]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sh64-tdep.c
start change to progspace independence
[thirdparty/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include <string.h>
36 #include "gdb_assert.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "osabi.h"
40 #include "valprint.h"
41
42 #include "elf-bfd.h"
43
44 /* sh flags */
45 #include "elf/sh.h"
46 /* Register numbers shared with the simulator. */
47 #include "gdb/sim-sh.h"
48 #include "language.h"
49 #include "sh64-tdep.h"
50
51 /* Information that is dependent on the processor variant. */
52 enum sh_abi
53 {
54 SH_ABI_UNKNOWN,
55 SH_ABI_32,
56 SH_ABI_64
57 };
58
59 struct gdbarch_tdep
60 {
61 enum sh_abi sh_abi;
62 };
63
64 struct sh64_frame_cache
65 {
66 /* Base address. */
67 CORE_ADDR base;
68 LONGEST sp_offset;
69 CORE_ADDR pc;
70
71 /* Flag showing that a frame has been created in the prologue code. */
72 int uses_fp;
73
74 int media_mode;
75
76 /* Saved registers. */
77 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
78 CORE_ADDR saved_sp;
79 };
80
81 /* Registers of SH5 */
82 enum
83 {
84 R0_REGNUM = 0,
85 DEFAULT_RETURN_REGNUM = 2,
86 STRUCT_RETURN_REGNUM = 2,
87 ARG0_REGNUM = 2,
88 ARGLAST_REGNUM = 9,
89 FLOAT_ARGLAST_REGNUM = 11,
90 MEDIA_FP_REGNUM = 14,
91 PR_REGNUM = 18,
92 SR_REGNUM = 65,
93 DR0_REGNUM = 141,
94 DR_LAST_REGNUM = 172,
95 /* FPP stands for Floating Point Pair, to avoid confusion with
96 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
97 point register. Unfortunately on the sh5, the floating point
98 registers are called FR, and the floating point pairs are called FP. */
99 FPP0_REGNUM = 173,
100 FPP_LAST_REGNUM = 204,
101 FV0_REGNUM = 205,
102 FV_LAST_REGNUM = 220,
103 R0_C_REGNUM = 221,
104 R_LAST_C_REGNUM = 236,
105 PC_C_REGNUM = 237,
106 GBR_C_REGNUM = 238,
107 MACH_C_REGNUM = 239,
108 MACL_C_REGNUM = 240,
109 PR_C_REGNUM = 241,
110 T_C_REGNUM = 242,
111 FPSCR_C_REGNUM = 243,
112 FPUL_C_REGNUM = 244,
113 FP0_C_REGNUM = 245,
114 FP_LAST_C_REGNUM = 260,
115 DR0_C_REGNUM = 261,
116 DR_LAST_C_REGNUM = 268,
117 FV0_C_REGNUM = 269,
118 FV_LAST_C_REGNUM = 272,
119 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
120 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
121 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
122 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
123 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
124 };
125
126 static const char *
127 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
128 {
129 static char *register_names[] =
130 {
131 /* SH MEDIA MODE (ISA 32) */
132 /* general registers (64-bit) 0-63 */
133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
134 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
135 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
136 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
137 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
138 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
139 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
140 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
141
142 /* pc (64-bit) 64 */
143 "pc",
144
145 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
146 "sr", "ssr", "spc",
147
148 /* target registers (64-bit) 68-75 */
149 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
150
151 /* floating point state control register (32-bit) 76 */
152 "fpscr",
153
154 /* single precision floating point registers (32-bit) 77-140 */
155 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
156 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
157 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
158 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
159 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
160 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
161 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
162 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
163
164 /* double precision registers (pseudo) 141-172 */
165 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
166 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
167 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
168 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
169
170 /* floating point pairs (pseudo) 173-204 */
171 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
172 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
173 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
174 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
175
176 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
177 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
178 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
179
180 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
181 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
182 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
183 "pc_c",
184 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
185 "fpscr_c", "fpul_c",
186 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
187 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
188 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
189 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
191 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
192 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
193 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
194 };
195
196 if (reg_nr < 0)
197 return NULL;
198 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return NULL;
200 return register_names[reg_nr];
201 }
202
203 #define NUM_PSEUDO_REGS_SH_MEDIA 80
204 #define NUM_PSEUDO_REGS_SH_COMPACT 51
205
206 /* Macros and functions for setting and testing a bit in a minimal
207 symbol that marks it as 32-bit function. The MSB of the minimal
208 symbol's "info" field is used for this purpose.
209
210 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
211 i.e. refers to a 32-bit function, and sets a "special" bit in a
212 minimal symbol to mark it as a 32-bit function
213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
214
215 #define MSYMBOL_IS_SPECIAL(msym) \
216 MSYMBOL_TARGET_FLAG_1 (msym)
217
218 static void
219 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
220 {
221 if (msym == NULL)
222 return;
223
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 {
226 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
227 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
228 }
229 }
230
231 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233 #define IS_ISA32_ADDR(addr) ((addr) & 1)
234 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236
237 static int
238 pc_is_isa32 (bfd_vma memaddr)
239 {
240 struct bound_minimal_symbol sym;
241
242 /* If bit 0 of the address is set, assume this is a
243 ISA32 (shmedia) address. */
244 if (IS_ISA32_ADDR (memaddr))
245 return 1;
246
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
249 ISA16 or ISA32. */
250 sym = lookup_minimal_symbol_by_pc (memaddr);
251 if (sym.minsym)
252 return MSYMBOL_IS_SPECIAL (sym.minsym);
253 else
254 return 0;
255 }
256
257 static const unsigned char *
258 sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
259 CORE_ADDR *pcptr, int *lenptr)
260 {
261 /* The BRK instruction for shmedia is
262 01101111 11110101 11111111 11110000
263 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
264 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
265
266 /* The BRK instruction for shcompact is
267 00000000 00111011
268 which translates in big endian mode to 0x0, 0x3b
269 and in little endian mode to 0x3b, 0x0 */
270
271 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
272 {
273 if (pc_is_isa32 (*pcptr))
274 {
275 static unsigned char big_breakpoint_media[] = {
276 0x6f, 0xf5, 0xff, 0xf0
277 };
278 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
279 *lenptr = sizeof (big_breakpoint_media);
280 return big_breakpoint_media;
281 }
282 else
283 {
284 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
285 *lenptr = sizeof (big_breakpoint_compact);
286 return big_breakpoint_compact;
287 }
288 }
289 else
290 {
291 if (pc_is_isa32 (*pcptr))
292 {
293 static unsigned char little_breakpoint_media[] = {
294 0xf0, 0xff, 0xf5, 0x6f
295 };
296 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
297 *lenptr = sizeof (little_breakpoint_media);
298 return little_breakpoint_media;
299 }
300 else
301 {
302 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
303 *lenptr = sizeof (little_breakpoint_compact);
304 return little_breakpoint_compact;
305 }
306 }
307 }
308
309 /* Prologue looks like
310 [mov.l <regs>,@-r15]...
311 [sts.l pr,@-r15]
312 [mov.l r14,@-r15]
313 [mov r15,r14]
314
315 Actually it can be more complicated than this. For instance, with
316 newer gcc's:
317
318 mov.l r14,@-r15
319 add #-12,r15
320 mov r15,r14
321 mov r4,r1
322 mov r5,r2
323 mov.l r6,@(4,r14)
324 mov.l r7,@(8,r14)
325 mov.b r1,@r14
326 mov r14,r1
327 mov r14,r1
328 add #2,r1
329 mov.w r2,@r1
330
331 */
332
333 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
334 with l=1 and n = 18 0110101111110001010010100aaa0000 */
335 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
336
337 /* STS.L PR,@-r0 0100000000100010
338 r0-4-->r0, PR-->(r0) */
339 #define IS_STS_R0(x) ((x) == 0x4022)
340
341 /* STS PR, Rm 0000mmmm00101010
342 PR-->Rm */
343 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
344
345 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
346 Rm-->(dispx4+r15) */
347 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
348
349 /* MOV.L R14,@(disp,r15) 000111111110dddd
350 R14-->(dispx4+r15) */
351 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
352
353 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
354 R18-->(dispx8+R14) */
355 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
356
357 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
358 R18-->(dispx8+R15) */
359 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
360
361 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
362 R18-->(dispx4+R15) */
363 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
364
365 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
366 R14-->(dispx8+R15) */
367 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
368
369 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
370 R14-->(dispx4+R15) */
371 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
372
373 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
374 R15 + imm --> R15 */
375 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
376
377 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
378 R15 + imm --> R15 */
379 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
380
381 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
382 R15 + R63 --> R14 */
383 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
384
385 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
386 R15 + R63 --> R14 */
387 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
388
389 #define IS_MOV_SP_FP_MEDIA(x) \
390 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
391
392 /* MOV #imm, R0 1110 0000 ssss ssss
393 #imm-->R0 */
394 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
395
396 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
397 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
398
399 /* ADD r15,r0 0011 0000 1111 1100
400 r15+r0-->r0 */
401 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
402
403 /* MOV.L R14 @-R0 0010 0000 1110 0110
404 R14-->(R0-4), R0-4-->R0 */
405 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
406
407 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
408 where Rm is one of r2-r9 which are the argument registers. */
409 /* FIXME: Recognize the float and double register moves too! */
410 #define IS_MEDIA_IND_ARG_MOV(x) \
411 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
412 && (((x) & 0x03f00000) >= 0x00200000 \
413 && ((x) & 0x03f00000) <= 0x00900000))
414
415 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
416 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
417 where Rm is one of r2-r9 which are the argument registers. */
418 #define IS_MEDIA_ARG_MOV(x) \
419 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
420 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
421
422 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
423 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
424 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
425 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
426 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
427 #define IS_MEDIA_MOV_TO_R14(x) \
428 ((((x) & 0xfffffc0f) == 0xa0e00000) \
429 || (((x) & 0xfffffc0f) == 0xa4e00000) \
430 || (((x) & 0xfffffc0f) == 0xa8e00000) \
431 || (((x) & 0xfffffc0f) == 0xb4e00000) \
432 || (((x) & 0xfffffc0f) == 0xbce00000))
433
434 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
435 where Rm is r2-r9 */
436 #define IS_COMPACT_IND_ARG_MOV(x) \
437 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
438 && (((x) & 0x00f0) <= 0x0090))
439
440 /* compact direct arg move!
441 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
442 #define IS_COMPACT_ARG_MOV(x) \
443 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
444 && ((x) & 0x00f0) <= 0x0090))
445
446 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
447 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
448 #define IS_COMPACT_MOV_TO_R14(x) \
449 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
450
451 #define IS_JSR_R0(x) ((x) == 0x400b)
452 #define IS_NOP(x) ((x) == 0x0009)
453
454
455 /* MOV r15,r14 0110111011110011
456 r15-->r14 */
457 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
458
459 /* ADD #imm,r15 01111111iiiiiiii
460 r15+imm-->r15 */
461 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
462
463 /* Skip any prologue before the guts of a function. */
464
465 /* Skip the prologue using the debug information. If this fails we'll
466 fall back on the 'guess' method below. */
467 static CORE_ADDR
468 after_prologue (CORE_ADDR pc)
469 {
470 struct symtab_and_line sal;
471 CORE_ADDR func_addr, func_end;
472
473 /* If we can not find the symbol in the partial symbol table, then
474 there is no hope we can determine the function's start address
475 with this code. */
476 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
477 return 0;
478
479
480 /* Get the line associated with FUNC_ADDR. */
481 sal = find_pc_line (func_addr, 0);
482
483 /* There are only two cases to consider. First, the end of the source line
484 is within the function bounds. In that case we return the end of the
485 source line. Second is the end of the source line extends beyond the
486 bounds of the current function. We need to use the slow code to
487 examine instructions in that case. */
488 if (sal.end < func_end)
489 return sal.end;
490 else
491 return 0;
492 }
493
494 static CORE_ADDR
495 look_for_args_moves (struct gdbarch *gdbarch,
496 CORE_ADDR start_pc, int media_mode)
497 {
498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
499 CORE_ADDR here, end;
500 int w;
501 int insn_size = (media_mode ? 4 : 2);
502
503 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
504 {
505 if (media_mode)
506 {
507 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
508 insn_size, byte_order);
509 here += insn_size;
510 if (IS_MEDIA_IND_ARG_MOV (w))
511 {
512 /* This must be followed by a store to r14, so the argument
513 is where the debug info says it is. This can happen after
514 the SP has been saved, unfortunately. */
515
516 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
517 insn_size, byte_order);
518 here += insn_size;
519 if (IS_MEDIA_MOV_TO_R14 (next_insn))
520 start_pc = here;
521 }
522 else if (IS_MEDIA_ARG_MOV (w))
523 {
524 /* These instructions store directly the argument in r14. */
525 start_pc = here;
526 }
527 else
528 break;
529 }
530 else
531 {
532 w = read_memory_integer (here, insn_size, byte_order);
533 w = w & 0xffff;
534 here += insn_size;
535 if (IS_COMPACT_IND_ARG_MOV (w))
536 {
537 /* This must be followed by a store to r14, so the argument
538 is where the debug info says it is. This can happen after
539 the SP has been saved, unfortunately. */
540
541 int next_insn = 0xffff & read_memory_integer (here, insn_size,
542 byte_order);
543 here += insn_size;
544 if (IS_COMPACT_MOV_TO_R14 (next_insn))
545 start_pc = here;
546 }
547 else if (IS_COMPACT_ARG_MOV (w))
548 {
549 /* These instructions store directly the argument in r14. */
550 start_pc = here;
551 }
552 else if (IS_MOVL_R0 (w))
553 {
554 /* There is a function that gcc calls to get the arguments
555 passed correctly to the function. Only after this
556 function call the arguments will be found at the place
557 where they are supposed to be. This happens in case the
558 argument has to be stored into a 64-bit register (for
559 instance doubles, long longs). SHcompact doesn't have
560 access to the full 64-bits, so we store the register in
561 stack slot and store the address of the stack slot in
562 the register, then do a call through a wrapper that
563 loads the memory value into the register. A SHcompact
564 callee calls an argument decoder
565 (GCC_shcompact_incoming_args) that stores the 64-bit
566 value in a stack slot and stores the address of the
567 stack slot in the register. GCC thinks the argument is
568 just passed by transparent reference, but this is only
569 true after the argument decoder is called. Such a call
570 needs to be considered part of the prologue. */
571
572 /* This must be followed by a JSR @r0 instruction and by
573 a NOP instruction. After these, the prologue is over! */
574
575 int next_insn = 0xffff & read_memory_integer (here, insn_size,
576 byte_order);
577 here += insn_size;
578 if (IS_JSR_R0 (next_insn))
579 {
580 next_insn = 0xffff & read_memory_integer (here, insn_size,
581 byte_order);
582 here += insn_size;
583
584 if (IS_NOP (next_insn))
585 start_pc = here;
586 }
587 }
588 else
589 break;
590 }
591 }
592
593 return start_pc;
594 }
595
596 static CORE_ADDR
597 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
598 {
599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
600 CORE_ADDR here, end;
601 int updated_fp = 0;
602 int insn_size = 4;
603 int media_mode = 1;
604
605 if (!start_pc)
606 return 0;
607
608 if (pc_is_isa32 (start_pc) == 0)
609 {
610 insn_size = 2;
611 media_mode = 0;
612 }
613
614 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
615 {
616
617 if (media_mode)
618 {
619 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
620 insn_size, byte_order);
621 here += insn_size;
622 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
623 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
624 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
625 || IS_PTABSL_R18 (w))
626 {
627 start_pc = here;
628 }
629 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
630 {
631 start_pc = here;
632 updated_fp = 1;
633 }
634 else
635 if (updated_fp)
636 {
637 /* Don't bail out yet, we may have arguments stored in
638 registers here, according to the debug info, so that
639 gdb can print the frames correctly. */
640 start_pc = look_for_args_moves (gdbarch,
641 here - insn_size, media_mode);
642 break;
643 }
644 }
645 else
646 {
647 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
648 here += insn_size;
649
650 if (IS_STS_R0 (w) || IS_STS_PR (w)
651 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
652 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
653 {
654 start_pc = here;
655 }
656 else if (IS_MOV_SP_FP (w))
657 {
658 start_pc = here;
659 updated_fp = 1;
660 }
661 else
662 if (updated_fp)
663 {
664 /* Don't bail out yet, we may have arguments stored in
665 registers here, according to the debug info, so that
666 gdb can print the frames correctly. */
667 start_pc = look_for_args_moves (gdbarch,
668 here - insn_size, media_mode);
669 break;
670 }
671 }
672 }
673
674 return start_pc;
675 }
676
677 static CORE_ADDR
678 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
679 {
680 CORE_ADDR post_prologue_pc;
681
682 /* See if we can determine the end of the prologue via the symbol table.
683 If so, then return either PC, or the PC after the prologue, whichever
684 is greater. */
685 post_prologue_pc = after_prologue (pc);
686
687 /* If after_prologue returned a useful address, then use it. Else
688 fall back on the instruction skipping code. */
689 if (post_prologue_pc != 0)
690 return max (pc, post_prologue_pc);
691 else
692 return sh64_skip_prologue_hard_way (gdbarch, pc);
693 }
694
695 /* Should call_function allocate stack space for a struct return? */
696 static int
697 sh64_use_struct_convention (struct type *type)
698 {
699 return (TYPE_LENGTH (type) > 8);
700 }
701
702 /* For vectors of 4 floating point registers. */
703 static int
704 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
705 {
706 int fp_regnum;
707
708 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
709 return fp_regnum;
710 }
711
712 /* For double precision floating point registers, i.e 2 fp regs. */
713 static int
714 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
715 {
716 int fp_regnum;
717
718 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
719 return fp_regnum;
720 }
721
722 /* For pairs of floating point registers. */
723 static int
724 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
725 {
726 int fp_regnum;
727
728 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
729 return fp_regnum;
730 }
731
732 /* *INDENT-OFF* */
733 /*
734 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
735 GDB_REGNUM BASE_REGNUM
736 r0_c 221 0
737 r1_c 222 1
738 r2_c 223 2
739 r3_c 224 3
740 r4_c 225 4
741 r5_c 226 5
742 r6_c 227 6
743 r7_c 228 7
744 r8_c 229 8
745 r9_c 230 9
746 r10_c 231 10
747 r11_c 232 11
748 r12_c 233 12
749 r13_c 234 13
750 r14_c 235 14
751 r15_c 236 15
752
753 pc_c 237 64
754 gbr_c 238 16
755 mach_c 239 17
756 macl_c 240 17
757 pr_c 241 18
758 t_c 242 19
759 fpscr_c 243 76
760 fpul_c 244 109
761
762 fr0_c 245 77
763 fr1_c 246 78
764 fr2_c 247 79
765 fr3_c 248 80
766 fr4_c 249 81
767 fr5_c 250 82
768 fr6_c 251 83
769 fr7_c 252 84
770 fr8_c 253 85
771 fr9_c 254 86
772 fr10_c 255 87
773 fr11_c 256 88
774 fr12_c 257 89
775 fr13_c 258 90
776 fr14_c 259 91
777 fr15_c 260 92
778
779 dr0_c 261 77
780 dr2_c 262 79
781 dr4_c 263 81
782 dr6_c 264 83
783 dr8_c 265 85
784 dr10_c 266 87
785 dr12_c 267 89
786 dr14_c 268 91
787
788 fv0_c 269 77
789 fv4_c 270 81
790 fv8_c 271 85
791 fv12_c 272 91
792 */
793 /* *INDENT-ON* */
794 static int
795 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
796 {
797 int base_regnum = reg_nr;
798
799 /* general register N maps to general register N */
800 if (reg_nr >= R0_C_REGNUM
801 && reg_nr <= R_LAST_C_REGNUM)
802 base_regnum = reg_nr - R0_C_REGNUM;
803
804 /* floating point register N maps to floating point register N */
805 else if (reg_nr >= FP0_C_REGNUM
806 && reg_nr <= FP_LAST_C_REGNUM)
807 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
808
809 /* double prec register N maps to base regnum for double prec register N */
810 else if (reg_nr >= DR0_C_REGNUM
811 && reg_nr <= DR_LAST_C_REGNUM)
812 base_regnum = sh64_dr_reg_base_num (gdbarch,
813 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
814
815 /* vector N maps to base regnum for vector register N */
816 else if (reg_nr >= FV0_C_REGNUM
817 && reg_nr <= FV_LAST_C_REGNUM)
818 base_regnum = sh64_fv_reg_base_num (gdbarch,
819 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
820
821 else if (reg_nr == PC_C_REGNUM)
822 base_regnum = gdbarch_pc_regnum (gdbarch);
823
824 else if (reg_nr == GBR_C_REGNUM)
825 base_regnum = 16;
826
827 else if (reg_nr == MACH_C_REGNUM
828 || reg_nr == MACL_C_REGNUM)
829 base_regnum = 17;
830
831 else if (reg_nr == PR_C_REGNUM)
832 base_regnum = PR_REGNUM;
833
834 else if (reg_nr == T_C_REGNUM)
835 base_regnum = 19;
836
837 else if (reg_nr == FPSCR_C_REGNUM)
838 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
839
840 else if (reg_nr == FPUL_C_REGNUM)
841 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
842
843 return base_regnum;
844 }
845
846 static int
847 sign_extend (int value, int bits)
848 {
849 value = value & ((1 << bits) - 1);
850 return (value & (1 << (bits - 1))
851 ? value | (~((1 << bits) - 1))
852 : value);
853 }
854
855 static void
856 sh64_analyze_prologue (struct gdbarch *gdbarch,
857 struct sh64_frame_cache *cache,
858 CORE_ADDR func_pc,
859 CORE_ADDR current_pc)
860 {
861 int pc;
862 int opc;
863 int insn;
864 int r0_val = 0;
865 int insn_size;
866 int gdb_register_number;
867 int register_number;
868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
870
871 cache->sp_offset = 0;
872
873 /* Loop around examining the prologue insns until we find something
874 that does not appear to be part of the prologue. But give up
875 after 20 of them, since we're getting silly then. */
876
877 pc = func_pc;
878
879 if (cache->media_mode)
880 insn_size = 4;
881 else
882 insn_size = 2;
883
884 opc = pc + (insn_size * 28);
885 if (opc > current_pc)
886 opc = current_pc;
887 for ( ; pc <= opc; pc += insn_size)
888 {
889 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
890 : pc,
891 insn_size, byte_order);
892
893 if (!cache->media_mode)
894 {
895 if (IS_STS_PR (insn))
896 {
897 int next_insn = read_memory_integer (pc + insn_size,
898 insn_size, byte_order);
899 if (IS_MOV_TO_R15 (next_insn))
900 {
901 cache->saved_regs[PR_REGNUM]
902 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
903 - 0x8) << 2);
904 pc += insn_size;
905 }
906 }
907
908 else if (IS_MOV_R14 (insn))
909 cache->saved_regs[MEDIA_FP_REGNUM] =
910 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
911
912 else if (IS_MOV_R0 (insn))
913 {
914 /* Put in R0 the offset from SP at which to store some
915 registers. We are interested in this value, because it
916 will tell us where the given registers are stored within
917 the frame. */
918 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
919 }
920
921 else if (IS_ADD_SP_R0 (insn))
922 {
923 /* This instruction still prepares r0, but we don't care.
924 We already have the offset in r0_val. */
925 }
926
927 else if (IS_STS_R0 (insn))
928 {
929 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
930 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
931 r0_val -= 4;
932 }
933
934 else if (IS_MOV_R14_R0 (insn))
935 {
936 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
937 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
938 - (r0_val - 4);
939 r0_val -= 4;
940 }
941
942 else if (IS_ADD_SP (insn))
943 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
944
945 else if (IS_MOV_SP_FP (insn))
946 break;
947 }
948 else
949 {
950 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
951 cache->sp_offset -=
952 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
953
954 else if (IS_STQ_R18_R15 (insn))
955 cache->saved_regs[PR_REGNUM]
956 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
957 9) << 3);
958
959 else if (IS_STL_R18_R15 (insn))
960 cache->saved_regs[PR_REGNUM]
961 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
962 9) << 2);
963
964 else if (IS_STQ_R14_R15 (insn))
965 cache->saved_regs[MEDIA_FP_REGNUM]
966 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
967 9) << 3);
968
969 else if (IS_STL_R14_R15 (insn))
970 cache->saved_regs[MEDIA_FP_REGNUM]
971 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
972 9) << 2);
973
974 else if (IS_MOV_SP_FP_MEDIA (insn))
975 break;
976 }
977 }
978
979 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
980 cache->uses_fp = 1;
981 }
982
983 static CORE_ADDR
984 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
985 {
986 return sp & ~7;
987 }
988
989 /* Function: push_dummy_call
990 Setup the function arguments for calling a function in the inferior.
991
992 On the Renesas SH architecture, there are four registers (R4 to R7)
993 which are dedicated for passing function arguments. Up to the first
994 four arguments (depending on size) may go into these registers.
995 The rest go on the stack.
996
997 Arguments that are smaller than 4 bytes will still take up a whole
998 register or a whole 32-bit word on the stack, and will be
999 right-justified in the register or the stack word. This includes
1000 chars, shorts, and small aggregate types.
1001
1002 Arguments that are larger than 4 bytes may be split between two or
1003 more registers. If there are not enough registers free, an argument
1004 may be passed partly in a register (or registers), and partly on the
1005 stack. This includes doubles, long longs, and larger aggregates.
1006 As far as I know, there is no upper limit to the size of aggregates
1007 that will be passed in this way; in other words, the convention of
1008 passing a pointer to a large aggregate instead of a copy is not used.
1009
1010 An exceptional case exists for struct arguments (and possibly other
1011 aggregates such as arrays) if the size is larger than 4 bytes but
1012 not a multiple of 4 bytes. In this case the argument is never split
1013 between the registers and the stack, but instead is copied in its
1014 entirety onto the stack, AND also copied into as many registers as
1015 there is room for. In other words, space in registers permitting,
1016 two copies of the same argument are passed in. As far as I can tell,
1017 only the one on the stack is used, although that may be a function
1018 of the level of compiler optimization. I suspect this is a compiler
1019 bug. Arguments of these odd sizes are left-justified within the
1020 word (as opposed to arguments smaller than 4 bytes, which are
1021 right-justified).
1022
1023 If the function is to return an aggregate type such as a struct, it
1024 is either returned in the normal return value register R0 (if its
1025 size is no greater than one byte), or else the caller must allocate
1026 space into which the callee will copy the return value (if the size
1027 is greater than one byte). In this case, a pointer to the return
1028 value location is passed into the callee in register R2, which does
1029 not displace any of the other arguments passed in via registers R4
1030 to R7. */
1031
1032 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1033 non-scalar (struct, union) elements (even if the elements are
1034 floats).
1035 FR0-FR11 for single precision floating point (float)
1036 DR0-DR10 for double precision floating point (double)
1037
1038 If a float is argument number 3 (for instance) and arguments number
1039 1,2, and 4 are integer, the mapping will be:
1040 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1041
1042 If a float is argument number 10 (for instance) and arguments number
1043 1 through 10 are integer, the mapping will be:
1044 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1045 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1046 arg11->stack(16,SP). I.e. there is hole in the stack.
1047
1048 Different rules apply for variable arguments functions, and for functions
1049 for which the prototype is not known. */
1050
1051 static CORE_ADDR
1052 sh64_push_dummy_call (struct gdbarch *gdbarch,
1053 struct value *function,
1054 struct regcache *regcache,
1055 CORE_ADDR bp_addr,
1056 int nargs, struct value **args,
1057 CORE_ADDR sp, int struct_return,
1058 CORE_ADDR struct_addr)
1059 {
1060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1061 int stack_offset, stack_alloc;
1062 int int_argreg;
1063 int float_argreg;
1064 int double_argreg;
1065 int float_arg_index = 0;
1066 int double_arg_index = 0;
1067 int argnum;
1068 struct type *type;
1069 CORE_ADDR regval;
1070 const gdb_byte *val;
1071 gdb_byte valbuf[8];
1072 int len;
1073 int argreg_size;
1074 int fp_args[12];
1075
1076 memset (fp_args, 0, sizeof (fp_args));
1077
1078 /* First force sp to a 8-byte alignment. */
1079 sp = sh64_frame_align (gdbarch, sp);
1080
1081 /* The "struct return pointer" pseudo-argument has its own dedicated
1082 register. */
1083
1084 if (struct_return)
1085 regcache_cooked_write_unsigned (regcache,
1086 STRUCT_RETURN_REGNUM, struct_addr);
1087
1088 /* Now make sure there's space on the stack. */
1089 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1090 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1091 sp -= stack_alloc; /* Make room on stack for args. */
1092
1093 /* Now load as many as possible of the first arguments into
1094 registers, and push the rest onto the stack. There are 64 bytes
1095 in eight registers available. Loop thru args from first to last. */
1096
1097 int_argreg = ARG0_REGNUM;
1098 float_argreg = gdbarch_fp0_regnum (gdbarch);
1099 double_argreg = DR0_REGNUM;
1100
1101 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1102 {
1103 type = value_type (args[argnum]);
1104 len = TYPE_LENGTH (type);
1105 memset (valbuf, 0, sizeof (valbuf));
1106
1107 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1108 {
1109 argreg_size = register_size (gdbarch, int_argreg);
1110
1111 if (len < argreg_size)
1112 {
1113 /* value gets right-justified in the register or stack word. */
1114 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1115 memcpy (valbuf + argreg_size - len,
1116 value_contents (args[argnum]), len);
1117 else
1118 memcpy (valbuf, value_contents (args[argnum]), len);
1119
1120 val = valbuf;
1121 }
1122 else
1123 val = value_contents (args[argnum]);
1124
1125 while (len > 0)
1126 {
1127 if (int_argreg > ARGLAST_REGNUM)
1128 {
1129 /* Must go on the stack. */
1130 write_memory (sp + stack_offset, val, argreg_size);
1131 stack_offset += 8;/*argreg_size;*/
1132 }
1133 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1134 That's because some *&^%$ things get passed on the stack
1135 AND in the registers! */
1136 if (int_argreg <= ARGLAST_REGNUM)
1137 {
1138 /* There's room in a register. */
1139 regval = extract_unsigned_integer (val, argreg_size,
1140 byte_order);
1141 regcache_cooked_write_unsigned (regcache,
1142 int_argreg, regval);
1143 }
1144 /* Store the value 8 bytes at a time. This means that
1145 things larger than 8 bytes may go partly in registers
1146 and partly on the stack. FIXME: argreg is incremented
1147 before we use its size. */
1148 len -= argreg_size;
1149 val += argreg_size;
1150 int_argreg++;
1151 }
1152 }
1153 else
1154 {
1155 val = value_contents (args[argnum]);
1156 if (len == 4)
1157 {
1158 /* Where is it going to be stored? */
1159 while (fp_args[float_arg_index])
1160 float_arg_index ++;
1161
1162 /* Now float_argreg points to the register where it
1163 should be stored. Are we still within the allowed
1164 register set? */
1165 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1166 {
1167 /* Goes in FR0...FR11 */
1168 regcache_cooked_write (regcache,
1169 gdbarch_fp0_regnum (gdbarch)
1170 + float_arg_index,
1171 val);
1172 fp_args[float_arg_index] = 1;
1173 /* Skip the corresponding general argument register. */
1174 int_argreg ++;
1175 }
1176 else
1177 {
1178 /* Store it as the integers, 8 bytes at the time, if
1179 necessary spilling on the stack. */
1180 }
1181 }
1182 else if (len == 8)
1183 {
1184 /* Where is it going to be stored? */
1185 while (fp_args[double_arg_index])
1186 double_arg_index += 2;
1187 /* Now double_argreg points to the register
1188 where it should be stored.
1189 Are we still within the allowed register set? */
1190 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1191 {
1192 /* Goes in DR0...DR10 */
1193 /* The numbering of the DRi registers is consecutive,
1194 i.e. includes odd numbers. */
1195 int double_register_offset = double_arg_index / 2;
1196 int regnum = DR0_REGNUM + double_register_offset;
1197 regcache_cooked_write (regcache, regnum, val);
1198 fp_args[double_arg_index] = 1;
1199 fp_args[double_arg_index + 1] = 1;
1200 /* Skip the corresponding general argument register. */
1201 int_argreg ++;
1202 }
1203 else
1204 {
1205 /* Store it as the integers, 8 bytes at the time, if
1206 necessary spilling on the stack. */
1207 }
1208 }
1209 }
1210 }
1211 /* Store return address. */
1212 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1213
1214 /* Update stack pointer. */
1215 regcache_cooked_write_unsigned (regcache,
1216 gdbarch_sp_regnum (gdbarch), sp);
1217
1218 return sp;
1219 }
1220
1221 /* Find a function's return value in the appropriate registers (in
1222 regbuf), and copy it into valbuf. Extract from an array REGBUF
1223 containing the (raw) register state a function return value of type
1224 TYPE, and copy that, in virtual format, into VALBUF. */
1225 static void
1226 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1227 void *valbuf)
1228 {
1229 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1230 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1231 int len = TYPE_LENGTH (type);
1232
1233 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1234 {
1235 if (len == 4)
1236 {
1237 /* Return value stored in gdbarch_fp0_regnum. */
1238 regcache_raw_read (regcache,
1239 gdbarch_fp0_regnum (gdbarch), valbuf);
1240 }
1241 else if (len == 8)
1242 {
1243 /* return value stored in DR0_REGNUM. */
1244 DOUBLEST val;
1245 gdb_byte buf[8];
1246
1247 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1248
1249 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1250 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1251 buf, &val);
1252 else
1253 floatformat_to_doublest (&floatformat_ieee_double_big,
1254 buf, &val);
1255 store_typed_floating (valbuf, type, val);
1256 }
1257 }
1258 else
1259 {
1260 if (len <= 8)
1261 {
1262 int offset;
1263 gdb_byte buf[8];
1264 /* Result is in register 2. If smaller than 8 bytes, it is padded
1265 at the most significant end. */
1266 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1267
1268 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1269 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1270 - len;
1271 else
1272 offset = 0;
1273 memcpy (valbuf, buf + offset, len);
1274 }
1275 else
1276 error (_("bad size for return value"));
1277 }
1278 }
1279
1280 /* Write into appropriate registers a function return value
1281 of type TYPE, given in virtual format.
1282 If the architecture is sh4 or sh3e, store a function's return value
1283 in the R0 general register or in the FP0 floating point register,
1284 depending on the type of the return value. In all the other cases
1285 the result is stored in r0, left-justified. */
1286
1287 static void
1288 sh64_store_return_value (struct type *type, struct regcache *regcache,
1289 const gdb_byte *valbuf)
1290 {
1291 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1292 gdb_byte buf[64]; /* more than enough... */
1293 int len = TYPE_LENGTH (type);
1294
1295 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1296 {
1297 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1298 for (i = 0; i < len; i += 4)
1299 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1300 regcache_raw_write (regcache, regnum++,
1301 valbuf + len - 4 - i);
1302 else
1303 regcache_raw_write (regcache, regnum++, valbuf + i);
1304 }
1305 else
1306 {
1307 int return_register = DEFAULT_RETURN_REGNUM;
1308 int offset = 0;
1309
1310 if (len <= register_size (gdbarch, return_register))
1311 {
1312 /* Pad with zeros. */
1313 memset (buf, 0, register_size (gdbarch, return_register));
1314 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1315 offset = 0; /*register_size (gdbarch,
1316 return_register) - len;*/
1317 else
1318 offset = register_size (gdbarch, return_register) - len;
1319
1320 memcpy (buf + offset, valbuf, len);
1321 regcache_raw_write (regcache, return_register, buf);
1322 }
1323 else
1324 regcache_raw_write (regcache, return_register, valbuf);
1325 }
1326 }
1327
1328 static enum return_value_convention
1329 sh64_return_value (struct gdbarch *gdbarch, struct value *function,
1330 struct type *type, struct regcache *regcache,
1331 gdb_byte *readbuf, const gdb_byte *writebuf)
1332 {
1333 if (sh64_use_struct_convention (type))
1334 return RETURN_VALUE_STRUCT_CONVENTION;
1335 if (writebuf)
1336 sh64_store_return_value (type, regcache, writebuf);
1337 else if (readbuf)
1338 sh64_extract_return_value (type, regcache, readbuf);
1339 return RETURN_VALUE_REGISTER_CONVENTION;
1340 }
1341
1342 /* *INDENT-OFF* */
1343 /*
1344 SH MEDIA MODE (ISA 32)
1345 general registers (64-bit) 0-63
1346 0 r0, r1, r2, r3, r4, r5, r6, r7,
1347 64 r8, r9, r10, r11, r12, r13, r14, r15,
1348 128 r16, r17, r18, r19, r20, r21, r22, r23,
1349 192 r24, r25, r26, r27, r28, r29, r30, r31,
1350 256 r32, r33, r34, r35, r36, r37, r38, r39,
1351 320 r40, r41, r42, r43, r44, r45, r46, r47,
1352 384 r48, r49, r50, r51, r52, r53, r54, r55,
1353 448 r56, r57, r58, r59, r60, r61, r62, r63,
1354
1355 pc (64-bit) 64
1356 512 pc,
1357
1358 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1359 520 sr, ssr, spc,
1360
1361 target registers (64-bit) 68-75
1362 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1363
1364 floating point state control register (32-bit) 76
1365 608 fpscr,
1366
1367 single precision floating point registers (32-bit) 77-140
1368 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1369 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1370 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1371 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1372 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1373 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1374 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1375 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1376
1377 TOTAL SPACE FOR REGISTERS: 868 bytes
1378
1379 From here on they are all pseudo registers: no memory allocated.
1380 REGISTER_BYTE returns the register byte for the base register.
1381
1382 double precision registers (pseudo) 141-172
1383 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1384 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1385 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1386 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1387
1388 floating point pairs (pseudo) 173-204
1389 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1390 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1391 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1392 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1393
1394 floating point vectors (4 floating point regs) (pseudo) 205-220
1395 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1396 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1397
1398 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1399 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1400 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1401 pc_c,
1402 gbr_c, mach_c, macl_c, pr_c, t_c,
1403 fpscr_c, fpul_c,
1404 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1405 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1406 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1407 fv0_c, fv4_c, fv8_c, fv12_c
1408 */
1409
1410 static struct type *
1411 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1412 {
1413 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1414 0, high);
1415 }
1416
1417 /* Return the GDB type object for the "standard" data type
1418 of data in register REG_NR. */
1419 static struct type *
1420 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1421 {
1422 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1423 && reg_nr <= FP_LAST_REGNUM)
1424 || (reg_nr >= FP0_C_REGNUM
1425 && reg_nr <= FP_LAST_C_REGNUM))
1426 return builtin_type (gdbarch)->builtin_float;
1427 else if ((reg_nr >= DR0_REGNUM
1428 && reg_nr <= DR_LAST_REGNUM)
1429 || (reg_nr >= DR0_C_REGNUM
1430 && reg_nr <= DR_LAST_C_REGNUM))
1431 return builtin_type (gdbarch)->builtin_double;
1432 else if (reg_nr >= FPP0_REGNUM
1433 && reg_nr <= FPP_LAST_REGNUM)
1434 return sh64_build_float_register_type (gdbarch, 1);
1435 else if ((reg_nr >= FV0_REGNUM
1436 && reg_nr <= FV_LAST_REGNUM)
1437 ||(reg_nr >= FV0_C_REGNUM
1438 && reg_nr <= FV_LAST_C_REGNUM))
1439 return sh64_build_float_register_type (gdbarch, 3);
1440 else if (reg_nr == FPSCR_REGNUM)
1441 return builtin_type (gdbarch)->builtin_int;
1442 else if (reg_nr >= R0_C_REGNUM
1443 && reg_nr < FP0_C_REGNUM)
1444 return builtin_type (gdbarch)->builtin_int;
1445 else
1446 return builtin_type (gdbarch)->builtin_long_long;
1447 }
1448
1449 static void
1450 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1451 struct type *type, gdb_byte *from, gdb_byte *to)
1452 {
1453 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1454 {
1455 /* It is a no-op. */
1456 memcpy (to, from, register_size (gdbarch, regnum));
1457 return;
1458 }
1459
1460 if ((regnum >= DR0_REGNUM
1461 && regnum <= DR_LAST_REGNUM)
1462 || (regnum >= DR0_C_REGNUM
1463 && regnum <= DR_LAST_C_REGNUM))
1464 {
1465 DOUBLEST val;
1466 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1467 from, &val);
1468 store_typed_floating (to, type, val);
1469 }
1470 else
1471 error (_("sh64_register_convert_to_virtual "
1472 "called with non DR register number"));
1473 }
1474
1475 static void
1476 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1477 int regnum, const void *from, void *to)
1478 {
1479 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1480 {
1481 /* It is a no-op. */
1482 memcpy (to, from, register_size (gdbarch, regnum));
1483 return;
1484 }
1485
1486 if ((regnum >= DR0_REGNUM
1487 && regnum <= DR_LAST_REGNUM)
1488 || (regnum >= DR0_C_REGNUM
1489 && regnum <= DR_LAST_C_REGNUM))
1490 {
1491 DOUBLEST val = extract_typed_floating (from, type);
1492 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1493 &val, to);
1494 }
1495 else
1496 error (_("sh64_register_convert_to_raw called "
1497 "with non DR register number"));
1498 }
1499
1500 /* Concatenate PORTIONS contiguous raw registers starting at
1501 BASE_REGNUM into BUFFER. */
1502
1503 static enum register_status
1504 pseudo_register_read_portions (struct gdbarch *gdbarch,
1505 struct regcache *regcache,
1506 int portions,
1507 int base_regnum, gdb_byte *buffer)
1508 {
1509 int portion;
1510
1511 for (portion = 0; portion < portions; portion++)
1512 {
1513 enum register_status status;
1514 gdb_byte *b;
1515
1516 b = buffer + register_size (gdbarch, base_regnum) * portion;
1517 status = regcache_raw_read (regcache, base_regnum + portion, b);
1518 if (status != REG_VALID)
1519 return status;
1520 }
1521
1522 return REG_VALID;
1523 }
1524
1525 static enum register_status
1526 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1527 int reg_nr, gdb_byte *buffer)
1528 {
1529 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1530 int base_regnum;
1531 int offset = 0;
1532 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1533 enum register_status status;
1534
1535 if (reg_nr >= DR0_REGNUM
1536 && reg_nr <= DR_LAST_REGNUM)
1537 {
1538 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1539
1540 /* Build the value in the provided buffer. */
1541 /* DR regs are double precision registers obtained by
1542 concatenating 2 single precision floating point registers. */
1543 status = pseudo_register_read_portions (gdbarch, regcache,
1544 2, base_regnum, temp_buffer);
1545 if (status == REG_VALID)
1546 {
1547 /* We must pay attention to the endianness. */
1548 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1549 register_type (gdbarch, reg_nr),
1550 temp_buffer, buffer);
1551 }
1552
1553 return status;
1554 }
1555
1556 else if (reg_nr >= FPP0_REGNUM
1557 && reg_nr <= FPP_LAST_REGNUM)
1558 {
1559 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1560
1561 /* Build the value in the provided buffer. */
1562 /* FPP regs are pairs of single precision registers obtained by
1563 concatenating 2 single precision floating point registers. */
1564 return pseudo_register_read_portions (gdbarch, regcache,
1565 2, base_regnum, buffer);
1566 }
1567
1568 else if (reg_nr >= FV0_REGNUM
1569 && reg_nr <= FV_LAST_REGNUM)
1570 {
1571 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1572
1573 /* Build the value in the provided buffer. */
1574 /* FV regs are vectors of single precision registers obtained by
1575 concatenating 4 single precision floating point registers. */
1576 return pseudo_register_read_portions (gdbarch, regcache,
1577 4, base_regnum, buffer);
1578 }
1579
1580 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1581 else if (reg_nr >= R0_C_REGNUM
1582 && reg_nr <= T_C_REGNUM)
1583 {
1584 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1585
1586 /* Build the value in the provided buffer. */
1587 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1588 if (status != REG_VALID)
1589 return status;
1590 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1591 offset = 4;
1592 memcpy (buffer,
1593 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1594 return REG_VALID;
1595 }
1596
1597 else if (reg_nr >= FP0_C_REGNUM
1598 && reg_nr <= FP_LAST_C_REGNUM)
1599 {
1600 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1601
1602 /* Build the value in the provided buffer. */
1603 /* Floating point registers map 1-1 to the media fp regs,
1604 they have the same size and endianness. */
1605 return regcache_raw_read (regcache, base_regnum, buffer);
1606 }
1607
1608 else if (reg_nr >= DR0_C_REGNUM
1609 && reg_nr <= DR_LAST_C_REGNUM)
1610 {
1611 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1612
1613 /* DR_C regs are double precision registers obtained by
1614 concatenating 2 single precision floating point registers. */
1615 status = pseudo_register_read_portions (gdbarch, regcache,
1616 2, base_regnum, temp_buffer);
1617 if (status == REG_VALID)
1618 {
1619 /* We must pay attention to the endianness. */
1620 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1621 register_type (gdbarch, reg_nr),
1622 temp_buffer, buffer);
1623 }
1624 return status;
1625 }
1626
1627 else if (reg_nr >= FV0_C_REGNUM
1628 && reg_nr <= FV_LAST_C_REGNUM)
1629 {
1630 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1631
1632 /* Build the value in the provided buffer. */
1633 /* FV_C regs are vectors of single precision registers obtained by
1634 concatenating 4 single precision floating point registers. */
1635 return pseudo_register_read_portions (gdbarch, regcache,
1636 4, base_regnum, buffer);
1637 }
1638
1639 else if (reg_nr == FPSCR_C_REGNUM)
1640 {
1641 int fpscr_base_regnum;
1642 int sr_base_regnum;
1643 unsigned int fpscr_value;
1644 unsigned int sr_value;
1645 unsigned int fpscr_c_value;
1646 unsigned int fpscr_c_part1_value;
1647 unsigned int fpscr_c_part2_value;
1648
1649 fpscr_base_regnum = FPSCR_REGNUM;
1650 sr_base_regnum = SR_REGNUM;
1651
1652 /* Build the value in the provided buffer. */
1653 /* FPSCR_C is a very weird register that contains sparse bits
1654 from the FPSCR and the SR architectural registers.
1655 Specifically: */
1656 /* *INDENT-OFF* */
1657 /*
1658 FPSRC_C bit
1659 0 Bit 0 of FPSCR
1660 1 reserved
1661 2-17 Bit 2-18 of FPSCR
1662 18-20 Bits 12,13,14 of SR
1663 21-31 reserved
1664 */
1665 /* *INDENT-ON* */
1666 /* Get FPSCR into a local buffer. */
1667 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1668 if (status != REG_VALID)
1669 return status;
1670 /* Get value as an int. */
1671 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1672 /* Get SR into a local buffer */
1673 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1674 if (status != REG_VALID)
1675 return status;
1676 /* Get value as an int. */
1677 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1678 /* Build the new value. */
1679 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1680 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1681 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1682 /* Store that in out buffer!!! */
1683 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1684 /* FIXME There is surely an endianness gotcha here. */
1685
1686 return REG_VALID;
1687 }
1688
1689 else if (reg_nr == FPUL_C_REGNUM)
1690 {
1691 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1692
1693 /* FPUL_C register is floating point register 32,
1694 same size, same endianness. */
1695 return regcache_raw_read (regcache, base_regnum, buffer);
1696 }
1697 else
1698 gdb_assert_not_reached ("invalid pseudo register number");
1699 }
1700
1701 static void
1702 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1703 int reg_nr, const gdb_byte *buffer)
1704 {
1705 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1706 int base_regnum, portion;
1707 int offset;
1708 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1709
1710 if (reg_nr >= DR0_REGNUM
1711 && reg_nr <= DR_LAST_REGNUM)
1712 {
1713 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1714 /* We must pay attention to the endianness. */
1715 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1716 reg_nr,
1717 buffer, temp_buffer);
1718
1719 /* Write the real regs for which this one is an alias. */
1720 for (portion = 0; portion < 2; portion++)
1721 regcache_raw_write (regcache, base_regnum + portion,
1722 (temp_buffer
1723 + register_size (gdbarch,
1724 base_regnum) * portion));
1725 }
1726
1727 else if (reg_nr >= FPP0_REGNUM
1728 && reg_nr <= FPP_LAST_REGNUM)
1729 {
1730 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1731
1732 /* Write the real regs for which this one is an alias. */
1733 for (portion = 0; portion < 2; portion++)
1734 regcache_raw_write (regcache, base_regnum + portion,
1735 (buffer + register_size (gdbarch,
1736 base_regnum) * portion));
1737 }
1738
1739 else if (reg_nr >= FV0_REGNUM
1740 && reg_nr <= FV_LAST_REGNUM)
1741 {
1742 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1743
1744 /* Write the real regs for which this one is an alias. */
1745 for (portion = 0; portion < 4; portion++)
1746 regcache_raw_write (regcache, base_regnum + portion,
1747 (buffer + register_size (gdbarch,
1748 base_regnum) * portion));
1749 }
1750
1751 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1752 register but only 4 bytes of it. */
1753 else if (reg_nr >= R0_C_REGNUM
1754 && reg_nr <= T_C_REGNUM)
1755 {
1756 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1757 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1758 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1759 offset = 4;
1760 else
1761 offset = 0;
1762 /* Let's read the value of the base register into a temporary
1763 buffer, so that overwriting the last four bytes with the new
1764 value of the pseudo will leave the upper 4 bytes unchanged. */
1765 regcache_raw_read (regcache, base_regnum, temp_buffer);
1766 /* Write as an 8 byte quantity. */
1767 memcpy (temp_buffer + offset, buffer, 4);
1768 regcache_raw_write (regcache, base_regnum, temp_buffer);
1769 }
1770
1771 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1772 registers. Both are 4 bytes. */
1773 else if (reg_nr >= FP0_C_REGNUM
1774 && reg_nr <= FP_LAST_C_REGNUM)
1775 {
1776 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1777 regcache_raw_write (regcache, base_regnum, buffer);
1778 }
1779
1780 else if (reg_nr >= DR0_C_REGNUM
1781 && reg_nr <= DR_LAST_C_REGNUM)
1782 {
1783 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1784 for (portion = 0; portion < 2; portion++)
1785 {
1786 /* We must pay attention to the endianness. */
1787 sh64_register_convert_to_raw (gdbarch,
1788 register_type (gdbarch, reg_nr),
1789 reg_nr,
1790 buffer, temp_buffer);
1791
1792 regcache_raw_write (regcache, base_regnum + portion,
1793 (temp_buffer
1794 + register_size (gdbarch,
1795 base_regnum) * portion));
1796 }
1797 }
1798
1799 else if (reg_nr >= FV0_C_REGNUM
1800 && reg_nr <= FV_LAST_C_REGNUM)
1801 {
1802 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1803
1804 for (portion = 0; portion < 4; portion++)
1805 {
1806 regcache_raw_write (regcache, base_regnum + portion,
1807 (buffer
1808 + register_size (gdbarch,
1809 base_regnum) * portion));
1810 }
1811 }
1812
1813 else if (reg_nr == FPSCR_C_REGNUM)
1814 {
1815 int fpscr_base_regnum;
1816 int sr_base_regnum;
1817 unsigned int fpscr_value;
1818 unsigned int sr_value;
1819 unsigned int old_fpscr_value;
1820 unsigned int old_sr_value;
1821 unsigned int fpscr_c_value;
1822 unsigned int fpscr_mask;
1823 unsigned int sr_mask;
1824
1825 fpscr_base_regnum = FPSCR_REGNUM;
1826 sr_base_regnum = SR_REGNUM;
1827
1828 /* FPSCR_C is a very weird register that contains sparse bits
1829 from the FPSCR and the SR architectural registers.
1830 Specifically: */
1831 /* *INDENT-OFF* */
1832 /*
1833 FPSRC_C bit
1834 0 Bit 0 of FPSCR
1835 1 reserved
1836 2-17 Bit 2-18 of FPSCR
1837 18-20 Bits 12,13,14 of SR
1838 21-31 reserved
1839 */
1840 /* *INDENT-ON* */
1841 /* Get value as an int. */
1842 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1843
1844 /* Build the new values. */
1845 fpscr_mask = 0x0003fffd;
1846 sr_mask = 0x001c0000;
1847
1848 fpscr_value = fpscr_c_value & fpscr_mask;
1849 sr_value = (fpscr_value & sr_mask) >> 6;
1850
1851 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1852 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1853 old_fpscr_value &= 0xfffc0002;
1854 fpscr_value |= old_fpscr_value;
1855 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1856 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1857
1858 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1859 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1860 old_sr_value &= 0xffff8fff;
1861 sr_value |= old_sr_value;
1862 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1863 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1864 }
1865
1866 else if (reg_nr == FPUL_C_REGNUM)
1867 {
1868 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1869 regcache_raw_write (regcache, base_regnum, buffer);
1870 }
1871 }
1872
1873 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1874 shmedia REGISTERS. */
1875 /* Control registers, compact mode. */
1876 static void
1877 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1878 int cr_c_regnum)
1879 {
1880 switch (cr_c_regnum)
1881 {
1882 case PC_C_REGNUM:
1883 fprintf_filtered (file, "pc_c\t0x%08x\n",
1884 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1885 break;
1886 case GBR_C_REGNUM:
1887 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1888 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1889 break;
1890 case MACH_C_REGNUM:
1891 fprintf_filtered (file, "mach_c\t0x%08x\n",
1892 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1893 break;
1894 case MACL_C_REGNUM:
1895 fprintf_filtered (file, "macl_c\t0x%08x\n",
1896 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1897 break;
1898 case PR_C_REGNUM:
1899 fprintf_filtered (file, "pr_c\t0x%08x\n",
1900 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1901 break;
1902 case T_C_REGNUM:
1903 fprintf_filtered (file, "t_c\t0x%08x\n",
1904 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1905 break;
1906 case FPSCR_C_REGNUM:
1907 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1908 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1909 break;
1910 case FPUL_C_REGNUM:
1911 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1912 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1913 break;
1914 }
1915 }
1916
1917 static void
1918 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1919 struct frame_info *frame, int regnum)
1920 { /* Do values for FP (float) regs. */
1921 unsigned char *raw_buffer;
1922 double flt; /* Double extracted from raw hex data. */
1923 int inv;
1924 int j;
1925
1926 /* Allocate space for the float. */
1927 raw_buffer = (unsigned char *)
1928 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
1929
1930 /* Get the data in raw format. */
1931 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
1932 error (_("can't read register %d (%s)"),
1933 regnum, gdbarch_register_name (gdbarch, regnum));
1934
1935 /* Get the register as a number. */
1936 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1937 raw_buffer, &inv);
1938
1939 /* Print the name and some spaces. */
1940 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
1941 print_spaces_filtered (15 - strlen (gdbarch_register_name
1942 (gdbarch, regnum)), file);
1943
1944 /* Print the value. */
1945 if (inv)
1946 fprintf_filtered (file, "<invalid float>");
1947 else
1948 fprintf_filtered (file, "%-10.9g", flt);
1949
1950 /* Print the fp register as hex. */
1951 fprintf_filtered (file, "\t(raw ");
1952 print_hex_chars (file, raw_buffer,
1953 register_size (gdbarch, regnum),
1954 gdbarch_byte_order (gdbarch));
1955 fprintf_filtered (file, ")");
1956 fprintf_filtered (file, "\n");
1957 }
1958
1959 static void
1960 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1961 struct frame_info *frame, int regnum)
1962 {
1963 /* All the sh64-compact mode registers are pseudo registers. */
1964
1965 if (regnum < gdbarch_num_regs (gdbarch)
1966 || regnum >= gdbarch_num_regs (gdbarch)
1967 + NUM_PSEUDO_REGS_SH_MEDIA
1968 + NUM_PSEUDO_REGS_SH_COMPACT)
1969 internal_error (__FILE__, __LINE__,
1970 _("Invalid pseudo register number %d\n"), regnum);
1971
1972 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1973 {
1974 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
1975 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1976 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1977 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1978 }
1979
1980 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1981 {
1982 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1983 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1984 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1985 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1986 }
1987
1988 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1989 {
1990 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
1991 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1992 regnum - FV0_REGNUM,
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1995 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1996 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1997 }
1998
1999 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2000 {
2001 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2002 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2003 regnum - FV0_C_REGNUM,
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2005 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2006 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2007 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2008 }
2009
2010 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2011 {
2012 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2013 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2014 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2015 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2016 }
2017
2018 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2019 {
2020 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2021 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2022 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2023 }
2024 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2025 /* This should work also for pseudoregs. */
2026 sh64_do_fp_register (gdbarch, file, frame, regnum);
2027 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2028 sh64_do_cr_c_register_info (file, frame, regnum);
2029 }
2030
2031 static void
2032 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2033 struct frame_info *frame, int regnum)
2034 {
2035 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2036 struct value_print_options opts;
2037
2038 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2039 print_spaces_filtered (15 - strlen (gdbarch_register_name
2040 (gdbarch, regnum)), file);
2041
2042 /* Get the data in raw format. */
2043 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
2044 {
2045 fprintf_filtered (file, "*value not available*\n");
2046 return;
2047 }
2048
2049 get_formatted_print_options (&opts, 'x');
2050 opts.deref_ref = 1;
2051 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2052 file, 0, NULL, &opts, current_language);
2053 fprintf_filtered (file, "\t");
2054 get_formatted_print_options (&opts, 0);
2055 opts.deref_ref = 1;
2056 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2057 file, 0, NULL, &opts, current_language);
2058 fprintf_filtered (file, "\n");
2059 }
2060
2061 static void
2062 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2063 struct frame_info *frame, int regnum)
2064 {
2065 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2066 + gdbarch_num_pseudo_regs (gdbarch))
2067 internal_error (__FILE__, __LINE__,
2068 _("Invalid register number %d\n"), regnum);
2069
2070 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2071 {
2072 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2073 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2074 else
2075 sh64_do_register (gdbarch, file, frame, regnum);
2076 }
2077
2078 else if (regnum < gdbarch_num_regs (gdbarch)
2079 + gdbarch_num_pseudo_regs (gdbarch))
2080 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2081 }
2082
2083 static void
2084 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2085 struct frame_info *frame, int regnum,
2086 int fpregs)
2087 {
2088 if (regnum != -1) /* Do one specified register. */
2089 {
2090 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2091 error (_("Not a valid register for the current processor type"));
2092
2093 sh64_print_register (gdbarch, file, frame, regnum);
2094 }
2095 else
2096 /* Do all (or most) registers. */
2097 {
2098 regnum = 0;
2099 while (regnum < gdbarch_num_regs (gdbarch))
2100 {
2101 /* If the register name is empty, it is undefined for this
2102 processor, so don't display anything. */
2103 if (gdbarch_register_name (gdbarch, regnum) == NULL
2104 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2105 {
2106 regnum++;
2107 continue;
2108 }
2109
2110 if (TYPE_CODE (register_type (gdbarch, regnum))
2111 == TYPE_CODE_FLT)
2112 {
2113 if (fpregs)
2114 {
2115 /* true for "INFO ALL-REGISTERS" command. */
2116 sh64_do_fp_register (gdbarch, file, frame, regnum);
2117 regnum ++;
2118 }
2119 else
2120 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2121 /* skip FP regs */
2122 }
2123 else
2124 {
2125 sh64_do_register (gdbarch, file, frame, regnum);
2126 regnum++;
2127 }
2128 }
2129
2130 if (fpregs)
2131 while (regnum < gdbarch_num_regs (gdbarch)
2132 + gdbarch_num_pseudo_regs (gdbarch))
2133 {
2134 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2135 regnum++;
2136 }
2137 }
2138 }
2139
2140 static void
2141 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2142 struct ui_file *file,
2143 struct frame_info *frame, int regnum,
2144 int fpregs)
2145 {
2146 if (regnum != -1) /* Do one specified register. */
2147 {
2148 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2149 error (_("Not a valid register for the current processor type"));
2150
2151 if (regnum >= 0 && regnum < R0_C_REGNUM)
2152 error (_("Not a valid register for the current processor mode."));
2153
2154 sh64_print_register (gdbarch, file, frame, regnum);
2155 }
2156 else
2157 /* Do all compact registers. */
2158 {
2159 regnum = R0_C_REGNUM;
2160 while (regnum < gdbarch_num_regs (gdbarch)
2161 + gdbarch_num_pseudo_regs (gdbarch))
2162 {
2163 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2164 regnum++;
2165 }
2166 }
2167 }
2168
2169 static void
2170 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2171 struct frame_info *frame, int regnum, int fpregs)
2172 {
2173 if (pc_is_isa32 (get_frame_pc (frame)))
2174 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2175 else
2176 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2177 }
2178
2179 static struct sh64_frame_cache *
2180 sh64_alloc_frame_cache (void)
2181 {
2182 struct sh64_frame_cache *cache;
2183 int i;
2184
2185 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2186
2187 /* Base address. */
2188 cache->base = 0;
2189 cache->saved_sp = 0;
2190 cache->sp_offset = 0;
2191 cache->pc = 0;
2192
2193 /* Frameless until proven otherwise. */
2194 cache->uses_fp = 0;
2195
2196 /* Saved registers. We initialize these to -1 since zero is a valid
2197 offset (that's where fp is supposed to be stored). */
2198 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2199 {
2200 cache->saved_regs[i] = -1;
2201 }
2202
2203 return cache;
2204 }
2205
2206 static struct sh64_frame_cache *
2207 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2208 {
2209 struct gdbarch *gdbarch;
2210 struct sh64_frame_cache *cache;
2211 CORE_ADDR current_pc;
2212 int i;
2213
2214 if (*this_cache)
2215 return *this_cache;
2216
2217 gdbarch = get_frame_arch (this_frame);
2218 cache = sh64_alloc_frame_cache ();
2219 *this_cache = cache;
2220
2221 current_pc = get_frame_pc (this_frame);
2222 cache->media_mode = pc_is_isa32 (current_pc);
2223
2224 /* In principle, for normal frames, fp holds the frame pointer,
2225 which holds the base address for the current stack frame.
2226 However, for functions that don't need it, the frame pointer is
2227 optional. For these "frameless" functions the frame pointer is
2228 actually the frame pointer of the calling frame. */
2229 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2230 if (cache->base == 0)
2231 return cache;
2232
2233 cache->pc = get_frame_func (this_frame);
2234 if (cache->pc != 0)
2235 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2236
2237 if (!cache->uses_fp)
2238 {
2239 /* We didn't find a valid frame, which means that CACHE->base
2240 currently holds the frame pointer for our calling frame. If
2241 we're at the start of a function, or somewhere half-way its
2242 prologue, the function's frame probably hasn't been fully
2243 setup yet. Try to reconstruct the base address for the stack
2244 frame by looking at the stack pointer. For truly "frameless"
2245 functions this might work too. */
2246 cache->base = get_frame_register_unsigned
2247 (this_frame, gdbarch_sp_regnum (gdbarch));
2248 }
2249
2250 /* Now that we have the base address for the stack frame we can
2251 calculate the value of sp in the calling frame. */
2252 cache->saved_sp = cache->base + cache->sp_offset;
2253
2254 /* Adjust all the saved registers such that they contain addresses
2255 instead of offsets. */
2256 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2257 if (cache->saved_regs[i] != -1)
2258 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2259
2260 return cache;
2261 }
2262
2263 static struct value *
2264 sh64_frame_prev_register (struct frame_info *this_frame,
2265 void **this_cache, int regnum)
2266 {
2267 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2268 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2269 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2270
2271 gdb_assert (regnum >= 0);
2272
2273 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2274 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2275
2276 /* The PC of the previous frame is stored in the PR register of
2277 the current frame. Frob regnum so that we pull the value from
2278 the correct place. */
2279 if (regnum == gdbarch_pc_regnum (gdbarch))
2280 regnum = PR_REGNUM;
2281
2282 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2283 {
2284 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2285 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2286 {
2287 CORE_ADDR val;
2288 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2289 4, byte_order);
2290 return frame_unwind_got_constant (this_frame, regnum, val);
2291 }
2292
2293 return frame_unwind_got_memory (this_frame, regnum,
2294 cache->saved_regs[regnum]);
2295 }
2296
2297 return frame_unwind_got_register (this_frame, regnum, regnum);
2298 }
2299
2300 static void
2301 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2302 struct frame_id *this_id)
2303 {
2304 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2305
2306 /* This marks the outermost frame. */
2307 if (cache->base == 0)
2308 return;
2309
2310 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2311 }
2312
2313 static const struct frame_unwind sh64_frame_unwind = {
2314 NORMAL_FRAME,
2315 default_frame_unwind_stop_reason,
2316 sh64_frame_this_id,
2317 sh64_frame_prev_register,
2318 NULL,
2319 default_frame_sniffer
2320 };
2321
2322 static CORE_ADDR
2323 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2324 {
2325 return frame_unwind_register_unsigned (next_frame,
2326 gdbarch_sp_regnum (gdbarch));
2327 }
2328
2329 static CORE_ADDR
2330 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2331 {
2332 return frame_unwind_register_unsigned (next_frame,
2333 gdbarch_pc_regnum (gdbarch));
2334 }
2335
2336 static struct frame_id
2337 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2338 {
2339 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2340 gdbarch_sp_regnum (gdbarch));
2341 return frame_id_build (sp, get_frame_pc (this_frame));
2342 }
2343
2344 static CORE_ADDR
2345 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2346 {
2347 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2348
2349 return cache->base;
2350 }
2351
2352 static const struct frame_base sh64_frame_base = {
2353 &sh64_frame_unwind,
2354 sh64_frame_base_address,
2355 sh64_frame_base_address,
2356 sh64_frame_base_address
2357 };
2358
2359
2360 struct gdbarch *
2361 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2362 {
2363 struct gdbarch *gdbarch;
2364 struct gdbarch_tdep *tdep;
2365
2366 /* If there is already a candidate, use it. */
2367 arches = gdbarch_list_lookup_by_info (arches, &info);
2368 if (arches != NULL)
2369 return arches->gdbarch;
2370
2371 /* None found, create a new architecture from the information
2372 provided. */
2373 tdep = XNEW (struct gdbarch_tdep);
2374 gdbarch = gdbarch_alloc (&info, tdep);
2375
2376 /* Determine the ABI */
2377 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2378 {
2379 /* If the ABI is the 64-bit one, it can only be sh-media. */
2380 tdep->sh_abi = SH_ABI_64;
2381 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2382 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2383 }
2384 else
2385 {
2386 /* If the ABI is the 32-bit one it could be either media or
2387 compact. */
2388 tdep->sh_abi = SH_ABI_32;
2389 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2390 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2391 }
2392
2393 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2394 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2395 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2396 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2397 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2398 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2399 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2400
2401 /* The number of real registers is the same whether we are in
2402 ISA16(compact) or ISA32(media). */
2403 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2404 set_gdbarch_sp_regnum (gdbarch, 15);
2405 set_gdbarch_pc_regnum (gdbarch, 64);
2406 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2407 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2408 + NUM_PSEUDO_REGS_SH_COMPACT);
2409
2410 set_gdbarch_register_name (gdbarch, sh64_register_name);
2411 set_gdbarch_register_type (gdbarch, sh64_register_type);
2412
2413 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2414 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2415
2416 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2417
2418 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2419 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2420
2421 set_gdbarch_return_value (gdbarch, sh64_return_value);
2422
2423 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2424 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2425
2426 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2427
2428 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2429
2430 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2431 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2432 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2433 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2434 frame_base_set_default (gdbarch, &sh64_frame_base);
2435
2436 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2437
2438 set_gdbarch_elf_make_msymbol_special (gdbarch,
2439 sh64_elf_make_msymbol_special);
2440
2441 /* Hook in ABI-specific overrides, if they have been registered. */
2442 gdbarch_init_osabi (info, gdbarch);
2443
2444 dwarf2_append_unwinders (gdbarch);
2445 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2446
2447 return gdbarch;
2448 }