]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sh64-tdep.c
2011-01-10 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /*
23 Contributed by Steve Chamberlain
24 sac@cygnus.com
25 */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "dwarf2-frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "gdbcore.h"
36 #include "value.h"
37 #include "dis-asm.h"
38 #include "inferior.h"
39 #include "gdb_string.h"
40 #include "gdb_assert.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "valprint.h"
45
46 #include "elf-bfd.h"
47
48 /* sh flags */
49 #include "elf/sh.h"
50 /* registers numbers shared with the simulator */
51 #include "gdb/sim-sh.h"
52 #include "language.h"
53
54 /* Information that is dependent on the processor variant. */
55 enum sh_abi
56 {
57 SH_ABI_UNKNOWN,
58 SH_ABI_32,
59 SH_ABI_64
60 };
61
62 struct gdbarch_tdep
63 {
64 enum sh_abi sh_abi;
65 };
66
67 struct sh64_frame_cache
68 {
69 /* Base address. */
70 CORE_ADDR base;
71 LONGEST sp_offset;
72 CORE_ADDR pc;
73
74 /* Flag showing that a frame has been created in the prologue code. */
75 int uses_fp;
76
77 int media_mode;
78
79 /* Saved registers. */
80 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
81 CORE_ADDR saved_sp;
82 };
83
84 /* Registers of SH5 */
85 enum
86 {
87 R0_REGNUM = 0,
88 DEFAULT_RETURN_REGNUM = 2,
89 STRUCT_RETURN_REGNUM = 2,
90 ARG0_REGNUM = 2,
91 ARGLAST_REGNUM = 9,
92 FLOAT_ARGLAST_REGNUM = 11,
93 MEDIA_FP_REGNUM = 14,
94 PR_REGNUM = 18,
95 SR_REGNUM = 65,
96 DR0_REGNUM = 141,
97 DR_LAST_REGNUM = 172,
98 /* FPP stands for Floating Point Pair, to avoid confusion with
99 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
100 point register. Unfortunately on the sh5, the floating point
101 registers are called FR, and the floating point pairs are called FP. */
102 FPP0_REGNUM = 173,
103 FPP_LAST_REGNUM = 204,
104 FV0_REGNUM = 205,
105 FV_LAST_REGNUM = 220,
106 R0_C_REGNUM = 221,
107 R_LAST_C_REGNUM = 236,
108 PC_C_REGNUM = 237,
109 GBR_C_REGNUM = 238,
110 MACH_C_REGNUM = 239,
111 MACL_C_REGNUM = 240,
112 PR_C_REGNUM = 241,
113 T_C_REGNUM = 242,
114 FPSCR_C_REGNUM = 243,
115 FPUL_C_REGNUM = 244,
116 FP0_C_REGNUM = 245,
117 FP_LAST_C_REGNUM = 260,
118 DR0_C_REGNUM = 261,
119 DR_LAST_C_REGNUM = 268,
120 FV0_C_REGNUM = 269,
121 FV_LAST_C_REGNUM = 272,
122 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
123 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
124 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
125 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
126 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
127 };
128
129 static const char *
130 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
131 {
132 static char *register_names[] =
133 {
134 /* SH MEDIA MODE (ISA 32) */
135 /* general registers (64-bit) 0-63 */
136 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
137 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
138 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
139 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
140 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
141 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
142 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
143 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
144
145 /* pc (64-bit) 64 */
146 "pc",
147
148 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
149 "sr", "ssr", "spc",
150
151 /* target registers (64-bit) 68-75*/
152 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
153
154 /* floating point state control register (32-bit) 76 */
155 "fpscr",
156
157 /* single precision floating point registers (32-bit) 77-140*/
158 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
159 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
160 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
161 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
162 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
163 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
164 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
165 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
166
167 /* double precision registers (pseudo) 141-172 */
168 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
169 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
170 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
171 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
172
173 /* floating point pairs (pseudo) 173-204*/
174 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
175 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
176 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
177 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
178
179 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
180 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
181 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
182
183 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
184 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
185 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
186 "pc_c",
187 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
188 "fpscr_c", "fpul_c",
189 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
190 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
191 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
192 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
193 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
194 };
195
196 if (reg_nr < 0)
197 return NULL;
198 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return NULL;
200 return register_names[reg_nr];
201 }
202
203 #define NUM_PSEUDO_REGS_SH_MEDIA 80
204 #define NUM_PSEUDO_REGS_SH_COMPACT 51
205
206 /* Macros and functions for setting and testing a bit in a minimal
207 symbol that marks it as 32-bit function. The MSB of the minimal
208 symbol's "info" field is used for this purpose.
209
210 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
211 i.e. refers to a 32-bit function, and sets a "special" bit in a
212 minimal symbol to mark it as a 32-bit function
213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
214
215 #define MSYMBOL_IS_SPECIAL(msym) \
216 MSYMBOL_TARGET_FLAG_1 (msym)
217
218 static void
219 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
220 {
221 if (msym == NULL)
222 return;
223
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 {
226 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
227 SYMBOL_VALUE_ADDRESS (msym) |= 1;
228 }
229 }
230
231 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233 #define IS_ISA32_ADDR(addr) ((addr) & 1)
234 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236
237 static int
238 pc_is_isa32 (bfd_vma memaddr)
239 {
240 struct minimal_symbol *sym;
241
242 /* If bit 0 of the address is set, assume this is a
243 ISA32 (shmedia) address. */
244 if (IS_ISA32_ADDR (memaddr))
245 return 1;
246
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
249 ISA16 or ISA32. */
250 sym = lookup_minimal_symbol_by_pc (memaddr);
251 if (sym)
252 return MSYMBOL_IS_SPECIAL (sym);
253 else
254 return 0;
255 }
256
257 static const unsigned char *
258 sh64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
259 {
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264
265 /* The BRK instruction for shcompact is
266 00000000 00111011
267 which translates in big endian mode to 0x0, 0x3b
268 and in little endian mode to 0x3b, 0x0*/
269
270 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
271 {
272 if (pc_is_isa32 (*pcptr))
273 {
274 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
275 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
276 *lenptr = sizeof (big_breakpoint_media);
277 return big_breakpoint_media;
278 }
279 else
280 {
281 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
282 *lenptr = sizeof (big_breakpoint_compact);
283 return big_breakpoint_compact;
284 }
285 }
286 else
287 {
288 if (pc_is_isa32 (*pcptr))
289 {
290 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
291 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
292 *lenptr = sizeof (little_breakpoint_media);
293 return little_breakpoint_media;
294 }
295 else
296 {
297 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
298 *lenptr = sizeof (little_breakpoint_compact);
299 return little_breakpoint_compact;
300 }
301 }
302 }
303
304 /* Prologue looks like
305 [mov.l <regs>,@-r15]...
306 [sts.l pr,@-r15]
307 [mov.l r14,@-r15]
308 [mov r15,r14]
309
310 Actually it can be more complicated than this. For instance, with
311 newer gcc's:
312
313 mov.l r14,@-r15
314 add #-12,r15
315 mov r15,r14
316 mov r4,r1
317 mov r5,r2
318 mov.l r6,@(4,r14)
319 mov.l r7,@(8,r14)
320 mov.b r1,@r14
321 mov r14,r1
322 mov r14,r1
323 add #2,r1
324 mov.w r2,@r1
325
326 */
327
328 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
329 with l=1 and n = 18 0110101111110001010010100aaa0000 */
330 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
331
332 /* STS.L PR,@-r0 0100000000100010
333 r0-4-->r0, PR-->(r0) */
334 #define IS_STS_R0(x) ((x) == 0x4022)
335
336 /* STS PR, Rm 0000mmmm00101010
337 PR-->Rm */
338 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
339
340 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
341 Rm-->(dispx4+r15) */
342 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
343
344 /* MOV.L R14,@(disp,r15) 000111111110dddd
345 R14-->(dispx4+r15) */
346 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
347
348 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
349 R18-->(dispx8+R14) */
350 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
351
352 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
353 R18-->(dispx8+R15) */
354 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
355
356 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
357 R18-->(dispx4+R15) */
358 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
359
360 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
361 R14-->(dispx8+R15) */
362 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
363
364 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx4+R15) */
366 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
367
368 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
369 R15 + imm --> R15 */
370 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
371
372 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
373 R15 + imm --> R15 */
374 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
375
376 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
377 R15 + R63 --> R14 */
378 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
379
380 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
381 R15 + R63 --> R14 */
382 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
383
384 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
385
386 /* MOV #imm, R0 1110 0000 ssss ssss
387 #imm-->R0 */
388 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
389
390 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
391 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
392
393 /* ADD r15,r0 0011 0000 1111 1100
394 r15+r0-->r0 */
395 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
396
397 /* MOV.L R14 @-R0 0010 0000 1110 0110
398 R14-->(R0-4), R0-4-->R0 */
399 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
400
401 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
402 where Rm is one of r2-r9 which are the argument registers. */
403 /* FIXME: Recognize the float and double register moves too! */
404 #define IS_MEDIA_IND_ARG_MOV(x) \
405 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
406
407 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
408 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
409 where Rm is one of r2-r9 which are the argument registers. */
410 #define IS_MEDIA_ARG_MOV(x) \
411 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
412 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
413
414 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
415 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
416 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
417 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
418 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
419 #define IS_MEDIA_MOV_TO_R14(x) \
420 ((((x) & 0xfffffc0f) == 0xa0e00000) \
421 || (((x) & 0xfffffc0f) == 0xa4e00000) \
422 || (((x) & 0xfffffc0f) == 0xa8e00000) \
423 || (((x) & 0xfffffc0f) == 0xb4e00000) \
424 || (((x) & 0xfffffc0f) == 0xbce00000))
425
426 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
427 where Rm is r2-r9 */
428 #define IS_COMPACT_IND_ARG_MOV(x) \
429 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
430
431 /* compact direct arg move!
432 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
433 #define IS_COMPACT_ARG_MOV(x) \
434 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
435
436 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
437 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
438 #define IS_COMPACT_MOV_TO_R14(x) \
439 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
440
441 #define IS_JSR_R0(x) ((x) == 0x400b)
442 #define IS_NOP(x) ((x) == 0x0009)
443
444
445 /* MOV r15,r14 0110111011110011
446 r15-->r14 */
447 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
448
449 /* ADD #imm,r15 01111111iiiiiiii
450 r15+imm-->r15 */
451 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
452
453 /* Skip any prologue before the guts of a function */
454
455 /* Skip the prologue using the debug information. If this fails we'll
456 fall back on the 'guess' method below. */
457 static CORE_ADDR
458 after_prologue (CORE_ADDR pc)
459 {
460 struct symtab_and_line sal;
461 CORE_ADDR func_addr, func_end;
462
463 /* If we can not find the symbol in the partial symbol table, then
464 there is no hope we can determine the function's start address
465 with this code. */
466 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
467 return 0;
468
469
470 /* Get the line associated with FUNC_ADDR. */
471 sal = find_pc_line (func_addr, 0);
472
473 /* There are only two cases to consider. First, the end of the source line
474 is within the function bounds. In that case we return the end of the
475 source line. Second is the end of the source line extends beyond the
476 bounds of the current function. We need to use the slow code to
477 examine instructions in that case. */
478 if (sal.end < func_end)
479 return sal.end;
480 else
481 return 0;
482 }
483
484 static CORE_ADDR
485 look_for_args_moves (struct gdbarch *gdbarch,
486 CORE_ADDR start_pc, int media_mode)
487 {
488 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
489 CORE_ADDR here, end;
490 int w;
491 int insn_size = (media_mode ? 4 : 2);
492
493 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
494 {
495 if (media_mode)
496 {
497 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
498 insn_size, byte_order);
499 here += insn_size;
500 if (IS_MEDIA_IND_ARG_MOV (w))
501 {
502 /* This must be followed by a store to r14, so the argument
503 is where the debug info says it is. This can happen after
504 the SP has been saved, unfortunately. */
505
506 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
507 insn_size, byte_order);
508 here += insn_size;
509 if (IS_MEDIA_MOV_TO_R14 (next_insn))
510 start_pc = here;
511 }
512 else if (IS_MEDIA_ARG_MOV (w))
513 {
514 /* These instructions store directly the argument in r14. */
515 start_pc = here;
516 }
517 else
518 break;
519 }
520 else
521 {
522 w = read_memory_integer (here, insn_size, byte_order);
523 w = w & 0xffff;
524 here += insn_size;
525 if (IS_COMPACT_IND_ARG_MOV (w))
526 {
527 /* This must be followed by a store to r14, so the argument
528 is where the debug info says it is. This can happen after
529 the SP has been saved, unfortunately. */
530
531 int next_insn = 0xffff & read_memory_integer (here, insn_size,
532 byte_order);
533 here += insn_size;
534 if (IS_COMPACT_MOV_TO_R14 (next_insn))
535 start_pc = here;
536 }
537 else if (IS_COMPACT_ARG_MOV (w))
538 {
539 /* These instructions store directly the argument in r14. */
540 start_pc = here;
541 }
542 else if (IS_MOVL_R0 (w))
543 {
544 /* There is a function that gcc calls to get the arguments
545 passed correctly to the function. Only after this
546 function call the arguments will be found at the place
547 where they are supposed to be. This happens in case the
548 argument has to be stored into a 64-bit register (for
549 instance doubles, long longs). SHcompact doesn't have
550 access to the full 64-bits, so we store the register in
551 stack slot and store the address of the stack slot in
552 the register, then do a call through a wrapper that
553 loads the memory value into the register. A SHcompact
554 callee calls an argument decoder
555 (GCC_shcompact_incoming_args) that stores the 64-bit
556 value in a stack slot and stores the address of the
557 stack slot in the register. GCC thinks the argument is
558 just passed by transparent reference, but this is only
559 true after the argument decoder is called. Such a call
560 needs to be considered part of the prologue. */
561
562 /* This must be followed by a JSR @r0 instruction and by
563 a NOP instruction. After these, the prologue is over! */
564
565 int next_insn = 0xffff & read_memory_integer (here, insn_size,
566 byte_order);
567 here += insn_size;
568 if (IS_JSR_R0 (next_insn))
569 {
570 next_insn = 0xffff & read_memory_integer (here, insn_size,
571 byte_order);
572 here += insn_size;
573
574 if (IS_NOP (next_insn))
575 start_pc = here;
576 }
577 }
578 else
579 break;
580 }
581 }
582
583 return start_pc;
584 }
585
586 static CORE_ADDR
587 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
588 {
589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
590 CORE_ADDR here, end;
591 int updated_fp = 0;
592 int insn_size = 4;
593 int media_mode = 1;
594
595 if (!start_pc)
596 return 0;
597
598 if (pc_is_isa32 (start_pc) == 0)
599 {
600 insn_size = 2;
601 media_mode = 0;
602 }
603
604 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
605 {
606
607 if (media_mode)
608 {
609 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
610 insn_size, byte_order);
611 here += insn_size;
612 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
613 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
614 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
615 {
616 start_pc = here;
617 }
618 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
619 {
620 start_pc = here;
621 updated_fp = 1;
622 }
623 else
624 if (updated_fp)
625 {
626 /* Don't bail out yet, we may have arguments stored in
627 registers here, according to the debug info, so that
628 gdb can print the frames correctly. */
629 start_pc = look_for_args_moves (gdbarch,
630 here - insn_size, media_mode);
631 break;
632 }
633 }
634 else
635 {
636 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
637 here += insn_size;
638
639 if (IS_STS_R0 (w) || IS_STS_PR (w)
640 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
641 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
642 {
643 start_pc = here;
644 }
645 else if (IS_MOV_SP_FP (w))
646 {
647 start_pc = here;
648 updated_fp = 1;
649 }
650 else
651 if (updated_fp)
652 {
653 /* Don't bail out yet, we may have arguments stored in
654 registers here, according to the debug info, so that
655 gdb can print the frames correctly. */
656 start_pc = look_for_args_moves (gdbarch,
657 here - insn_size, media_mode);
658 break;
659 }
660 }
661 }
662
663 return start_pc;
664 }
665
666 static CORE_ADDR
667 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
668 {
669 CORE_ADDR post_prologue_pc;
670
671 /* See if we can determine the end of the prologue via the symbol table.
672 If so, then return either PC, or the PC after the prologue, whichever
673 is greater. */
674 post_prologue_pc = after_prologue (pc);
675
676 /* If after_prologue returned a useful address, then use it. Else
677 fall back on the instruction skipping code. */
678 if (post_prologue_pc != 0)
679 return max (pc, post_prologue_pc);
680 else
681 return sh64_skip_prologue_hard_way (gdbarch, pc);
682 }
683
684 /* Should call_function allocate stack space for a struct return? */
685 static int
686 sh64_use_struct_convention (struct type *type)
687 {
688 return (TYPE_LENGTH (type) > 8);
689 }
690
691 /* For vectors of 4 floating point registers. */
692 static int
693 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
694 {
695 int fp_regnum;
696
697 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
698 return fp_regnum;
699 }
700
701 /* For double precision floating point registers, i.e 2 fp regs.*/
702 static int
703 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
704 {
705 int fp_regnum;
706
707 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
708 return fp_regnum;
709 }
710
711 /* For pairs of floating point registers */
712 static int
713 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
714 {
715 int fp_regnum;
716
717 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
718 return fp_regnum;
719 }
720
721 /* *INDENT-OFF* */
722 /*
723 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
724 GDB_REGNUM BASE_REGNUM
725 r0_c 221 0
726 r1_c 222 1
727 r2_c 223 2
728 r3_c 224 3
729 r4_c 225 4
730 r5_c 226 5
731 r6_c 227 6
732 r7_c 228 7
733 r8_c 229 8
734 r9_c 230 9
735 r10_c 231 10
736 r11_c 232 11
737 r12_c 233 12
738 r13_c 234 13
739 r14_c 235 14
740 r15_c 236 15
741
742 pc_c 237 64
743 gbr_c 238 16
744 mach_c 239 17
745 macl_c 240 17
746 pr_c 241 18
747 t_c 242 19
748 fpscr_c 243 76
749 fpul_c 244 109
750
751 fr0_c 245 77
752 fr1_c 246 78
753 fr2_c 247 79
754 fr3_c 248 80
755 fr4_c 249 81
756 fr5_c 250 82
757 fr6_c 251 83
758 fr7_c 252 84
759 fr8_c 253 85
760 fr9_c 254 86
761 fr10_c 255 87
762 fr11_c 256 88
763 fr12_c 257 89
764 fr13_c 258 90
765 fr14_c 259 91
766 fr15_c 260 92
767
768 dr0_c 261 77
769 dr2_c 262 79
770 dr4_c 263 81
771 dr6_c 264 83
772 dr8_c 265 85
773 dr10_c 266 87
774 dr12_c 267 89
775 dr14_c 268 91
776
777 fv0_c 269 77
778 fv4_c 270 81
779 fv8_c 271 85
780 fv12_c 272 91
781 */
782 /* *INDENT-ON* */
783 static int
784 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
785 {
786 int base_regnum = reg_nr;
787
788 /* general register N maps to general register N */
789 if (reg_nr >= R0_C_REGNUM
790 && reg_nr <= R_LAST_C_REGNUM)
791 base_regnum = reg_nr - R0_C_REGNUM;
792
793 /* floating point register N maps to floating point register N */
794 else if (reg_nr >= FP0_C_REGNUM
795 && reg_nr <= FP_LAST_C_REGNUM)
796 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
797
798 /* double prec register N maps to base regnum for double prec register N */
799 else if (reg_nr >= DR0_C_REGNUM
800 && reg_nr <= DR_LAST_C_REGNUM)
801 base_regnum = sh64_dr_reg_base_num (gdbarch,
802 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
803
804 /* vector N maps to base regnum for vector register N */
805 else if (reg_nr >= FV0_C_REGNUM
806 && reg_nr <= FV_LAST_C_REGNUM)
807 base_regnum = sh64_fv_reg_base_num (gdbarch,
808 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
809
810 else if (reg_nr == PC_C_REGNUM)
811 base_regnum = gdbarch_pc_regnum (gdbarch);
812
813 else if (reg_nr == GBR_C_REGNUM)
814 base_regnum = 16;
815
816 else if (reg_nr == MACH_C_REGNUM
817 || reg_nr == MACL_C_REGNUM)
818 base_regnum = 17;
819
820 else if (reg_nr == PR_C_REGNUM)
821 base_regnum = PR_REGNUM;
822
823 else if (reg_nr == T_C_REGNUM)
824 base_regnum = 19;
825
826 else if (reg_nr == FPSCR_C_REGNUM)
827 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
828
829 else if (reg_nr == FPUL_C_REGNUM)
830 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
831
832 return base_regnum;
833 }
834
835 static int
836 sign_extend (int value, int bits)
837 {
838 value = value & ((1 << bits) - 1);
839 return (value & (1 << (bits - 1))
840 ? value | (~((1 << bits) - 1))
841 : value);
842 }
843
844 static void
845 sh64_analyze_prologue (struct gdbarch *gdbarch,
846 struct sh64_frame_cache *cache,
847 CORE_ADDR func_pc,
848 CORE_ADDR current_pc)
849 {
850 int reg_nr;
851 int pc;
852 int opc;
853 int insn;
854 int r0_val = 0;
855 int insn_size;
856 int gdb_register_number;
857 int register_number;
858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
859 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
860
861 cache->sp_offset = 0;
862
863 /* Loop around examining the prologue insns until we find something
864 that does not appear to be part of the prologue. But give up
865 after 20 of them, since we're getting silly then. */
866
867 pc = func_pc;
868
869 if (cache->media_mode)
870 insn_size = 4;
871 else
872 insn_size = 2;
873
874 opc = pc + (insn_size * 28);
875 if (opc > current_pc)
876 opc = current_pc;
877 for ( ; pc <= opc; pc += insn_size)
878 {
879 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
880 : pc,
881 insn_size, byte_order);
882
883 if (!cache->media_mode)
884 {
885 if (IS_STS_PR (insn))
886 {
887 int next_insn = read_memory_integer (pc + insn_size,
888 insn_size, byte_order);
889 if (IS_MOV_TO_R15 (next_insn))
890 {
891 cache->saved_regs[PR_REGNUM] =
892 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
893 pc += insn_size;
894 }
895 }
896
897 else if (IS_MOV_R14 (insn))
898 cache->saved_regs[MEDIA_FP_REGNUM] =
899 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
900
901 else if (IS_MOV_R0 (insn))
902 {
903 /* Put in R0 the offset from SP at which to store some
904 registers. We are interested in this value, because it
905 will tell us where the given registers are stored within
906 the frame. */
907 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
908 }
909
910 else if (IS_ADD_SP_R0 (insn))
911 {
912 /* This instruction still prepares r0, but we don't care.
913 We already have the offset in r0_val. */
914 }
915
916 else if (IS_STS_R0 (insn))
917 {
918 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
919 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
920 r0_val -= 4;
921 }
922
923 else if (IS_MOV_R14_R0 (insn))
924 {
925 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
926 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
927 - (r0_val - 4);
928 r0_val -= 4;
929 }
930
931 else if (IS_ADD_SP (insn))
932 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
933
934 else if (IS_MOV_SP_FP (insn))
935 break;
936 }
937 else
938 {
939 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
940 cache->sp_offset -=
941 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
942
943 else if (IS_STQ_R18_R15 (insn))
944 cache->saved_regs[PR_REGNUM] =
945 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
946
947 else if (IS_STL_R18_R15 (insn))
948 cache->saved_regs[PR_REGNUM] =
949 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
950
951 else if (IS_STQ_R14_R15 (insn))
952 cache->saved_regs[MEDIA_FP_REGNUM] =
953 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
954
955 else if (IS_STL_R14_R15 (insn))
956 cache->saved_regs[MEDIA_FP_REGNUM] =
957 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
958
959 else if (IS_MOV_SP_FP_MEDIA (insn))
960 break;
961 }
962 }
963
964 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
965 cache->uses_fp = 1;
966 }
967
968 static CORE_ADDR
969 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
970 {
971 return sp & ~7;
972 }
973
974 /* Function: push_dummy_call
975 Setup the function arguments for calling a function in the inferior.
976
977 On the Renesas SH architecture, there are four registers (R4 to R7)
978 which are dedicated for passing function arguments. Up to the first
979 four arguments (depending on size) may go into these registers.
980 The rest go on the stack.
981
982 Arguments that are smaller than 4 bytes will still take up a whole
983 register or a whole 32-bit word on the stack, and will be
984 right-justified in the register or the stack word. This includes
985 chars, shorts, and small aggregate types.
986
987 Arguments that are larger than 4 bytes may be split between two or
988 more registers. If there are not enough registers free, an argument
989 may be passed partly in a register (or registers), and partly on the
990 stack. This includes doubles, long longs, and larger aggregates.
991 As far as I know, there is no upper limit to the size of aggregates
992 that will be passed in this way; in other words, the convention of
993 passing a pointer to a large aggregate instead of a copy is not used.
994
995 An exceptional case exists for struct arguments (and possibly other
996 aggregates such as arrays) if the size is larger than 4 bytes but
997 not a multiple of 4 bytes. In this case the argument is never split
998 between the registers and the stack, but instead is copied in its
999 entirety onto the stack, AND also copied into as many registers as
1000 there is room for. In other words, space in registers permitting,
1001 two copies of the same argument are passed in. As far as I can tell,
1002 only the one on the stack is used, although that may be a function
1003 of the level of compiler optimization. I suspect this is a compiler
1004 bug. Arguments of these odd sizes are left-justified within the
1005 word (as opposed to arguments smaller than 4 bytes, which are
1006 right-justified).
1007
1008 If the function is to return an aggregate type such as a struct, it
1009 is either returned in the normal return value register R0 (if its
1010 size is no greater than one byte), or else the caller must allocate
1011 space into which the callee will copy the return value (if the size
1012 is greater than one byte). In this case, a pointer to the return
1013 value location is passed into the callee in register R2, which does
1014 not displace any of the other arguments passed in via registers R4
1015 to R7. */
1016
1017 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1018 non-scalar (struct, union) elements (even if the elements are
1019 floats).
1020 FR0-FR11 for single precision floating point (float)
1021 DR0-DR10 for double precision floating point (double)
1022
1023 If a float is argument number 3 (for instance) and arguments number
1024 1,2, and 4 are integer, the mapping will be:
1025 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1026
1027 If a float is argument number 10 (for instance) and arguments number
1028 1 through 10 are integer, the mapping will be:
1029 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1030 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1031 I.e. there is hole in the stack.
1032
1033 Different rules apply for variable arguments functions, and for functions
1034 for which the prototype is not known. */
1035
1036 static CORE_ADDR
1037 sh64_push_dummy_call (struct gdbarch *gdbarch,
1038 struct value *function,
1039 struct regcache *regcache,
1040 CORE_ADDR bp_addr,
1041 int nargs, struct value **args,
1042 CORE_ADDR sp, int struct_return,
1043 CORE_ADDR struct_addr)
1044 {
1045 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1046 int stack_offset, stack_alloc;
1047 int int_argreg;
1048 int float_argreg;
1049 int double_argreg;
1050 int float_arg_index = 0;
1051 int double_arg_index = 0;
1052 int argnum;
1053 struct type *type;
1054 CORE_ADDR regval;
1055 char *val;
1056 char valbuf[8];
1057 char valbuf_tmp[8];
1058 int len;
1059 int argreg_size;
1060 int fp_args[12];
1061
1062 memset (fp_args, 0, sizeof (fp_args));
1063
1064 /* first force sp to a 8-byte alignment */
1065 sp = sh64_frame_align (gdbarch, sp);
1066
1067 /* The "struct return pointer" pseudo-argument has its own dedicated
1068 register */
1069
1070 if (struct_return)
1071 regcache_cooked_write_unsigned (regcache,
1072 STRUCT_RETURN_REGNUM, struct_addr);
1073
1074 /* Now make sure there's space on the stack */
1075 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1076 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1077 sp -= stack_alloc; /* make room on stack for args */
1078
1079 /* Now load as many as possible of the first arguments into
1080 registers, and push the rest onto the stack. There are 64 bytes
1081 in eight registers available. Loop thru args from first to last. */
1082
1083 int_argreg = ARG0_REGNUM;
1084 float_argreg = gdbarch_fp0_regnum (gdbarch);
1085 double_argreg = DR0_REGNUM;
1086
1087 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1088 {
1089 type = value_type (args[argnum]);
1090 len = TYPE_LENGTH (type);
1091 memset (valbuf, 0, sizeof (valbuf));
1092
1093 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1094 {
1095 argreg_size = register_size (gdbarch, int_argreg);
1096
1097 if (len < argreg_size)
1098 {
1099 /* value gets right-justified in the register or stack word */
1100 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1101 memcpy (valbuf + argreg_size - len,
1102 (char *) value_contents (args[argnum]), len);
1103 else
1104 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1105
1106 val = valbuf;
1107 }
1108 else
1109 val = (char *) value_contents (args[argnum]);
1110
1111 while (len > 0)
1112 {
1113 if (int_argreg > ARGLAST_REGNUM)
1114 {
1115 /* must go on the stack */
1116 write_memory (sp + stack_offset, (const bfd_byte *) val,
1117 argreg_size);
1118 stack_offset += 8;/*argreg_size;*/
1119 }
1120 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1121 That's because some *&^%$ things get passed on the stack
1122 AND in the registers! */
1123 if (int_argreg <= ARGLAST_REGNUM)
1124 {
1125 /* there's room in a register */
1126 regval = extract_unsigned_integer (val, argreg_size,
1127 byte_order);
1128 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1129 }
1130 /* Store the value 8 bytes at a time. This means that
1131 things larger than 8 bytes may go partly in registers
1132 and partly on the stack. FIXME: argreg is incremented
1133 before we use its size. */
1134 len -= argreg_size;
1135 val += argreg_size;
1136 int_argreg++;
1137 }
1138 }
1139 else
1140 {
1141 val = (char *) value_contents (args[argnum]);
1142 if (len == 4)
1143 {
1144 /* Where is it going to be stored? */
1145 while (fp_args[float_arg_index])
1146 float_arg_index ++;
1147
1148 /* Now float_argreg points to the register where it
1149 should be stored. Are we still within the allowed
1150 register set? */
1151 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1152 {
1153 /* Goes in FR0...FR11 */
1154 regcache_cooked_write (regcache,
1155 gdbarch_fp0_regnum (gdbarch)
1156 + float_arg_index,
1157 val);
1158 fp_args[float_arg_index] = 1;
1159 /* Skip the corresponding general argument register. */
1160 int_argreg ++;
1161 }
1162 else
1163 ;
1164 /* Store it as the integers, 8 bytes at the time, if
1165 necessary spilling on the stack. */
1166
1167 }
1168 else if (len == 8)
1169 {
1170 /* Where is it going to be stored? */
1171 while (fp_args[double_arg_index])
1172 double_arg_index += 2;
1173 /* Now double_argreg points to the register
1174 where it should be stored.
1175 Are we still within the allowed register set? */
1176 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1177 {
1178 /* Goes in DR0...DR10 */
1179 /* The numbering of the DRi registers is consecutive,
1180 i.e. includes odd numbers. */
1181 int double_register_offset = double_arg_index / 2;
1182 int regnum = DR0_REGNUM + double_register_offset;
1183 regcache_cooked_write (regcache, regnum, val);
1184 fp_args[double_arg_index] = 1;
1185 fp_args[double_arg_index + 1] = 1;
1186 /* Skip the corresponding general argument register. */
1187 int_argreg ++;
1188 }
1189 else
1190 ;
1191 /* Store it as the integers, 8 bytes at the time, if
1192 necessary spilling on the stack. */
1193 }
1194 }
1195 }
1196 /* Store return address. */
1197 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1198
1199 /* Update stack pointer. */
1200 regcache_cooked_write_unsigned (regcache,
1201 gdbarch_sp_regnum (gdbarch), sp);
1202
1203 return sp;
1204 }
1205
1206 /* Find a function's return value in the appropriate registers (in
1207 regbuf), and copy it into valbuf. Extract from an array REGBUF
1208 containing the (raw) register state a function return value of type
1209 TYPE, and copy that, in virtual format, into VALBUF. */
1210 static void
1211 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1212 void *valbuf)
1213 {
1214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1215 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1216 int len = TYPE_LENGTH (type);
1217
1218 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1219 {
1220 if (len == 4)
1221 {
1222 /* Return value stored in gdbarch_fp0_regnum */
1223 regcache_raw_read (regcache,
1224 gdbarch_fp0_regnum (gdbarch), valbuf);
1225 }
1226 else if (len == 8)
1227 {
1228 /* return value stored in DR0_REGNUM */
1229 DOUBLEST val;
1230 gdb_byte buf[8];
1231
1232 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1233
1234 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1235 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1236 buf, &val);
1237 else
1238 floatformat_to_doublest (&floatformat_ieee_double_big,
1239 buf, &val);
1240 store_typed_floating (valbuf, type, val);
1241 }
1242 }
1243 else
1244 {
1245 if (len <= 8)
1246 {
1247 int offset;
1248 char buf[8];
1249 /* Result is in register 2. If smaller than 8 bytes, it is padded
1250 at the most significant end. */
1251 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1252
1253 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1254 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1255 - len;
1256 else
1257 offset = 0;
1258 memcpy (valbuf, buf + offset, len);
1259 }
1260 else
1261 error (_("bad size for return value"));
1262 }
1263 }
1264
1265 /* Write into appropriate registers a function return value
1266 of type TYPE, given in virtual format.
1267 If the architecture is sh4 or sh3e, store a function's return value
1268 in the R0 general register or in the FP0 floating point register,
1269 depending on the type of the return value. In all the other cases
1270 the result is stored in r0, left-justified. */
1271
1272 static void
1273 sh64_store_return_value (struct type *type, struct regcache *regcache,
1274 const void *valbuf)
1275 {
1276 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1277 char buf[64]; /* more than enough... */
1278 int len = TYPE_LENGTH (type);
1279
1280 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1281 {
1282 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1283 for (i = 0; i < len; i += 4)
1284 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1285 regcache_raw_write (regcache, regnum++,
1286 (char *) valbuf + len - 4 - i);
1287 else
1288 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1289 }
1290 else
1291 {
1292 int return_register = DEFAULT_RETURN_REGNUM;
1293 int offset = 0;
1294
1295 if (len <= register_size (gdbarch, return_register))
1296 {
1297 /* Pad with zeros. */
1298 memset (buf, 0, register_size (gdbarch, return_register));
1299 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1300 offset = 0; /*register_size (gdbarch,
1301 return_register) - len;*/
1302 else
1303 offset = register_size (gdbarch, return_register) - len;
1304
1305 memcpy (buf + offset, valbuf, len);
1306 regcache_raw_write (regcache, return_register, buf);
1307 }
1308 else
1309 regcache_raw_write (regcache, return_register, valbuf);
1310 }
1311 }
1312
1313 static enum return_value_convention
1314 sh64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1315 struct type *type, struct regcache *regcache,
1316 gdb_byte *readbuf, const gdb_byte *writebuf)
1317 {
1318 if (sh64_use_struct_convention (type))
1319 return RETURN_VALUE_STRUCT_CONVENTION;
1320 if (writebuf)
1321 sh64_store_return_value (type, regcache, writebuf);
1322 else if (readbuf)
1323 sh64_extract_return_value (type, regcache, readbuf);
1324 return RETURN_VALUE_REGISTER_CONVENTION;
1325 }
1326
1327 static void
1328 sh64_show_media_regs (struct frame_info *frame)
1329 {
1330 struct gdbarch *gdbarch = get_frame_arch (frame);
1331 int i;
1332
1333 printf_filtered
1334 ("PC=%s SR=%s\n",
1335 phex (get_frame_register_unsigned (frame,
1336 gdbarch_pc_regnum (gdbarch)), 8),
1337 phex (get_frame_register_unsigned (frame, SR_REGNUM), 8));
1338
1339 printf_filtered
1340 ("SSR=%s SPC=%s\n",
1341 phex (get_frame_register_unsigned (frame, SSR_REGNUM), 8),
1342 phex (get_frame_register_unsigned (frame, SPC_REGNUM), 8));
1343 printf_filtered
1344 ("FPSCR=%s\n ",
1345 phex (get_frame_register_unsigned (frame, FPSCR_REGNUM), 8));
1346
1347 for (i = 0; i < 64; i = i + 4)
1348 printf_filtered
1349 ("\nR%d-R%d %s %s %s %s\n",
1350 i, i + 3,
1351 phex (get_frame_register_unsigned (frame, i + 0), 8),
1352 phex (get_frame_register_unsigned (frame, i + 1), 8),
1353 phex (get_frame_register_unsigned (frame, i + 2), 8),
1354 phex (get_frame_register_unsigned (frame, i + 3), 8));
1355
1356 printf_filtered ("\n");
1357
1358 for (i = 0; i < 64; i = i + 8)
1359 printf_filtered
1360 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1361 i, i + 7,
1362 (long) get_frame_register_unsigned
1363 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1364 (long) get_frame_register_unsigned
1365 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1366 (long) get_frame_register_unsigned
1367 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1368 (long) get_frame_register_unsigned
1369 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1370 (long) get_frame_register_unsigned
1371 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1372 (long) get_frame_register_unsigned
1373 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1374 (long) get_frame_register_unsigned
1375 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1376 (long) get_frame_register_unsigned
1377 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1378 }
1379
1380 static void
1381 sh64_show_compact_regs (struct frame_info *frame)
1382 {
1383 struct gdbarch *gdbarch = get_frame_arch (frame);
1384 int i;
1385
1386 printf_filtered
1387 ("PC=%s\n",
1388 phex (get_frame_register_unsigned (frame, PC_C_REGNUM), 8));
1389
1390 printf_filtered
1391 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1392 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1393 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1394 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1395 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1396 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1397 printf_filtered
1398 ("FPSCR=%08lx FPUL=%08lx\n",
1399 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1400 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
1401
1402 for (i = 0; i < 16; i = i + 4)
1403 printf_filtered
1404 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1405 i, i + 3,
1406 (long) get_frame_register_unsigned (frame, i + 0),
1407 (long) get_frame_register_unsigned (frame, i + 1),
1408 (long) get_frame_register_unsigned (frame, i + 2),
1409 (long) get_frame_register_unsigned (frame, i + 3));
1410
1411 printf_filtered ("\n");
1412
1413 for (i = 0; i < 16; i = i + 8)
1414 printf_filtered
1415 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1416 i, i + 7,
1417 (long) get_frame_register_unsigned
1418 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1419 (long) get_frame_register_unsigned
1420 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1421 (long) get_frame_register_unsigned
1422 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1423 (long) get_frame_register_unsigned
1424 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1425 (long) get_frame_register_unsigned
1426 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1427 (long) get_frame_register_unsigned
1428 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1429 (long) get_frame_register_unsigned
1430 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1431 (long) get_frame_register_unsigned
1432 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1433 }
1434
1435 /* FIXME!!! This only shows the registers for shmedia, excluding the
1436 pseudo registers. */
1437 void
1438 sh64_show_regs (struct frame_info *frame)
1439 {
1440 if (pc_is_isa32 (get_frame_pc (frame)))
1441 sh64_show_media_regs (frame);
1442 else
1443 sh64_show_compact_regs (frame);
1444 }
1445
1446 /* *INDENT-OFF* */
1447 /*
1448 SH MEDIA MODE (ISA 32)
1449 general registers (64-bit) 0-63
1450 0 r0, r1, r2, r3, r4, r5, r6, r7,
1451 64 r8, r9, r10, r11, r12, r13, r14, r15,
1452 128 r16, r17, r18, r19, r20, r21, r22, r23,
1453 192 r24, r25, r26, r27, r28, r29, r30, r31,
1454 256 r32, r33, r34, r35, r36, r37, r38, r39,
1455 320 r40, r41, r42, r43, r44, r45, r46, r47,
1456 384 r48, r49, r50, r51, r52, r53, r54, r55,
1457 448 r56, r57, r58, r59, r60, r61, r62, r63,
1458
1459 pc (64-bit) 64
1460 512 pc,
1461
1462 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1463 520 sr, ssr, spc,
1464
1465 target registers (64-bit) 68-75
1466 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1467
1468 floating point state control register (32-bit) 76
1469 608 fpscr,
1470
1471 single precision floating point registers (32-bit) 77-140
1472 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1473 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1474 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1475 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1476 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1477 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1478 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1479 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1480
1481 TOTAL SPACE FOR REGISTERS: 868 bytes
1482
1483 From here on they are all pseudo registers: no memory allocated.
1484 REGISTER_BYTE returns the register byte for the base register.
1485
1486 double precision registers (pseudo) 141-172
1487 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1488 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1489 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1490 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1491
1492 floating point pairs (pseudo) 173-204
1493 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1494 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1495 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1496 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1497
1498 floating point vectors (4 floating point regs) (pseudo) 205-220
1499 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1500 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1501
1502 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1503 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1504 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1505 pc_c,
1506 gbr_c, mach_c, macl_c, pr_c, t_c,
1507 fpscr_c, fpul_c,
1508 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1509 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1510 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1511 fv0_c, fv4_c, fv8_c, fv12_c
1512 */
1513
1514 static struct type *
1515 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1516 {
1517 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1518 0, high);
1519 }
1520
1521 /* Return the GDB type object for the "standard" data type
1522 of data in register REG_NR. */
1523 static struct type *
1524 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1525 {
1526 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1527 && reg_nr <= FP_LAST_REGNUM)
1528 || (reg_nr >= FP0_C_REGNUM
1529 && reg_nr <= FP_LAST_C_REGNUM))
1530 return builtin_type (gdbarch)->builtin_float;
1531 else if ((reg_nr >= DR0_REGNUM
1532 && reg_nr <= DR_LAST_REGNUM)
1533 || (reg_nr >= DR0_C_REGNUM
1534 && reg_nr <= DR_LAST_C_REGNUM))
1535 return builtin_type (gdbarch)->builtin_double;
1536 else if (reg_nr >= FPP0_REGNUM
1537 && reg_nr <= FPP_LAST_REGNUM)
1538 return sh64_build_float_register_type (gdbarch, 1);
1539 else if ((reg_nr >= FV0_REGNUM
1540 && reg_nr <= FV_LAST_REGNUM)
1541 ||(reg_nr >= FV0_C_REGNUM
1542 && reg_nr <= FV_LAST_C_REGNUM))
1543 return sh64_build_float_register_type (gdbarch, 3);
1544 else if (reg_nr == FPSCR_REGNUM)
1545 return builtin_type (gdbarch)->builtin_int;
1546 else if (reg_nr >= R0_C_REGNUM
1547 && reg_nr < FP0_C_REGNUM)
1548 return builtin_type (gdbarch)->builtin_int;
1549 else
1550 return builtin_type (gdbarch)->builtin_long_long;
1551 }
1552
1553 static void
1554 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1555 struct type *type, char *from, char *to)
1556 {
1557 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1558 {
1559 /* It is a no-op. */
1560 memcpy (to, from, register_size (gdbarch, regnum));
1561 return;
1562 }
1563
1564 if ((regnum >= DR0_REGNUM
1565 && regnum <= DR_LAST_REGNUM)
1566 || (regnum >= DR0_C_REGNUM
1567 && regnum <= DR_LAST_C_REGNUM))
1568 {
1569 DOUBLEST val;
1570 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1571 from, &val);
1572 store_typed_floating (to, type, val);
1573 }
1574 else
1575 error (_("sh64_register_convert_to_virtual "
1576 "called with non DR register number"));
1577 }
1578
1579 static void
1580 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1581 int regnum, const void *from, void *to)
1582 {
1583 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1584 {
1585 /* It is a no-op. */
1586 memcpy (to, from, register_size (gdbarch, regnum));
1587 return;
1588 }
1589
1590 if ((regnum >= DR0_REGNUM
1591 && regnum <= DR_LAST_REGNUM)
1592 || (regnum >= DR0_C_REGNUM
1593 && regnum <= DR_LAST_C_REGNUM))
1594 {
1595 DOUBLEST val = extract_typed_floating (from, type);
1596 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1597 &val, to);
1598 }
1599 else
1600 error (_("sh64_register_convert_to_raw called "
1601 "with non DR register number"));
1602 }
1603
1604 static void
1605 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1606 int reg_nr, gdb_byte *buffer)
1607 {
1608 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1609 int base_regnum;
1610 int portion;
1611 int offset = 0;
1612 char temp_buffer[MAX_REGISTER_SIZE];
1613
1614 if (reg_nr >= DR0_REGNUM
1615 && reg_nr <= DR_LAST_REGNUM)
1616 {
1617 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1618
1619 /* Build the value in the provided buffer. */
1620 /* DR regs are double precision registers obtained by
1621 concatenating 2 single precision floating point registers. */
1622 for (portion = 0; portion < 2; portion++)
1623 regcache_raw_read (regcache, base_regnum + portion,
1624 (temp_buffer
1625 + register_size (gdbarch, base_regnum) * portion));
1626
1627 /* We must pay attention to the endianness. */
1628 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1629 register_type (gdbarch, reg_nr),
1630 temp_buffer, buffer);
1631
1632 }
1633
1634 else if (reg_nr >= FPP0_REGNUM
1635 && reg_nr <= FPP_LAST_REGNUM)
1636 {
1637 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1638
1639 /* Build the value in the provided buffer. */
1640 /* FPP regs are pairs of single precision registers obtained by
1641 concatenating 2 single precision floating point registers. */
1642 for (portion = 0; portion < 2; portion++)
1643 regcache_raw_read (regcache, base_regnum + portion,
1644 ((char *) buffer
1645 + register_size (gdbarch, base_regnum) * portion));
1646 }
1647
1648 else if (reg_nr >= FV0_REGNUM
1649 && reg_nr <= FV_LAST_REGNUM)
1650 {
1651 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1652
1653 /* Build the value in the provided buffer. */
1654 /* FV regs are vectors of single precision registers obtained by
1655 concatenating 4 single precision floating point registers. */
1656 for (portion = 0; portion < 4; portion++)
1657 regcache_raw_read (regcache, base_regnum + portion,
1658 ((char *) buffer
1659 + register_size (gdbarch, base_regnum) * portion));
1660 }
1661
1662 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1663 else if (reg_nr >= R0_C_REGNUM
1664 && reg_nr <= T_C_REGNUM)
1665 {
1666 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1667
1668 /* Build the value in the provided buffer. */
1669 regcache_raw_read (regcache, base_regnum, temp_buffer);
1670 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1671 offset = 4;
1672 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1673 }
1674
1675 else if (reg_nr >= FP0_C_REGNUM
1676 && reg_nr <= FP_LAST_C_REGNUM)
1677 {
1678 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1679
1680 /* Build the value in the provided buffer. */
1681 /* Floating point registers map 1-1 to the media fp regs,
1682 they have the same size and endianness. */
1683 regcache_raw_read (regcache, base_regnum, buffer);
1684 }
1685
1686 else if (reg_nr >= DR0_C_REGNUM
1687 && reg_nr <= DR_LAST_C_REGNUM)
1688 {
1689 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1690
1691 /* DR_C regs are double precision registers obtained by
1692 concatenating 2 single precision floating point registers. */
1693 for (portion = 0; portion < 2; portion++)
1694 regcache_raw_read (regcache, base_regnum + portion,
1695 (temp_buffer
1696 + register_size (gdbarch, base_regnum) * portion));
1697
1698 /* We must pay attention to the endianness. */
1699 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1700 register_type (gdbarch, reg_nr),
1701 temp_buffer, buffer);
1702 }
1703
1704 else if (reg_nr >= FV0_C_REGNUM
1705 && reg_nr <= FV_LAST_C_REGNUM)
1706 {
1707 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1708
1709 /* Build the value in the provided buffer. */
1710 /* FV_C regs are vectors of single precision registers obtained by
1711 concatenating 4 single precision floating point registers. */
1712 for (portion = 0; portion < 4; portion++)
1713 regcache_raw_read (regcache, base_regnum + portion,
1714 ((char *) buffer
1715 + register_size (gdbarch, base_regnum) * portion));
1716 }
1717
1718 else if (reg_nr == FPSCR_C_REGNUM)
1719 {
1720 int fpscr_base_regnum;
1721 int sr_base_regnum;
1722 unsigned int fpscr_value;
1723 unsigned int sr_value;
1724 unsigned int fpscr_c_value;
1725 unsigned int fpscr_c_part1_value;
1726 unsigned int fpscr_c_part2_value;
1727
1728 fpscr_base_regnum = FPSCR_REGNUM;
1729 sr_base_regnum = SR_REGNUM;
1730
1731 /* Build the value in the provided buffer. */
1732 /* FPSCR_C is a very weird register that contains sparse bits
1733 from the FPSCR and the SR architectural registers.
1734 Specifically: */
1735 /* *INDENT-OFF* */
1736 /*
1737 FPSRC_C bit
1738 0 Bit 0 of FPSCR
1739 1 reserved
1740 2-17 Bit 2-18 of FPSCR
1741 18-20 Bits 12,13,14 of SR
1742 21-31 reserved
1743 */
1744 /* *INDENT-ON* */
1745 /* Get FPSCR into a local buffer */
1746 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1747 /* Get value as an int. */
1748 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1749 /* Get SR into a local buffer */
1750 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1751 /* Get value as an int. */
1752 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1753 /* Build the new value. */
1754 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1755 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1756 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1757 /* Store that in out buffer!!! */
1758 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1759 /* FIXME There is surely an endianness gotcha here. */
1760 }
1761
1762 else if (reg_nr == FPUL_C_REGNUM)
1763 {
1764 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1765
1766 /* FPUL_C register is floating point register 32,
1767 same size, same endianness. */
1768 regcache_raw_read (regcache, base_regnum, buffer);
1769 }
1770 }
1771
1772 static void
1773 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1774 int reg_nr, const gdb_byte *buffer)
1775 {
1776 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1777 int base_regnum, portion;
1778 int offset;
1779 char temp_buffer[MAX_REGISTER_SIZE];
1780
1781 if (reg_nr >= DR0_REGNUM
1782 && reg_nr <= DR_LAST_REGNUM)
1783 {
1784 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1785 /* We must pay attention to the endianness. */
1786 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1787 reg_nr,
1788 buffer, temp_buffer);
1789
1790 /* Write the real regs for which this one is an alias. */
1791 for (portion = 0; portion < 2; portion++)
1792 regcache_raw_write (regcache, base_regnum + portion,
1793 (temp_buffer
1794 + register_size (gdbarch,
1795 base_regnum) * portion));
1796 }
1797
1798 else if (reg_nr >= FPP0_REGNUM
1799 && reg_nr <= FPP_LAST_REGNUM)
1800 {
1801 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1802
1803 /* Write the real regs for which this one is an alias. */
1804 for (portion = 0; portion < 2; portion++)
1805 regcache_raw_write (regcache, base_regnum + portion,
1806 ((char *) buffer
1807 + register_size (gdbarch,
1808 base_regnum) * portion));
1809 }
1810
1811 else if (reg_nr >= FV0_REGNUM
1812 && reg_nr <= FV_LAST_REGNUM)
1813 {
1814 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1815
1816 /* Write the real regs for which this one is an alias. */
1817 for (portion = 0; portion < 4; portion++)
1818 regcache_raw_write (regcache, base_regnum + portion,
1819 ((char *) buffer
1820 + register_size (gdbarch,
1821 base_regnum) * portion));
1822 }
1823
1824 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1825 register but only 4 bytes of it. */
1826 else if (reg_nr >= R0_C_REGNUM
1827 && reg_nr <= T_C_REGNUM)
1828 {
1829 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1830 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1831 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1832 offset = 4;
1833 else
1834 offset = 0;
1835 /* Let's read the value of the base register into a temporary
1836 buffer, so that overwriting the last four bytes with the new
1837 value of the pseudo will leave the upper 4 bytes unchanged. */
1838 regcache_raw_read (regcache, base_regnum, temp_buffer);
1839 /* Write as an 8 byte quantity */
1840 memcpy (temp_buffer + offset, buffer, 4);
1841 regcache_raw_write (regcache, base_regnum, temp_buffer);
1842 }
1843
1844 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1845 registers. Both are 4 bytes. */
1846 else if (reg_nr >= FP0_C_REGNUM
1847 && reg_nr <= FP_LAST_C_REGNUM)
1848 {
1849 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1850 regcache_raw_write (regcache, base_regnum, buffer);
1851 }
1852
1853 else if (reg_nr >= DR0_C_REGNUM
1854 && reg_nr <= DR_LAST_C_REGNUM)
1855 {
1856 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1857 for (portion = 0; portion < 2; portion++)
1858 {
1859 /* We must pay attention to the endianness. */
1860 sh64_register_convert_to_raw (gdbarch,
1861 register_type (gdbarch, reg_nr),
1862 reg_nr,
1863 buffer, temp_buffer);
1864
1865 regcache_raw_write (regcache, base_regnum + portion,
1866 (temp_buffer
1867 + register_size (gdbarch,
1868 base_regnum) * portion));
1869 }
1870 }
1871
1872 else if (reg_nr >= FV0_C_REGNUM
1873 && reg_nr <= FV_LAST_C_REGNUM)
1874 {
1875 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1876
1877 for (portion = 0; portion < 4; portion++)
1878 {
1879 regcache_raw_write (regcache, base_regnum + portion,
1880 ((char *) buffer
1881 + register_size (gdbarch,
1882 base_regnum) * portion));
1883 }
1884 }
1885
1886 else if (reg_nr == FPSCR_C_REGNUM)
1887 {
1888 int fpscr_base_regnum;
1889 int sr_base_regnum;
1890 unsigned int fpscr_value;
1891 unsigned int sr_value;
1892 unsigned int old_fpscr_value;
1893 unsigned int old_sr_value;
1894 unsigned int fpscr_c_value;
1895 unsigned int fpscr_mask;
1896 unsigned int sr_mask;
1897
1898 fpscr_base_regnum = FPSCR_REGNUM;
1899 sr_base_regnum = SR_REGNUM;
1900
1901 /* FPSCR_C is a very weird register that contains sparse bits
1902 from the FPSCR and the SR architectural registers.
1903 Specifically: */
1904 /* *INDENT-OFF* */
1905 /*
1906 FPSRC_C bit
1907 0 Bit 0 of FPSCR
1908 1 reserved
1909 2-17 Bit 2-18 of FPSCR
1910 18-20 Bits 12,13,14 of SR
1911 21-31 reserved
1912 */
1913 /* *INDENT-ON* */
1914 /* Get value as an int. */
1915 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1916
1917 /* Build the new values. */
1918 fpscr_mask = 0x0003fffd;
1919 sr_mask = 0x001c0000;
1920
1921 fpscr_value = fpscr_c_value & fpscr_mask;
1922 sr_value = (fpscr_value & sr_mask) >> 6;
1923
1924 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1925 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1926 old_fpscr_value &= 0xfffc0002;
1927 fpscr_value |= old_fpscr_value;
1928 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1929 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1930
1931 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1932 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1933 old_sr_value &= 0xffff8fff;
1934 sr_value |= old_sr_value;
1935 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1936 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1937 }
1938
1939 else if (reg_nr == FPUL_C_REGNUM)
1940 {
1941 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1942 regcache_raw_write (regcache, base_regnum, buffer);
1943 }
1944 }
1945
1946 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1947 shmedia REGISTERS. */
1948 /* Control registers, compact mode. */
1949 static void
1950 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1951 int cr_c_regnum)
1952 {
1953 switch (cr_c_regnum)
1954 {
1955 case PC_C_REGNUM:
1956 fprintf_filtered (file, "pc_c\t0x%08x\n",
1957 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1958 break;
1959 case GBR_C_REGNUM:
1960 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1961 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1962 break;
1963 case MACH_C_REGNUM:
1964 fprintf_filtered (file, "mach_c\t0x%08x\n",
1965 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1966 break;
1967 case MACL_C_REGNUM:
1968 fprintf_filtered (file, "macl_c\t0x%08x\n",
1969 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1970 break;
1971 case PR_C_REGNUM:
1972 fprintf_filtered (file, "pr_c\t0x%08x\n",
1973 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1974 break;
1975 case T_C_REGNUM:
1976 fprintf_filtered (file, "t_c\t0x%08x\n",
1977 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1978 break;
1979 case FPSCR_C_REGNUM:
1980 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1981 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1982 break;
1983 case FPUL_C_REGNUM:
1984 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1985 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1986 break;
1987 }
1988 }
1989
1990 static void
1991 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1992 struct frame_info *frame, int regnum)
1993 { /* do values for FP (float) regs */
1994 unsigned char *raw_buffer;
1995 double flt; /* double extracted from raw hex data */
1996 int inv;
1997 int j;
1998
1999 /* Allocate space for the float. */
2000 raw_buffer = (unsigned char *) alloca
2001 (register_size (gdbarch,
2002 gdbarch_fp0_regnum
2003 (gdbarch)));
2004
2005 /* Get the data in raw format. */
2006 if (!frame_register_read (frame, regnum, raw_buffer))
2007 error (_("can't read register %d (%s)"),
2008 regnum, gdbarch_register_name (gdbarch, regnum));
2009
2010 /* Get the register as a number */
2011 flt = unpack_double (builtin_type (gdbarch)->builtin_float, raw_buffer, &inv);
2012
2013 /* Print the name and some spaces. */
2014 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2015 print_spaces_filtered (15 - strlen (gdbarch_register_name
2016 (gdbarch, regnum)), file);
2017
2018 /* Print the value. */
2019 if (inv)
2020 fprintf_filtered (file, "<invalid float>");
2021 else
2022 fprintf_filtered (file, "%-10.9g", flt);
2023
2024 /* Print the fp register as hex. */
2025 fprintf_filtered (file, "\t(raw 0x");
2026 for (j = 0; j < register_size (gdbarch, regnum); j++)
2027 {
2028 int idx = gdbarch_byte_order (gdbarch)
2029 == BFD_ENDIAN_BIG ? j : register_size
2030 (gdbarch, regnum) - 1 - j;
2031 fprintf_filtered (file, "%02x", raw_buffer[idx]);
2032 }
2033 fprintf_filtered (file, ")");
2034 fprintf_filtered (file, "\n");
2035 }
2036
2037 static void
2038 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2039 struct frame_info *frame, int regnum)
2040 {
2041 /* All the sh64-compact mode registers are pseudo registers. */
2042
2043 if (regnum < gdbarch_num_regs (gdbarch)
2044 || regnum >= gdbarch_num_regs (gdbarch)
2045 + NUM_PSEUDO_REGS_SH_MEDIA
2046 + NUM_PSEUDO_REGS_SH_COMPACT)
2047 internal_error (__FILE__, __LINE__,
2048 _("Invalid pseudo register number %d\n"), regnum);
2049
2050 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2051 {
2052 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
2053 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2054 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2055 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2056 }
2057
2058 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2059 {
2060 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2061 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2062 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2063 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2064 }
2065
2066 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2067 {
2068 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
2069 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2070 regnum - FV0_REGNUM,
2071 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2072 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2073 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2074 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2075 }
2076
2077 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2078 {
2079 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2080 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2081 regnum - FV0_C_REGNUM,
2082 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2083 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2084 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2085 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2086 }
2087
2088 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2089 {
2090 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2091 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2092 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2093 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2094 }
2095
2096 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2097 {
2098 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2099 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2100 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2101 }
2102 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2103 /* This should work also for pseudoregs. */
2104 sh64_do_fp_register (gdbarch, file, frame, regnum);
2105 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2106 sh64_do_cr_c_register_info (file, frame, regnum);
2107 }
2108
2109 static void
2110 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2111 struct frame_info *frame, int regnum)
2112 {
2113 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2114 struct value_print_options opts;
2115
2116 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2117 print_spaces_filtered (15 - strlen (gdbarch_register_name
2118 (gdbarch, regnum)), file);
2119
2120 /* Get the data in raw format. */
2121 if (!frame_register_read (frame, regnum, raw_buffer))
2122 fprintf_filtered (file, "*value not available*\n");
2123
2124 get_formatted_print_options (&opts, 'x');
2125 opts.deref_ref = 1;
2126 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2127 file, 0, NULL, &opts, current_language);
2128 fprintf_filtered (file, "\t");
2129 get_formatted_print_options (&opts, 0);
2130 opts.deref_ref = 1;
2131 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2132 file, 0, NULL, &opts, current_language);
2133 fprintf_filtered (file, "\n");
2134 }
2135
2136 static void
2137 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2138 struct frame_info *frame, int regnum)
2139 {
2140 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2141 + gdbarch_num_pseudo_regs (gdbarch))
2142 internal_error (__FILE__, __LINE__,
2143 _("Invalid register number %d\n"), regnum);
2144
2145 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2146 {
2147 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2148 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2149 else
2150 sh64_do_register (gdbarch, file, frame, regnum);
2151 }
2152
2153 else if (regnum < gdbarch_num_regs (gdbarch)
2154 + gdbarch_num_pseudo_regs (gdbarch))
2155 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2156 }
2157
2158 static void
2159 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2160 struct frame_info *frame, int regnum,
2161 int fpregs)
2162 {
2163 if (regnum != -1) /* do one specified register */
2164 {
2165 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2166 error (_("Not a valid register for the current processor type"));
2167
2168 sh64_print_register (gdbarch, file, frame, regnum);
2169 }
2170 else
2171 /* do all (or most) registers */
2172 {
2173 regnum = 0;
2174 while (regnum < gdbarch_num_regs (gdbarch))
2175 {
2176 /* If the register name is empty, it is undefined for this
2177 processor, so don't display anything. */
2178 if (gdbarch_register_name (gdbarch, regnum) == NULL
2179 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2180 {
2181 regnum++;
2182 continue;
2183 }
2184
2185 if (TYPE_CODE (register_type (gdbarch, regnum))
2186 == TYPE_CODE_FLT)
2187 {
2188 if (fpregs)
2189 {
2190 /* true for "INFO ALL-REGISTERS" command */
2191 sh64_do_fp_register (gdbarch, file, frame, regnum);
2192 regnum ++;
2193 }
2194 else
2195 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2196 /* skip FP regs */
2197 }
2198 else
2199 {
2200 sh64_do_register (gdbarch, file, frame, regnum);
2201 regnum++;
2202 }
2203 }
2204
2205 if (fpregs)
2206 while (regnum < gdbarch_num_regs (gdbarch)
2207 + gdbarch_num_pseudo_regs (gdbarch))
2208 {
2209 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2210 regnum++;
2211 }
2212 }
2213 }
2214
2215 static void
2216 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2217 struct ui_file *file,
2218 struct frame_info *frame, int regnum,
2219 int fpregs)
2220 {
2221 if (regnum != -1) /* do one specified register */
2222 {
2223 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2224 error (_("Not a valid register for the current processor type"));
2225
2226 if (regnum >= 0 && regnum < R0_C_REGNUM)
2227 error (_("Not a valid register for the current processor mode."));
2228
2229 sh64_print_register (gdbarch, file, frame, regnum);
2230 }
2231 else
2232 /* do all compact registers */
2233 {
2234 regnum = R0_C_REGNUM;
2235 while (regnum < gdbarch_num_regs (gdbarch)
2236 + gdbarch_num_pseudo_regs (gdbarch))
2237 {
2238 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2239 regnum++;
2240 }
2241 }
2242 }
2243
2244 static void
2245 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2246 struct frame_info *frame, int regnum, int fpregs)
2247 {
2248 if (pc_is_isa32 (get_frame_pc (frame)))
2249 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2250 else
2251 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2252 }
2253
2254 static struct sh64_frame_cache *
2255 sh64_alloc_frame_cache (void)
2256 {
2257 struct sh64_frame_cache *cache;
2258 int i;
2259
2260 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2261
2262 /* Base address. */
2263 cache->base = 0;
2264 cache->saved_sp = 0;
2265 cache->sp_offset = 0;
2266 cache->pc = 0;
2267
2268 /* Frameless until proven otherwise. */
2269 cache->uses_fp = 0;
2270
2271 /* Saved registers. We initialize these to -1 since zero is a valid
2272 offset (that's where fp is supposed to be stored). */
2273 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2274 {
2275 cache->saved_regs[i] = -1;
2276 }
2277
2278 return cache;
2279 }
2280
2281 static struct sh64_frame_cache *
2282 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2283 {
2284 struct gdbarch *gdbarch;
2285 struct sh64_frame_cache *cache;
2286 CORE_ADDR current_pc;
2287 int i;
2288
2289 if (*this_cache)
2290 return *this_cache;
2291
2292 gdbarch = get_frame_arch (this_frame);
2293 cache = sh64_alloc_frame_cache ();
2294 *this_cache = cache;
2295
2296 current_pc = get_frame_pc (this_frame);
2297 cache->media_mode = pc_is_isa32 (current_pc);
2298
2299 /* In principle, for normal frames, fp holds the frame pointer,
2300 which holds the base address for the current stack frame.
2301 However, for functions that don't need it, the frame pointer is
2302 optional. For these "frameless" functions the frame pointer is
2303 actually the frame pointer of the calling frame. */
2304 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2305 if (cache->base == 0)
2306 return cache;
2307
2308 cache->pc = get_frame_func (this_frame);
2309 if (cache->pc != 0)
2310 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2311
2312 if (!cache->uses_fp)
2313 {
2314 /* We didn't find a valid frame, which means that CACHE->base
2315 currently holds the frame pointer for our calling frame. If
2316 we're at the start of a function, or somewhere half-way its
2317 prologue, the function's frame probably hasn't been fully
2318 setup yet. Try to reconstruct the base address for the stack
2319 frame by looking at the stack pointer. For truly "frameless"
2320 functions this might work too. */
2321 cache->base = get_frame_register_unsigned
2322 (this_frame, gdbarch_sp_regnum (gdbarch));
2323 }
2324
2325 /* Now that we have the base address for the stack frame we can
2326 calculate the value of sp in the calling frame. */
2327 cache->saved_sp = cache->base + cache->sp_offset;
2328
2329 /* Adjust all the saved registers such that they contain addresses
2330 instead of offsets. */
2331 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2332 if (cache->saved_regs[i] != -1)
2333 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2334
2335 return cache;
2336 }
2337
2338 static struct value *
2339 sh64_frame_prev_register (struct frame_info *this_frame,
2340 void **this_cache, int regnum)
2341 {
2342 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2343 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2345
2346 gdb_assert (regnum >= 0);
2347
2348 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2349 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2350
2351 /* The PC of the previous frame is stored in the PR register of
2352 the current frame. Frob regnum so that we pull the value from
2353 the correct place. */
2354 if (regnum == gdbarch_pc_regnum (gdbarch))
2355 regnum = PR_REGNUM;
2356
2357 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2358 {
2359 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2360 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2361 {
2362 CORE_ADDR val;
2363 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2364 4, byte_order);
2365 return frame_unwind_got_constant (this_frame, regnum, val);
2366 }
2367
2368 return frame_unwind_got_memory (this_frame, regnum,
2369 cache->saved_regs[regnum]);
2370 }
2371
2372 return frame_unwind_got_register (this_frame, regnum, regnum);
2373 }
2374
2375 static void
2376 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2377 struct frame_id *this_id)
2378 {
2379 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2380
2381 /* This marks the outermost frame. */
2382 if (cache->base == 0)
2383 return;
2384
2385 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2386 }
2387
2388 static const struct frame_unwind sh64_frame_unwind = {
2389 NORMAL_FRAME,
2390 sh64_frame_this_id,
2391 sh64_frame_prev_register,
2392 NULL,
2393 default_frame_sniffer
2394 };
2395
2396 static CORE_ADDR
2397 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2398 {
2399 return frame_unwind_register_unsigned (next_frame,
2400 gdbarch_sp_regnum (gdbarch));
2401 }
2402
2403 static CORE_ADDR
2404 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2405 {
2406 return frame_unwind_register_unsigned (next_frame,
2407 gdbarch_pc_regnum (gdbarch));
2408 }
2409
2410 static struct frame_id
2411 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2412 {
2413 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2414 gdbarch_sp_regnum (gdbarch));
2415 return frame_id_build (sp, get_frame_pc (this_frame));
2416 }
2417
2418 static CORE_ADDR
2419 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2420 {
2421 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2422
2423 return cache->base;
2424 }
2425
2426 static const struct frame_base sh64_frame_base = {
2427 &sh64_frame_unwind,
2428 sh64_frame_base_address,
2429 sh64_frame_base_address,
2430 sh64_frame_base_address
2431 };
2432
2433
2434 struct gdbarch *
2435 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2436 {
2437 struct gdbarch *gdbarch;
2438 struct gdbarch_tdep *tdep;
2439
2440 /* If there is already a candidate, use it. */
2441 arches = gdbarch_list_lookup_by_info (arches, &info);
2442 if (arches != NULL)
2443 return arches->gdbarch;
2444
2445 /* None found, create a new architecture from the information
2446 provided. */
2447 tdep = XMALLOC (struct gdbarch_tdep);
2448 gdbarch = gdbarch_alloc (&info, tdep);
2449
2450 /* Determine the ABI */
2451 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2452 {
2453 /* If the ABI is the 64-bit one, it can only be sh-media. */
2454 tdep->sh_abi = SH_ABI_64;
2455 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2456 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2457 }
2458 else
2459 {
2460 /* If the ABI is the 32-bit one it could be either media or
2461 compact. */
2462 tdep->sh_abi = SH_ABI_32;
2463 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2464 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2465 }
2466
2467 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2468 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2469 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2470 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2471 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2472 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2473 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2474
2475 /* The number of real registers is the same whether we are in
2476 ISA16(compact) or ISA32(media). */
2477 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2478 set_gdbarch_sp_regnum (gdbarch, 15);
2479 set_gdbarch_pc_regnum (gdbarch, 64);
2480 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2481 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2482 + NUM_PSEUDO_REGS_SH_COMPACT);
2483
2484 set_gdbarch_register_name (gdbarch, sh64_register_name);
2485 set_gdbarch_register_type (gdbarch, sh64_register_type);
2486
2487 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2488 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2489
2490 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2491
2492 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2493 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2494
2495 set_gdbarch_return_value (gdbarch, sh64_return_value);
2496
2497 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2498 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2499
2500 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2501
2502 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2503
2504 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2505 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2506 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2507 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2508 frame_base_set_default (gdbarch, &sh64_frame_base);
2509
2510 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2511
2512 set_gdbarch_elf_make_msymbol_special (gdbarch,
2513 sh64_elf_make_msymbol_special);
2514
2515 /* Hook in ABI-specific overrides, if they have been registered. */
2516 gdbarch_init_osabi (info, gdbarch);
2517
2518 dwarf2_append_unwinders (gdbarch);
2519 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2520
2521 return gdbarch;
2522 }