FP0_REGNUM + 10),
1480 (long) read_register (FP0_REGNUM + 11),
1481 (long) read_register (FP0_REGNUM + 12),
1482 (long) read_register (FP0_REGNUM + 13),
1483 (long) read_register (FP0_REGNUM + 14),
1484 (long) read_register (FP0_REGNUM + 15));
1485 printf_filtered ("BANK=%-3d\n", (int) read_register (BANK_REGNUM));
1486 printf_filtered (
1487 "R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1488 (long) read_register (R0_BANK0_REGNUM + 0),
1489 (long) read_register (R0_BANK0_REGNUM + 1),
1490 (long) read_register (R0_BANK0_REGNUM + 2),
1491 (long) read_register (R0_BANK0_REGNUM + 3),
1492 (long) read_register (R0_BANK0_REGNUM + 4),
1493 (long) read_register (R0_BANK0_REGNUM + 5),
1494 (long) read_register (R0_BANK0_REGNUM + 6),
1495 (long) read_register (R0_BANK0_REGNUM + 7));
1496 printf_filtered ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1497 (long) read_register (R0_BANK0_REGNUM + 8),
1498 (long) read_register (R0_BANK0_REGNUM + 9),
1499 (long) read_register (R0_BANK0_REGNUM + 10),
1500 (long) read_register (R0_BANK0_REGNUM + 11),
1501 (long) read_register (R0_BANK0_REGNUM + 12),
1502 (long) read_register (R0_BANK0_REGNUM + 13),
1503 (long) read_register (R0_BANK0_REGNUM + 14));
1504 printf_filtered ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1505 (long) read_register (R0_BANK0_REGNUM + 15),
1506 (long) read_register (R0_BANK0_REGNUM + 16),
1507 (long) read_register (R0_BANK0_REGNUM + 17),
1508 (long) read_register (R0_BANK0_REGNUM + 18),
1509 (long) read_register (R0_BANK0_REGNUM + 19));
1510 }
1511
1512 static void
1513 sh2a_nofpu_show_regs (void)
1514 {
1515 int pr = read_register (FPSCR_REGNUM) & 0x80000;
1516 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1517 paddr (read_register (PC_REGNUM)),
1518 (long) read_register (SR_REGNUM),
1519 (long) read_register (PR_REGNUM),
1520 (long) read_register (MACH_REGNUM));
1521
1522 printf_filtered (
1523 " GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1524 (long) read_register (GBR_REGNUM),
1525 (long) read_register (VBR_REGNUM),
1526 (long) read_register (TBR_REGNUM),
1527 (long) read_register (MACL_REGNUM));
1528 printf_filtered (
1529 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1530 (long) read_register (SSR_REGNUM),
1531 (long) read_register (SPC_REGNUM),
1532 (long) read_register (FPUL_REGNUM),
1533 (long) read_register (FPSCR_REGNUM));
1534
1535 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1536 (long) read_register (0), (long) read_register (1),
1537 (long) read_register (2), (long) read_register (3),
1538 (long) read_register (4), (long) read_register (5),
1539 (long) read_register (6), (long) read_register (7));
1540 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1541 (long) read_register (8), (long) read_register (9),
1542 (long) read_register (10), (long) read_register (11),
1543 (long) read_register (12), (long) read_register (13),
1544 (long) read_register (14), (long) read_register (15));
1545
1546 printf_filtered ("BANK=%-3d\n", (int) read_register (BANK_REGNUM));
1547 printf_filtered (
1548 "R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1549 (long) read_register (R0_BANK0_REGNUM + 0),
1550 (long) read_register (R0_BANK0_REGNUM + 1),
1551 (long) read_register (R0_BANK0_REGNUM + 2),
1552 (long) read_register (R0_BANK0_REGNUM + 3),
1553 (long) read_register (R0_BANK0_REGNUM + 4),
1554 (long) read_register (R0_BANK0_REGNUM + 5),
1555 (long) read_register (R0_BANK0_REGNUM + 6),
1556 (long) read_register (R0_BANK0_REGNUM + 7));
1557 printf_filtered ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1558 (long) read_register (R0_BANK0_REGNUM + 8),
1559 (long) read_register (R0_BANK0_REGNUM + 9),
1560 (long) read_register (R0_BANK0_REGNUM + 10),
1561 (long) read_register (R0_BANK0_REGNUM + 11),
1562 (long) read_register (R0_BANK0_REGNUM + 12),
1563 (long) read_register (R0_BANK0_REGNUM + 13),
1564 (long) read_register (R0_BANK0_REGNUM + 14));
1565 printf_filtered ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1566 (long) read_register (R0_BANK0_REGNUM + 15),
1567 (long) read_register (R0_BANK0_REGNUM + 16),
1568 (long) read_register (R0_BANK0_REGNUM + 17),
1569 (long) read_register (R0_BANK0_REGNUM + 18),
1570 (long) read_register (R0_BANK0_REGNUM + 19));
1571 }
1572
1573 static void
1574 sh3e_show_regs (void)
1575 {
1576 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1577 paddr (read_register (PC_REGNUM)),
1578 (long) read_register (SR_REGNUM),
1579 (long) read_register (PR_REGNUM),
1580 (long) read_register (MACH_REGNUM));
1581
1582 printf_filtered (
1583 " GBR %08lx VBR %08lx MACL %08lx\n",
1584 (long) read_register (GBR_REGNUM),
1585 (long) read_register (VBR_REGNUM),
1586 (long) read_register (MACL_REGNUM));
1587 printf_filtered (
1588 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1589 (long) read_register (SSR_REGNUM),
1590 (long) read_register (SPC_REGNUM),
1591 (long) read_register (FPUL_REGNUM),
1592 (long) read_register (FPSCR_REGNUM));
1593
1594 printf_filtered
1595 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1596 (long) read_register (0), (long) read_register (1),
1597 (long) read_register (2), (long) read_register (3),
1598 (long) read_register (4), (long) read_register (5),
1599 (long) read_register (6), (long) read_register (7));
1600 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1601 (long) read_register (8), (long) read_register (9),
1602 (long) read_register (10), (long) read_register (11),
1603 (long) read_register (12), (long) read_register (13),
1604 (long) read_register (14), (long) read_register (15));
1605
1606 printf_filtered ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1607 (long) read_register (FP0_REGNUM + 0),
1608 (long) read_register (FP0_REGNUM + 1),
1609 (long) read_register (FP0_REGNUM + 2),
1610 (long) read_register (FP0_REGNUM + 3),
1611 (long) read_register (FP0_REGNUM + 4),
1612 (long) read_register (FP0_REGNUM + 5),
1613 (long) read_register (FP0_REGNUM + 6),
1614 (long) read_register (FP0_REGNUM + 7));
1615 printf_filtered ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1616 (long) read_register (FP0_REGNUM + 8),
1617 (long) read_register (FP0_REGNUM + 9),
1618 (long) read_register (FP0_REGNUM + 10),
1619 (long) read_register (FP0_REGNUM + 11),
1620 (long) read_register (FP0_REGNUM + 12),
1621 (long) read_register (FP0_REGNUM + 13),
1622 (long) read_register (FP0_REGNUM + 14),
1623 (long) read_register (FP0_REGNUM + 15));
1624 }
1625
1626 static void
1627 sh3_dsp_show_regs (void)
1628 {
1629 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1630 paddr (read_register (PC_REGNUM)),
1631 (long) read_register (SR_REGNUM),
1632 (long) read_register (PR_REGNUM),
1633 (long) read_register (MACH_REGNUM));
1634
1635 printf_filtered (
1636 " GBR %08lx VBR %08lx MACL %08lx\n",
1637 (long) read_register (GBR_REGNUM),
1638 (long) read_register (VBR_REGNUM),
1639 (long) read_register (MACL_REGNUM));
1640
1641 printf_filtered (" SSR %08lx SPC %08lx DSR %08lx\n",
1642 (long) read_register (SSR_REGNUM),
1643 (long) read_register (SPC_REGNUM),
1644 (long) read_register (DSR_REGNUM));
1645
1646 printf_filtered
1647 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1648 (long) read_register (0), (long) read_register (1),
1649 (long) read_register (2), (long) read_register (3),
1650 (long) read_register (4), (long) read_register (5),
1651 (long) read_register (6), (long) read_register (7));
1652 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1653 (long) read_register (8), (long) read_register (9),
1654 (long) read_register (10), (long) read_register (11),
1655 (long) read_register (12), (long) read_register (13),
1656 (long) read_register (14), (long) read_register (15));
1657
1658 printf_filtered
1659 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1660 (long) read_register (A0G_REGNUM) & 0xff,
1661 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1662 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1663 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
1664 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1665 (long) read_register (A1G_REGNUM) & 0xff,
1666 (long) read_register (A1_REGNUM),
1667 (long) read_register (M1_REGNUM),
1668 (long) read_register (X1_REGNUM),
1669 (long) read_register (Y1_REGNUM),
1670 (long) read_register (RE_REGNUM));
1671 }
1672
1673 static void
1674 sh4_show_regs (void)
1675 {
1676 int pr = read_register (FPSCR_REGNUM) & 0x80000;
1677 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1678 paddr (read_register (PC_REGNUM)),
1679 (long) read_register (SR_REGNUM),
1680 (long) read_register (PR_REGNUM),
1681 (long) read_register (MACH_REGNUM));
1682
1683 printf_filtered (
1684 " GBR %08lx VBR %08lx MACL %08lx\n",
1685 (long) read_register (GBR_REGNUM),
1686 (long) read_register (VBR_REGNUM),
1687 (long) read_register (MACL_REGNUM));
1688 printf_filtered (
1689 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1690 (long) read_register (SSR_REGNUM),
1691 (long) read_register (SPC_REGNUM),
1692 (long) read_register (FPUL_REGNUM),
1693 (long) read_register (FPSCR_REGNUM));
1694
1695 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1696 (long) read_register (0), (long) read_register (1),
1697 (long) read_register (2), (long) read_register (3),
1698 (long) read_register (4), (long) read_register (5),
1699 (long) read_register (6), (long) read_register (7));
1700 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1701 (long) read_register (8), (long) read_register (9),
1702 (long) read_register (10), (long) read_register (11),
1703 (long) read_register (12), (long) read_register (13),
1704 (long) read_register (14), (long) read_register (15));
1705
1706 printf_filtered (
1707 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1708 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1709 (long) read_register (FP0_REGNUM + 0),
1710 (long) read_register (FP0_REGNUM + 1),
1711 (long) read_register (FP0_REGNUM + 2),
1712 (long) read_register (FP0_REGNUM + 3),
1713 (long) read_register (FP0_REGNUM + 4),
1714 (long) read_register (FP0_REGNUM + 5),
1715 (long) read_register (FP0_REGNUM + 6),
1716 (long) read_register (FP0_REGNUM + 7));
1717 printf_filtered (
1718 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1719 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1720 (long) read_register (FP0_REGNUM + 8),
1721 (long) read_register (FP0_REGNUM + 9),
1722 (long) read_register (FP0_REGNUM + 10),
1723 (long) read_register (FP0_REGNUM + 11),
1724 (long) read_register (FP0_REGNUM + 12),
1725 (long) read_register (FP0_REGNUM + 13),
1726 (long) read_register (FP0_REGNUM + 14),
1727 (long) read_register (FP0_REGNUM + 15));
1728 }
1729
1730 static void
1731 sh4_nofpu_show_regs (void)
1732 {
1733 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1734 paddr (read_register (PC_REGNUM)),
1735 (long) read_register (SR_REGNUM),
1736 (long) read_register (PR_REGNUM),
1737 (long) read_register (MACH_REGNUM));
1738
1739 printf_filtered (
1740 " GBR %08lx VBR %08lx MACL %08lx\n",
1741 (long) read_register (GBR_REGNUM),
1742 (long) read_register (VBR_REGNUM),
1743 (long) read_register (MACL_REGNUM));
1744 printf_filtered (
1745 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1746 (long) read_register (SSR_REGNUM),
1747 (long) read_register (SPC_REGNUM),
1748 (long) read_register (FPUL_REGNUM),
1749 (long) read_register (FPSCR_REGNUM));
1750
1751 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1752 (long) read_register (0), (long) read_register (1),
1753 (long) read_register (2), (long) read_register (3),
1754 (long) read_register (4), (long) read_register (5),
1755 (long) read_register (6), (long) read_register (7));
1756 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1757 (long) read_register (8), (long) read_register (9),
1758 (long) read_register (10), (long) read_register (11),
1759 (long) read_register (12), (long) read_register (13),
1760 (long) read_register (14), (long) read_register (15));
1761 }
1762
1763 static void
1764 sh_dsp_show_regs (void)
1765 {
1766
1767 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1768 paddr (read_register (PC_REGNUM)),
1769 (long) read_register (SR_REGNUM),
1770 (long) read_register (PR_REGNUM),
1771 (long) read_register (MACH_REGNUM));
1772
1773 printf_filtered (
1774 " GBR %08lx VBR %08lx DSR %08lx MACL %08lx\n",
1775 (long) read_register (GBR_REGNUM),
1776 (long) read_register (VBR_REGNUM),
1777 (long) read_register (DSR_REGNUM),
1778 (long) read_register (MACL_REGNUM));
1779
1780 printf_filtered
1781 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1782 (long) read_register (0), (long) read_register (1),
1783 (long) read_register (2), (long) read_register (3),
1784 (long) read_register (4), (long) read_register (5),
1785 (long) read_register (6), (long) read_register (7));
1786 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1787 (long) read_register (8), (long) read_register (9),
1788 (long) read_register (10), (long) read_register (11),
1789 (long) read_register (12), (long) read_register (13),
1790 (long) read_register (14), (long) read_register (15));
1791
1792 printf_filtered
1793 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1794 (long) read_register (A0G_REGNUM) & 0xff,
1795 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1796 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1797 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
1798 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1799 (long) read_register (A1G_REGNUM) & 0xff,
1800 (long) read_register (A1_REGNUM),
1801 (long) read_register (M1_REGNUM),
1802 (long) read_register (X1_REGNUM),
1803 (long) read_register (Y1_REGNUM),
1804 (long) read_register (RE_REGNUM));
1805 }
1806
1807 static void
1808 sh_show_regs_command (char *args, int from_tty)
1809 {
1810 if (sh_show_regs)
1811 (*sh_show_regs) ();
1812 }
1813
1814 static struct type *
1815 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1816 {
1817 if ((reg_nr >= FP0_REGNUM
1818 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1819 return builtin_type_float;
1820 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1821 return builtin_type_double;
1822 else
1823 return builtin_type_int;
1824 }
1825
1826 /* Return the GDB type object for the "standard" data type
1827 of data in register N. */
1828 static struct type *
1829 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1830 {
1831 if ((reg_nr >= FP0_REGNUM
1832 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1833 return builtin_type_float;
1834 else
1835 return builtin_type_int;
1836 }
1837
1838 static struct type *
1839 sh_sh4_build_float_register_type (int high)
1840 {
1841 struct type *temp;
1842
1843 temp = create_range_type (NULL, builtin_type_int, 0, high);
1844 return create_array_type (NULL, builtin_type_float, temp);
1845 }
1846
1847 static struct type *
1848 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1849 {
1850 if ((reg_nr >= FP0_REGNUM
1851 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1852 return builtin_type_float;
1853 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1854 return builtin_type_double;
1855 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1856 return sh_sh4_build_float_register_type (3);
1857 else
1858 return builtin_type_int;
1859 }
1860
1861 static struct type *
1862 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1863 {
1864 return builtin_type_int;
1865 }
1866
1867 /* Is a register in a reggroup?
1868 The default code in reggroup.c doesn't identify system registers, some
1869 float registers or any of the vector registers.
1870 TODO: sh2a and dsp registers. */
1871 int
1872 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1873 struct reggroup *reggroup)
1874 {
1875 if (REGISTER_NAME (regnum) == NULL
1876 || *REGISTER_NAME (regnum) == '\0')
1877 return 0;
1878
1879 if (reggroup == float_reggroup
1880 && (regnum == FPUL_REGNUM
1881 || regnum == FPSCR_REGNUM))
1882 return 1;
1883
1884 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1885 {
1886 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1887 return 1;
1888 if (reggroup == general_reggroup)
1889 return 0;
1890 }
1891
1892 if (regnum == VBR_REGNUM
1893 || regnum == SR_REGNUM
1894 || regnum == FPSCR_REGNUM
1895 || regnum == SSR_REGNUM
1896 || regnum == SPC_REGNUM)
1897 {
1898 if (reggroup == system_reggroup)
1899 return 1;
1900 if (reggroup == general_reggroup)
1901 return 0;
1902 }
1903
1904 /* The default code can cope with any other registers. */
1905 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1906 }
1907
1908 /* On the sh4, the DRi pseudo registers are problematic if the target
1909 is little endian. When the user writes one of those registers, for
1910 instance with 'ser var $dr0=1', we want the double to be stored
1911 like this:
1912 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1913 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1914
1915 This corresponds to little endian byte order & big endian word
1916 order. However if we let gdb write the register w/o conversion, it
1917 will write fr0 and fr1 this way:
1918 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1919 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1920 because it will consider fr0 and fr1 as a single LE stretch of memory.
1921
1922 To achieve what we want we must force gdb to store things in
1923 floatformat_ieee_double_littlebyte_bigword (which is defined in
1924 include/floatformat.h and libiberty/floatformat.c.
1925
1926 In case the target is big endian, there is no problem, the
1927 raw bytes will look like:
1928 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1929 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1930
1931 The other pseudo registers (the FVs) also don't pose a problem
1932 because they are stored as 4 individual FP elements. */
1933
1934 static void
1935 sh_register_convert_to_virtual (int regnum, struct type *type,
1936 char *from, char *to)
1937 {
1938 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1939 {
1940 DOUBLEST val;
1941 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1942 from, &val);
1943 store_typed_floating (to, type, val);
1944 }
1945 else
1946 error
1947 ("sh_register_convert_to_virtual called with non DR register number");
1948 }
1949
1950 static void
1951 sh_register_convert_to_raw (struct type *type, int regnum,
1952 const void *from, void *to)
1953 {
1954 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1955 {
1956 DOUBLEST val = extract_typed_floating (from, type);
1957 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1958 &val, to);
1959 }
1960 else
1961 error (_("sh_register_convert_to_raw called with non DR register number"));
1962 }
1963
1964 /* For vectors of 4 floating point registers. */
1965 static int
1966 fv_reg_base_num (int fv_regnum)
1967 {
1968 int fp_regnum;
1969
1970 fp_regnum = FP0_REGNUM + (fv_regnum - FV0_REGNUM) * 4;
1971 return fp_regnum;
1972 }
1973
1974 /* For double precision floating point registers, i.e 2 fp regs.*/
1975 static int
1976 dr_reg_base_num (int dr_regnum)
1977 {
1978 int fp_regnum;
1979
1980 fp_regnum = FP0_REGNUM + (dr_regnum - DR0_REGNUM) * 2;
1981 return fp_regnum;
1982 }
1983
1984 static void
1985 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1986 int reg_nr, gdb_byte *buffer)
1987 {
1988 int base_regnum, portion;
1989 char temp_buffer[MAX_REGISTER_SIZE];
1990
1991 if (reg_nr == PSEUDO_BANK_REGNUM)
1992 regcache_raw_read (regcache, BANK_REGNUM, buffer);
1993 else
1994 if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1995 {
1996 base_regnum = dr_reg_base_num (reg_nr);
1997
1998 /* Build the value in the provided buffer. */
1999 /* Read the real regs for which this one is an alias. */
2000 for (portion = 0; portion < 2; portion++)
2001 regcache_raw_read (regcache, base_regnum + portion,
2002 (temp_buffer
2003 + register_size (gdbarch,
2004 base_regnum) * portion));
2005 /* We must pay attention to the endiannes. */
2006 sh_register_convert_to_virtual (reg_nr,
2007 gdbarch_register_type (gdbarch, reg_nr),
2008 temp_buffer, buffer);
2009 }
2010 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2011 {
2012 base_regnum = fv_reg_base_num (reg_nr);
2013
2014 /* Read the real regs for which this one is an alias. */
2015 for (portion = 0; portion < 4; portion++)
2016 regcache_raw_read (regcache, base_regnum + portion,
2017 ((char *) buffer
2018 + register_size (gdbarch,
2019 base_regnum) * portion));
2020 }
2021 }
2022
2023 static void
2024 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2025 int reg_nr, const gdb_byte *buffer)
2026 {
2027 int base_regnum, portion;
2028 char temp_buffer[MAX_REGISTER_SIZE];
2029
2030 if (reg_nr == PSEUDO_BANK_REGNUM)
2031 {
2032 /* When the bank register is written to, the whole register bank
2033 is switched and all values in the bank registers must be read
2034 from the target/sim again. We're just invalidating the regcache
2035 so that a re-read happens next time it's necessary. */
2036 int bregnum;
2037
2038 regcache_raw_write (regcache, BANK_REGNUM, buffer);
2039 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
2040 set_register_cached (bregnum, 0);
2041 }
2042 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2043 {
2044 base_regnum = dr_reg_base_num (reg_nr);
2045
2046 /* We must pay attention to the endiannes. */
2047 sh_register_convert_to_raw (gdbarch_register_type (gdbarch, reg_nr),
2048 reg_nr, buffer, temp_buffer);
2049
2050 /* Write the real regs for which this one is an alias. */
2051 for (portion = 0; portion < 2; portion++)
2052 regcache_raw_write (regcache, base_regnum + portion,
2053 (temp_buffer
2054 + register_size (gdbarch,
2055 base_regnum) * portion));
2056 }
2057 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2058 {
2059 base_regnum = fv_reg_base_num (reg_nr);
2060
2061 /* Write the real regs for which this one is an alias. */
2062 for (portion = 0; portion < 4; portion++)
2063 regcache_raw_write (regcache, base_regnum + portion,
2064 ((char *) buffer
2065 + register_size (gdbarch,
2066 base_regnum) * portion));
2067 }
2068 }
2069
2070 static int
2071 sh_dsp_register_sim_regno (int nr)
2072 {
2073 if (legacy_register_sim_regno (nr) < 0)
2074 return legacy_register_sim_regno (nr);
2075 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
2076 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
2077 if (nr == MOD_REGNUM)
2078 return SIM_SH_MOD_REGNUM;
2079 if (nr == RS_REGNUM)
2080 return SIM_SH_RS_REGNUM;
2081 if (nr == RE_REGNUM)
2082 return SIM_SH_RE_REGNUM;
2083 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
2084 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2085 return nr;
2086 }
2087
2088 static int
2089 sh_sh2a_register_sim_regno (int nr)
2090 {
2091 switch (nr)
2092 {
2093 case TBR_REGNUM:
2094 return SIM_SH_TBR_REGNUM;
2095 case IBNR_REGNUM:
2096 return SIM_SH_IBNR_REGNUM;
2097 case IBCR_REGNUM:
2098 return SIM_SH_IBCR_REGNUM;
2099 case BANK_REGNUM:
2100 return SIM_SH_BANK_REGNUM;
2101 case MACLB_REGNUM:
2102 return SIM_SH_BANK_MACL_REGNUM;
2103 case GBRB_REGNUM:
2104 return SIM_SH_BANK_GBR_REGNUM;
2105 case PRB_REGNUM:
2106 return SIM_SH_BANK_PR_REGNUM;
2107 case IVNB_REGNUM:
2108 return SIM_SH_BANK_IVN_REGNUM;
2109 case MACHB_REGNUM:
2110 return SIM_SH_BANK_MACH_REGNUM;
2111 default:
2112 break;
2113 }
2114 return legacy_register_sim_regno (nr);
2115 }
2116
2117 /* Set up the register unwinding such that call-clobbered registers are
2118 not displayed in frames >0 because the true value is not certain.
2119 The 'undefined' registers will show up as 'not available' unless the
2120 CFI says otherwise.
2121
2122 This function is currently set up for SH4 and compatible only. */
2123
2124 static void
2125 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2126 struct dwarf2_frame_state_reg *reg,
2127 struct frame_info *next_frame)
2128 {
2129 /* Mark the PC as the destination for the return address. */
2130 if (regnum == PC_REGNUM)
2131 reg->how = DWARF2_FRAME_REG_RA;
2132
2133 /* Mark the stack pointer as the call frame address. */
2134 else if (regnum == SP_REGNUM)
2135 reg->how = DWARF2_FRAME_REG_CFA;
2136
2137 /* The above was taken from the default init_reg in dwarf2-frame.c
2138 while the below is SH specific. */
2139
2140 /* Caller save registers. */
2141 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
2142 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
2143 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
2144 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
2145 || (regnum == MACH_REGNUM)
2146 || (regnum == MACL_REGNUM)
2147 || (regnum == FPUL_REGNUM)
2148 || (regnum == SR_REGNUM))
2149 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2150
2151 /* Callee save registers. */
2152 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
2153 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
2154 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
2155 || (regnum == FV0_REGNUM+3))
2156 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2157
2158 /* Other registers. These are not in the ABI and may or may not
2159 mean anything in frames >0 so don't show them. */
2160 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
2161 || (regnum == GBR_REGNUM)
2162 || (regnum == VBR_REGNUM)
2163 || (regnum == FPSCR_REGNUM)
2164 || (regnum == SSR_REGNUM)
2165 || (regnum == SPC_REGNUM))
2166 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2167 }
2168
2169 static struct sh_frame_cache *
2170 sh_alloc_frame_cache (void)
2171 {
2172 struct sh_frame_cache *cache;
2173 int i;
2174
2175 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
2176
2177 /* Base address. */
2178 cache->base = 0;
2179 cache->saved_sp = 0;
2180 cache->sp_offset = 0;
2181 cache->pc = 0;
2182
2183 /* Frameless until proven otherwise. */
2184 cache->uses_fp = 0;
2185
2186 /* Saved registers. We initialize these to -1 since zero is a valid
2187 offset (that's where fp is supposed to be stored). */
2188 for (i = 0; i < SH_NUM_REGS; i++)
2189 {
2190 cache->saved_regs[i] = -1;
2191 }
2192
2193 return cache;
2194 }
2195
2196 static struct sh_frame_cache *
2197 sh_frame_cache (struct frame_info *next_frame, void **this_cache)
2198 {
2199 struct sh_frame_cache *cache;
2200 CORE_ADDR current_pc;
2201 int i;
2202
2203 if (*this_cache)
2204 return *this_cache;
2205
2206 cache = sh_alloc_frame_cache ();
2207 *this_cache = cache;
2208
2209 /* In principle, for normal frames, fp holds the frame pointer,
2210 which holds the base address for the current stack frame.
2211 However, for functions that don't need it, the frame pointer is
2212 optional. For these "frameless" functions the frame pointer is
2213 actually the frame pointer of the calling frame. */
2214 cache->base = frame_unwind_register_unsigned (next_frame, FP_REGNUM);
2215 if (cache->base == 0)
2216 return cache;
2217
2218 cache->pc = frame_func_unwind (next_frame);
2219 current_pc = frame_pc_unwind (next_frame);
2220 if (cache->pc != 0)
2221 sh_analyze_prologue (cache->pc, current_pc, cache);
2222
2223 if (!cache->uses_fp)
2224 {
2225 /* We didn't find a valid frame, which means that CACHE->base
2226 currently holds the frame pointer for our calling frame. If
2227 we're at the start of a function, or somewhere half-way its
2228 prologue, the function's frame probably hasn't been fully
2229 setup yet. Try to reconstruct the base address for the stack
2230 frame by looking at the stack pointer. For truly "frameless"
2231 functions this might work too. */
2232 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2233 }
2234
2235 /* Now that we have the base address for the stack frame we can
2236 calculate the value of sp in the calling frame. */
2237 cache->saved_sp = cache->base + cache->sp_offset;
2238
2239 /* Adjust all the saved registers such that they contain addresses
2240 instead of offsets. */
2241 for (i = 0; i < SH_NUM_REGS; i++)
2242 if (cache->saved_regs[i] != -1)
2243 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
2244
2245 return cache;
2246 }
2247
2248 static void
2249 sh_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2250 int regnum, int *optimizedp,
2251 enum lval_type *lvalp, CORE_ADDR *addrp,
2252 int *realnump, gdb_byte *valuep)
2253 {
2254 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2255
2256 gdb_assert (regnum >= 0);
2257
2258 if (regnum == SP_REGNUM && cache->saved_sp)
2259 {
2260 *optimizedp = 0;
2261 *lvalp = not_lval;
2262 *addrp = 0;
2263 *realnump = -1;
2264 if (valuep)
2265 {
2266 /* Store the value. */
2267 store_unsigned_integer (valuep, 4, cache->saved_sp);
2268 }
2269 return;
2270 }
2271
2272 /* The PC of the previous frame is stored in the PR register of
2273 the current frame. Frob regnum so that we pull the value from
2274 the correct place. */
2275 if (regnum == PC_REGNUM)
2276 regnum = PR_REGNUM;
2277
2278 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
2279 {
2280 *optimizedp = 0;
2281 *lvalp = lval_memory;
2282 *addrp = cache->saved_regs[regnum];
2283 *realnump = -1;
2284 if (valuep)
2285 {
2286 /* Read the value in from memory. */
2287 read_memory (*addrp, valuep,
2288 register_size (current_gdbarch, regnum));
2289 }
2290 return;
2291 }
2292
2293 *optimizedp = 0;
2294 *lvalp = lval_register;
2295 *addrp = 0;
2296 *realnump = regnum;
2297 if (valuep)
2298 frame_unwind_register (next_frame, (*realnump), valuep);
2299 }
2300
2301 static void
2302 sh_frame_this_id (struct frame_info *next_frame, void **this_cache,
2303 struct frame_id *this_id)
2304 {
2305 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2306
2307 /* This marks the outermost frame. */
2308 if (cache->base == 0)
2309 return;
2310
2311 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2312 }
2313
2314 static const struct frame_unwind sh_frame_unwind = {
2315 NORMAL_FRAME,
2316 sh_frame_this_id,
2317 sh_frame_prev_register
2318 };
2319
2320 static const struct frame_unwind *
2321 sh_frame_sniffer (struct frame_info *next_frame)
2322 {
2323 return &sh_frame_unwind;
2324 }
2325
2326 static CORE_ADDR
2327 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2328 {
2329 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2330 }
2331
2332 static CORE_ADDR
2333 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2334 {
2335 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2336 }
2337
2338 static struct frame_id
2339 sh_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2340 {
2341 return frame_id_build (sh_unwind_sp (gdbarch, next_frame),
2342 frame_pc_unwind (next_frame));
2343 }
2344
2345 static CORE_ADDR
2346 sh_frame_base_address (struct frame_info *next_frame, void **this_cache)
2347 {
2348 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2349
2350 return cache->base;
2351 }
2352
2353 static const struct frame_base sh_frame_base = {
2354 &sh_frame_unwind,
2355 sh_frame_base_address,
2356 sh_frame_base_address,
2357 sh_frame_base_address
2358 };
2359
2360 /* The epilogue is defined here as the area at the end of a function,
2361 either on the `ret' instruction itself or after an instruction which
2362 destroys the function's stack frame. */
2363 static int
2364 sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2365 {
2366 CORE_ADDR func_addr = 0, func_end = 0;
2367
2368 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2369 {
2370 ULONGEST inst;
2371 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2372 for a nop and some fixed data (e.g. big offsets) which are
2373 unfortunately also treated as part of the function (which
2374 means, they are below func_end. */
2375 CORE_ADDR addr = func_end - 28;
2376 if (addr < func_addr + 4)
2377 addr = func_addr + 4;
2378 if (pc < addr)
2379 return 0;
2380
2381 /* First search forward until hitting an rts. */
2382 while (addr < func_end
2383 && !IS_RTS (read_memory_unsigned_integer (addr, 2)))
2384 addr += 2;
2385 if (addr >= func_end)
2386 return 0;
2387
2388 /* At this point we should find a mov.l @r15+,r14 instruction,
2389 either before or after the rts. If not, then the function has
2390 probably no "normal" epilogue and we bail out here. */
2391 inst = read_memory_unsigned_integer (addr - 2, 2);
2392 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2)))
2393 addr -= 2;
2394 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2)))
2395 return 0;
2396
2397 inst = read_memory_unsigned_integer (addr - 2, 2);
2398
2399 /* Step over possible lds.l @r15+,macl. */
2400 if (IS_MACL_LDS (inst))
2401 {
2402 addr -= 2;
2403 inst = read_memory_unsigned_integer (addr - 2, 2);
2404 }
2405
2406 /* Step over possible lds.l @r15+,pr. */
2407 if (IS_LDS (inst))
2408 {
2409 addr -= 2;
2410 inst = read_memory_unsigned_integer (addr - 2, 2);
2411 }
2412
2413 /* Step over possible mov r14,r15. */
2414 if (IS_MOV_FP_SP (inst))
2415 {
2416 addr -= 2;
2417 inst = read_memory_unsigned_integer (addr - 2, 2);
2418 }
2419
2420 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2421 instructions. */
2422 while (addr > func_addr + 4
2423 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2424 {
2425 addr -= 2;
2426 inst = read_memory_unsigned_integer (addr - 2, 2);
2427 }
2428
2429 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2430 That's allowed for the epilogue. */
2431 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2432 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2433 && addr > func_addr + 6
2434 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2)))
2435 addr -= 4;
2436
2437 if (pc >= addr)
2438 return 1;
2439 }
2440 return 0;
2441 }
2442 \f
2443
2444 static struct gdbarch *
2445 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2446 {
2447 struct gdbarch *gdbarch;
2448
2449 sh_show_regs = sh_generic_show_regs;
2450 switch (info.bfd_arch_info->mach)
2451 {
2452 case bfd_mach_sh2e:
2453 sh_show_regs = sh2e_show_regs;
2454 break;
2455 case bfd_mach_sh2a:
2456 sh_show_regs = sh2a_show_regs;
2457 break;
2458 case bfd_mach_sh2a_nofpu:
2459 sh_show_regs = sh2a_nofpu_show_regs;
2460 break;
2461 case bfd_mach_sh_dsp:
2462 sh_show_regs = sh_dsp_show_regs;
2463 break;
2464
2465 case bfd_mach_sh3:
2466 sh_show_regs = sh3_show_regs;
2467 break;
2468
2469 case bfd_mach_sh3e:
2470 sh_show_regs = sh3e_show_regs;
2471 break;
2472
2473 case bfd_mach_sh3_dsp:
2474 case bfd_mach_sh4al_dsp:
2475 sh_show_regs = sh3_dsp_show_regs;
2476 break;
2477
2478 case bfd_mach_sh4:
2479 case bfd_mach_sh4a:
2480 sh_show_regs = sh4_show_regs;
2481 break;
2482
2483 case bfd_mach_sh4_nofpu:
2484 case bfd_mach_sh4a_nofpu:
2485 sh_show_regs = sh4_nofpu_show_regs;
2486 break;
2487
2488 case bfd_mach_sh5:
2489 sh_show_regs = sh64_show_regs;
2490 /* SH5 is handled entirely in sh64-tdep.c */
2491 return sh64_gdbarch_init (info, arches);
2492 }
2493
2494 /* If there is already a candidate, use it. */
2495 arches = gdbarch_list_lookup_by_info (arches, &info);
2496 if (arches != NULL)
2497 return arches->gdbarch;
2498
2499 /* None found, create a new architecture from the information
2500 provided. */
2501 gdbarch = gdbarch_alloc (&info, NULL);
2502
2503 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2504 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2505 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2506 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2507 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2508 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2509 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2510 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2511
2512 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2513 set_gdbarch_sp_regnum (gdbarch, 15);
2514 set_gdbarch_pc_regnum (gdbarch, 16);
2515 set_gdbarch_fp0_regnum (gdbarch, -1);
2516 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2517
2518 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2519 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2520
2521 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2522
2523 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
2524 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2525
2526 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2527
2528 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2529 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2530 sh_extract_struct_value_address);
2531
2532 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2533 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2534
2535 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2536
2537 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2538
2539 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2540 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2541 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2542 set_gdbarch_unwind_dummy_id (gdbarch, sh_unwind_dummy_id);
2543 frame_base_set_default (gdbarch, &sh_frame_base);
2544
2545 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
2546
2547 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2548
2549 switch (info.bfd_arch_info->mach)
2550 {
2551 case bfd_mach_sh:
2552 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2553 break;
2554
2555 case bfd_mach_sh2:
2556 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2557 break;
2558
2559 case bfd_mach_sh2e:
2560 /* doubles on sh2e and sh3e are actually 4 byte. */
2561 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2562
2563 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2564 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2565 set_gdbarch_fp0_regnum (gdbarch, 25);
2566 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2567 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2568 break;
2569
2570 case bfd_mach_sh2a:
2571 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2572 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2573 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2574
2575 set_gdbarch_fp0_regnum (gdbarch, 25);
2576 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2577 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2578 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2579 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2580 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2581 break;
2582
2583 case bfd_mach_sh2a_nofpu:
2584 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2585 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2586
2587 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2588 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2589 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2590 break;
2591
2592 case bfd_mach_sh_dsp:
2593 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2594 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2595 break;
2596
2597 case bfd_mach_sh3:
2598 case bfd_mach_sh3_nommu:
2599 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2600 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2601 break;
2602
2603 case bfd_mach_sh3e:
2604 case bfd_mach_sh2a_or_sh3e:
2605 /* doubles on sh2e and sh3e are actually 4 byte. */
2606 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2607
2608 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2609 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2610 set_gdbarch_fp0_regnum (gdbarch, 25);
2611 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2612 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2613 break;
2614
2615 case bfd_mach_sh3_dsp:
2616 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2617 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2618 break;
2619
2620 case bfd_mach_sh4:
2621 case bfd_mach_sh4a:
2622 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2623 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2624 set_gdbarch_fp0_regnum (gdbarch, 25);
2625 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2626 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2627 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2628 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2629 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2630 break;
2631
2632 case bfd_mach_sh4_nofpu:
2633 case bfd_mach_sh4a_nofpu:
2634 case bfd_mach_sh4_nommu_nofpu:
2635 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2636 case bfd_mach_sh2a_or_sh4:
2637 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2638 break;
2639
2640 case bfd_mach_sh4al_dsp:
2641 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2642 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2643 break;
2644
2645 default:
2646 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2647 break;
2648 }
2649
2650 /* Hook in ABI-specific overrides, if they have been registered. */
2651 gdbarch_init_osabi (info, gdbarch);
2652
2653 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2654 frame_unwind_append_sniffer (gdbarch, sh_frame_sniffer);
2655
2656 return gdbarch;
2657 }
2658
2659 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
2660
2661 void
2662 _initialize_sh_tdep (void)
2663 {
2664 struct cmd_list_element *c;
2665
2666 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2667
2668 add_com ("regs", class_vars, sh_show_regs_command, _("Print all registers"));
2669 }