]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sh64-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "gdb_string.h"
36 #include "gdb_assert.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "osabi.h"
40 #include "valprint.h"
41
42 #include "elf-bfd.h"
43
44 /* sh flags */
45 #include "elf/sh.h"
46 /* Register numbers shared with the simulator. */
47 #include "gdb/sim-sh.h"
48 #include "language.h"
49 #include "sh64-tdep.h"
50
51 /* Information that is dependent on the processor variant. */
52 enum sh_abi
53 {
54 SH_ABI_UNKNOWN,
55 SH_ABI_32,
56 SH_ABI_64
57 };
58
59 struct gdbarch_tdep
60 {
61 enum sh_abi sh_abi;
62 };
63
64 struct sh64_frame_cache
65 {
66 /* Base address. */
67 CORE_ADDR base;
68 LONGEST sp_offset;
69 CORE_ADDR pc;
70
71 /* Flag showing that a frame has been created in the prologue code. */
72 int uses_fp;
73
74 int media_mode;
75
76 /* Saved registers. */
77 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
78 CORE_ADDR saved_sp;
79 };
80
81 /* Registers of SH5 */
82 enum
83 {
84 R0_REGNUM = 0,
85 DEFAULT_RETURN_REGNUM = 2,
86 STRUCT_RETURN_REGNUM = 2,
87 ARG0_REGNUM = 2,
88 ARGLAST_REGNUM = 9,
89 FLOAT_ARGLAST_REGNUM = 11,
90 MEDIA_FP_REGNUM = 14,
91 PR_REGNUM = 18,
92 SR_REGNUM = 65,
93 DR0_REGNUM = 141,
94 DR_LAST_REGNUM = 172,
95 /* FPP stands for Floating Point Pair, to avoid confusion with
96 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
97 point register. Unfortunately on the sh5, the floating point
98 registers are called FR, and the floating point pairs are called FP. */
99 FPP0_REGNUM = 173,
100 FPP_LAST_REGNUM = 204,
101 FV0_REGNUM = 205,
102 FV_LAST_REGNUM = 220,
103 R0_C_REGNUM = 221,
104 R_LAST_C_REGNUM = 236,
105 PC_C_REGNUM = 237,
106 GBR_C_REGNUM = 238,
107 MACH_C_REGNUM = 239,
108 MACL_C_REGNUM = 240,
109 PR_C_REGNUM = 241,
110 T_C_REGNUM = 242,
111 FPSCR_C_REGNUM = 243,
112 FPUL_C_REGNUM = 244,
113 FP0_C_REGNUM = 245,
114 FP_LAST_C_REGNUM = 260,
115 DR0_C_REGNUM = 261,
116 DR_LAST_C_REGNUM = 268,
117 FV0_C_REGNUM = 269,
118 FV_LAST_C_REGNUM = 272,
119 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
120 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
121 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
122 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
123 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
124 };
125
126 static const char *
127 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
128 {
129 static char *register_names[] =
130 {
131 /* SH MEDIA MODE (ISA 32) */
132 /* general registers (64-bit) 0-63 */
133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
134 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
135 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
136 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
137 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
138 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
139 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
140 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
141
142 /* pc (64-bit) 64 */
143 "pc",
144
145 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
146 "sr", "ssr", "spc",
147
148 /* target registers (64-bit) 68-75 */
149 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
150
151 /* floating point state control register (32-bit) 76 */
152 "fpscr",
153
154 /* single precision floating point registers (32-bit) 77-140 */
155 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
156 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
157 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
158 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
159 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
160 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
161 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
162 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
163
164 /* double precision registers (pseudo) 141-172 */
165 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
166 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
167 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
168 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
169
170 /* floating point pairs (pseudo) 173-204 */
171 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
172 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
173 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
174 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
175
176 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
177 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
178 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
179
180 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
181 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
182 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
183 "pc_c",
184 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
185 "fpscr_c", "fpul_c",
186 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
187 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
188 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
189 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
191 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
192 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
193 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
194 };
195
196 if (reg_nr < 0)
197 return NULL;
198 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return NULL;
200 return register_names[reg_nr];
201 }
202
203 #define NUM_PSEUDO_REGS_SH_MEDIA 80
204 #define NUM_PSEUDO_REGS_SH_COMPACT 51
205
206 /* Macros and functions for setting and testing a bit in a minimal
207 symbol that marks it as 32-bit function. The MSB of the minimal
208 symbol's "info" field is used for this purpose.
209
210 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
211 i.e. refers to a 32-bit function, and sets a "special" bit in a
212 minimal symbol to mark it as a 32-bit function
213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
214
215 #define MSYMBOL_IS_SPECIAL(msym) \
216 MSYMBOL_TARGET_FLAG_1 (msym)
217
218 static void
219 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
220 {
221 if (msym == NULL)
222 return;
223
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 {
226 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
227 SYMBOL_VALUE_ADDRESS (msym) |= 1;
228 }
229 }
230
231 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233 #define IS_ISA32_ADDR(addr) ((addr) & 1)
234 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236
237 static int
238 pc_is_isa32 (bfd_vma memaddr)
239 {
240 struct minimal_symbol *sym;
241
242 /* If bit 0 of the address is set, assume this is a
243 ISA32 (shmedia) address. */
244 if (IS_ISA32_ADDR (memaddr))
245 return 1;
246
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
249 ISA16 or ISA32. */
250 sym = lookup_minimal_symbol_by_pc (memaddr);
251 if (sym)
252 return MSYMBOL_IS_SPECIAL (sym);
253 else
254 return 0;
255 }
256
257 static const unsigned char *
258 sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
259 CORE_ADDR *pcptr, int *lenptr)
260 {
261 /* The BRK instruction for shmedia is
262 01101111 11110101 11111111 11110000
263 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
264 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
265
266 /* The BRK instruction for shcompact is
267 00000000 00111011
268 which translates in big endian mode to 0x0, 0x3b
269 and in little endian mode to 0x3b, 0x0 */
270
271 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
272 {
273 if (pc_is_isa32 (*pcptr))
274 {
275 static unsigned char big_breakpoint_media[] = {
276 0x6f, 0xf5, 0xff, 0xf0
277 };
278 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
279 *lenptr = sizeof (big_breakpoint_media);
280 return big_breakpoint_media;
281 }
282 else
283 {
284 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
285 *lenptr = sizeof (big_breakpoint_compact);
286 return big_breakpoint_compact;
287 }
288 }
289 else
290 {
291 if (pc_is_isa32 (*pcptr))
292 {
293 static unsigned char little_breakpoint_media[] = {
294 0xf0, 0xff, 0xf5, 0x6f
295 };
296 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
297 *lenptr = sizeof (little_breakpoint_media);
298 return little_breakpoint_media;
299 }
300 else
301 {
302 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
303 *lenptr = sizeof (little_breakpoint_compact);
304 return little_breakpoint_compact;
305 }
306 }
307 }
308
309 /* Prologue looks like
310 [mov.l <regs>,@-r15]...
311 [sts.l pr,@-r15]
312 [mov.l r14,@-r15]
313 [mov r15,r14]
314
315 Actually it can be more complicated than this. For instance, with
316 newer gcc's:
317
318 mov.l r14,@-r15
319 add #-12,r15
320 mov r15,r14
321 mov r4,r1
322 mov r5,r2
323 mov.l r6,@(4,r14)
324 mov.l r7,@(8,r14)
325 mov.b r1,@r14
326 mov r14,r1
327 mov r14,r1
328 add #2,r1
329 mov.w r2,@r1
330
331 */
332
333 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
334 with l=1 and n = 18 0110101111110001010010100aaa0000 */
335 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
336
337 /* STS.L PR,@-r0 0100000000100010
338 r0-4-->r0, PR-->(r0) */
339 #define IS_STS_R0(x) ((x) == 0x4022)
340
341 /* STS PR, Rm 0000mmmm00101010
342 PR-->Rm */
343 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
344
345 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
346 Rm-->(dispx4+r15) */
347 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
348
349 /* MOV.L R14,@(disp,r15) 000111111110dddd
350 R14-->(dispx4+r15) */
351 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
352
353 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
354 R18-->(dispx8+R14) */
355 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
356
357 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
358 R18-->(dispx8+R15) */
359 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
360
361 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
362 R18-->(dispx4+R15) */
363 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
364
365 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
366 R14-->(dispx8+R15) */
367 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
368
369 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
370 R14-->(dispx4+R15) */
371 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
372
373 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
374 R15 + imm --> R15 */
375 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
376
377 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
378 R15 + imm --> R15 */
379 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
380
381 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
382 R15 + R63 --> R14 */
383 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
384
385 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
386 R15 + R63 --> R14 */
387 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
388
389 #define IS_MOV_SP_FP_MEDIA(x) \
390 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
391
392 /* MOV #imm, R0 1110 0000 ssss ssss
393 #imm-->R0 */
394 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
395
396 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
397 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
398
399 /* ADD r15,r0 0011 0000 1111 1100
400 r15+r0-->r0 */
401 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
402
403 /* MOV.L R14 @-R0 0010 0000 1110 0110
404 R14-->(R0-4), R0-4-->R0 */
405 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
406
407 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
408 where Rm is one of r2-r9 which are the argument registers. */
409 /* FIXME: Recognize the float and double register moves too! */
410 #define IS_MEDIA_IND_ARG_MOV(x) \
411 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
412 && (((x) & 0x03f00000) >= 0x00200000 \
413 && ((x) & 0x03f00000) <= 0x00900000))
414
415 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
416 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
417 where Rm is one of r2-r9 which are the argument registers. */
418 #define IS_MEDIA_ARG_MOV(x) \
419 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
420 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
421
422 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
423 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
424 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
425 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
426 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
427 #define IS_MEDIA_MOV_TO_R14(x) \
428 ((((x) & 0xfffffc0f) == 0xa0e00000) \
429 || (((x) & 0xfffffc0f) == 0xa4e00000) \
430 || (((x) & 0xfffffc0f) == 0xa8e00000) \
431 || (((x) & 0xfffffc0f) == 0xb4e00000) \
432 || (((x) & 0xfffffc0f) == 0xbce00000))
433
434 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
435 where Rm is r2-r9 */
436 #define IS_COMPACT_IND_ARG_MOV(x) \
437 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
438 && (((x) & 0x00f0) <= 0x0090))
439
440 /* compact direct arg move!
441 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
442 #define IS_COMPACT_ARG_MOV(x) \
443 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
444 && ((x) & 0x00f0) <= 0x0090))
445
446 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
447 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
448 #define IS_COMPACT_MOV_TO_R14(x) \
449 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
450
451 #define IS_JSR_R0(x) ((x) == 0x400b)
452 #define IS_NOP(x) ((x) == 0x0009)
453
454
455 /* MOV r15,r14 0110111011110011
456 r15-->r14 */
457 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
458
459 /* ADD #imm,r15 01111111iiiiiiii
460 r15+imm-->r15 */
461 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
462
463 /* Skip any prologue before the guts of a function. */
464
465 /* Skip the prologue using the debug information. If this fails we'll
466 fall back on the 'guess' method below. */
467 static CORE_ADDR
468 after_prologue (CORE_ADDR pc)
469 {
470 struct symtab_and_line sal;
471 CORE_ADDR func_addr, func_end;
472
473 /* If we can not find the symbol in the partial symbol table, then
474 there is no hope we can determine the function's start address
475 with this code. */
476 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
477 return 0;
478
479
480 /* Get the line associated with FUNC_ADDR. */
481 sal = find_pc_line (func_addr, 0);
482
483 /* There are only two cases to consider. First, the end of the source line
484 is within the function bounds. In that case we return the end of the
485 source line. Second is the end of the source line extends beyond the
486 bounds of the current function. We need to use the slow code to
487 examine instructions in that case. */
488 if (sal.end < func_end)
489 return sal.end;
490 else
491 return 0;
492 }
493
494 static CORE_ADDR
495 look_for_args_moves (struct gdbarch *gdbarch,
496 CORE_ADDR start_pc, int media_mode)
497 {
498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
499 CORE_ADDR here, end;
500 int w;
501 int insn_size = (media_mode ? 4 : 2);
502
503 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
504 {
505 if (media_mode)
506 {
507 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
508 insn_size, byte_order);
509 here += insn_size;
510 if (IS_MEDIA_IND_ARG_MOV (w))
511 {
512 /* This must be followed by a store to r14, so the argument
513 is where the debug info says it is. This can happen after
514 the SP has been saved, unfortunately. */
515
516 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
517 insn_size, byte_order);
518 here += insn_size;
519 if (IS_MEDIA_MOV_TO_R14 (next_insn))
520 start_pc = here;
521 }
522 else if (IS_MEDIA_ARG_MOV (w))
523 {
524 /* These instructions store directly the argument in r14. */
525 start_pc = here;
526 }
527 else
528 break;
529 }
530 else
531 {
532 w = read_memory_integer (here, insn_size, byte_order);
533 w = w & 0xffff;
534 here += insn_size;
535 if (IS_COMPACT_IND_ARG_MOV (w))
536 {
537 /* This must be followed by a store to r14, so the argument
538 is where the debug info says it is. This can happen after
539 the SP has been saved, unfortunately. */
540
541 int next_insn = 0xffff & read_memory_integer (here, insn_size,
542 byte_order);
543 here += insn_size;
544 if (IS_COMPACT_MOV_TO_R14 (next_insn))
545 start_pc = here;
546 }
547 else if (IS_COMPACT_ARG_MOV (w))
548 {
549 /* These instructions store directly the argument in r14. */
550 start_pc = here;
551 }
552 else if (IS_MOVL_R0 (w))
553 {
554 /* There is a function that gcc calls to get the arguments
555 passed correctly to the function. Only after this
556 function call the arguments will be found at the place
557 where they are supposed to be. This happens in case the
558 argument has to be stored into a 64-bit register (for
559 instance doubles, long longs). SHcompact doesn't have
560 access to the full 64-bits, so we store the register in
561 stack slot and store the address of the stack slot in
562 the register, then do a call through a wrapper that
563 loads the memory value into the register. A SHcompact
564 callee calls an argument decoder
565 (GCC_shcompact_incoming_args) that stores the 64-bit
566 value in a stack slot and stores the address of the
567 stack slot in the register. GCC thinks the argument is
568 just passed by transparent reference, but this is only
569 true after the argument decoder is called. Such a call
570 needs to be considered part of the prologue. */
571
572 /* This must be followed by a JSR @r0 instruction and by
573 a NOP instruction. After these, the prologue is over! */
574
575 int next_insn = 0xffff & read_memory_integer (here, insn_size,
576 byte_order);
577 here += insn_size;
578 if (IS_JSR_R0 (next_insn))
579 {
580 next_insn = 0xffff & read_memory_integer (here, insn_size,
581 byte_order);
582 here += insn_size;
583
584 if (IS_NOP (next_insn))
585 start_pc = here;
586 }
587 }
588 else
589 break;
590 }
591 }
592
593 return start_pc;
594 }
595
596 static CORE_ADDR
597 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
598 {
599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
600 CORE_ADDR here, end;
601 int updated_fp = 0;
602 int insn_size = 4;
603 int media_mode = 1;
604
605 if (!start_pc)
606 return 0;
607
608 if (pc_is_isa32 (start_pc) == 0)
609 {
610 insn_size = 2;
611 media_mode = 0;
612 }
613
614 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
615 {
616
617 if (media_mode)
618 {
619 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
620 insn_size, byte_order);
621 here += insn_size;
622 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
623 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
624 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
625 || IS_PTABSL_R18 (w))
626 {
627 start_pc = here;
628 }
629 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
630 {
631 start_pc = here;
632 updated_fp = 1;
633 }
634 else
635 if (updated_fp)
636 {
637 /* Don't bail out yet, we may have arguments stored in
638 registers here, according to the debug info, so that
639 gdb can print the frames correctly. */
640 start_pc = look_for_args_moves (gdbarch,
641 here - insn_size, media_mode);
642 break;
643 }
644 }
645 else
646 {
647 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
648 here += insn_size;
649
650 if (IS_STS_R0 (w) || IS_STS_PR (w)
651 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
652 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
653 {
654 start_pc = here;
655 }
656 else if (IS_MOV_SP_FP (w))
657 {
658 start_pc = here;
659 updated_fp = 1;
660 }
661 else
662 if (updated_fp)
663 {
664 /* Don't bail out yet, we may have arguments stored in
665 registers here, according to the debug info, so that
666 gdb can print the frames correctly. */
667 start_pc = look_for_args_moves (gdbarch,
668 here - insn_size, media_mode);
669 break;
670 }
671 }
672 }
673
674 return start_pc;
675 }
676
677 static CORE_ADDR
678 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
679 {
680 CORE_ADDR post_prologue_pc;
681
682 /* See if we can determine the end of the prologue via the symbol table.
683 If so, then return either PC, or the PC after the prologue, whichever
684 is greater. */
685 post_prologue_pc = after_prologue (pc);
686
687 /* If after_prologue returned a useful address, then use it. Else
688 fall back on the instruction skipping code. */
689 if (post_prologue_pc != 0)
690 return max (pc, post_prologue_pc);
691 else
692 return sh64_skip_prologue_hard_way (gdbarch, pc);
693 }
694
695 /* Should call_function allocate stack space for a struct return? */
696 static int
697 sh64_use_struct_convention (struct type *type)
698 {
699 return (TYPE_LENGTH (type) > 8);
700 }
701
702 /* For vectors of 4 floating point registers. */
703 static int
704 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
705 {
706 int fp_regnum;
707
708 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
709 return fp_regnum;
710 }
711
712 /* For double precision floating point registers, i.e 2 fp regs. */
713 static int
714 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
715 {
716 int fp_regnum;
717
718 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
719 return fp_regnum;
720 }
721
722 /* For pairs of floating point registers. */
723 static int
724 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
725 {
726 int fp_regnum;
727
728 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
729 return fp_regnum;
730 }
731
732 /* *INDENT-OFF* */
733 /*
734 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
735 GDB_REGNUM BASE_REGNUM
736 r0_c 221 0
737 r1_c 222 1
738 r2_c 223 2
739 r3_c 224 3
740 r4_c 225 4
741 r5_c 226 5
742 r6_c 227 6
743 r7_c 228 7
744 r8_c 229 8
745 r9_c 230 9
746 r10_c 231 10
747 r11_c 232 11
748 r12_c 233 12
749 r13_c 234 13
750 r14_c 235 14
751 r15_c 236 15
752
753 pc_c 237 64
754 gbr_c 238 16
755 mach_c 239 17
756 macl_c 240 17
757 pr_c 241 18
758 t_c 242 19
759 fpscr_c 243 76
760 fpul_c 244 109
761
762 fr0_c 245 77
763 fr1_c 246 78
764 fr2_c 247 79
765 fr3_c 248 80
766 fr4_c 249 81
767 fr5_c 250 82
768 fr6_c 251 83
769 fr7_c 252 84
770 fr8_c 253 85
771 fr9_c 254 86
772 fr10_c 255 87
773 fr11_c 256 88
774 fr12_c 257 89
775 fr13_c 258 90
776 fr14_c 259 91
777 fr15_c 260 92
778
779 dr0_c 261 77
780 dr2_c 262 79
781 dr4_c 263 81
782 dr6_c 264 83
783 dr8_c 265 85
784 dr10_c 266 87
785 dr12_c 267 89
786 dr14_c 268 91
787
788 fv0_c 269 77
789 fv4_c 270 81
790 fv8_c 271 85
791 fv12_c 272 91
792 */
793 /* *INDENT-ON* */
794 static int
795 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
796 {
797 int base_regnum = reg_nr;
798
799 /* general register N maps to general register N */
800 if (reg_nr >= R0_C_REGNUM
801 && reg_nr <= R_LAST_C_REGNUM)
802 base_regnum = reg_nr - R0_C_REGNUM;
803
804 /* floating point register N maps to floating point register N */
805 else if (reg_nr >= FP0_C_REGNUM
806 && reg_nr <= FP_LAST_C_REGNUM)
807 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
808
809 /* double prec register N maps to base regnum for double prec register N */
810 else if (reg_nr >= DR0_C_REGNUM
811 && reg_nr <= DR_LAST_C_REGNUM)
812 base_regnum = sh64_dr_reg_base_num (gdbarch,
813 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
814
815 /* vector N maps to base regnum for vector register N */
816 else if (reg_nr >= FV0_C_REGNUM
817 && reg_nr <= FV_LAST_C_REGNUM)
818 base_regnum = sh64_fv_reg_base_num (gdbarch,
819 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
820
821 else if (reg_nr == PC_C_REGNUM)
822 base_regnum = gdbarch_pc_regnum (gdbarch);
823
824 else if (reg_nr == GBR_C_REGNUM)
825 base_regnum = 16;
826
827 else if (reg_nr == MACH_C_REGNUM
828 || reg_nr == MACL_C_REGNUM)
829 base_regnum = 17;
830
831 else if (reg_nr == PR_C_REGNUM)
832 base_regnum = PR_REGNUM;
833
834 else if (reg_nr == T_C_REGNUM)
835 base_regnum = 19;
836
837 else if (reg_nr == FPSCR_C_REGNUM)
838 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
839
840 else if (reg_nr == FPUL_C_REGNUM)
841 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
842
843 return base_regnum;
844 }
845
846 static int
847 sign_extend (int value, int bits)
848 {
849 value = value & ((1 << bits) - 1);
850 return (value & (1 << (bits - 1))
851 ? value | (~((1 << bits) - 1))
852 : value);
853 }
854
855 static void
856 sh64_analyze_prologue (struct gdbarch *gdbarch,
857 struct sh64_frame_cache *cache,
858 CORE_ADDR func_pc,
859 CORE_ADDR current_pc)
860 {
861 int pc;
862 int opc;
863 int insn;
864 int r0_val = 0;
865 int insn_size;
866 int gdb_register_number;
867 int register_number;
868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
870
871 cache->sp_offset = 0;
872
873 /* Loop around examining the prologue insns until we find something
874 that does not appear to be part of the prologue. But give up
875 after 20 of them, since we're getting silly then. */
876
877 pc = func_pc;
878
879 if (cache->media_mode)
880 insn_size = 4;
881 else
882 insn_size = 2;
883
884 opc = pc + (insn_size * 28);
885 if (opc > current_pc)
886 opc = current_pc;
887 for ( ; pc <= opc; pc += insn_size)
888 {
889 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
890 : pc,
891 insn_size, byte_order);
892
893 if (!cache->media_mode)
894 {
895 if (IS_STS_PR (insn))
896 {
897 int next_insn = read_memory_integer (pc + insn_size,
898 insn_size, byte_order);
899 if (IS_MOV_TO_R15 (next_insn))
900 {
901 cache->saved_regs[PR_REGNUM]
902 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
903 - 0x8) << 2);
904 pc += insn_size;
905 }
906 }
907
908 else if (IS_MOV_R14 (insn))
909 cache->saved_regs[MEDIA_FP_REGNUM] =
910 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
911
912 else if (IS_MOV_R0 (insn))
913 {
914 /* Put in R0 the offset from SP at which to store some
915 registers. We are interested in this value, because it
916 will tell us where the given registers are stored within
917 the frame. */
918 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
919 }
920
921 else if (IS_ADD_SP_R0 (insn))
922 {
923 /* This instruction still prepares r0, but we don't care.
924 We already have the offset in r0_val. */
925 }
926
927 else if (IS_STS_R0 (insn))
928 {
929 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
930 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
931 r0_val -= 4;
932 }
933
934 else if (IS_MOV_R14_R0 (insn))
935 {
936 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
937 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
938 - (r0_val - 4);
939 r0_val -= 4;
940 }
941
942 else if (IS_ADD_SP (insn))
943 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
944
945 else if (IS_MOV_SP_FP (insn))
946 break;
947 }
948 else
949 {
950 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
951 cache->sp_offset -=
952 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
953
954 else if (IS_STQ_R18_R15 (insn))
955 cache->saved_regs[PR_REGNUM]
956 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
957 9) << 3);
958
959 else if (IS_STL_R18_R15 (insn))
960 cache->saved_regs[PR_REGNUM]
961 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
962 9) << 2);
963
964 else if (IS_STQ_R14_R15 (insn))
965 cache->saved_regs[MEDIA_FP_REGNUM]
966 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
967 9) << 3);
968
969 else if (IS_STL_R14_R15 (insn))
970 cache->saved_regs[MEDIA_FP_REGNUM]
971 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
972 9) << 2);
973
974 else if (IS_MOV_SP_FP_MEDIA (insn))
975 break;
976 }
977 }
978
979 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
980 cache->uses_fp = 1;
981 }
982
983 static CORE_ADDR
984 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
985 {
986 return sp & ~7;
987 }
988
989 /* Function: push_dummy_call
990 Setup the function arguments for calling a function in the inferior.
991
992 On the Renesas SH architecture, there are four registers (R4 to R7)
993 which are dedicated for passing function arguments. Up to the first
994 four arguments (depending on size) may go into these registers.
995 The rest go on the stack.
996
997 Arguments that are smaller than 4 bytes will still take up a whole
998 register or a whole 32-bit word on the stack, and will be
999 right-justified in the register or the stack word. This includes
1000 chars, shorts, and small aggregate types.
1001
1002 Arguments that are larger than 4 bytes may be split between two or
1003 more registers. If there are not enough registers free, an argument
1004 may be passed partly in a register (or registers), and partly on the
1005 stack. This includes doubles, long longs, and larger aggregates.
1006 As far as I know, there is no upper limit to the size of aggregates
1007 that will be passed in this way; in other words, the convention of
1008 passing a pointer to a large aggregate instead of a copy is not used.
1009
1010 An exceptional case exists for struct arguments (and possibly other
1011 aggregates such as arrays) if the size is larger than 4 bytes but
1012 not a multiple of 4 bytes. In this case the argument is never split
1013 between the registers and the stack, but instead is copied in its
1014 entirety onto the stack, AND also copied into as many registers as
1015 there is room for. In other words, space in registers permitting,
1016 two copies of the same argument are passed in. As far as I can tell,
1017 only the one on the stack is used, although that may be a function
1018 of the level of compiler optimization. I suspect this is a compiler
1019 bug. Arguments of these odd sizes are left-justified within the
1020 word (as opposed to arguments smaller than 4 bytes, which are
1021 right-justified).
1022
1023 If the function is to return an aggregate type such as a struct, it
1024 is either returned in the normal return value register R0 (if its
1025 size is no greater than one byte), or else the caller must allocate
1026 space into which the callee will copy the return value (if the size
1027 is greater than one byte). In this case, a pointer to the return
1028 value location is passed into the callee in register R2, which does
1029 not displace any of the other arguments passed in via registers R4
1030 to R7. */
1031
1032 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1033 non-scalar (struct, union) elements (even if the elements are
1034 floats).
1035 FR0-FR11 for single precision floating point (float)
1036 DR0-DR10 for double precision floating point (double)
1037
1038 If a float is argument number 3 (for instance) and arguments number
1039 1,2, and 4 are integer, the mapping will be:
1040 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1041
1042 If a float is argument number 10 (for instance) and arguments number
1043 1 through 10 are integer, the mapping will be:
1044 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1045 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1046 arg11->stack(16,SP). I.e. there is hole in the stack.
1047
1048 Different rules apply for variable arguments functions, and for functions
1049 for which the prototype is not known. */
1050
1051 static CORE_ADDR
1052 sh64_push_dummy_call (struct gdbarch *gdbarch,
1053 struct value *function,
1054 struct regcache *regcache,
1055 CORE_ADDR bp_addr,
1056 int nargs, struct value **args,
1057 CORE_ADDR sp, int struct_return,
1058 CORE_ADDR struct_addr)
1059 {
1060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1061 int stack_offset, stack_alloc;
1062 int int_argreg;
1063 int float_argreg;
1064 int double_argreg;
1065 int float_arg_index = 0;
1066 int double_arg_index = 0;
1067 int argnum;
1068 struct type *type;
1069 CORE_ADDR regval;
1070 char *val;
1071 char valbuf[8];
1072 int len;
1073 int argreg_size;
1074 int fp_args[12];
1075
1076 memset (fp_args, 0, sizeof (fp_args));
1077
1078 /* First force sp to a 8-byte alignment. */
1079 sp = sh64_frame_align (gdbarch, sp);
1080
1081 /* The "struct return pointer" pseudo-argument has its own dedicated
1082 register. */
1083
1084 if (struct_return)
1085 regcache_cooked_write_unsigned (regcache,
1086 STRUCT_RETURN_REGNUM, struct_addr);
1087
1088 /* Now make sure there's space on the stack. */
1089 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1090 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1091 sp -= stack_alloc; /* Make room on stack for args. */
1092
1093 /* Now load as many as possible of the first arguments into
1094 registers, and push the rest onto the stack. There are 64 bytes
1095 in eight registers available. Loop thru args from first to last. */
1096
1097 int_argreg = ARG0_REGNUM;
1098 float_argreg = gdbarch_fp0_regnum (gdbarch);
1099 double_argreg = DR0_REGNUM;
1100
1101 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1102 {
1103 type = value_type (args[argnum]);
1104 len = TYPE_LENGTH (type);
1105 memset (valbuf, 0, sizeof (valbuf));
1106
1107 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1108 {
1109 argreg_size = register_size (gdbarch, int_argreg);
1110
1111 if (len < argreg_size)
1112 {
1113 /* value gets right-justified in the register or stack word. */
1114 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1115 memcpy (valbuf + argreg_size - len,
1116 (char *) value_contents (args[argnum]), len);
1117 else
1118 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1119
1120 val = valbuf;
1121 }
1122 else
1123 val = (char *) value_contents (args[argnum]);
1124
1125 while (len > 0)
1126 {
1127 if (int_argreg > ARGLAST_REGNUM)
1128 {
1129 /* Must go on the stack. */
1130 write_memory (sp + stack_offset, (const bfd_byte *) val,
1131 argreg_size);
1132 stack_offset += 8;/*argreg_size;*/
1133 }
1134 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1135 That's because some *&^%$ things get passed on the stack
1136 AND in the registers! */
1137 if (int_argreg <= ARGLAST_REGNUM)
1138 {
1139 /* There's room in a register. */
1140 regval = extract_unsigned_integer (val, argreg_size,
1141 byte_order);
1142 regcache_cooked_write_unsigned (regcache,
1143 int_argreg, regval);
1144 }
1145 /* Store the value 8 bytes at a time. This means that
1146 things larger than 8 bytes may go partly in registers
1147 and partly on the stack. FIXME: argreg is incremented
1148 before we use its size. */
1149 len -= argreg_size;
1150 val += argreg_size;
1151 int_argreg++;
1152 }
1153 }
1154 else
1155 {
1156 val = (char *) value_contents (args[argnum]);
1157 if (len == 4)
1158 {
1159 /* Where is it going to be stored? */
1160 while (fp_args[float_arg_index])
1161 float_arg_index ++;
1162
1163 /* Now float_argreg points to the register where it
1164 should be stored. Are we still within the allowed
1165 register set? */
1166 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1167 {
1168 /* Goes in FR0...FR11 */
1169 regcache_cooked_write (regcache,
1170 gdbarch_fp0_regnum (gdbarch)
1171 + float_arg_index,
1172 val);
1173 fp_args[float_arg_index] = 1;
1174 /* Skip the corresponding general argument register. */
1175 int_argreg ++;
1176 }
1177 else
1178 {
1179 /* Store it as the integers, 8 bytes at the time, if
1180 necessary spilling on the stack. */
1181 }
1182 }
1183 else if (len == 8)
1184 {
1185 /* Where is it going to be stored? */
1186 while (fp_args[double_arg_index])
1187 double_arg_index += 2;
1188 /* Now double_argreg points to the register
1189 where it should be stored.
1190 Are we still within the allowed register set? */
1191 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1192 {
1193 /* Goes in DR0...DR10 */
1194 /* The numbering of the DRi registers is consecutive,
1195 i.e. includes odd numbers. */
1196 int double_register_offset = double_arg_index / 2;
1197 int regnum = DR0_REGNUM + double_register_offset;
1198 regcache_cooked_write (regcache, regnum, val);
1199 fp_args[double_arg_index] = 1;
1200 fp_args[double_arg_index + 1] = 1;
1201 /* Skip the corresponding general argument register. */
1202 int_argreg ++;
1203 }
1204 else
1205 {
1206 /* Store it as the integers, 8 bytes at the time, if
1207 necessary spilling on the stack. */
1208 }
1209 }
1210 }
1211 }
1212 /* Store return address. */
1213 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1214
1215 /* Update stack pointer. */
1216 regcache_cooked_write_unsigned (regcache,
1217 gdbarch_sp_regnum (gdbarch), sp);
1218
1219 return sp;
1220 }
1221
1222 /* Find a function's return value in the appropriate registers (in
1223 regbuf), and copy it into valbuf. Extract from an array REGBUF
1224 containing the (raw) register state a function return value of type
1225 TYPE, and copy that, in virtual format, into VALBUF. */
1226 static void
1227 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1228 void *valbuf)
1229 {
1230 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1231 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1232 int len = TYPE_LENGTH (type);
1233
1234 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1235 {
1236 if (len == 4)
1237 {
1238 /* Return value stored in gdbarch_fp0_regnum. */
1239 regcache_raw_read (regcache,
1240 gdbarch_fp0_regnum (gdbarch), valbuf);
1241 }
1242 else if (len == 8)
1243 {
1244 /* return value stored in DR0_REGNUM. */
1245 DOUBLEST val;
1246 gdb_byte buf[8];
1247
1248 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1249
1250 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1251 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1252 buf, &val);
1253 else
1254 floatformat_to_doublest (&floatformat_ieee_double_big,
1255 buf, &val);
1256 store_typed_floating (valbuf, type, val);
1257 }
1258 }
1259 else
1260 {
1261 if (len <= 8)
1262 {
1263 int offset;
1264 char buf[8];
1265 /* Result is in register 2. If smaller than 8 bytes, it is padded
1266 at the most significant end. */
1267 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1268
1269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1270 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1271 - len;
1272 else
1273 offset = 0;
1274 memcpy (valbuf, buf + offset, len);
1275 }
1276 else
1277 error (_("bad size for return value"));
1278 }
1279 }
1280
1281 /* Write into appropriate registers a function return value
1282 of type TYPE, given in virtual format.
1283 If the architecture is sh4 or sh3e, store a function's return value
1284 in the R0 general register or in the FP0 floating point register,
1285 depending on the type of the return value. In all the other cases
1286 the result is stored in r0, left-justified. */
1287
1288 static void
1289 sh64_store_return_value (struct type *type, struct regcache *regcache,
1290 const void *valbuf)
1291 {
1292 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1293 char buf[64]; /* more than enough... */
1294 int len = TYPE_LENGTH (type);
1295
1296 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1297 {
1298 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1299 for (i = 0; i < len; i += 4)
1300 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1301 regcache_raw_write (regcache, regnum++,
1302 (char *) valbuf + len - 4 - i);
1303 else
1304 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1305 }
1306 else
1307 {
1308 int return_register = DEFAULT_RETURN_REGNUM;
1309 int offset = 0;
1310
1311 if (len <= register_size (gdbarch, return_register))
1312 {
1313 /* Pad with zeros. */
1314 memset (buf, 0, register_size (gdbarch, return_register));
1315 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1316 offset = 0; /*register_size (gdbarch,
1317 return_register) - len;*/
1318 else
1319 offset = register_size (gdbarch, return_register) - len;
1320
1321 memcpy (buf + offset, valbuf, len);
1322 regcache_raw_write (regcache, return_register, buf);
1323 }
1324 else
1325 regcache_raw_write (regcache, return_register, valbuf);
1326 }
1327 }
1328
1329 static enum return_value_convention
1330 sh64_return_value (struct gdbarch *gdbarch, struct value *function,
1331 struct type *type, struct regcache *regcache,
1332 gdb_byte *readbuf, const gdb_byte *writebuf)
1333 {
1334 if (sh64_use_struct_convention (type))
1335 return RETURN_VALUE_STRUCT_CONVENTION;
1336 if (writebuf)
1337 sh64_store_return_value (type, regcache, writebuf);
1338 else if (readbuf)
1339 sh64_extract_return_value (type, regcache, readbuf);
1340 return RETURN_VALUE_REGISTER_CONVENTION;
1341 }
1342
1343 /* *INDENT-OFF* */
1344 /*
1345 SH MEDIA MODE (ISA 32)
1346 general registers (64-bit) 0-63
1347 0 r0, r1, r2, r3, r4, r5, r6, r7,
1348 64 r8, r9, r10, r11, r12, r13, r14, r15,
1349 128 r16, r17, r18, r19, r20, r21, r22, r23,
1350 192 r24, r25, r26, r27, r28, r29, r30, r31,
1351 256 r32, r33, r34, r35, r36, r37, r38, r39,
1352 320 r40, r41, r42, r43, r44, r45, r46, r47,
1353 384 r48, r49, r50, r51, r52, r53, r54, r55,
1354 448 r56, r57, r58, r59, r60, r61, r62, r63,
1355
1356 pc (64-bit) 64
1357 512 pc,
1358
1359 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1360 520 sr, ssr, spc,
1361
1362 target registers (64-bit) 68-75
1363 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1364
1365 floating point state control register (32-bit) 76
1366 608 fpscr,
1367
1368 single precision floating point registers (32-bit) 77-140
1369 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1370 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1371 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1372 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1373 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1374 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1375 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1376 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1377
1378 TOTAL SPACE FOR REGISTERS: 868 bytes
1379
1380 From here on they are all pseudo registers: no memory allocated.
1381 REGISTER_BYTE returns the register byte for the base register.
1382
1383 double precision registers (pseudo) 141-172
1384 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1385 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1386 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1387 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1388
1389 floating point pairs (pseudo) 173-204
1390 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1391 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1392 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1393 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1394
1395 floating point vectors (4 floating point regs) (pseudo) 205-220
1396 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1397 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1398
1399 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1400 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1401 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1402 pc_c,
1403 gbr_c, mach_c, macl_c, pr_c, t_c,
1404 fpscr_c, fpul_c,
1405 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1406 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1407 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1408 fv0_c, fv4_c, fv8_c, fv12_c
1409 */
1410
1411 static struct type *
1412 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1413 {
1414 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1415 0, high);
1416 }
1417
1418 /* Return the GDB type object for the "standard" data type
1419 of data in register REG_NR. */
1420 static struct type *
1421 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1422 {
1423 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1424 && reg_nr <= FP_LAST_REGNUM)
1425 || (reg_nr >= FP0_C_REGNUM
1426 && reg_nr <= FP_LAST_C_REGNUM))
1427 return builtin_type (gdbarch)->builtin_float;
1428 else if ((reg_nr >= DR0_REGNUM
1429 && reg_nr <= DR_LAST_REGNUM)
1430 || (reg_nr >= DR0_C_REGNUM
1431 && reg_nr <= DR_LAST_C_REGNUM))
1432 return builtin_type (gdbarch)->builtin_double;
1433 else if (reg_nr >= FPP0_REGNUM
1434 && reg_nr <= FPP_LAST_REGNUM)
1435 return sh64_build_float_register_type (gdbarch, 1);
1436 else if ((reg_nr >= FV0_REGNUM
1437 && reg_nr <= FV_LAST_REGNUM)
1438 ||(reg_nr >= FV0_C_REGNUM
1439 && reg_nr <= FV_LAST_C_REGNUM))
1440 return sh64_build_float_register_type (gdbarch, 3);
1441 else if (reg_nr == FPSCR_REGNUM)
1442 return builtin_type (gdbarch)->builtin_int;
1443 else if (reg_nr >= R0_C_REGNUM
1444 && reg_nr < FP0_C_REGNUM)
1445 return builtin_type (gdbarch)->builtin_int;
1446 else
1447 return builtin_type (gdbarch)->builtin_long_long;
1448 }
1449
1450 static void
1451 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1452 struct type *type, char *from, char *to)
1453 {
1454 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1455 {
1456 /* It is a no-op. */
1457 memcpy (to, from, register_size (gdbarch, regnum));
1458 return;
1459 }
1460
1461 if ((regnum >= DR0_REGNUM
1462 && regnum <= DR_LAST_REGNUM)
1463 || (regnum >= DR0_C_REGNUM
1464 && regnum <= DR_LAST_C_REGNUM))
1465 {
1466 DOUBLEST val;
1467 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1468 from, &val);
1469 store_typed_floating (to, type, val);
1470 }
1471 else
1472 error (_("sh64_register_convert_to_virtual "
1473 "called with non DR register number"));
1474 }
1475
1476 static void
1477 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1478 int regnum, const void *from, void *to)
1479 {
1480 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1481 {
1482 /* It is a no-op. */
1483 memcpy (to, from, register_size (gdbarch, regnum));
1484 return;
1485 }
1486
1487 if ((regnum >= DR0_REGNUM
1488 && regnum <= DR_LAST_REGNUM)
1489 || (regnum >= DR0_C_REGNUM
1490 && regnum <= DR_LAST_C_REGNUM))
1491 {
1492 DOUBLEST val = extract_typed_floating (from, type);
1493 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1494 &val, to);
1495 }
1496 else
1497 error (_("sh64_register_convert_to_raw called "
1498 "with non DR register number"));
1499 }
1500
1501 /* Concatenate PORTIONS contiguous raw registers starting at
1502 BASE_REGNUM into BUFFER. */
1503
1504 static enum register_status
1505 pseudo_register_read_portions (struct gdbarch *gdbarch,
1506 struct regcache *regcache,
1507 int portions,
1508 int base_regnum, gdb_byte *buffer)
1509 {
1510 int portion;
1511
1512 for (portion = 0; portion < portions; portion++)
1513 {
1514 enum register_status status;
1515 gdb_byte *b;
1516
1517 b = buffer + register_size (gdbarch, base_regnum) * portion;
1518 status = regcache_raw_read (regcache, base_regnum + portion, b);
1519 if (status != REG_VALID)
1520 return status;
1521 }
1522
1523 return REG_VALID;
1524 }
1525
1526 static enum register_status
1527 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1528 int reg_nr, gdb_byte *buffer)
1529 {
1530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1531 int base_regnum;
1532 int offset = 0;
1533 char temp_buffer[MAX_REGISTER_SIZE];
1534 enum register_status status;
1535
1536 if (reg_nr >= DR0_REGNUM
1537 && reg_nr <= DR_LAST_REGNUM)
1538 {
1539 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1540
1541 /* Build the value in the provided buffer. */
1542 /* DR regs are double precision registers obtained by
1543 concatenating 2 single precision floating point registers. */
1544 status = pseudo_register_read_portions (gdbarch, regcache,
1545 2, base_regnum, temp_buffer);
1546 if (status == REG_VALID)
1547 {
1548 /* We must pay attention to the endianness. */
1549 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1550 register_type (gdbarch, reg_nr),
1551 temp_buffer, buffer);
1552 }
1553
1554 return status;
1555 }
1556
1557 else if (reg_nr >= FPP0_REGNUM
1558 && reg_nr <= FPP_LAST_REGNUM)
1559 {
1560 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1561
1562 /* Build the value in the provided buffer. */
1563 /* FPP regs are pairs of single precision registers obtained by
1564 concatenating 2 single precision floating point registers. */
1565 return pseudo_register_read_portions (gdbarch, regcache,
1566 2, base_regnum, buffer);
1567 }
1568
1569 else if (reg_nr >= FV0_REGNUM
1570 && reg_nr <= FV_LAST_REGNUM)
1571 {
1572 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1573
1574 /* Build the value in the provided buffer. */
1575 /* FV regs are vectors of single precision registers obtained by
1576 concatenating 4 single precision floating point registers. */
1577 return pseudo_register_read_portions (gdbarch, regcache,
1578 4, base_regnum, buffer);
1579 }
1580
1581 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1582 else if (reg_nr >= R0_C_REGNUM
1583 && reg_nr <= T_C_REGNUM)
1584 {
1585 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1586
1587 /* Build the value in the provided buffer. */
1588 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1589 if (status != REG_VALID)
1590 return status;
1591 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1592 offset = 4;
1593 memcpy (buffer,
1594 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1595 return REG_VALID;
1596 }
1597
1598 else if (reg_nr >= FP0_C_REGNUM
1599 && reg_nr <= FP_LAST_C_REGNUM)
1600 {
1601 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1602
1603 /* Build the value in the provided buffer. */
1604 /* Floating point registers map 1-1 to the media fp regs,
1605 they have the same size and endianness. */
1606 return regcache_raw_read (regcache, base_regnum, buffer);
1607 }
1608
1609 else if (reg_nr >= DR0_C_REGNUM
1610 && reg_nr <= DR_LAST_C_REGNUM)
1611 {
1612 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1613
1614 /* DR_C regs are double precision registers obtained by
1615 concatenating 2 single precision floating point registers. */
1616 status = pseudo_register_read_portions (gdbarch, regcache,
1617 2, base_regnum, temp_buffer);
1618 if (status == REG_VALID)
1619 {
1620 /* We must pay attention to the endianness. */
1621 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1622 register_type (gdbarch, reg_nr),
1623 temp_buffer, buffer);
1624 }
1625 return status;
1626 }
1627
1628 else if (reg_nr >= FV0_C_REGNUM
1629 && reg_nr <= FV_LAST_C_REGNUM)
1630 {
1631 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1632
1633 /* Build the value in the provided buffer. */
1634 /* FV_C regs are vectors of single precision registers obtained by
1635 concatenating 4 single precision floating point registers. */
1636 return pseudo_register_read_portions (gdbarch, regcache,
1637 4, base_regnum, buffer);
1638 }
1639
1640 else if (reg_nr == FPSCR_C_REGNUM)
1641 {
1642 int fpscr_base_regnum;
1643 int sr_base_regnum;
1644 unsigned int fpscr_value;
1645 unsigned int sr_value;
1646 unsigned int fpscr_c_value;
1647 unsigned int fpscr_c_part1_value;
1648 unsigned int fpscr_c_part2_value;
1649
1650 fpscr_base_regnum = FPSCR_REGNUM;
1651 sr_base_regnum = SR_REGNUM;
1652
1653 /* Build the value in the provided buffer. */
1654 /* FPSCR_C is a very weird register that contains sparse bits
1655 from the FPSCR and the SR architectural registers.
1656 Specifically: */
1657 /* *INDENT-OFF* */
1658 /*
1659 FPSRC_C bit
1660 0 Bit 0 of FPSCR
1661 1 reserved
1662 2-17 Bit 2-18 of FPSCR
1663 18-20 Bits 12,13,14 of SR
1664 21-31 reserved
1665 */
1666 /* *INDENT-ON* */
1667 /* Get FPSCR into a local buffer. */
1668 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1669 if (status != REG_VALID)
1670 return status;
1671 /* Get value as an int. */
1672 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1673 /* Get SR into a local buffer */
1674 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1675 if (status != REG_VALID)
1676 return status;
1677 /* Get value as an int. */
1678 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1679 /* Build the new value. */
1680 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1681 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1682 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1683 /* Store that in out buffer!!! */
1684 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1685 /* FIXME There is surely an endianness gotcha here. */
1686
1687 return REG_VALID;
1688 }
1689
1690 else if (reg_nr == FPUL_C_REGNUM)
1691 {
1692 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1693
1694 /* FPUL_C register is floating point register 32,
1695 same size, same endianness. */
1696 return regcache_raw_read (regcache, base_regnum, buffer);
1697 }
1698 else
1699 gdb_assert_not_reached ("invalid pseudo register number");
1700 }
1701
1702 static void
1703 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1704 int reg_nr, const gdb_byte *buffer)
1705 {
1706 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1707 int base_regnum, portion;
1708 int offset;
1709 char temp_buffer[MAX_REGISTER_SIZE];
1710
1711 if (reg_nr >= DR0_REGNUM
1712 && reg_nr <= DR_LAST_REGNUM)
1713 {
1714 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1715 /* We must pay attention to the endianness. */
1716 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1717 reg_nr,
1718 buffer, temp_buffer);
1719
1720 /* Write the real regs for which this one is an alias. */
1721 for (portion = 0; portion < 2; portion++)
1722 regcache_raw_write (regcache, base_regnum + portion,
1723 (temp_buffer
1724 + register_size (gdbarch,
1725 base_regnum) * portion));
1726 }
1727
1728 else if (reg_nr >= FPP0_REGNUM
1729 && reg_nr <= FPP_LAST_REGNUM)
1730 {
1731 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1732
1733 /* Write the real regs for which this one is an alias. */
1734 for (portion = 0; portion < 2; portion++)
1735 regcache_raw_write (regcache, base_regnum + portion,
1736 ((char *) buffer
1737 + register_size (gdbarch,
1738 base_regnum) * portion));
1739 }
1740
1741 else if (reg_nr >= FV0_REGNUM
1742 && reg_nr <= FV_LAST_REGNUM)
1743 {
1744 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1745
1746 /* Write the real regs for which this one is an alias. */
1747 for (portion = 0; portion < 4; portion++)
1748 regcache_raw_write (regcache, base_regnum + portion,
1749 ((char *) buffer
1750 + register_size (gdbarch,
1751 base_regnum) * portion));
1752 }
1753
1754 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1755 register but only 4 bytes of it. */
1756 else if (reg_nr >= R0_C_REGNUM
1757 && reg_nr <= T_C_REGNUM)
1758 {
1759 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1760 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1761 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1762 offset = 4;
1763 else
1764 offset = 0;
1765 /* Let's read the value of the base register into a temporary
1766 buffer, so that overwriting the last four bytes with the new
1767 value of the pseudo will leave the upper 4 bytes unchanged. */
1768 regcache_raw_read (regcache, base_regnum, temp_buffer);
1769 /* Write as an 8 byte quantity. */
1770 memcpy (temp_buffer + offset, buffer, 4);
1771 regcache_raw_write (regcache, base_regnum, temp_buffer);
1772 }
1773
1774 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1775 registers. Both are 4 bytes. */
1776 else if (reg_nr >= FP0_C_REGNUM
1777 && reg_nr <= FP_LAST_C_REGNUM)
1778 {
1779 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1780 regcache_raw_write (regcache, base_regnum, buffer);
1781 }
1782
1783 else if (reg_nr >= DR0_C_REGNUM
1784 && reg_nr <= DR_LAST_C_REGNUM)
1785 {
1786 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1787 for (portion = 0; portion < 2; portion++)
1788 {
1789 /* We must pay attention to the endianness. */
1790 sh64_register_convert_to_raw (gdbarch,
1791 register_type (gdbarch, reg_nr),
1792 reg_nr,
1793 buffer, temp_buffer);
1794
1795 regcache_raw_write (regcache, base_regnum + portion,
1796 (temp_buffer
1797 + register_size (gdbarch,
1798 base_regnum) * portion));
1799 }
1800 }
1801
1802 else if (reg_nr >= FV0_C_REGNUM
1803 && reg_nr <= FV_LAST_C_REGNUM)
1804 {
1805 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1806
1807 for (portion = 0; portion < 4; portion++)
1808 {
1809 regcache_raw_write (regcache, base_regnum + portion,
1810 ((char *) buffer
1811 + register_size (gdbarch,
1812 base_regnum) * portion));
1813 }
1814 }
1815
1816 else if (reg_nr == FPSCR_C_REGNUM)
1817 {
1818 int fpscr_base_regnum;
1819 int sr_base_regnum;
1820 unsigned int fpscr_value;
1821 unsigned int sr_value;
1822 unsigned int old_fpscr_value;
1823 unsigned int old_sr_value;
1824 unsigned int fpscr_c_value;
1825 unsigned int fpscr_mask;
1826 unsigned int sr_mask;
1827
1828 fpscr_base_regnum = FPSCR_REGNUM;
1829 sr_base_regnum = SR_REGNUM;
1830
1831 /* FPSCR_C is a very weird register that contains sparse bits
1832 from the FPSCR and the SR architectural registers.
1833 Specifically: */
1834 /* *INDENT-OFF* */
1835 /*
1836 FPSRC_C bit
1837 0 Bit 0 of FPSCR
1838 1 reserved
1839 2-17 Bit 2-18 of FPSCR
1840 18-20 Bits 12,13,14 of SR
1841 21-31 reserved
1842 */
1843 /* *INDENT-ON* */
1844 /* Get value as an int. */
1845 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1846
1847 /* Build the new values. */
1848 fpscr_mask = 0x0003fffd;
1849 sr_mask = 0x001c0000;
1850
1851 fpscr_value = fpscr_c_value & fpscr_mask;
1852 sr_value = (fpscr_value & sr_mask) >> 6;
1853
1854 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1855 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1856 old_fpscr_value &= 0xfffc0002;
1857 fpscr_value |= old_fpscr_value;
1858 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1859 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1860
1861 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1862 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1863 old_sr_value &= 0xffff8fff;
1864 sr_value |= old_sr_value;
1865 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1866 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1867 }
1868
1869 else if (reg_nr == FPUL_C_REGNUM)
1870 {
1871 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1872 regcache_raw_write (regcache, base_regnum, buffer);
1873 }
1874 }
1875
1876 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1877 shmedia REGISTERS. */
1878 /* Control registers, compact mode. */
1879 static void
1880 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1881 int cr_c_regnum)
1882 {
1883 switch (cr_c_regnum)
1884 {
1885 case PC_C_REGNUM:
1886 fprintf_filtered (file, "pc_c\t0x%08x\n",
1887 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1888 break;
1889 case GBR_C_REGNUM:
1890 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1891 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1892 break;
1893 case MACH_C_REGNUM:
1894 fprintf_filtered (file, "mach_c\t0x%08x\n",
1895 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1896 break;
1897 case MACL_C_REGNUM:
1898 fprintf_filtered (file, "macl_c\t0x%08x\n",
1899 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1900 break;
1901 case PR_C_REGNUM:
1902 fprintf_filtered (file, "pr_c\t0x%08x\n",
1903 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1904 break;
1905 case T_C_REGNUM:
1906 fprintf_filtered (file, "t_c\t0x%08x\n",
1907 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1908 break;
1909 case FPSCR_C_REGNUM:
1910 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1911 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1912 break;
1913 case FPUL_C_REGNUM:
1914 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1915 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1916 break;
1917 }
1918 }
1919
1920 static void
1921 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1922 struct frame_info *frame, int regnum)
1923 { /* Do values for FP (float) regs. */
1924 unsigned char *raw_buffer;
1925 double flt; /* Double extracted from raw hex data. */
1926 int inv;
1927 int j;
1928
1929 /* Allocate space for the float. */
1930 raw_buffer = (unsigned char *)
1931 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
1932
1933 /* Get the data in raw format. */
1934 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
1935 error (_("can't read register %d (%s)"),
1936 regnum, gdbarch_register_name (gdbarch, regnum));
1937
1938 /* Get the register as a number. */
1939 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1940 raw_buffer, &inv);
1941
1942 /* Print the name and some spaces. */
1943 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
1944 print_spaces_filtered (15 - strlen (gdbarch_register_name
1945 (gdbarch, regnum)), file);
1946
1947 /* Print the value. */
1948 if (inv)
1949 fprintf_filtered (file, "<invalid float>");
1950 else
1951 fprintf_filtered (file, "%-10.9g", flt);
1952
1953 /* Print the fp register as hex. */
1954 fprintf_filtered (file, "\t(raw 0x");
1955 for (j = 0; j < register_size (gdbarch, regnum); j++)
1956 {
1957 int idx = gdbarch_byte_order (gdbarch)
1958 == BFD_ENDIAN_BIG ? j : register_size
1959 (gdbarch, regnum) - 1 - j;
1960 fprintf_filtered (file, "%02x", raw_buffer[idx]);
1961 }
1962 fprintf_filtered (file, ")");
1963 fprintf_filtered (file, "\n");
1964 }
1965
1966 static void
1967 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1968 struct frame_info *frame, int regnum)
1969 {
1970 /* All the sh64-compact mode registers are pseudo registers. */
1971
1972 if (regnum < gdbarch_num_regs (gdbarch)
1973 || regnum >= gdbarch_num_regs (gdbarch)
1974 + NUM_PSEUDO_REGS_SH_MEDIA
1975 + NUM_PSEUDO_REGS_SH_COMPACT)
1976 internal_error (__FILE__, __LINE__,
1977 _("Invalid pseudo register number %d\n"), regnum);
1978
1979 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1980 {
1981 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
1982 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1984 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1985 }
1986
1987 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1988 {
1989 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1990 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1991 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1992 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1993 }
1994
1995 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1996 {
1997 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
1998 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1999 regnum - FV0_REGNUM,
2000 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2001 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2002 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2004 }
2005
2006 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2007 {
2008 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2009 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2010 regnum - FV0_C_REGNUM,
2011 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2012 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2013 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2014 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2015 }
2016
2017 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2018 {
2019 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2020 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2021 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2022 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2023 }
2024
2025 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2026 {
2027 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2028 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2029 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2030 }
2031 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2032 /* This should work also for pseudoregs. */
2033 sh64_do_fp_register (gdbarch, file, frame, regnum);
2034 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2035 sh64_do_cr_c_register_info (file, frame, regnum);
2036 }
2037
2038 static void
2039 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2040 struct frame_info *frame, int regnum)
2041 {
2042 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2043 struct value_print_options opts;
2044
2045 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2046 print_spaces_filtered (15 - strlen (gdbarch_register_name
2047 (gdbarch, regnum)), file);
2048
2049 /* Get the data in raw format. */
2050 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
2051 fprintf_filtered (file, "*value not available*\n");
2052
2053 get_formatted_print_options (&opts, 'x');
2054 opts.deref_ref = 1;
2055 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2056 file, 0, NULL, &opts, current_language);
2057 fprintf_filtered (file, "\t");
2058 get_formatted_print_options (&opts, 0);
2059 opts.deref_ref = 1;
2060 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2061 file, 0, NULL, &opts, current_language);
2062 fprintf_filtered (file, "\n");
2063 }
2064
2065 static void
2066 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2067 struct frame_info *frame, int regnum)
2068 {
2069 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2070 + gdbarch_num_pseudo_regs (gdbarch))
2071 internal_error (__FILE__, __LINE__,
2072 _("Invalid register number %d\n"), regnum);
2073
2074 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2075 {
2076 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2077 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2078 else
2079 sh64_do_register (gdbarch, file, frame, regnum);
2080 }
2081
2082 else if (regnum < gdbarch_num_regs (gdbarch)
2083 + gdbarch_num_pseudo_regs (gdbarch))
2084 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2085 }
2086
2087 static void
2088 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2089 struct frame_info *frame, int regnum,
2090 int fpregs)
2091 {
2092 if (regnum != -1) /* Do one specified register. */
2093 {
2094 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2095 error (_("Not a valid register for the current processor type"));
2096
2097 sh64_print_register (gdbarch, file, frame, regnum);
2098 }
2099 else
2100 /* Do all (or most) registers. */
2101 {
2102 regnum = 0;
2103 while (regnum < gdbarch_num_regs (gdbarch))
2104 {
2105 /* If the register name is empty, it is undefined for this
2106 processor, so don't display anything. */
2107 if (gdbarch_register_name (gdbarch, regnum) == NULL
2108 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2109 {
2110 regnum++;
2111 continue;
2112 }
2113
2114 if (TYPE_CODE (register_type (gdbarch, regnum))
2115 == TYPE_CODE_FLT)
2116 {
2117 if (fpregs)
2118 {
2119 /* true for "INFO ALL-REGISTERS" command. */
2120 sh64_do_fp_register (gdbarch, file, frame, regnum);
2121 regnum ++;
2122 }
2123 else
2124 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2125 /* skip FP regs */
2126 }
2127 else
2128 {
2129 sh64_do_register (gdbarch, file, frame, regnum);
2130 regnum++;
2131 }
2132 }
2133
2134 if (fpregs)
2135 while (regnum < gdbarch_num_regs (gdbarch)
2136 + gdbarch_num_pseudo_regs (gdbarch))
2137 {
2138 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2139 regnum++;
2140 }
2141 }
2142 }
2143
2144 static void
2145 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2146 struct ui_file *file,
2147 struct frame_info *frame, int regnum,
2148 int fpregs)
2149 {
2150 if (regnum != -1) /* Do one specified register. */
2151 {
2152 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2153 error (_("Not a valid register for the current processor type"));
2154
2155 if (regnum >= 0 && regnum < R0_C_REGNUM)
2156 error (_("Not a valid register for the current processor mode."));
2157
2158 sh64_print_register (gdbarch, file, frame, regnum);
2159 }
2160 else
2161 /* Do all compact registers. */
2162 {
2163 regnum = R0_C_REGNUM;
2164 while (regnum < gdbarch_num_regs (gdbarch)
2165 + gdbarch_num_pseudo_regs (gdbarch))
2166 {
2167 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2168 regnum++;
2169 }
2170 }
2171 }
2172
2173 static void
2174 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2175 struct frame_info *frame, int regnum, int fpregs)
2176 {
2177 if (pc_is_isa32 (get_frame_pc (frame)))
2178 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2179 else
2180 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2181 }
2182
2183 static struct sh64_frame_cache *
2184 sh64_alloc_frame_cache (void)
2185 {
2186 struct sh64_frame_cache *cache;
2187 int i;
2188
2189 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2190
2191 /* Base address. */
2192 cache->base = 0;
2193 cache->saved_sp = 0;
2194 cache->sp_offset = 0;
2195 cache->pc = 0;
2196
2197 /* Frameless until proven otherwise. */
2198 cache->uses_fp = 0;
2199
2200 /* Saved registers. We initialize these to -1 since zero is a valid
2201 offset (that's where fp is supposed to be stored). */
2202 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2203 {
2204 cache->saved_regs[i] = -1;
2205 }
2206
2207 return cache;
2208 }
2209
2210 static struct sh64_frame_cache *
2211 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2212 {
2213 struct gdbarch *gdbarch;
2214 struct sh64_frame_cache *cache;
2215 CORE_ADDR current_pc;
2216 int i;
2217
2218 if (*this_cache)
2219 return *this_cache;
2220
2221 gdbarch = get_frame_arch (this_frame);
2222 cache = sh64_alloc_frame_cache ();
2223 *this_cache = cache;
2224
2225 current_pc = get_frame_pc (this_frame);
2226 cache->media_mode = pc_is_isa32 (current_pc);
2227
2228 /* In principle, for normal frames, fp holds the frame pointer,
2229 which holds the base address for the current stack frame.
2230 However, for functions that don't need it, the frame pointer is
2231 optional. For these "frameless" functions the frame pointer is
2232 actually the frame pointer of the calling frame. */
2233 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2234 if (cache->base == 0)
2235 return cache;
2236
2237 cache->pc = get_frame_func (this_frame);
2238 if (cache->pc != 0)
2239 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2240
2241 if (!cache->uses_fp)
2242 {
2243 /* We didn't find a valid frame, which means that CACHE->base
2244 currently holds the frame pointer for our calling frame. If
2245 we're at the start of a function, or somewhere half-way its
2246 prologue, the function's frame probably hasn't been fully
2247 setup yet. Try to reconstruct the base address for the stack
2248 frame by looking at the stack pointer. For truly "frameless"
2249 functions this might work too. */
2250 cache->base = get_frame_register_unsigned
2251 (this_frame, gdbarch_sp_regnum (gdbarch));
2252 }
2253
2254 /* Now that we have the base address for the stack frame we can
2255 calculate the value of sp in the calling frame. */
2256 cache->saved_sp = cache->base + cache->sp_offset;
2257
2258 /* Adjust all the saved registers such that they contain addresses
2259 instead of offsets. */
2260 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2261 if (cache->saved_regs[i] != -1)
2262 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2263
2264 return cache;
2265 }
2266
2267 static struct value *
2268 sh64_frame_prev_register (struct frame_info *this_frame,
2269 void **this_cache, int regnum)
2270 {
2271 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2272 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2273 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2274
2275 gdb_assert (regnum >= 0);
2276
2277 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2278 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2279
2280 /* The PC of the previous frame is stored in the PR register of
2281 the current frame. Frob regnum so that we pull the value from
2282 the correct place. */
2283 if (regnum == gdbarch_pc_regnum (gdbarch))
2284 regnum = PR_REGNUM;
2285
2286 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2287 {
2288 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2289 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2290 {
2291 CORE_ADDR val;
2292 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2293 4, byte_order);
2294 return frame_unwind_got_constant (this_frame, regnum, val);
2295 }
2296
2297 return frame_unwind_got_memory (this_frame, regnum,
2298 cache->saved_regs[regnum]);
2299 }
2300
2301 return frame_unwind_got_register (this_frame, regnum, regnum);
2302 }
2303
2304 static void
2305 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2306 struct frame_id *this_id)
2307 {
2308 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2309
2310 /* This marks the outermost frame. */
2311 if (cache->base == 0)
2312 return;
2313
2314 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2315 }
2316
2317 static const struct frame_unwind sh64_frame_unwind = {
2318 NORMAL_FRAME,
2319 default_frame_unwind_stop_reason,
2320 sh64_frame_this_id,
2321 sh64_frame_prev_register,
2322 NULL,
2323 default_frame_sniffer
2324 };
2325
2326 static CORE_ADDR
2327 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2328 {
2329 return frame_unwind_register_unsigned (next_frame,
2330 gdbarch_sp_regnum (gdbarch));
2331 }
2332
2333 static CORE_ADDR
2334 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2335 {
2336 return frame_unwind_register_unsigned (next_frame,
2337 gdbarch_pc_regnum (gdbarch));
2338 }
2339
2340 static struct frame_id
2341 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2342 {
2343 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2344 gdbarch_sp_regnum (gdbarch));
2345 return frame_id_build (sp, get_frame_pc (this_frame));
2346 }
2347
2348 static CORE_ADDR
2349 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2350 {
2351 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2352
2353 return cache->base;
2354 }
2355
2356 static const struct frame_base sh64_frame_base = {
2357 &sh64_frame_unwind,
2358 sh64_frame_base_address,
2359 sh64_frame_base_address,
2360 sh64_frame_base_address
2361 };
2362
2363
2364 struct gdbarch *
2365 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2366 {
2367 struct gdbarch *gdbarch;
2368 struct gdbarch_tdep *tdep;
2369
2370 /* If there is already a candidate, use it. */
2371 arches = gdbarch_list_lookup_by_info (arches, &info);
2372 if (arches != NULL)
2373 return arches->gdbarch;
2374
2375 /* None found, create a new architecture from the information
2376 provided. */
2377 tdep = XMALLOC (struct gdbarch_tdep);
2378 gdbarch = gdbarch_alloc (&info, tdep);
2379
2380 /* Determine the ABI */
2381 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2382 {
2383 /* If the ABI is the 64-bit one, it can only be sh-media. */
2384 tdep->sh_abi = SH_ABI_64;
2385 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2386 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2387 }
2388 else
2389 {
2390 /* If the ABI is the 32-bit one it could be either media or
2391 compact. */
2392 tdep->sh_abi = SH_ABI_32;
2393 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2394 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2395 }
2396
2397 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2398 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2399 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2400 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2401 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2402 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2403 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2404
2405 /* The number of real registers is the same whether we are in
2406 ISA16(compact) or ISA32(media). */
2407 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2408 set_gdbarch_sp_regnum (gdbarch, 15);
2409 set_gdbarch_pc_regnum (gdbarch, 64);
2410 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2411 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2412 + NUM_PSEUDO_REGS_SH_COMPACT);
2413
2414 set_gdbarch_register_name (gdbarch, sh64_register_name);
2415 set_gdbarch_register_type (gdbarch, sh64_register_type);
2416
2417 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2418 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2419
2420 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2421
2422 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2423 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2424
2425 set_gdbarch_return_value (gdbarch, sh64_return_value);
2426
2427 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2428 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2429
2430 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2431
2432 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2433
2434 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2435 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2436 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2437 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2438 frame_base_set_default (gdbarch, &sh64_frame_base);
2439
2440 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2441
2442 set_gdbarch_elf_make_msymbol_special (gdbarch,
2443 sh64_elf_make_msymbol_special);
2444
2445 /* Hook in ABI-specific overrides, if they have been registered. */
2446 gdbarch_init_osabi (info, gdbarch);
2447
2448 dwarf2_append_unwinders (gdbarch);
2449 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2450
2451 return gdbarch;
2452 }