]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-frv.c
gdb: move store/extract integer functions to extract-store-integer.{c,h}
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2024 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "extract-store-integer.h"
21 #include "gdbcore.h"
22 #include "solib.h"
23 #include "solist.h"
24 #include "frv-tdep.h"
25 #include "objfiles.h"
26 #include "symtab.h"
27 #include "elf/frv.h"
28 #include "gdb_bfd.h"
29 #include "inferior.h"
30
31 /* FR-V pointers are four bytes wide. */
32 enum { FRV_PTR_SIZE = 4 };
33
34 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
35
36 /* External versions; the size and alignment of the fields should be
37 the same as those on the target. When loaded, the placement of
38 the bits in each field will be the same as on the target. */
39 typedef gdb_byte ext_Elf32_Half[2];
40 typedef gdb_byte ext_Elf32_Addr[4];
41 typedef gdb_byte ext_Elf32_Word[4];
42
43 struct ext_elf32_fdpic_loadseg
44 {
45 /* Core address to which the segment is mapped. */
46 ext_Elf32_Addr addr;
47 /* VMA recorded in the program header. */
48 ext_Elf32_Addr p_vaddr;
49 /* Size of this segment in memory. */
50 ext_Elf32_Word p_memsz;
51 };
52
53 struct ext_elf32_fdpic_loadmap {
54 /* Protocol version number, must be zero. */
55 ext_Elf32_Half version;
56 /* Number of segments in this map. */
57 ext_Elf32_Half nsegs;
58 /* The actual memory map. */
59 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
60 };
61
62 /* Internal versions; the types are GDB types and the data in each
63 of the fields is (or will be) decoded from the external struct
64 for ease of consumption. */
65 struct int_elf32_fdpic_loadseg
66 {
67 /* Core address to which the segment is mapped. */
68 CORE_ADDR addr;
69 /* VMA recorded in the program header. */
70 CORE_ADDR p_vaddr;
71 /* Size of this segment in memory. */
72 long p_memsz;
73 };
74
75 struct int_elf32_fdpic_loadmap {
76 /* Protocol version number, must be zero. */
77 int version;
78 /* Number of segments in this map. */
79 int nsegs;
80 /* The actual memory map. */
81 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
82 };
83
84 /* Given address LDMADDR, fetch and decode the loadmap at that address.
85 Return NULL if there is a problem reading the target memory or if
86 there doesn't appear to be a loadmap at the given address. The
87 allocated space (representing the loadmap) returned by this
88 function may be freed via a single call to xfree(). */
89
90 static struct int_elf32_fdpic_loadmap *
91 fetch_loadmap (CORE_ADDR ldmaddr)
92 {
93 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
94 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
95 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
96 struct int_elf32_fdpic_loadmap *int_ldmbuf;
97 int ext_ldmbuf_size, int_ldmbuf_size;
98 int version, seg, nsegs;
99
100 /* Fetch initial portion of the loadmap. */
101 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
102 sizeof ext_ldmbuf_partial))
103 {
104 /* Problem reading the target's memory. */
105 return NULL;
106 }
107
108 /* Extract the version. */
109 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
110 sizeof ext_ldmbuf_partial.version,
111 byte_order);
112 if (version != 0)
113 {
114 /* We only handle version 0. */
115 return NULL;
116 }
117
118 /* Extract the number of segments. */
119 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
120 sizeof ext_ldmbuf_partial.nsegs,
121 byte_order);
122
123 if (nsegs <= 0)
124 return NULL;
125
126 /* Allocate space for the complete (external) loadmap. */
127 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
128 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
129 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
130
131 /* Copy over the portion of the loadmap that's already been read. */
132 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
133
134 /* Read the rest of the loadmap from the target. */
135 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
136 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
137 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
138 {
139 /* Couldn't read rest of the loadmap. */
140 xfree (ext_ldmbuf);
141 return NULL;
142 }
143
144 /* Allocate space into which to put information extract from the
145 external loadsegs. I.e, allocate the internal loadsegs. */
146 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
147 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
148 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
149
150 /* Place extracted information in internal structs. */
151 int_ldmbuf->version = version;
152 int_ldmbuf->nsegs = nsegs;
153 for (seg = 0; seg < nsegs; seg++)
154 {
155 int_ldmbuf->segs[seg].addr
156 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
157 sizeof (ext_ldmbuf->segs[seg].addr),
158 byte_order);
159 int_ldmbuf->segs[seg].p_vaddr
160 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
161 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
162 byte_order);
163 int_ldmbuf->segs[seg].p_memsz
164 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
165 sizeof (ext_ldmbuf->segs[seg].p_memsz),
166 byte_order);
167 }
168
169 xfree (ext_ldmbuf);
170 return int_ldmbuf;
171 }
172
173 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
174
175 typedef gdb_byte ext_ptr[4];
176
177 struct ext_elf32_fdpic_loadaddr
178 {
179 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
180 ext_ptr got_value; /* void *got_value; */
181 };
182
183 struct ext_link_map
184 {
185 struct ext_elf32_fdpic_loadaddr l_addr;
186
187 /* Absolute file name object was found in. */
188 ext_ptr l_name; /* char *l_name; */
189
190 /* Dynamic section of the shared object. */
191 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
192
193 /* Chain of loaded objects. */
194 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
195 };
196
197 /* Link map info to include in an allocated so_list entry. */
198
199 struct lm_info_frv final : public lm_info
200 {
201 ~lm_info_frv ()
202 {
203 xfree (this->map);
204 xfree (this->dyn_syms);
205 xfree (this->dyn_relocs);
206 }
207
208 /* The loadmap, digested into an easier to use form. */
209 int_elf32_fdpic_loadmap *map = NULL;
210 /* The GOT address for this link map entry. */
211 CORE_ADDR got_value = 0;
212 /* The link map address, needed for frv_fetch_objfile_link_map(). */
213 CORE_ADDR lm_addr = 0;
214
215 /* Cached dynamic symbol table and dynamic relocs initialized and
216 used only by find_canonical_descriptor_in_load_object().
217
218 Note: kevinb/2004-02-26: It appears that calls to
219 bfd_canonicalize_dynamic_reloc() will use the same symbols as
220 those supplied to the first call to this function. Therefore,
221 it's important to NOT free the asymbol ** data structure
222 supplied to the first call. Thus the caching of the dynamic
223 symbols (dyn_syms) is critical for correct operation. The
224 caching of the dynamic relocations could be dispensed with. */
225 asymbol **dyn_syms = NULL;
226 arelent **dyn_relocs = NULL;
227 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
228 };
229
230 /* The load map, got value, etc. are not available from the chain
231 of loaded shared objects. ``main_executable_lm_info'' provides
232 a way to get at this information so that it doesn't need to be
233 frequently recomputed. Initialized by frv_relocate_main_executable(). */
234 static lm_info_frv *main_executable_lm_info;
235
236 static void frv_relocate_main_executable (void);
237 static CORE_ADDR main_got (void);
238 static int enable_break2 (void);
239
240 /* Implement the "open_symbol_file_object" solib_ops method. */
241
242 static int
243 open_symbol_file_object (int from_tty)
244 {
245 /* Unimplemented. */
246 return 0;
247 }
248
249 /* Cached value for lm_base(), below. */
250 static CORE_ADDR lm_base_cache = 0;
251
252 /* Link map address for main module. */
253 static CORE_ADDR main_lm_addr = 0;
254
255 /* Return the address from which the link map chain may be found. On
256 the FR-V, this may be found in a number of ways. Assuming that the
257 main executable has already been relocated, the easiest way to find
258 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
259 pointer to the start of the link map will be located at the word found
260 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
261 reserve area mandated by the ABI.) */
262
263 static CORE_ADDR
264 lm_base (void)
265 {
266 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
267 struct bound_minimal_symbol got_sym;
268 CORE_ADDR addr;
269 gdb_byte buf[FRV_PTR_SIZE];
270
271 /* One of our assumptions is that the main executable has been relocated.
272 Bail out if this has not happened. (Note that post_create_inferior()
273 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
274 If we allow this to happen, lm_base_cache will be initialized with
275 a bogus value. */
276 if (main_executable_lm_info == 0)
277 return 0;
278
279 /* If we already have a cached value, return it. */
280 if (lm_base_cache)
281 return lm_base_cache;
282
283 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
284 current_program_space->symfile_object_file);
285 if (got_sym.minsym == 0)
286 {
287 solib_debug_printf ("_GLOBAL_OFFSET_TABLE_ not found.");
288 return 0;
289 }
290
291 addr = got_sym.value_address () + 8;
292
293 solib_debug_printf ("_GLOBAL_OFFSET_TABLE_ + 8 = %s",
294 hex_string_custom (addr, 8));
295
296 if (target_read_memory (addr, buf, sizeof buf) != 0)
297 return 0;
298 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
299
300 solib_debug_printf ("lm_base_cache = %s",
301 hex_string_custom (lm_base_cache, 8));
302
303 return lm_base_cache;
304 }
305
306
307 /* Implement the "current_sos" solib_ops method. */
308
309 static intrusive_list<solib>
310 frv_current_sos ()
311 {
312 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
313 CORE_ADDR lm_addr, mgot;
314 intrusive_list<solib> sos;
315
316 /* Make sure that the main executable has been relocated. This is
317 required in order to find the address of the global offset table,
318 which in turn is used to find the link map info. (See lm_base()
319 for details.)
320
321 Note that the relocation of the main executable is also performed
322 by solib_create_inferior_hook(), however, in the case of core
323 files, this hook is called too late in order to be of benefit to
324 solib_add. solib_add eventually calls this this function,
325 frv_current_sos, and also precedes the call to
326 solib_create_inferior_hook(). (See post_create_inferior() in
327 infcmd.c.) */
328 if (main_executable_lm_info == 0
329 && current_program_space->core_bfd () != nullptr)
330 frv_relocate_main_executable ();
331
332 /* Fetch the GOT corresponding to the main executable. */
333 mgot = main_got ();
334
335 /* Locate the address of the first link map struct. */
336 lm_addr = lm_base ();
337
338 /* We have at least one link map entry. Fetch the lot of them,
339 building the solist chain. */
340 while (lm_addr)
341 {
342 struct ext_link_map lm_buf;
343 CORE_ADDR got_addr;
344
345 solib_debug_printf ("reading link_map entry at %s",
346 hex_string_custom (lm_addr, 8));
347
348 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
349 sizeof (lm_buf)) != 0)
350 {
351 warning (_("frv_current_sos: Unable to read link map entry. "
352 "Shared object chain may be incomplete."));
353 break;
354 }
355
356 got_addr
357 = extract_unsigned_integer (lm_buf.l_addr.got_value,
358 sizeof (lm_buf.l_addr.got_value),
359 byte_order);
360 /* If the got_addr is the same as mgotr, then we're looking at the
361 entry for the main executable. By convention, we don't include
362 this in the list of shared objects. */
363 if (got_addr != mgot)
364 {
365 struct int_elf32_fdpic_loadmap *loadmap;
366 CORE_ADDR addr;
367
368 /* Fetch the load map address. */
369 addr = extract_unsigned_integer (lm_buf.l_addr.map,
370 sizeof lm_buf.l_addr.map,
371 byte_order);
372 loadmap = fetch_loadmap (addr);
373 if (loadmap == NULL)
374 {
375 warning (_("frv_current_sos: Unable to fetch load map. "
376 "Shared object chain may be incomplete."));
377 break;
378 }
379
380 solib *sop = new solib;
381 auto li = std::make_unique<lm_info_frv> ();
382 li->map = loadmap;
383 li->got_value = got_addr;
384 li->lm_addr = lm_addr;
385 /* Fetch the name. */
386 addr = extract_unsigned_integer (lm_buf.l_name,
387 sizeof (lm_buf.l_name),
388 byte_order);
389 gdb::unique_xmalloc_ptr<char> name_buf
390 = target_read_string (addr, SO_NAME_MAX_PATH_SIZE - 1);
391
392 solib_debug_printf ("name = %s", name_buf.get ());
393
394 if (name_buf == nullptr)
395 warning (_("Can't read pathname for link map entry."));
396 else
397 {
398 sop->so_name = name_buf.get ();
399 sop->so_original_name = sop->so_name;
400 }
401
402 sos.push_back (*sop);
403 }
404 else
405 {
406 main_lm_addr = lm_addr;
407 }
408
409 lm_addr = extract_unsigned_integer (lm_buf.l_next,
410 sizeof (lm_buf.l_next), byte_order);
411 }
412
413 enable_break2 ();
414
415 return sos;
416 }
417
418
419 /* Return 1 if PC lies in the dynamic symbol resolution code of the
420 run time loader. */
421
422 static CORE_ADDR interp_text_sect_low;
423 static CORE_ADDR interp_text_sect_high;
424 static CORE_ADDR interp_plt_sect_low;
425 static CORE_ADDR interp_plt_sect_high;
426
427 static int
428 frv_in_dynsym_resolve_code (CORE_ADDR pc)
429 {
430 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
431 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
432 || in_plt_section (pc));
433 }
434
435 /* Given a loadmap and an address, return the displacement needed
436 to relocate the address. */
437
438 static CORE_ADDR
439 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
440 CORE_ADDR addr)
441 {
442 int seg;
443
444 for (seg = 0; seg < map->nsegs; seg++)
445 {
446 if (map->segs[seg].p_vaddr <= addr
447 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
448 {
449 return map->segs[seg].addr - map->segs[seg].p_vaddr;
450 }
451 }
452
453 return 0;
454 }
455
456 /* Print a warning about being unable to set the dynamic linker
457 breakpoint. */
458
459 static void
460 enable_break_failure_warning (void)
461 {
462 warning (_("Unable to find dynamic linker breakpoint function.\n"
463 "GDB will be unable to debug shared library initializers\n"
464 "and track explicitly loaded dynamic code."));
465 }
466
467 /* Arrange for dynamic linker to hit breakpoint.
468
469 The dynamic linkers has, as part of its debugger interface, support
470 for arranging for the inferior to hit a breakpoint after mapping in
471 the shared libraries. This function enables that breakpoint.
472
473 On the FR-V, using the shared library (FDPIC) ABI, the symbol
474 _dl_debug_addr points to the r_debug struct which contains
475 a field called r_brk. r_brk is the address of the function
476 descriptor upon which a breakpoint must be placed. Being a
477 function descriptor, we must extract the entry point in order
478 to set the breakpoint.
479
480 Our strategy will be to get the .interp section from the
481 executable. This section will provide us with the name of the
482 interpreter. We'll open the interpreter and then look up
483 the address of _dl_debug_addr. We then relocate this address
484 using the interpreter's loadmap. Once the relocated address
485 is known, we fetch the value (address) corresponding to r_brk
486 and then use that value to fetch the entry point of the function
487 we're interested in. */
488
489 static int enable_break2_done = 0;
490
491 static int
492 enable_break2 (void)
493 {
494 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
495 asection *interp_sect;
496
497 if (enable_break2_done)
498 return 1;
499
500 interp_text_sect_low = interp_text_sect_high = 0;
501 interp_plt_sect_low = interp_plt_sect_high = 0;
502
503 /* Find the .interp section; if not found, warn the user and drop
504 into the old breakpoint at symbol code. */
505 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
506 ".interp");
507 if (interp_sect)
508 {
509 unsigned int interp_sect_size;
510 char *buf;
511 int status;
512 CORE_ADDR addr, interp_loadmap_addr;
513 gdb_byte addr_buf[FRV_PTR_SIZE];
514 struct int_elf32_fdpic_loadmap *ldm;
515
516 /* Read the contents of the .interp section into a local buffer;
517 the contents specify the dynamic linker this program uses. */
518 interp_sect_size = bfd_section_size (interp_sect);
519 buf = (char *) alloca (interp_sect_size);
520 bfd_get_section_contents (current_program_space->exec_bfd (),
521 interp_sect, buf, 0, interp_sect_size);
522
523 /* Now we need to figure out where the dynamic linker was
524 loaded so that we can load its symbols and place a breakpoint
525 in the dynamic linker itself.
526
527 This address is stored on the stack. However, I've been unable
528 to find any magic formula to find it for Solaris (appears to
529 be trivial on GNU/Linux). Therefore, we have to try an alternate
530 mechanism to find the dynamic linker's base address. */
531
532 gdb_bfd_ref_ptr tmp_bfd;
533 try
534 {
535 tmp_bfd = solib_bfd_open (buf);
536 }
537 catch (const gdb_exception &ex)
538 {
539 }
540
541 if (tmp_bfd == NULL)
542 {
543 enable_break_failure_warning ();
544 return 0;
545 }
546
547 status = frv_fdpic_loadmap_addresses (current_inferior ()->arch (),
548 &interp_loadmap_addr, 0);
549 if (status < 0)
550 {
551 warning (_("Unable to determine dynamic linker loadmap address."));
552 enable_break_failure_warning ();
553 return 0;
554 }
555
556 solib_debug_printf ("interp_loadmap_addr = %s",
557 hex_string_custom (interp_loadmap_addr, 8));
558
559 ldm = fetch_loadmap (interp_loadmap_addr);
560 if (ldm == NULL)
561 {
562 warning (_("Unable to load dynamic linker loadmap at address %s."),
563 hex_string_custom (interp_loadmap_addr, 8));
564 enable_break_failure_warning ();
565 return 0;
566 }
567
568 /* Record the relocated start and end address of the dynamic linker
569 text and plt section for svr4_in_dynsym_resolve_code. */
570 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
571 if (interp_sect)
572 {
573 interp_text_sect_low = bfd_section_vma (interp_sect);
574 interp_text_sect_low
575 += displacement_from_map (ldm, interp_text_sect_low);
576 interp_text_sect_high
577 = interp_text_sect_low + bfd_section_size (interp_sect);
578 }
579 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
580 if (interp_sect)
581 {
582 interp_plt_sect_low = bfd_section_vma (interp_sect);
583 interp_plt_sect_low
584 += displacement_from_map (ldm, interp_plt_sect_low);
585 interp_plt_sect_high =
586 interp_plt_sect_low + bfd_section_size (interp_sect);
587 }
588
589 addr = (gdb_bfd_lookup_symbol
590 (tmp_bfd.get (),
591 [] (const asymbol *sym)
592 {
593 return strcmp (sym->name, "_dl_debug_addr") == 0;
594 }));
595
596 if (addr == 0)
597 {
598 warning (_("Could not find symbol _dl_debug_addr "
599 "in dynamic linker"));
600 enable_break_failure_warning ();
601 return 0;
602 }
603
604 solib_debug_printf ("_dl_debug_addr (prior to relocation) = %s",
605 hex_string_custom (addr, 8));
606
607 addr += displacement_from_map (ldm, addr);
608
609 solib_debug_printf ("_dl_debug_addr (after relocation) = %s",
610 hex_string_custom (addr, 8));
611
612 /* Fetch the address of the r_debug struct. */
613 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
614 {
615 warning (_("Unable to fetch contents of _dl_debug_addr "
616 "(at address %s) from dynamic linker"),
617 hex_string_custom (addr, 8));
618 }
619 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
620
621 solib_debug_printf ("_dl_debug_addr[0..3] = %s",
622 hex_string_custom (addr, 8));
623
624 /* If it's zero, then the ldso hasn't initialized yet, and so
625 there are no shared libs yet loaded. */
626 if (addr == 0)
627 {
628 solib_debug_printf ("ldso not yet initialized");
629 /* Do not warn, but mark to run again. */
630 return 0;
631 }
632
633 /* Fetch the r_brk field. It's 8 bytes from the start of
634 _dl_debug_addr. */
635 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
636 {
637 warning (_("Unable to fetch _dl_debug_addr->r_brk "
638 "(at address %s) from dynamic linker"),
639 hex_string_custom (addr + 8, 8));
640 enable_break_failure_warning ();
641 return 0;
642 }
643 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
644
645 /* Now fetch the function entry point. */
646 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
647 {
648 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
649 "(at address %s) from dynamic linker"),
650 hex_string_custom (addr, 8));
651 enable_break_failure_warning ();
652 return 0;
653 }
654 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
655
656 /* We're done with the loadmap. */
657 xfree (ldm);
658
659 /* Remove all the solib event breakpoints. Their addresses
660 may have changed since the last time we ran the program. */
661 remove_solib_event_breakpoints ();
662
663 /* Now (finally!) create the solib breakpoint. */
664 create_solib_event_breakpoint (current_inferior ()->arch (), addr);
665
666 enable_break2_done = 1;
667
668 return 1;
669 }
670
671 /* Tell the user we couldn't set a dynamic linker breakpoint. */
672 enable_break_failure_warning ();
673
674 /* Failure return. */
675 return 0;
676 }
677
678 static int
679 enable_break (void)
680 {
681 asection *interp_sect;
682 CORE_ADDR entry_point;
683
684 if (current_program_space->symfile_object_file == NULL)
685 {
686 solib_debug_printf ("No symbol file found.");
687 return 0;
688 }
689
690 if (!entry_point_address_query (&entry_point))
691 {
692 solib_debug_printf ("Symbol file has no entry point.");
693 return 0;
694 }
695
696 /* Check for the presence of a .interp section. If there is no
697 such section, the executable is statically linked. */
698
699 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
700 ".interp");
701
702 if (interp_sect == NULL)
703 {
704 solib_debug_printf ("No .interp section found.");
705 return 0;
706 }
707
708 create_solib_event_breakpoint (current_inferior ()->arch (), entry_point);
709
710 solib_debug_printf ("solib event breakpoint placed at entry point: %s",
711 hex_string_custom (entry_point, 8));
712 return 1;
713 }
714
715 static void
716 frv_relocate_main_executable (void)
717 {
718 int status;
719 CORE_ADDR exec_addr, interp_addr;
720 struct int_elf32_fdpic_loadmap *ldm;
721 int changed;
722
723 status = frv_fdpic_loadmap_addresses (current_inferior ()->arch (),
724 &interp_addr, &exec_addr);
725
726 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
727 {
728 /* Not using FDPIC ABI, so do nothing. */
729 return;
730 }
731
732 /* Fetch the loadmap located at ``exec_addr''. */
733 ldm = fetch_loadmap (exec_addr);
734 if (ldm == NULL)
735 error (_("Unable to load the executable's loadmap."));
736
737 delete main_executable_lm_info;
738 main_executable_lm_info = new lm_info_frv;
739 main_executable_lm_info->map = ldm;
740
741 objfile *objf = current_program_space->symfile_object_file;
742 section_offsets new_offsets (objf->section_offsets.size ());
743 changed = 0;
744
745 for (obj_section *osect : objf->sections ())
746 {
747 CORE_ADDR orig_addr, addr, offset;
748 int osect_idx;
749 int seg;
750
751 osect_idx = osect - objf->sections_start;
752
753 /* Current address of section. */
754 addr = osect->addr ();
755 /* Offset from where this section started. */
756 offset = objf->section_offsets[osect_idx];
757 /* Original address prior to any past relocations. */
758 orig_addr = addr - offset;
759
760 for (seg = 0; seg < ldm->nsegs; seg++)
761 {
762 if (ldm->segs[seg].p_vaddr <= orig_addr
763 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
764 {
765 new_offsets[osect_idx]
766 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
767
768 if (new_offsets[osect_idx] != offset)
769 changed = 1;
770 break;
771 }
772 }
773 }
774
775 if (changed)
776 objfile_relocate (objf, new_offsets);
777
778 /* Now that OBJF has been relocated, we can compute the GOT value
779 and stash it away. */
780 main_executable_lm_info->got_value = main_got ();
781 }
782
783 /* Implement the "create_inferior_hook" target_solib_ops method.
784
785 For the FR-V shared library ABI (FDPIC), the main executable needs
786 to be relocated. The shared library breakpoints also need to be
787 enabled. */
788
789 static void
790 frv_solib_create_inferior_hook (int from_tty)
791 {
792 /* Relocate main executable. */
793 frv_relocate_main_executable ();
794
795 /* Enable shared library breakpoints. */
796 if (!enable_break ())
797 {
798 warning (_("shared library handler failed to enable breakpoint"));
799 return;
800 }
801 }
802
803 static void
804 frv_clear_solib (program_space *pspace)
805 {
806 lm_base_cache = 0;
807 enable_break2_done = 0;
808 main_lm_addr = 0;
809
810 delete main_executable_lm_info;
811 main_executable_lm_info = NULL;
812 }
813
814 static void
815 frv_relocate_section_addresses (solib &so, target_section *sec)
816 {
817 int seg;
818 auto *li = gdb::checked_static_cast<lm_info_frv *> (so.lm_info.get ());
819 int_elf32_fdpic_loadmap *map = li->map;
820
821 for (seg = 0; seg < map->nsegs; seg++)
822 {
823 if (map->segs[seg].p_vaddr <= sec->addr
824 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
825 {
826 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
827
828 sec->addr += displ;
829 sec->endaddr += displ;
830 break;
831 }
832 }
833 }
834
835 /* Return the GOT address associated with the main executable. Return
836 0 if it can't be found. */
837
838 static CORE_ADDR
839 main_got (void)
840 {
841 struct bound_minimal_symbol got_sym;
842
843 objfile *objf = current_program_space->symfile_object_file;
844 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, objf);
845 if (got_sym.minsym == 0)
846 return 0;
847
848 return got_sym.value_address ();
849 }
850
851 /* Find the global pointer for the given function address ADDR. */
852
853 CORE_ADDR
854 frv_fdpic_find_global_pointer (CORE_ADDR addr)
855 {
856 for (const solib &so : current_program_space->solibs ())
857 {
858 int seg;
859 auto *li = gdb::checked_static_cast<lm_info_frv *> (so.lm_info.get ());
860 int_elf32_fdpic_loadmap *map = li->map;
861
862 for (seg = 0; seg < map->nsegs; seg++)
863 {
864 if (map->segs[seg].addr <= addr
865 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
866 return li->got_value;
867 }
868 }
869
870 /* Didn't find it in any of the shared objects. So assume it's in the
871 main executable. */
872 return main_got ();
873 }
874
875 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
876 static CORE_ADDR find_canonical_descriptor_in_load_object
877 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
878
879 /* Given a function entry point, attempt to find the canonical descriptor
880 associated with that entry point. Return 0 if no canonical descriptor
881 could be found. */
882
883 CORE_ADDR
884 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
885 {
886 const char *name;
887 CORE_ADDR addr;
888 CORE_ADDR got_value;
889 struct symbol *sym;
890
891 /* Fetch the corresponding global pointer for the entry point. */
892 got_value = frv_fdpic_find_global_pointer (entry_point);
893
894 /* Attempt to find the name of the function. If the name is available,
895 it'll be used as an aid in finding matching functions in the dynamic
896 symbol table. */
897 sym = find_pc_function (entry_point);
898 if (sym == 0)
899 name = 0;
900 else
901 name = sym->linkage_name ();
902
903 /* Check the main executable. */
904 objfile *objf = current_program_space->symfile_object_file;
905 addr = find_canonical_descriptor_in_load_object
906 (entry_point, got_value, name, objf->obfd.get (),
907 main_executable_lm_info);
908
909 /* If descriptor not found via main executable, check each load object
910 in list of shared objects. */
911 if (addr == 0)
912 {
913 for (const solib &so : current_program_space->solibs ())
914 {
915 auto *li = gdb::checked_static_cast<lm_info_frv *> (so.lm_info.get ());
916
917 addr = find_canonical_descriptor_in_load_object
918 (entry_point, got_value, name, so.abfd.get(), li);
919
920 if (addr != 0)
921 break;
922 }
923 }
924
925 return addr;
926 }
927
928 static CORE_ADDR
929 find_canonical_descriptor_in_load_object
930 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
931 lm_info_frv *lm)
932 {
933 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
934 arelent *rel;
935 unsigned int i;
936 CORE_ADDR addr = 0;
937
938 /* Nothing to do if no bfd. */
939 if (abfd == 0)
940 return 0;
941
942 /* Nothing to do if no link map. */
943 if (lm == 0)
944 return 0;
945
946 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
947 (More about this later.) But in order to fetch the relocs, we
948 need to first fetch the dynamic symbols. These symbols need to
949 be cached due to the way that bfd_canonicalize_dynamic_reloc()
950 works. (See the comments in the declaration of struct lm_info
951 for more information.) */
952 if (lm->dyn_syms == NULL)
953 {
954 long storage_needed;
955 unsigned int number_of_symbols;
956
957 /* Determine amount of space needed to hold the dynamic symbol table. */
958 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
959
960 /* If there are no dynamic symbols, there's nothing to do. */
961 if (storage_needed <= 0)
962 return 0;
963
964 /* Allocate space for the dynamic symbol table. */
965 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
966
967 /* Fetch the dynamic symbol table. */
968 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
969
970 if (number_of_symbols == 0)
971 return 0;
972 }
973
974 /* Fetch the dynamic relocations if not already cached. */
975 if (lm->dyn_relocs == NULL)
976 {
977 long storage_needed;
978
979 /* Determine amount of space needed to hold the dynamic relocs. */
980 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
981
982 /* Bail out if there are no dynamic relocs. */
983 if (storage_needed <= 0)
984 return 0;
985
986 /* Allocate space for the relocs. */
987 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
988
989 /* Fetch the dynamic relocs. */
990 lm->dyn_reloc_count
991 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
992 }
993
994 /* Search the dynamic relocs. */
995 for (i = 0; i < lm->dyn_reloc_count; i++)
996 {
997 rel = lm->dyn_relocs[i];
998
999 /* Relocs of interest are those which meet the following
1000 criteria:
1001
1002 - the names match (assuming the caller could provide
1003 a name which matches ``entry_point'').
1004 - the relocation type must be R_FRV_FUNCDESC. Relocs
1005 of this type are used (by the dynamic linker) to
1006 look up the address of a canonical descriptor (allocating
1007 it if need be) and initializing the GOT entry referred
1008 to by the offset to the address of the descriptor.
1009
1010 These relocs of interest may be used to obtain a
1011 candidate descriptor by first adjusting the reloc's
1012 address according to the link map and then dereferencing
1013 this address (which is a GOT entry) to obtain a descriptor
1014 address. */
1015 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1016 && rel->howto->type == R_FRV_FUNCDESC)
1017 {
1018 gdb_byte buf [FRV_PTR_SIZE];
1019
1020 /* Compute address of address of candidate descriptor. */
1021 addr = rel->address + displacement_from_map (lm->map, rel->address);
1022
1023 /* Fetch address of candidate descriptor. */
1024 if (target_read_memory (addr, buf, sizeof buf) != 0)
1025 continue;
1026 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1027
1028 /* Check for matching entry point. */
1029 if (target_read_memory (addr, buf, sizeof buf) != 0)
1030 continue;
1031 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1032 != entry_point)
1033 continue;
1034
1035 /* Check for matching got value. */
1036 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1037 continue;
1038 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1039 != got_value)
1040 continue;
1041
1042 /* Match was successful! Exit loop. */
1043 break;
1044 }
1045 }
1046
1047 return addr;
1048 }
1049
1050 /* Given an objfile, return the address of its link map. This value is
1051 needed for TLS support. */
1052 CORE_ADDR
1053 frv_fetch_objfile_link_map (struct objfile *objfile)
1054 {
1055 /* Cause frv_current_sos() to be run if it hasn't been already. */
1056 if (main_lm_addr == 0)
1057 solib_add (0, 0, 1);
1058
1059 /* frv_current_sos() will set main_lm_addr for the main executable. */
1060 if (objfile == current_program_space->symfile_object_file)
1061 return main_lm_addr;
1062
1063 /* The other link map addresses may be found by examining the list
1064 of shared libraries. */
1065 for (const solib &so : current_program_space->solibs ())
1066 {
1067 auto *li = gdb::checked_static_cast<lm_info_frv *> (so.lm_info.get ());
1068
1069 if (so.objfile == objfile)
1070 return li->lm_addr;
1071 }
1072
1073 /* Not found! */
1074 return 0;
1075 }
1076
1077 const solib_ops frv_so_ops =
1078 {
1079 frv_relocate_section_addresses,
1080 nullptr,
1081 frv_clear_solib,
1082 frv_solib_create_inferior_hook,
1083 frv_current_sos,
1084 open_symbol_file_object,
1085 frv_in_dynsym_resolve_code,
1086 solib_bfd_open,
1087 };