]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sh64-tdep.c
Fix buffer overrun parsing a corrupt tekhex binary.
[thirdparty/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "valprint.h"
39
40 #include "elf-bfd.h"
41
42 /* sh flags */
43 #include "elf/sh.h"
44 /* Register numbers shared with the simulator. */
45 #include "gdb/sim-sh.h"
46 #include "language.h"
47 #include "sh64-tdep.h"
48 #include <algorithm>
49
50 /* Information that is dependent on the processor variant. */
51 enum sh_abi
52 {
53 SH_ABI_UNKNOWN,
54 SH_ABI_32,
55 SH_ABI_64
56 };
57
58 struct gdbarch_tdep
59 {
60 enum sh_abi sh_abi;
61 };
62
63 struct sh64_frame_cache
64 {
65 /* Base address. */
66 CORE_ADDR base;
67 LONGEST sp_offset;
68 CORE_ADDR pc;
69
70 /* Flag showing that a frame has been created in the prologue code. */
71 int uses_fp;
72
73 int media_mode;
74
75 /* Saved registers. */
76 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
77 CORE_ADDR saved_sp;
78 };
79
80 /* Registers of SH5 */
81 enum
82 {
83 R0_REGNUM = 0,
84 DEFAULT_RETURN_REGNUM = 2,
85 STRUCT_RETURN_REGNUM = 2,
86 ARG0_REGNUM = 2,
87 ARGLAST_REGNUM = 9,
88 FLOAT_ARGLAST_REGNUM = 11,
89 MEDIA_FP_REGNUM = 14,
90 PR_REGNUM = 18,
91 SR_REGNUM = 65,
92 DR0_REGNUM = 141,
93 DR_LAST_REGNUM = 172,
94 /* FPP stands for Floating Point Pair, to avoid confusion with
95 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
96 point register. Unfortunately on the sh5, the floating point
97 registers are called FR, and the floating point pairs are called FP. */
98 FPP0_REGNUM = 173,
99 FPP_LAST_REGNUM = 204,
100 FV0_REGNUM = 205,
101 FV_LAST_REGNUM = 220,
102 R0_C_REGNUM = 221,
103 R_LAST_C_REGNUM = 236,
104 PC_C_REGNUM = 237,
105 GBR_C_REGNUM = 238,
106 MACH_C_REGNUM = 239,
107 MACL_C_REGNUM = 240,
108 PR_C_REGNUM = 241,
109 T_C_REGNUM = 242,
110 FPSCR_C_REGNUM = 243,
111 FPUL_C_REGNUM = 244,
112 FP0_C_REGNUM = 245,
113 FP_LAST_C_REGNUM = 260,
114 DR0_C_REGNUM = 261,
115 DR_LAST_C_REGNUM = 268,
116 FV0_C_REGNUM = 269,
117 FV_LAST_C_REGNUM = 272,
118 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
119 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
120 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
121 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
122 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
123 };
124
125 static const char *
126 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
127 {
128 static const char *register_names[] =
129 {
130 /* SH MEDIA MODE (ISA 32) */
131 /* general registers (64-bit) 0-63 */
132 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
133 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
134 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
135 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
136 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
137 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
138 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
139 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
140
141 /* pc (64-bit) 64 */
142 "pc",
143
144 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
145 "sr", "ssr", "spc",
146
147 /* target registers (64-bit) 68-75 */
148 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
149
150 /* floating point state control register (32-bit) 76 */
151 "fpscr",
152
153 /* single precision floating point registers (32-bit) 77-140 */
154 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
155 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
156 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
157 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
158 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
159 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
160 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
161 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
162
163 /* double precision registers (pseudo) 141-172 */
164 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
165 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
166 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
167 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
168
169 /* floating point pairs (pseudo) 173-204 */
170 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
171 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
172 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
173 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
174
175 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
176 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
177 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
178
179 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
180 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
181 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
182 "pc_c",
183 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
184 "fpscr_c", "fpul_c",
185 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
186 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
187 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
188 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
189 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
190 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
208
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 32-bit function
212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
213
214 #define MSYMBOL_IS_SPECIAL(msym) \
215 MSYMBOL_TARGET_FLAG_1 (msym)
216
217 static void
218 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219 {
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
225 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
226 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
227 }
228 }
229
230 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232 #define IS_ISA32_ADDR(addr) ((addr) & 1)
233 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236 static int
237 pc_is_isa32 (bfd_vma memaddr)
238 {
239 struct bound_minimal_symbol sym;
240
241 /* If bit 0 of the address is set, assume this is a
242 ISA32 (shmedia) address. */
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
250 if (sym.minsym)
251 return MSYMBOL_IS_SPECIAL (sym.minsym);
252 else
253 return 0;
254 }
255
256 static int
257 sh64_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
258 {
259 if (pc_is_isa32 (*pcptr))
260 {
261 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
262 return 4;
263 }
264 else
265 return 2;
266 }
267
268 static const gdb_byte *
269 sh64_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
270 {
271 *size = kind;
272
273 /* The BRK instruction for shmedia is
274 01101111 11110101 11111111 11110000
275 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
276 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
277
278 /* The BRK instruction for shcompact is
279 00000000 00111011
280 which translates in big endian mode to 0x0, 0x3b
281 and in little endian mode to 0x3b, 0x0 */
282
283 if (kind == 4)
284 {
285 static unsigned char big_breakpoint_media[] = {
286 0x6f, 0xf5, 0xff, 0xf0
287 };
288 static unsigned char little_breakpoint_media[] = {
289 0xf0, 0xff, 0xf5, 0x6f
290 };
291
292 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
293 return big_breakpoint_media;
294 else
295 return little_breakpoint_media;
296 }
297 else
298 {
299 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
300 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
301
302 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
303 return big_breakpoint_compact;
304 else
305 return little_breakpoint_compact;
306 }
307 }
308
309 /* Prologue looks like
310 [mov.l <regs>,@-r15]...
311 [sts.l pr,@-r15]
312 [mov.l r14,@-r15]
313 [mov r15,r14]
314
315 Actually it can be more complicated than this. For instance, with
316 newer gcc's:
317
318 mov.l r14,@-r15
319 add #-12,r15
320 mov r15,r14
321 mov r4,r1
322 mov r5,r2
323 mov.l r6,@(4,r14)
324 mov.l r7,@(8,r14)
325 mov.b r1,@r14
326 mov r14,r1
327 mov r14,r1
328 add #2,r1
329 mov.w r2,@r1
330
331 */
332
333 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
334 with l=1 and n = 18 0110101111110001010010100aaa0000 */
335 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
336
337 /* STS.L PR,@-r0 0100000000100010
338 r0-4-->r0, PR-->(r0) */
339 #define IS_STS_R0(x) ((x) == 0x4022)
340
341 /* STS PR, Rm 0000mmmm00101010
342 PR-->Rm */
343 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
344
345 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
346 Rm-->(dispx4+r15) */
347 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
348
349 /* MOV.L R14,@(disp,r15) 000111111110dddd
350 R14-->(dispx4+r15) */
351 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
352
353 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
354 R18-->(dispx8+R14) */
355 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
356
357 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
358 R18-->(dispx8+R15) */
359 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
360
361 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
362 R18-->(dispx4+R15) */
363 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
364
365 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
366 R14-->(dispx8+R15) */
367 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
368
369 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
370 R14-->(dispx4+R15) */
371 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
372
373 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
374 R15 + imm --> R15 */
375 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
376
377 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
378 R15 + imm --> R15 */
379 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
380
381 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
382 R15 + R63 --> R14 */
383 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
384
385 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
386 R15 + R63 --> R14 */
387 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
388
389 #define IS_MOV_SP_FP_MEDIA(x) \
390 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
391
392 /* MOV #imm, R0 1110 0000 ssss ssss
393 #imm-->R0 */
394 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
395
396 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
397 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
398
399 /* ADD r15,r0 0011 0000 1111 1100
400 r15+r0-->r0 */
401 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
402
403 /* MOV.L R14 @-R0 0010 0000 1110 0110
404 R14-->(R0-4), R0-4-->R0 */
405 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
406
407 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
408 where Rm is one of r2-r9 which are the argument registers. */
409 /* FIXME: Recognize the float and double register moves too! */
410 #define IS_MEDIA_IND_ARG_MOV(x) \
411 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
412 && (((x) & 0x03f00000) >= 0x00200000 \
413 && ((x) & 0x03f00000) <= 0x00900000))
414
415 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
416 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
417 where Rm is one of r2-r9 which are the argument registers. */
418 #define IS_MEDIA_ARG_MOV(x) \
419 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
420 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
421
422 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
423 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
424 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
425 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
426 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
427 #define IS_MEDIA_MOV_TO_R14(x) \
428 ((((x) & 0xfffffc0f) == 0xa0e00000) \
429 || (((x) & 0xfffffc0f) == 0xa4e00000) \
430 || (((x) & 0xfffffc0f) == 0xa8e00000) \
431 || (((x) & 0xfffffc0f) == 0xb4e00000) \
432 || (((x) & 0xfffffc0f) == 0xbce00000))
433
434 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
435 where Rm is r2-r9 */
436 #define IS_COMPACT_IND_ARG_MOV(x) \
437 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
438 && (((x) & 0x00f0) <= 0x0090))
439
440 /* compact direct arg move!
441 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
442 #define IS_COMPACT_ARG_MOV(x) \
443 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
444 && ((x) & 0x00f0) <= 0x0090))
445
446 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
447 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
448 #define IS_COMPACT_MOV_TO_R14(x) \
449 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
450
451 #define IS_JSR_R0(x) ((x) == 0x400b)
452 #define IS_NOP(x) ((x) == 0x0009)
453
454
455 /* MOV r15,r14 0110111011110011
456 r15-->r14 */
457 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
458
459 /* ADD #imm,r15 01111111iiiiiiii
460 r15+imm-->r15 */
461 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
462
463 /* Skip any prologue before the guts of a function. */
464
465 /* Skip the prologue using the debug information. If this fails we'll
466 fall back on the 'guess' method below. */
467 static CORE_ADDR
468 after_prologue (CORE_ADDR pc)
469 {
470 struct symtab_and_line sal;
471 CORE_ADDR func_addr, func_end;
472
473 /* If we can not find the symbol in the partial symbol table, then
474 there is no hope we can determine the function's start address
475 with this code. */
476 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
477 return 0;
478
479
480 /* Get the line associated with FUNC_ADDR. */
481 sal = find_pc_line (func_addr, 0);
482
483 /* There are only two cases to consider. First, the end of the source line
484 is within the function bounds. In that case we return the end of the
485 source line. Second is the end of the source line extends beyond the
486 bounds of the current function. We need to use the slow code to
487 examine instructions in that case. */
488 if (sal.end < func_end)
489 return sal.end;
490 else
491 return 0;
492 }
493
494 static CORE_ADDR
495 look_for_args_moves (struct gdbarch *gdbarch,
496 CORE_ADDR start_pc, int media_mode)
497 {
498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
499 CORE_ADDR here, end;
500 int w;
501 int insn_size = (media_mode ? 4 : 2);
502
503 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
504 {
505 if (media_mode)
506 {
507 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
508 insn_size, byte_order);
509 here += insn_size;
510 if (IS_MEDIA_IND_ARG_MOV (w))
511 {
512 /* This must be followed by a store to r14, so the argument
513 is where the debug info says it is. This can happen after
514 the SP has been saved, unfortunately. */
515
516 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
517 insn_size, byte_order);
518 here += insn_size;
519 if (IS_MEDIA_MOV_TO_R14 (next_insn))
520 start_pc = here;
521 }
522 else if (IS_MEDIA_ARG_MOV (w))
523 {
524 /* These instructions store directly the argument in r14. */
525 start_pc = here;
526 }
527 else
528 break;
529 }
530 else
531 {
532 w = read_memory_integer (here, insn_size, byte_order);
533 w = w & 0xffff;
534 here += insn_size;
535 if (IS_COMPACT_IND_ARG_MOV (w))
536 {
537 /* This must be followed by a store to r14, so the argument
538 is where the debug info says it is. This can happen after
539 the SP has been saved, unfortunately. */
540
541 int next_insn = 0xffff & read_memory_integer (here, insn_size,
542 byte_order);
543 here += insn_size;
544 if (IS_COMPACT_MOV_TO_R14 (next_insn))
545 start_pc = here;
546 }
547 else if (IS_COMPACT_ARG_MOV (w))
548 {
549 /* These instructions store directly the argument in r14. */
550 start_pc = here;
551 }
552 else if (IS_MOVL_R0 (w))
553 {
554 /* There is a function that gcc calls to get the arguments
555 passed correctly to the function. Only after this
556 function call the arguments will be found at the place
557 where they are supposed to be. This happens in case the
558 argument has to be stored into a 64-bit register (for
559 instance doubles, long longs). SHcompact doesn't have
560 access to the full 64-bits, so we store the register in
561 stack slot and store the address of the stack slot in
562 the register, then do a call through a wrapper that
563 loads the memory value into the register. A SHcompact
564 callee calls an argument decoder
565 (GCC_shcompact_incoming_args) that stores the 64-bit
566 value in a stack slot and stores the address of the
567 stack slot in the register. GCC thinks the argument is
568 just passed by transparent reference, but this is only
569 true after the argument decoder is called. Such a call
570 needs to be considered part of the prologue. */
571
572 /* This must be followed by a JSR @r0 instruction and by
573 a NOP instruction. After these, the prologue is over! */
574
575 int next_insn = 0xffff & read_memory_integer (here, insn_size,
576 byte_order);
577 here += insn_size;
578 if (IS_JSR_R0 (next_insn))
579 {
580 next_insn = 0xffff & read_memory_integer (here, insn_size,
581 byte_order);
582 here += insn_size;
583
584 if (IS_NOP (next_insn))
585 start_pc = here;
586 }
587 }
588 else
589 break;
590 }
591 }
592
593 return start_pc;
594 }
595
596 static CORE_ADDR
597 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
598 {
599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
600 CORE_ADDR here, end;
601 int updated_fp = 0;
602 int insn_size = 4;
603 int media_mode = 1;
604
605 if (!start_pc)
606 return 0;
607
608 if (pc_is_isa32 (start_pc) == 0)
609 {
610 insn_size = 2;
611 media_mode = 0;
612 }
613
614 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
615 {
616
617 if (media_mode)
618 {
619 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
620 insn_size, byte_order);
621 here += insn_size;
622 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
623 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
624 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
625 || IS_PTABSL_R18 (w))
626 {
627 start_pc = here;
628 }
629 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
630 {
631 start_pc = here;
632 updated_fp = 1;
633 }
634 else
635 if (updated_fp)
636 {
637 /* Don't bail out yet, we may have arguments stored in
638 registers here, according to the debug info, so that
639 gdb can print the frames correctly. */
640 start_pc = look_for_args_moves (gdbarch,
641 here - insn_size, media_mode);
642 break;
643 }
644 }
645 else
646 {
647 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
648 here += insn_size;
649
650 if (IS_STS_R0 (w) || IS_STS_PR (w)
651 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
652 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
653 {
654 start_pc = here;
655 }
656 else if (IS_MOV_SP_FP (w))
657 {
658 start_pc = here;
659 updated_fp = 1;
660 }
661 else
662 if (updated_fp)
663 {
664 /* Don't bail out yet, we may have arguments stored in
665 registers here, according to the debug info, so that
666 gdb can print the frames correctly. */
667 start_pc = look_for_args_moves (gdbarch,
668 here - insn_size, media_mode);
669 break;
670 }
671 }
672 }
673
674 return start_pc;
675 }
676
677 static CORE_ADDR
678 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
679 {
680 CORE_ADDR post_prologue_pc;
681
682 /* See if we can determine the end of the prologue via the symbol table.
683 If so, then return either PC, or the PC after the prologue, whichever
684 is greater. */
685 post_prologue_pc = after_prologue (pc);
686
687 /* If after_prologue returned a useful address, then use it. Else
688 fall back on the instruction skipping code. */
689 if (post_prologue_pc != 0)
690 return std::max (pc, post_prologue_pc);
691 else
692 return sh64_skip_prologue_hard_way (gdbarch, pc);
693 }
694
695 /* Should call_function allocate stack space for a struct return? */
696 static int
697 sh64_use_struct_convention (struct type *type)
698 {
699 return (TYPE_LENGTH (type) > 8);
700 }
701
702 /* For vectors of 4 floating point registers. */
703 static int
704 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
705 {
706 int fp_regnum;
707
708 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
709 return fp_regnum;
710 }
711
712 /* For double precision floating point registers, i.e 2 fp regs. */
713 static int
714 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
715 {
716 int fp_regnum;
717
718 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
719 return fp_regnum;
720 }
721
722 /* For pairs of floating point registers. */
723 static int
724 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
725 {
726 int fp_regnum;
727
728 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
729 return fp_regnum;
730 }
731
732 /* *INDENT-OFF* */
733 /*
734 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
735 GDB_REGNUM BASE_REGNUM
736 r0_c 221 0
737 r1_c 222 1
738 r2_c 223 2
739 r3_c 224 3
740 r4_c 225 4
741 r5_c 226 5
742 r6_c 227 6
743 r7_c 228 7
744 r8_c 229 8
745 r9_c 230 9
746 r10_c 231 10
747 r11_c 232 11
748 r12_c 233 12
749 r13_c 234 13
750 r14_c 235 14
751 r15_c 236 15
752
753 pc_c 237 64
754 gbr_c 238 16
755 mach_c 239 17
756 macl_c 240 17
757 pr_c 241 18
758 t_c 242 19
759 fpscr_c 243 76
760 fpul_c 244 109
761
762 fr0_c 245 77
763 fr1_c 246 78
764 fr2_c 247 79
765 fr3_c 248 80
766 fr4_c 249 81
767 fr5_c 250 82
768 fr6_c 251 83
769 fr7_c 252 84
770 fr8_c 253 85
771 fr9_c 254 86
772 fr10_c 255 87
773 fr11_c 256 88
774 fr12_c 257 89
775 fr13_c 258 90
776 fr14_c 259 91
777 fr15_c 260 92
778
779 dr0_c 261 77
780 dr2_c 262 79
781 dr4_c 263 81
782 dr6_c 264 83
783 dr8_c 265 85
784 dr10_c 266 87
785 dr12_c 267 89
786 dr14_c 268 91
787
788 fv0_c 269 77
789 fv4_c 270 81
790 fv8_c 271 85
791 fv12_c 272 91
792 */
793 /* *INDENT-ON* */
794 static int
795 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
796 {
797 int base_regnum = reg_nr;
798
799 /* general register N maps to general register N */
800 if (reg_nr >= R0_C_REGNUM
801 && reg_nr <= R_LAST_C_REGNUM)
802 base_regnum = reg_nr - R0_C_REGNUM;
803
804 /* floating point register N maps to floating point register N */
805 else if (reg_nr >= FP0_C_REGNUM
806 && reg_nr <= FP_LAST_C_REGNUM)
807 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
808
809 /* double prec register N maps to base regnum for double prec register N */
810 else if (reg_nr >= DR0_C_REGNUM
811 && reg_nr <= DR_LAST_C_REGNUM)
812 base_regnum = sh64_dr_reg_base_num (gdbarch,
813 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
814
815 /* vector N maps to base regnum for vector register N */
816 else if (reg_nr >= FV0_C_REGNUM
817 && reg_nr <= FV_LAST_C_REGNUM)
818 base_regnum = sh64_fv_reg_base_num (gdbarch,
819 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
820
821 else if (reg_nr == PC_C_REGNUM)
822 base_regnum = gdbarch_pc_regnum (gdbarch);
823
824 else if (reg_nr == GBR_C_REGNUM)
825 base_regnum = 16;
826
827 else if (reg_nr == MACH_C_REGNUM
828 || reg_nr == MACL_C_REGNUM)
829 base_regnum = 17;
830
831 else if (reg_nr == PR_C_REGNUM)
832 base_regnum = PR_REGNUM;
833
834 else if (reg_nr == T_C_REGNUM)
835 base_regnum = 19;
836
837 else if (reg_nr == FPSCR_C_REGNUM)
838 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
839
840 else if (reg_nr == FPUL_C_REGNUM)
841 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
842
843 return base_regnum;
844 }
845
846 static int
847 sign_extend (int value, int bits)
848 {
849 value = value & ((1 << bits) - 1);
850 return (value & (1 << (bits - 1))
851 ? value | (~((1 << bits) - 1))
852 : value);
853 }
854
855 static void
856 sh64_analyze_prologue (struct gdbarch *gdbarch,
857 struct sh64_frame_cache *cache,
858 CORE_ADDR func_pc,
859 CORE_ADDR current_pc)
860 {
861 int pc;
862 int opc;
863 int insn;
864 int r0_val = 0;
865 int insn_size;
866 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
867
868 cache->sp_offset = 0;
869
870 /* Loop around examining the prologue insns until we find something
871 that does not appear to be part of the prologue. But give up
872 after 20 of them, since we're getting silly then. */
873
874 pc = func_pc;
875
876 if (cache->media_mode)
877 insn_size = 4;
878 else
879 insn_size = 2;
880
881 opc = pc + (insn_size * 28);
882 if (opc > current_pc)
883 opc = current_pc;
884 for ( ; pc <= opc; pc += insn_size)
885 {
886 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
887 : pc,
888 insn_size, byte_order);
889
890 if (!cache->media_mode)
891 {
892 if (IS_STS_PR (insn))
893 {
894 int next_insn = read_memory_integer (pc + insn_size,
895 insn_size, byte_order);
896 if (IS_MOV_TO_R15 (next_insn))
897 {
898 cache->saved_regs[PR_REGNUM]
899 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
900 - 0x8) << 2);
901 pc += insn_size;
902 }
903 }
904
905 else if (IS_MOV_R14 (insn))
906 {
907 cache->saved_regs[MEDIA_FP_REGNUM] =
908 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
909 cache->uses_fp = 1;
910 }
911
912 else if (IS_MOV_R0 (insn))
913 {
914 /* Put in R0 the offset from SP at which to store some
915 registers. We are interested in this value, because it
916 will tell us where the given registers are stored within
917 the frame. */
918 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
919 }
920
921 else if (IS_ADD_SP_R0 (insn))
922 {
923 /* This instruction still prepares r0, but we don't care.
924 We already have the offset in r0_val. */
925 }
926
927 else if (IS_STS_R0 (insn))
928 {
929 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
930 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
931 r0_val -= 4;
932 }
933
934 else if (IS_MOV_R14_R0 (insn))
935 {
936 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
937 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
938 - (r0_val - 4);
939 cache->uses_fp = 1;
940 r0_val -= 4;
941 }
942
943 else if (IS_ADD_SP (insn))
944 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
945
946 else if (IS_MOV_SP_FP (insn))
947 break;
948 }
949 else
950 {
951 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
952 cache->sp_offset -=
953 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
954
955 else if (IS_STQ_R18_R15 (insn))
956 cache->saved_regs[PR_REGNUM]
957 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
958 9) << 3);
959
960 else if (IS_STL_R18_R15 (insn))
961 cache->saved_regs[PR_REGNUM]
962 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
963 9) << 2);
964
965 else if (IS_STQ_R14_R15 (insn))
966 {
967 cache->saved_regs[MEDIA_FP_REGNUM]
968 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
969 9) << 3);
970 cache->uses_fp = 1;
971 }
972
973 else if (IS_STL_R14_R15 (insn))
974 {
975 cache->saved_regs[MEDIA_FP_REGNUM]
976 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
977 9) << 2);
978 cache->uses_fp = 1;
979 }
980
981 else if (IS_MOV_SP_FP_MEDIA (insn))
982 break;
983 }
984 }
985 }
986
987 static CORE_ADDR
988 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
989 {
990 return sp & ~7;
991 }
992
993 /* Function: push_dummy_call
994 Setup the function arguments for calling a function in the inferior.
995
996 On the Renesas SH architecture, there are four registers (R4 to R7)
997 which are dedicated for passing function arguments. Up to the first
998 four arguments (depending on size) may go into these registers.
999 The rest go on the stack.
1000
1001 Arguments that are smaller than 4 bytes will still take up a whole
1002 register or a whole 32-bit word on the stack, and will be
1003 right-justified in the register or the stack word. This includes
1004 chars, shorts, and small aggregate types.
1005
1006 Arguments that are larger than 4 bytes may be split between two or
1007 more registers. If there are not enough registers free, an argument
1008 may be passed partly in a register (or registers), and partly on the
1009 stack. This includes doubles, long longs, and larger aggregates.
1010 As far as I know, there is no upper limit to the size of aggregates
1011 that will be passed in this way; in other words, the convention of
1012 passing a pointer to a large aggregate instead of a copy is not used.
1013
1014 An exceptional case exists for struct arguments (and possibly other
1015 aggregates such as arrays) if the size is larger than 4 bytes but
1016 not a multiple of 4 bytes. In this case the argument is never split
1017 between the registers and the stack, but instead is copied in its
1018 entirety onto the stack, AND also copied into as many registers as
1019 there is room for. In other words, space in registers permitting,
1020 two copies of the same argument are passed in. As far as I can tell,
1021 only the one on the stack is used, although that may be a function
1022 of the level of compiler optimization. I suspect this is a compiler
1023 bug. Arguments of these odd sizes are left-justified within the
1024 word (as opposed to arguments smaller than 4 bytes, which are
1025 right-justified).
1026
1027 If the function is to return an aggregate type such as a struct, it
1028 is either returned in the normal return value register R0 (if its
1029 size is no greater than one byte), or else the caller must allocate
1030 space into which the callee will copy the return value (if the size
1031 is greater than one byte). In this case, a pointer to the return
1032 value location is passed into the callee in register R2, which does
1033 not displace any of the other arguments passed in via registers R4
1034 to R7. */
1035
1036 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1037 non-scalar (struct, union) elements (even if the elements are
1038 floats).
1039 FR0-FR11 for single precision floating point (float)
1040 DR0-DR10 for double precision floating point (double)
1041
1042 If a float is argument number 3 (for instance) and arguments number
1043 1,2, and 4 are integer, the mapping will be:
1044 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1045
1046 If a float is argument number 10 (for instance) and arguments number
1047 1 through 10 are integer, the mapping will be:
1048 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1049 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1050 arg11->stack(16,SP). I.e. there is hole in the stack.
1051
1052 Different rules apply for variable arguments functions, and for functions
1053 for which the prototype is not known. */
1054
1055 static CORE_ADDR
1056 sh64_push_dummy_call (struct gdbarch *gdbarch,
1057 struct value *function,
1058 struct regcache *regcache,
1059 CORE_ADDR bp_addr,
1060 int nargs, struct value **args,
1061 CORE_ADDR sp, int struct_return,
1062 CORE_ADDR struct_addr)
1063 {
1064 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1065 int stack_offset, stack_alloc;
1066 int int_argreg;
1067 int float_arg_index = 0;
1068 int double_arg_index = 0;
1069 int argnum;
1070 struct type *type;
1071 CORE_ADDR regval;
1072 const gdb_byte *val;
1073 gdb_byte valbuf[8];
1074 int len;
1075 int argreg_size;
1076 int fp_args[12];
1077
1078 memset (fp_args, 0, sizeof (fp_args));
1079
1080 /* First force sp to a 8-byte alignment. */
1081 sp = sh64_frame_align (gdbarch, sp);
1082
1083 /* The "struct return pointer" pseudo-argument has its own dedicated
1084 register. */
1085
1086 if (struct_return)
1087 regcache_cooked_write_unsigned (regcache,
1088 STRUCT_RETURN_REGNUM, struct_addr);
1089
1090 /* Now make sure there's space on the stack. */
1091 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1092 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1093 sp -= stack_alloc; /* Make room on stack for args. */
1094
1095 /* Now load as many as possible of the first arguments into
1096 registers, and push the rest onto the stack. There are 64 bytes
1097 in eight registers available. Loop thru args from first to last. */
1098
1099 int_argreg = ARG0_REGNUM;
1100
1101 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1102 {
1103 type = value_type (args[argnum]);
1104 len = TYPE_LENGTH (type);
1105 memset (valbuf, 0, sizeof (valbuf));
1106
1107 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1108 {
1109 argreg_size = register_size (gdbarch, int_argreg);
1110
1111 if (len < argreg_size)
1112 {
1113 /* value gets right-justified in the register or stack word. */
1114 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1115 memcpy (valbuf + argreg_size - len,
1116 value_contents (args[argnum]), len);
1117 else
1118 memcpy (valbuf, value_contents (args[argnum]), len);
1119
1120 val = valbuf;
1121 }
1122 else
1123 val = value_contents (args[argnum]);
1124
1125 while (len > 0)
1126 {
1127 if (int_argreg > ARGLAST_REGNUM)
1128 {
1129 /* Must go on the stack. */
1130 write_memory (sp + stack_offset, val, argreg_size);
1131 stack_offset += 8;/*argreg_size;*/
1132 }
1133 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1134 That's because some *&^%$ things get passed on the stack
1135 AND in the registers! */
1136 if (int_argreg <= ARGLAST_REGNUM)
1137 {
1138 /* There's room in a register. */
1139 regval = extract_unsigned_integer (val, argreg_size,
1140 byte_order);
1141 regcache_cooked_write_unsigned (regcache,
1142 int_argreg, regval);
1143 }
1144 /* Store the value 8 bytes at a time. This means that
1145 things larger than 8 bytes may go partly in registers
1146 and partly on the stack. FIXME: argreg is incremented
1147 before we use its size. */
1148 len -= argreg_size;
1149 val += argreg_size;
1150 int_argreg++;
1151 }
1152 }
1153 else
1154 {
1155 val = value_contents (args[argnum]);
1156 if (len == 4)
1157 {
1158 /* Where is it going to be stored? */
1159 while (fp_args[float_arg_index])
1160 float_arg_index ++;
1161
1162 /* Now float_argreg points to the register where it
1163 should be stored. Are we still within the allowed
1164 register set? */
1165 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1166 {
1167 /* Goes in FR0...FR11 */
1168 regcache_cooked_write (regcache,
1169 gdbarch_fp0_regnum (gdbarch)
1170 + float_arg_index,
1171 val);
1172 fp_args[float_arg_index] = 1;
1173 /* Skip the corresponding general argument register. */
1174 int_argreg ++;
1175 }
1176 else
1177 {
1178 /* Store it as the integers, 8 bytes at the time, if
1179 necessary spilling on the stack. */
1180 }
1181 }
1182 else if (len == 8)
1183 {
1184 /* Where is it going to be stored? */
1185 while (fp_args[double_arg_index])
1186 double_arg_index += 2;
1187 /* Now double_argreg points to the register
1188 where it should be stored.
1189 Are we still within the allowed register set? */
1190 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1191 {
1192 /* Goes in DR0...DR10 */
1193 /* The numbering of the DRi registers is consecutive,
1194 i.e. includes odd numbers. */
1195 int double_register_offset = double_arg_index / 2;
1196 int regnum = DR0_REGNUM + double_register_offset;
1197 regcache_cooked_write (regcache, regnum, val);
1198 fp_args[double_arg_index] = 1;
1199 fp_args[double_arg_index + 1] = 1;
1200 /* Skip the corresponding general argument register. */
1201 int_argreg ++;
1202 }
1203 else
1204 {
1205 /* Store it as the integers, 8 bytes at the time, if
1206 necessary spilling on the stack. */
1207 }
1208 }
1209 }
1210 }
1211 /* Store return address. */
1212 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1213
1214 /* Update stack pointer. */
1215 regcache_cooked_write_unsigned (regcache,
1216 gdbarch_sp_regnum (gdbarch), sp);
1217
1218 return sp;
1219 }
1220
1221 /* Find a function's return value in the appropriate registers (in
1222 regbuf), and copy it into valbuf. Extract from an array REGBUF
1223 containing the (raw) register state a function return value of type
1224 TYPE, and copy that, in virtual format, into VALBUF. */
1225 static void
1226 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1227 gdb_byte *valbuf)
1228 {
1229 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1230 int len = TYPE_LENGTH (type);
1231
1232 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1233 {
1234 if (len == 4)
1235 {
1236 /* Return value stored in gdbarch_fp0_regnum. */
1237 regcache_raw_read (regcache,
1238 gdbarch_fp0_regnum (gdbarch), valbuf);
1239 }
1240 else if (len == 8)
1241 {
1242 /* return value stored in DR0_REGNUM. */
1243 DOUBLEST val;
1244 gdb_byte buf[8];
1245
1246 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1247
1248 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1249 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1250 buf, &val);
1251 else
1252 floatformat_to_doublest (&floatformat_ieee_double_big,
1253 buf, &val);
1254 store_typed_floating (valbuf, type, val);
1255 }
1256 }
1257 else
1258 {
1259 if (len <= 8)
1260 {
1261 int offset;
1262 gdb_byte buf[8];
1263 /* Result is in register 2. If smaller than 8 bytes, it is padded
1264 at the most significant end. */
1265 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1266
1267 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1268 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1269 - len;
1270 else
1271 offset = 0;
1272 memcpy (valbuf, buf + offset, len);
1273 }
1274 else
1275 error (_("bad size for return value"));
1276 }
1277 }
1278
1279 /* Write into appropriate registers a function return value
1280 of type TYPE, given in virtual format.
1281 If the architecture is sh4 or sh3e, store a function's return value
1282 in the R0 general register or in the FP0 floating point register,
1283 depending on the type of the return value. In all the other cases
1284 the result is stored in r0, left-justified. */
1285
1286 static void
1287 sh64_store_return_value (struct type *type, struct regcache *regcache,
1288 const gdb_byte *valbuf)
1289 {
1290 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1291 gdb_byte buf[64]; /* more than enough... */
1292 int len = TYPE_LENGTH (type);
1293
1294 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1295 {
1296 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1297 for (i = 0; i < len; i += 4)
1298 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1299 regcache_raw_write (regcache, regnum++,
1300 valbuf + len - 4 - i);
1301 else
1302 regcache_raw_write (regcache, regnum++, valbuf + i);
1303 }
1304 else
1305 {
1306 int return_register = DEFAULT_RETURN_REGNUM;
1307 int offset = 0;
1308
1309 if (len <= register_size (gdbarch, return_register))
1310 {
1311 /* Pad with zeros. */
1312 memset (buf, 0, register_size (gdbarch, return_register));
1313 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1314 offset = 0; /*register_size (gdbarch,
1315 return_register) - len;*/
1316 else
1317 offset = register_size (gdbarch, return_register) - len;
1318
1319 memcpy (buf + offset, valbuf, len);
1320 regcache_raw_write (regcache, return_register, buf);
1321 }
1322 else
1323 regcache_raw_write (regcache, return_register, valbuf);
1324 }
1325 }
1326
1327 static enum return_value_convention
1328 sh64_return_value (struct gdbarch *gdbarch, struct value *function,
1329 struct type *type, struct regcache *regcache,
1330 gdb_byte *readbuf, const gdb_byte *writebuf)
1331 {
1332 if (sh64_use_struct_convention (type))
1333 return RETURN_VALUE_STRUCT_CONVENTION;
1334 if (writebuf)
1335 sh64_store_return_value (type, regcache, writebuf);
1336 else if (readbuf)
1337 sh64_extract_return_value (type, regcache, readbuf);
1338 return RETURN_VALUE_REGISTER_CONVENTION;
1339 }
1340
1341 /* *INDENT-OFF* */
1342 /*
1343 SH MEDIA MODE (ISA 32)
1344 general registers (64-bit) 0-63
1345 0 r0, r1, r2, r3, r4, r5, r6, r7,
1346 64 r8, r9, r10, r11, r12, r13, r14, r15,
1347 128 r16, r17, r18, r19, r20, r21, r22, r23,
1348 192 r24, r25, r26, r27, r28, r29, r30, r31,
1349 256 r32, r33, r34, r35, r36, r37, r38, r39,
1350 320 r40, r41, r42, r43, r44, r45, r46, r47,
1351 384 r48, r49, r50, r51, r52, r53, r54, r55,
1352 448 r56, r57, r58, r59, r60, r61, r62, r63,
1353
1354 pc (64-bit) 64
1355 512 pc,
1356
1357 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1358 520 sr, ssr, spc,
1359
1360 target registers (64-bit) 68-75
1361 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1362
1363 floating point state control register (32-bit) 76
1364 608 fpscr,
1365
1366 single precision floating point registers (32-bit) 77-140
1367 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1368 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1369 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1370 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1371 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1372 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1373 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1374 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1375
1376 TOTAL SPACE FOR REGISTERS: 868 bytes
1377
1378 From here on they are all pseudo registers: no memory allocated.
1379 REGISTER_BYTE returns the register byte for the base register.
1380
1381 double precision registers (pseudo) 141-172
1382 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1383 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1384 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1385 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1386
1387 floating point pairs (pseudo) 173-204
1388 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1389 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1390 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1391 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1392
1393 floating point vectors (4 floating point regs) (pseudo) 205-220
1394 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1395 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1396
1397 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1398 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1399 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1400 pc_c,
1401 gbr_c, mach_c, macl_c, pr_c, t_c,
1402 fpscr_c, fpul_c,
1403 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1404 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1405 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1406 fv0_c, fv4_c, fv8_c, fv12_c
1407 */
1408
1409 static struct type *
1410 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1411 {
1412 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1413 0, high);
1414 }
1415
1416 /* Return the GDB type object for the "standard" data type
1417 of data in register REG_NR. */
1418 static struct type *
1419 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1420 {
1421 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1422 && reg_nr <= FP_LAST_REGNUM)
1423 || (reg_nr >= FP0_C_REGNUM
1424 && reg_nr <= FP_LAST_C_REGNUM))
1425 return builtin_type (gdbarch)->builtin_float;
1426 else if ((reg_nr >= DR0_REGNUM
1427 && reg_nr <= DR_LAST_REGNUM)
1428 || (reg_nr >= DR0_C_REGNUM
1429 && reg_nr <= DR_LAST_C_REGNUM))
1430 return builtin_type (gdbarch)->builtin_double;
1431 else if (reg_nr >= FPP0_REGNUM
1432 && reg_nr <= FPP_LAST_REGNUM)
1433 return sh64_build_float_register_type (gdbarch, 1);
1434 else if ((reg_nr >= FV0_REGNUM
1435 && reg_nr <= FV_LAST_REGNUM)
1436 ||(reg_nr >= FV0_C_REGNUM
1437 && reg_nr <= FV_LAST_C_REGNUM))
1438 return sh64_build_float_register_type (gdbarch, 3);
1439 else if (reg_nr == FPSCR_REGNUM)
1440 return builtin_type (gdbarch)->builtin_int;
1441 else if (reg_nr >= R0_C_REGNUM
1442 && reg_nr < FP0_C_REGNUM)
1443 return builtin_type (gdbarch)->builtin_int;
1444 else
1445 return builtin_type (gdbarch)->builtin_long_long;
1446 }
1447
1448 static void
1449 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1450 struct type *type, gdb_byte *from, gdb_byte *to)
1451 {
1452 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1453 {
1454 /* It is a no-op. */
1455 memcpy (to, from, register_size (gdbarch, regnum));
1456 return;
1457 }
1458
1459 if ((regnum >= DR0_REGNUM
1460 && regnum <= DR_LAST_REGNUM)
1461 || (regnum >= DR0_C_REGNUM
1462 && regnum <= DR_LAST_C_REGNUM))
1463 {
1464 DOUBLEST val;
1465 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1466 from, &val);
1467 store_typed_floating (to, type, val);
1468 }
1469 else
1470 error (_("sh64_register_convert_to_virtual "
1471 "called with non DR register number"));
1472 }
1473
1474 static void
1475 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1476 int regnum, const void *from, void *to)
1477 {
1478 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1479 {
1480 /* It is a no-op. */
1481 memcpy (to, from, register_size (gdbarch, regnum));
1482 return;
1483 }
1484
1485 if ((regnum >= DR0_REGNUM
1486 && regnum <= DR_LAST_REGNUM)
1487 || (regnum >= DR0_C_REGNUM
1488 && regnum <= DR_LAST_C_REGNUM))
1489 {
1490 DOUBLEST val = extract_typed_floating (from, type);
1491 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1492 &val, to);
1493 }
1494 else
1495 error (_("sh64_register_convert_to_raw called "
1496 "with non DR register number"));
1497 }
1498
1499 /* Concatenate PORTIONS contiguous raw registers starting at
1500 BASE_REGNUM into BUFFER. */
1501
1502 static enum register_status
1503 pseudo_register_read_portions (struct gdbarch *gdbarch,
1504 struct regcache *regcache,
1505 int portions,
1506 int base_regnum, gdb_byte *buffer)
1507 {
1508 int portion;
1509
1510 for (portion = 0; portion < portions; portion++)
1511 {
1512 enum register_status status;
1513 gdb_byte *b;
1514
1515 b = buffer + register_size (gdbarch, base_regnum) * portion;
1516 status = regcache_raw_read (regcache, base_regnum + portion, b);
1517 if (status != REG_VALID)
1518 return status;
1519 }
1520
1521 return REG_VALID;
1522 }
1523
1524 static enum register_status
1525 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1526 int reg_nr, gdb_byte *buffer)
1527 {
1528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1529 int base_regnum;
1530 int offset = 0;
1531 enum register_status status;
1532
1533 if (reg_nr >= DR0_REGNUM
1534 && reg_nr <= DR_LAST_REGNUM)
1535 {
1536 gdb_byte temp_buffer[8];
1537 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1538
1539 /* Build the value in the provided buffer. */
1540 /* DR regs are double precision registers obtained by
1541 concatenating 2 single precision floating point registers. */
1542 status = pseudo_register_read_portions (gdbarch, regcache,
1543 2, base_regnum, temp_buffer);
1544 if (status == REG_VALID)
1545 {
1546 /* We must pay attention to the endianness. */
1547 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1548 register_type (gdbarch, reg_nr),
1549 temp_buffer, buffer);
1550 }
1551
1552 return status;
1553 }
1554
1555 else if (reg_nr >= FPP0_REGNUM
1556 && reg_nr <= FPP_LAST_REGNUM)
1557 {
1558 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1559
1560 /* Build the value in the provided buffer. */
1561 /* FPP regs are pairs of single precision registers obtained by
1562 concatenating 2 single precision floating point registers. */
1563 return pseudo_register_read_portions (gdbarch, regcache,
1564 2, base_regnum, buffer);
1565 }
1566
1567 else if (reg_nr >= FV0_REGNUM
1568 && reg_nr <= FV_LAST_REGNUM)
1569 {
1570 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1571
1572 /* Build the value in the provided buffer. */
1573 /* FV regs are vectors of single precision registers obtained by
1574 concatenating 4 single precision floating point registers. */
1575 return pseudo_register_read_portions (gdbarch, regcache,
1576 4, base_regnum, buffer);
1577 }
1578
1579 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1580 else if (reg_nr >= R0_C_REGNUM
1581 && reg_nr <= T_C_REGNUM)
1582 {
1583 gdb_byte temp_buffer[8];
1584 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1585
1586 /* Build the value in the provided buffer. */
1587 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1588 if (status != REG_VALID)
1589 return status;
1590 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1591 offset = 4;
1592 memcpy (buffer,
1593 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1594 return REG_VALID;
1595 }
1596
1597 else if (reg_nr >= FP0_C_REGNUM
1598 && reg_nr <= FP_LAST_C_REGNUM)
1599 {
1600 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1601
1602 /* Build the value in the provided buffer. */
1603 /* Floating point registers map 1-1 to the media fp regs,
1604 they have the same size and endianness. */
1605 return regcache_raw_read (regcache, base_regnum, buffer);
1606 }
1607
1608 else if (reg_nr >= DR0_C_REGNUM
1609 && reg_nr <= DR_LAST_C_REGNUM)
1610 {
1611 gdb_byte temp_buffer[8];
1612 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1613
1614 /* DR_C regs are double precision registers obtained by
1615 concatenating 2 single precision floating point registers. */
1616 status = pseudo_register_read_portions (gdbarch, regcache,
1617 2, base_regnum, temp_buffer);
1618 if (status == REG_VALID)
1619 {
1620 /* We must pay attention to the endianness. */
1621 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1622 register_type (gdbarch, reg_nr),
1623 temp_buffer, buffer);
1624 }
1625 return status;
1626 }
1627
1628 else if (reg_nr >= FV0_C_REGNUM
1629 && reg_nr <= FV_LAST_C_REGNUM)
1630 {
1631 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1632
1633 /* Build the value in the provided buffer. */
1634 /* FV_C regs are vectors of single precision registers obtained by
1635 concatenating 4 single precision floating point registers. */
1636 return pseudo_register_read_portions (gdbarch, regcache,
1637 4, base_regnum, buffer);
1638 }
1639
1640 else if (reg_nr == FPSCR_C_REGNUM)
1641 {
1642 int fpscr_base_regnum;
1643 int sr_base_regnum;
1644 ULONGEST fpscr_value;
1645 ULONGEST sr_value;
1646 unsigned int fpscr_c_value;
1647 unsigned int fpscr_c_part1_value;
1648 unsigned int fpscr_c_part2_value;
1649
1650 fpscr_base_regnum = FPSCR_REGNUM;
1651 sr_base_regnum = SR_REGNUM;
1652
1653 /* Build the value in the provided buffer. */
1654 /* FPSCR_C is a very weird register that contains sparse bits
1655 from the FPSCR and the SR architectural registers.
1656 Specifically: */
1657 /* *INDENT-OFF* */
1658 /*
1659 FPSRC_C bit
1660 0 Bit 0 of FPSCR
1661 1 reserved
1662 2-17 Bit 2-18 of FPSCR
1663 18-20 Bits 12,13,14 of SR
1664 21-31 reserved
1665 */
1666 /* *INDENT-ON* */
1667 /* Get FPSCR as an int. */
1668 status = regcache->raw_read (fpscr_base_regnum, &fpscr_value);
1669 if (status != REG_VALID)
1670 return status;
1671 /* Get SR as an int. */
1672 status = regcache->raw_read (sr_base_regnum, &sr_value);
1673 if (status != REG_VALID)
1674 return status;
1675 /* Build the new value. */
1676 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1677 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1678 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1679 /* Store that in out buffer!!! */
1680 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1681 /* FIXME There is surely an endianness gotcha here. */
1682
1683 return REG_VALID;
1684 }
1685
1686 else if (reg_nr == FPUL_C_REGNUM)
1687 {
1688 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1689
1690 /* FPUL_C register is floating point register 32,
1691 same size, same endianness. */
1692 return regcache_raw_read (regcache, base_regnum, buffer);
1693 }
1694 else
1695 gdb_assert_not_reached ("invalid pseudo register number");
1696 }
1697
1698 static void
1699 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1700 int reg_nr, const gdb_byte *buffer)
1701 {
1702 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1703 int base_regnum, portion;
1704 int offset;
1705
1706 if (reg_nr >= DR0_REGNUM
1707 && reg_nr <= DR_LAST_REGNUM)
1708 {
1709 gdb_byte temp_buffer[8];
1710 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1711 /* We must pay attention to the endianness. */
1712 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1713 reg_nr,
1714 buffer, temp_buffer);
1715
1716 /* Write the real regs for which this one is an alias. */
1717 for (portion = 0; portion < 2; portion++)
1718 regcache_raw_write (regcache, base_regnum + portion,
1719 (temp_buffer
1720 + register_size (gdbarch,
1721 base_regnum) * portion));
1722 }
1723
1724 else if (reg_nr >= FPP0_REGNUM
1725 && reg_nr <= FPP_LAST_REGNUM)
1726 {
1727 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1728
1729 /* Write the real regs for which this one is an alias. */
1730 for (portion = 0; portion < 2; portion++)
1731 regcache_raw_write (regcache, base_regnum + portion,
1732 (buffer + register_size (gdbarch,
1733 base_regnum) * portion));
1734 }
1735
1736 else if (reg_nr >= FV0_REGNUM
1737 && reg_nr <= FV_LAST_REGNUM)
1738 {
1739 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1740
1741 /* Write the real regs for which this one is an alias. */
1742 for (portion = 0; portion < 4; portion++)
1743 regcache_raw_write (regcache, base_regnum + portion,
1744 (buffer + register_size (gdbarch,
1745 base_regnum) * portion));
1746 }
1747
1748 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1749 register but only 4 bytes of it. */
1750 else if (reg_nr >= R0_C_REGNUM
1751 && reg_nr <= T_C_REGNUM)
1752 {
1753 gdb_byte temp_buffer[8];
1754 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1755 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1756 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1757 offset = 4;
1758 else
1759 offset = 0;
1760 /* Let's read the value of the base register into a temporary
1761 buffer, so that overwriting the last four bytes with the new
1762 value of the pseudo will leave the upper 4 bytes unchanged. */
1763 regcache_raw_read (regcache, base_regnum, temp_buffer);
1764 /* Write as an 8 byte quantity. */
1765 memcpy (temp_buffer + offset, buffer, 4);
1766 regcache_raw_write (regcache, base_regnum, temp_buffer);
1767 }
1768
1769 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1770 registers. Both are 4 bytes. */
1771 else if (reg_nr >= FP0_C_REGNUM
1772 && reg_nr <= FP_LAST_C_REGNUM)
1773 {
1774 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1775 regcache_raw_write (regcache, base_regnum, buffer);
1776 }
1777
1778 else if (reg_nr >= DR0_C_REGNUM
1779 && reg_nr <= DR_LAST_C_REGNUM)
1780 {
1781 gdb_byte temp_buffer[8];
1782 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1783 for (portion = 0; portion < 2; portion++)
1784 {
1785 /* We must pay attention to the endianness. */
1786 sh64_register_convert_to_raw (gdbarch,
1787 register_type (gdbarch, reg_nr),
1788 reg_nr,
1789 buffer, temp_buffer);
1790
1791 regcache_raw_write (regcache, base_regnum + portion,
1792 (temp_buffer
1793 + register_size (gdbarch,
1794 base_regnum) * portion));
1795 }
1796 }
1797
1798 else if (reg_nr >= FV0_C_REGNUM
1799 && reg_nr <= FV_LAST_C_REGNUM)
1800 {
1801 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1802
1803 for (portion = 0; portion < 4; portion++)
1804 {
1805 regcache_raw_write (regcache, base_regnum + portion,
1806 (buffer
1807 + register_size (gdbarch,
1808 base_regnum) * portion));
1809 }
1810 }
1811
1812 else if (reg_nr == FPSCR_C_REGNUM)
1813 {
1814 int fpscr_base_regnum;
1815 int sr_base_regnum;
1816 ULONGEST fpscr_value;
1817 ULONGEST sr_value;
1818 ULONGEST old_fpscr_value;
1819 ULONGEST old_sr_value;
1820 unsigned int fpscr_c_value;
1821 unsigned int fpscr_mask;
1822 unsigned int sr_mask;
1823
1824 fpscr_base_regnum = FPSCR_REGNUM;
1825 sr_base_regnum = SR_REGNUM;
1826
1827 /* FPSCR_C is a very weird register that contains sparse bits
1828 from the FPSCR and the SR architectural registers.
1829 Specifically: */
1830 /* *INDENT-OFF* */
1831 /*
1832 FPSRC_C bit
1833 0 Bit 0 of FPSCR
1834 1 reserved
1835 2-17 Bit 2-18 of FPSCR
1836 18-20 Bits 12,13,14 of SR
1837 21-31 reserved
1838 */
1839 /* *INDENT-ON* */
1840 /* Get value as an int. */
1841 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1842
1843 /* Build the new values. */
1844 fpscr_mask = 0x0003fffd;
1845 sr_mask = 0x001c0000;
1846
1847 fpscr_value = fpscr_c_value & fpscr_mask;
1848 sr_value = (fpscr_value & sr_mask) >> 6;
1849
1850 regcache->raw_read (fpscr_base_regnum, &old_fpscr_value);
1851 old_fpscr_value &= 0xfffc0002;
1852 fpscr_value |= old_fpscr_value;
1853 regcache->raw_write (fpscr_base_regnum, fpscr_value);
1854
1855 regcache->raw_read (sr_base_regnum, &old_sr_value);
1856 old_sr_value &= 0xffff8fff;
1857 sr_value |= old_sr_value;
1858 regcache->raw_write (sr_base_regnum, sr_value);
1859 }
1860
1861 else if (reg_nr == FPUL_C_REGNUM)
1862 {
1863 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1864 regcache_raw_write (regcache, base_regnum, buffer);
1865 }
1866 }
1867
1868 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1869 shmedia REGISTERS. */
1870 /* Control registers, compact mode. */
1871 static void
1872 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1873 int cr_c_regnum)
1874 {
1875 switch (cr_c_regnum)
1876 {
1877 case PC_C_REGNUM:
1878 fprintf_filtered (file, "pc_c\t0x%08x\n",
1879 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1880 break;
1881 case GBR_C_REGNUM:
1882 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1883 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1884 break;
1885 case MACH_C_REGNUM:
1886 fprintf_filtered (file, "mach_c\t0x%08x\n",
1887 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1888 break;
1889 case MACL_C_REGNUM:
1890 fprintf_filtered (file, "macl_c\t0x%08x\n",
1891 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1892 break;
1893 case PR_C_REGNUM:
1894 fprintf_filtered (file, "pr_c\t0x%08x\n",
1895 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1896 break;
1897 case T_C_REGNUM:
1898 fprintf_filtered (file, "t_c\t0x%08x\n",
1899 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1900 break;
1901 case FPSCR_C_REGNUM:
1902 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1903 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1904 break;
1905 case FPUL_C_REGNUM:
1906 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1907 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1908 break;
1909 }
1910 }
1911
1912 static void
1913 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1914 struct frame_info *frame, int regnum)
1915 { /* Do values for FP (float) regs. */
1916 unsigned char *raw_buffer;
1917 double flt; /* Double extracted from raw hex data. */
1918 int inv;
1919
1920 /* Allocate space for the float. */
1921 raw_buffer = (unsigned char *)
1922 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
1923
1924 /* Get the data in raw format. */
1925 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
1926 error (_("can't read register %d (%s)"),
1927 regnum, gdbarch_register_name (gdbarch, regnum));
1928
1929 /* Get the register as a number. */
1930 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1931 raw_buffer, &inv);
1932
1933 /* Print the name and some spaces. */
1934 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
1935 print_spaces_filtered (15 - strlen (gdbarch_register_name
1936 (gdbarch, regnum)), file);
1937
1938 /* Print the value. */
1939 if (inv)
1940 fprintf_filtered (file, "<invalid float>");
1941 else
1942 fprintf_filtered (file, "%-10.9g", flt);
1943
1944 /* Print the fp register as hex. */
1945 fprintf_filtered (file, "\t(raw ");
1946 print_hex_chars (file, raw_buffer,
1947 register_size (gdbarch, regnum),
1948 gdbarch_byte_order (gdbarch), true);
1949 fprintf_filtered (file, ")");
1950 fprintf_filtered (file, "\n");
1951 }
1952
1953 static void
1954 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1955 struct frame_info *frame, int regnum)
1956 {
1957 /* All the sh64-compact mode registers are pseudo registers. */
1958
1959 if (regnum < gdbarch_num_regs (gdbarch)
1960 || regnum >= gdbarch_num_regs (gdbarch)
1961 + NUM_PSEUDO_REGS_SH_MEDIA
1962 + NUM_PSEUDO_REGS_SH_COMPACT)
1963 internal_error (__FILE__, __LINE__,
1964 _("Invalid pseudo register number %d\n"), regnum);
1965
1966 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1967 {
1968 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
1969 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1970 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1971 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1972 }
1973
1974 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1975 {
1976 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1977 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1978 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1979 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1980 }
1981
1982 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1983 {
1984 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
1985 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1986 regnum - FV0_REGNUM,
1987 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1988 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1989 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1990 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1991 }
1992
1993 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1994 {
1995 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1996 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1997 regnum - FV0_C_REGNUM,
1998 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1999 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2000 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2001 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2002 }
2003
2004 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2005 {
2006 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2007 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2008 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2009 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2010 }
2011
2012 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2013 {
2014 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2015 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2016 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2017 }
2018 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2019 /* This should work also for pseudoregs. */
2020 sh64_do_fp_register (gdbarch, file, frame, regnum);
2021 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2022 sh64_do_cr_c_register_info (file, frame, regnum);
2023 }
2024
2025 static void
2026 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2027 struct frame_info *frame, int regnum)
2028 {
2029 struct value_print_options opts;
2030 struct value *val;
2031
2032 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2033 print_spaces_filtered (15 - strlen (gdbarch_register_name
2034 (gdbarch, regnum)), file);
2035
2036 /* Get the data in raw format. */
2037 val = get_frame_register_value (frame, regnum);
2038 if (value_optimized_out (val) || !value_entirely_available (val))
2039 {
2040 fprintf_filtered (file, "*value not available*\n");
2041 return;
2042 }
2043
2044 get_formatted_print_options (&opts, 'x');
2045 opts.deref_ref = 1;
2046 val_print (register_type (gdbarch, regnum),
2047 0, 0,
2048 file, 0, val, &opts, current_language);
2049 fprintf_filtered (file, "\t");
2050 get_formatted_print_options (&opts, 0);
2051 opts.deref_ref = 1;
2052 val_print (register_type (gdbarch, regnum),
2053 0, 0,
2054 file, 0, val, &opts, current_language);
2055 fprintf_filtered (file, "\n");
2056 }
2057
2058 static void
2059 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2060 struct frame_info *frame, int regnum)
2061 {
2062 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2063 + gdbarch_num_pseudo_regs (gdbarch))
2064 internal_error (__FILE__, __LINE__,
2065 _("Invalid register number %d\n"), regnum);
2066
2067 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2068 {
2069 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2070 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2071 else
2072 sh64_do_register (gdbarch, file, frame, regnum);
2073 }
2074
2075 else if (regnum < gdbarch_num_regs (gdbarch)
2076 + gdbarch_num_pseudo_regs (gdbarch))
2077 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2078 }
2079
2080 static void
2081 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2082 struct frame_info *frame, int regnum,
2083 int fpregs)
2084 {
2085 if (regnum != -1) /* Do one specified register. */
2086 {
2087 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2088 error (_("Not a valid register for the current processor type"));
2089
2090 sh64_print_register (gdbarch, file, frame, regnum);
2091 }
2092 else
2093 /* Do all (or most) registers. */
2094 {
2095 regnum = 0;
2096 while (regnum < gdbarch_num_regs (gdbarch))
2097 {
2098 /* If the register name is empty, it is undefined for this
2099 processor, so don't display anything. */
2100 if (gdbarch_register_name (gdbarch, regnum) == NULL
2101 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2102 {
2103 regnum++;
2104 continue;
2105 }
2106
2107 if (TYPE_CODE (register_type (gdbarch, regnum))
2108 == TYPE_CODE_FLT)
2109 {
2110 if (fpregs)
2111 {
2112 /* true for "INFO ALL-REGISTERS" command. */
2113 sh64_do_fp_register (gdbarch, file, frame, regnum);
2114 regnum ++;
2115 }
2116 else
2117 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2118 /* skip FP regs */
2119 }
2120 else
2121 {
2122 sh64_do_register (gdbarch, file, frame, regnum);
2123 regnum++;
2124 }
2125 }
2126
2127 if (fpregs)
2128 while (regnum < gdbarch_num_regs (gdbarch)
2129 + gdbarch_num_pseudo_regs (gdbarch))
2130 {
2131 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2132 regnum++;
2133 }
2134 }
2135 }
2136
2137 static void
2138 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2139 struct ui_file *file,
2140 struct frame_info *frame, int regnum,
2141 int fpregs)
2142 {
2143 if (regnum != -1) /* Do one specified register. */
2144 {
2145 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2146 error (_("Not a valid register for the current processor type"));
2147
2148 if (regnum >= 0 && regnum < R0_C_REGNUM)
2149 error (_("Not a valid register for the current processor mode."));
2150
2151 sh64_print_register (gdbarch, file, frame, regnum);
2152 }
2153 else
2154 /* Do all compact registers. */
2155 {
2156 regnum = R0_C_REGNUM;
2157 while (regnum < gdbarch_num_regs (gdbarch)
2158 + gdbarch_num_pseudo_regs (gdbarch))
2159 {
2160 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2161 regnum++;
2162 }
2163 }
2164 }
2165
2166 static void
2167 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2168 struct frame_info *frame, int regnum, int fpregs)
2169 {
2170 if (pc_is_isa32 (get_frame_pc (frame)))
2171 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2172 else
2173 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2174 }
2175
2176 static struct sh64_frame_cache *
2177 sh64_alloc_frame_cache (void)
2178 {
2179 struct sh64_frame_cache *cache;
2180 int i;
2181
2182 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2183
2184 /* Base address. */
2185 cache->base = 0;
2186 cache->saved_sp = 0;
2187 cache->sp_offset = 0;
2188 cache->pc = 0;
2189
2190 /* Frameless until proven otherwise. */
2191 cache->uses_fp = 0;
2192
2193 /* Saved registers. We initialize these to -1 since zero is a valid
2194 offset (that's where fp is supposed to be stored). */
2195 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2196 {
2197 cache->saved_regs[i] = -1;
2198 }
2199
2200 return cache;
2201 }
2202
2203 static struct sh64_frame_cache *
2204 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2205 {
2206 struct gdbarch *gdbarch;
2207 struct sh64_frame_cache *cache;
2208 CORE_ADDR current_pc;
2209 int i;
2210
2211 if (*this_cache)
2212 return (struct sh64_frame_cache *) *this_cache;
2213
2214 gdbarch = get_frame_arch (this_frame);
2215 cache = sh64_alloc_frame_cache ();
2216 *this_cache = cache;
2217
2218 current_pc = get_frame_pc (this_frame);
2219 cache->media_mode = pc_is_isa32 (current_pc);
2220
2221 /* In principle, for normal frames, fp holds the frame pointer,
2222 which holds the base address for the current stack frame.
2223 However, for functions that don't need it, the frame pointer is
2224 optional. For these "frameless" functions the frame pointer is
2225 actually the frame pointer of the calling frame. */
2226 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2227 if (cache->base == 0)
2228 return cache;
2229
2230 cache->pc = get_frame_func (this_frame);
2231 if (cache->pc != 0)
2232 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2233
2234 if (!cache->uses_fp)
2235 {
2236 /* We didn't find a valid frame, which means that CACHE->base
2237 currently holds the frame pointer for our calling frame. If
2238 we're at the start of a function, or somewhere half-way its
2239 prologue, the function's frame probably hasn't been fully
2240 setup yet. Try to reconstruct the base address for the stack
2241 frame by looking at the stack pointer. For truly "frameless"
2242 functions this might work too. */
2243 cache->base = get_frame_register_unsigned
2244 (this_frame, gdbarch_sp_regnum (gdbarch));
2245 }
2246
2247 /* Now that we have the base address for the stack frame we can
2248 calculate the value of sp in the calling frame. */
2249 cache->saved_sp = cache->base + cache->sp_offset;
2250
2251 /* Adjust all the saved registers such that they contain addresses
2252 instead of offsets. */
2253 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2254 if (cache->saved_regs[i] != -1)
2255 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2256
2257 return cache;
2258 }
2259
2260 static struct value *
2261 sh64_frame_prev_register (struct frame_info *this_frame,
2262 void **this_cache, int regnum)
2263 {
2264 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2265 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2266 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2267
2268 gdb_assert (regnum >= 0);
2269
2270 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2271 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2272
2273 /* The PC of the previous frame is stored in the PR register of
2274 the current frame. Frob regnum so that we pull the value from
2275 the correct place. */
2276 if (regnum == gdbarch_pc_regnum (gdbarch))
2277 regnum = PR_REGNUM;
2278
2279 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2280 {
2281 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2282 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2283 {
2284 CORE_ADDR val;
2285 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2286 4, byte_order);
2287 return frame_unwind_got_constant (this_frame, regnum, val);
2288 }
2289
2290 return frame_unwind_got_memory (this_frame, regnum,
2291 cache->saved_regs[regnum]);
2292 }
2293
2294 return frame_unwind_got_register (this_frame, regnum, regnum);
2295 }
2296
2297 static void
2298 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2299 struct frame_id *this_id)
2300 {
2301 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2302
2303 /* This marks the outermost frame. */
2304 if (cache->base == 0)
2305 return;
2306
2307 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2308 }
2309
2310 static const struct frame_unwind sh64_frame_unwind = {
2311 NORMAL_FRAME,
2312 default_frame_unwind_stop_reason,
2313 sh64_frame_this_id,
2314 sh64_frame_prev_register,
2315 NULL,
2316 default_frame_sniffer
2317 };
2318
2319 static CORE_ADDR
2320 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2321 {
2322 return frame_unwind_register_unsigned (next_frame,
2323 gdbarch_sp_regnum (gdbarch));
2324 }
2325
2326 static CORE_ADDR
2327 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2328 {
2329 return frame_unwind_register_unsigned (next_frame,
2330 gdbarch_pc_regnum (gdbarch));
2331 }
2332
2333 static struct frame_id
2334 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2335 {
2336 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2337 gdbarch_sp_regnum (gdbarch));
2338 return frame_id_build (sp, get_frame_pc (this_frame));
2339 }
2340
2341 static CORE_ADDR
2342 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2343 {
2344 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2345
2346 return cache->base;
2347 }
2348
2349 static const struct frame_base sh64_frame_base = {
2350 &sh64_frame_unwind,
2351 sh64_frame_base_address,
2352 sh64_frame_base_address,
2353 sh64_frame_base_address
2354 };
2355
2356
2357 struct gdbarch *
2358 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2359 {
2360 struct gdbarch *gdbarch;
2361 struct gdbarch_tdep *tdep;
2362
2363 /* If there is already a candidate, use it. */
2364 arches = gdbarch_list_lookup_by_info (arches, &info);
2365 if (arches != NULL)
2366 return arches->gdbarch;
2367
2368 /* None found, create a new architecture from the information
2369 provided. */
2370 tdep = XCNEW (struct gdbarch_tdep);
2371 gdbarch = gdbarch_alloc (&info, tdep);
2372
2373 /* Determine the ABI */
2374 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2375 {
2376 /* If the ABI is the 64-bit one, it can only be sh-media. */
2377 tdep->sh_abi = SH_ABI_64;
2378 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2379 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2380 }
2381 else
2382 {
2383 /* If the ABI is the 32-bit one it could be either media or
2384 compact. */
2385 tdep->sh_abi = SH_ABI_32;
2386 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2387 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2388 }
2389
2390 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2391 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2392 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2393 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2394 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2395 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2396 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2397
2398 /* The number of real registers is the same whether we are in
2399 ISA16(compact) or ISA32(media). */
2400 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2401 set_gdbarch_sp_regnum (gdbarch, 15);
2402 set_gdbarch_pc_regnum (gdbarch, 64);
2403 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2404 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2405 + NUM_PSEUDO_REGS_SH_COMPACT);
2406
2407 set_gdbarch_register_name (gdbarch, sh64_register_name);
2408 set_gdbarch_register_type (gdbarch, sh64_register_type);
2409
2410 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2411 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2412
2413 set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh64_breakpoint_kind_from_pc);
2414 set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh64_sw_breakpoint_from_kind);
2415 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2416
2417 set_gdbarch_return_value (gdbarch, sh64_return_value);
2418
2419 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2420 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2421
2422 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2423
2424 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2425
2426 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2427 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2428 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2429 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2430 frame_base_set_default (gdbarch, &sh64_frame_base);
2431
2432 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2433
2434 set_gdbarch_elf_make_msymbol_special (gdbarch,
2435 sh64_elf_make_msymbol_special);
2436
2437 /* Hook in ABI-specific overrides, if they have been registered. */
2438 gdbarch_init_osabi (info, gdbarch);
2439
2440 dwarf2_append_unwinders (gdbarch);
2441 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2442
2443 return gdbarch;
2444 }