]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-frv.c
Update year range in copyright notice of all files owned by the GDB project.
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "frv-tdep.h"
26 #include "objfiles.h"
27 #include "symtab.h"
28 #include "language.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "elf/frv.h"
32 #include "gdb_bfd.h"
33
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static unsigned int solib_frv_debug;
36
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
39
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
48
49 struct ext_elf32_fdpic_loadseg
50 {
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57 };
58
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66 };
67
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
72 {
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79 };
80
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88 };
89
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
98 {
99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
128
129 if (nsegs <= 0)
130 return NULL;
131
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = xmalloc (int_ldmbuf_size);
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
165 int_ldmbuf->segs[seg].p_vaddr
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
169 int_ldmbuf->segs[seg].p_memsz
170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
173 }
174
175 xfree (ext_ldmbuf);
176 return int_ldmbuf;
177 }
178
179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
181 typedef gdb_byte ext_ptr[4];
182
183 struct ext_elf32_fdpic_loadaddr
184 {
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187 };
188
189 struct ext_link_map
190 {
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201 };
202
203 /* Link map info to include in an allocated so_list entry. */
204
205 struct lm_info
206 {
207 /* The loadmap, digested into an easier to use form. */
208 struct int_elf32_fdpic_loadmap *map;
209 /* The GOT address for this link map entry. */
210 CORE_ADDR got_value;
211 /* The link map address, needed for frv_fetch_objfile_link_map(). */
212 CORE_ADDR lm_addr;
213
214 /* Cached dynamic symbol table and dynamic relocs initialized and
215 used only by find_canonical_descriptor_in_load_object().
216
217 Note: kevinb/2004-02-26: It appears that calls to
218 bfd_canonicalize_dynamic_reloc() will use the same symbols as
219 those supplied to the first call to this function. Therefore,
220 it's important to NOT free the asymbol ** data structure
221 supplied to the first call. Thus the caching of the dynamic
222 symbols (dyn_syms) is critical for correct operation. The
223 caching of the dynamic relocations could be dispensed with. */
224 asymbol **dyn_syms;
225 arelent **dyn_relocs;
226 int dyn_reloc_count; /* Number of dynamic relocs. */
227
228 };
229
230 /* The load map, got value, etc. are not available from the chain
231 of loaded shared objects. ``main_executable_lm_info'' provides
232 a way to get at this information so that it doesn't need to be
233 frequently recomputed. Initialized by frv_relocate_main_executable(). */
234 static struct lm_info *main_executable_lm_info;
235
236 static void frv_relocate_main_executable (void);
237 static CORE_ADDR main_got (void);
238 static int enable_break2 (void);
239
240 /* Implement the "open_symbol_file_object" target_so_ops method. */
241
242 static int
243 open_symbol_file_object (void *from_ttyp)
244 {
245 /* Unimplemented. */
246 return 0;
247 }
248
249 /* Cached value for lm_base(), below. */
250 static CORE_ADDR lm_base_cache = 0;
251
252 /* Link map address for main module. */
253 static CORE_ADDR main_lm_addr = 0;
254
255 /* Return the address from which the link map chain may be found. On
256 the FR-V, this may be found in a number of ways. Assuming that the
257 main executable has already been relocated, the easiest way to find
258 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
259 pointer to the start of the link map will be located at the word found
260 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
261 reserve area mandated by the ABI.) */
262
263 static CORE_ADDR
264 lm_base (void)
265 {
266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
267 struct bound_minimal_symbol got_sym;
268 CORE_ADDR addr;
269 gdb_byte buf[FRV_PTR_SIZE];
270
271 /* One of our assumptions is that the main executable has been relocated.
272 Bail out if this has not happened. (Note that post_create_inferior()
273 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
274 If we allow this to happen, lm_base_cache will be initialized with
275 a bogus value. */
276 if (main_executable_lm_info == 0)
277 return 0;
278
279 /* If we already have a cached value, return it. */
280 if (lm_base_cache)
281 return lm_base_cache;
282
283 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
284 symfile_objfile);
285 if (got_sym.minsym == 0)
286 {
287 if (solib_frv_debug)
288 fprintf_unfiltered (gdb_stdlog,
289 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
290 return 0;
291 }
292
293 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
294
295 if (solib_frv_debug)
296 fprintf_unfiltered (gdb_stdlog,
297 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
298 hex_string_custom (addr, 8));
299
300 if (target_read_memory (addr, buf, sizeof buf) != 0)
301 return 0;
302 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
303
304 if (solib_frv_debug)
305 fprintf_unfiltered (gdb_stdlog,
306 "lm_base: lm_base_cache = %s\n",
307 hex_string_custom (lm_base_cache, 8));
308
309 return lm_base_cache;
310 }
311
312
313 /* Implement the "current_sos" target_so_ops method. */
314
315 static struct so_list *
316 frv_current_sos (void)
317 {
318 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
319 CORE_ADDR lm_addr, mgot;
320 struct so_list *sos_head = NULL;
321 struct so_list **sos_next_ptr = &sos_head;
322
323 /* Make sure that the main executable has been relocated. This is
324 required in order to find the address of the global offset table,
325 which in turn is used to find the link map info. (See lm_base()
326 for details.)
327
328 Note that the relocation of the main executable is also performed
329 by solib_create_inferior_hook(), however, in the case of core
330 files, this hook is called too late in order to be of benefit to
331 solib_add. solib_add eventually calls this this function,
332 frv_current_sos, and also precedes the call to
333 solib_create_inferior_hook(). (See post_create_inferior() in
334 infcmd.c.) */
335 if (main_executable_lm_info == 0 && core_bfd != NULL)
336 frv_relocate_main_executable ();
337
338 /* Fetch the GOT corresponding to the main executable. */
339 mgot = main_got ();
340
341 /* Locate the address of the first link map struct. */
342 lm_addr = lm_base ();
343
344 /* We have at least one link map entry. Fetch the lot of them,
345 building the solist chain. */
346 while (lm_addr)
347 {
348 struct ext_link_map lm_buf;
349 CORE_ADDR got_addr;
350
351 if (solib_frv_debug)
352 fprintf_unfiltered (gdb_stdlog,
353 "current_sos: reading link_map entry at %s\n",
354 hex_string_custom (lm_addr, 8));
355
356 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
357 sizeof (lm_buf)) != 0)
358 {
359 warning (_("frv_current_sos: Unable to read link map entry. "
360 "Shared object chain may be incomplete."));
361 break;
362 }
363
364 got_addr
365 = extract_unsigned_integer (lm_buf.l_addr.got_value,
366 sizeof (lm_buf.l_addr.got_value),
367 byte_order);
368 /* If the got_addr is the same as mgotr, then we're looking at the
369 entry for the main executable. By convention, we don't include
370 this in the list of shared objects. */
371 if (got_addr != mgot)
372 {
373 int errcode;
374 char *name_buf;
375 struct int_elf32_fdpic_loadmap *loadmap;
376 struct so_list *sop;
377 CORE_ADDR addr;
378
379 /* Fetch the load map address. */
380 addr = extract_unsigned_integer (lm_buf.l_addr.map,
381 sizeof lm_buf.l_addr.map,
382 byte_order);
383 loadmap = fetch_loadmap (addr);
384 if (loadmap == NULL)
385 {
386 warning (_("frv_current_sos: Unable to fetch load map. "
387 "Shared object chain may be incomplete."));
388 break;
389 }
390
391 sop = xcalloc (1, sizeof (struct so_list));
392 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
393 sop->lm_info->map = loadmap;
394 sop->lm_info->got_value = got_addr;
395 sop->lm_info->lm_addr = lm_addr;
396 /* Fetch the name. */
397 addr = extract_unsigned_integer (lm_buf.l_name,
398 sizeof (lm_buf.l_name),
399 byte_order);
400 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
401 &errcode);
402
403 if (solib_frv_debug)
404 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
405 name_buf);
406
407 if (errcode != 0)
408 warning (_("Can't read pathname for link map entry: %s."),
409 safe_strerror (errcode));
410 else
411 {
412 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
413 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
414 xfree (name_buf);
415 strcpy (sop->so_original_name, sop->so_name);
416 }
417
418 *sos_next_ptr = sop;
419 sos_next_ptr = &sop->next;
420 }
421 else
422 {
423 main_lm_addr = lm_addr;
424 }
425
426 lm_addr = extract_unsigned_integer (lm_buf.l_next,
427 sizeof (lm_buf.l_next), byte_order);
428 }
429
430 enable_break2 ();
431
432 return sos_head;
433 }
434
435
436 /* Return 1 if PC lies in the dynamic symbol resolution code of the
437 run time loader. */
438
439 static CORE_ADDR interp_text_sect_low;
440 static CORE_ADDR interp_text_sect_high;
441 static CORE_ADDR interp_plt_sect_low;
442 static CORE_ADDR interp_plt_sect_high;
443
444 static int
445 frv_in_dynsym_resolve_code (CORE_ADDR pc)
446 {
447 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
448 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
449 || in_plt_section (pc));
450 }
451
452 /* Given a loadmap and an address, return the displacement needed
453 to relocate the address. */
454
455 static CORE_ADDR
456 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
457 CORE_ADDR addr)
458 {
459 int seg;
460
461 for (seg = 0; seg < map->nsegs; seg++)
462 {
463 if (map->segs[seg].p_vaddr <= addr
464 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
465 {
466 return map->segs[seg].addr - map->segs[seg].p_vaddr;
467 }
468 }
469
470 return 0;
471 }
472
473 /* Print a warning about being unable to set the dynamic linker
474 breakpoint. */
475
476 static void
477 enable_break_failure_warning (void)
478 {
479 warning (_("Unable to find dynamic linker breakpoint function.\n"
480 "GDB will be unable to debug shared library initializers\n"
481 "and track explicitly loaded dynamic code."));
482 }
483
484 /* Helper function for gdb_bfd_lookup_symbol. */
485
486 static int
487 cmp_name (asymbol *sym, void *data)
488 {
489 return (strcmp (sym->name, (const char *) data) == 0);
490 }
491
492 /* Arrange for dynamic linker to hit breakpoint.
493
494 The dynamic linkers has, as part of its debugger interface, support
495 for arranging for the inferior to hit a breakpoint after mapping in
496 the shared libraries. This function enables that breakpoint.
497
498 On the FR-V, using the shared library (FDPIC) ABI, the symbol
499 _dl_debug_addr points to the r_debug struct which contains
500 a field called r_brk. r_brk is the address of the function
501 descriptor upon which a breakpoint must be placed. Being a
502 function descriptor, we must extract the entry point in order
503 to set the breakpoint.
504
505 Our strategy will be to get the .interp section from the
506 executable. This section will provide us with the name of the
507 interpreter. We'll open the interpreter and then look up
508 the address of _dl_debug_addr. We then relocate this address
509 using the interpreter's loadmap. Once the relocated address
510 is known, we fetch the value (address) corresponding to r_brk
511 and then use that value to fetch the entry point of the function
512 we're interested in. */
513
514 static int enable_break2_done = 0;
515
516 static int
517 enable_break2 (void)
518 {
519 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
520 int success = 0;
521 char **bkpt_namep;
522 asection *interp_sect;
523
524 if (enable_break2_done)
525 return 1;
526
527 interp_text_sect_low = interp_text_sect_high = 0;
528 interp_plt_sect_low = interp_plt_sect_high = 0;
529
530 /* Find the .interp section; if not found, warn the user and drop
531 into the old breakpoint at symbol code. */
532 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
533 if (interp_sect)
534 {
535 unsigned int interp_sect_size;
536 char *buf;
537 bfd *tmp_bfd = NULL;
538 int status;
539 CORE_ADDR addr, interp_loadmap_addr;
540 gdb_byte addr_buf[FRV_PTR_SIZE];
541 struct int_elf32_fdpic_loadmap *ldm;
542 volatile struct gdb_exception ex;
543
544 /* Read the contents of the .interp section into a local buffer;
545 the contents specify the dynamic linker this program uses. */
546 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
547 buf = alloca (interp_sect_size);
548 bfd_get_section_contents (exec_bfd, interp_sect,
549 buf, 0, interp_sect_size);
550
551 /* Now we need to figure out where the dynamic linker was
552 loaded so that we can load its symbols and place a breakpoint
553 in the dynamic linker itself.
554
555 This address is stored on the stack. However, I've been unable
556 to find any magic formula to find it for Solaris (appears to
557 be trivial on GNU/Linux). Therefore, we have to try an alternate
558 mechanism to find the dynamic linker's base address. */
559
560 TRY_CATCH (ex, RETURN_MASK_ALL)
561 {
562 tmp_bfd = solib_bfd_open (buf);
563 }
564 if (tmp_bfd == NULL)
565 {
566 enable_break_failure_warning ();
567 return 0;
568 }
569
570 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
571 &interp_loadmap_addr, 0);
572 if (status < 0)
573 {
574 warning (_("Unable to determine dynamic linker loadmap address."));
575 enable_break_failure_warning ();
576 gdb_bfd_unref (tmp_bfd);
577 return 0;
578 }
579
580 if (solib_frv_debug)
581 fprintf_unfiltered (gdb_stdlog,
582 "enable_break: interp_loadmap_addr = %s\n",
583 hex_string_custom (interp_loadmap_addr, 8));
584
585 ldm = fetch_loadmap (interp_loadmap_addr);
586 if (ldm == NULL)
587 {
588 warning (_("Unable to load dynamic linker loadmap at address %s."),
589 hex_string_custom (interp_loadmap_addr, 8));
590 enable_break_failure_warning ();
591 gdb_bfd_unref (tmp_bfd);
592 return 0;
593 }
594
595 /* Record the relocated start and end address of the dynamic linker
596 text and plt section for svr4_in_dynsym_resolve_code. */
597 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
598 if (interp_sect)
599 {
600 interp_text_sect_low
601 = bfd_section_vma (tmp_bfd, interp_sect);
602 interp_text_sect_low
603 += displacement_from_map (ldm, interp_text_sect_low);
604 interp_text_sect_high
605 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
606 }
607 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
608 if (interp_sect)
609 {
610 interp_plt_sect_low =
611 bfd_section_vma (tmp_bfd, interp_sect);
612 interp_plt_sect_low
613 += displacement_from_map (ldm, interp_plt_sect_low);
614 interp_plt_sect_high =
615 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
616 }
617
618 addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name, "_dl_debug_addr");
619
620 if (addr == 0)
621 {
622 warning (_("Could not find symbol _dl_debug_addr "
623 "in dynamic linker"));
624 enable_break_failure_warning ();
625 gdb_bfd_unref (tmp_bfd);
626 return 0;
627 }
628
629 if (solib_frv_debug)
630 fprintf_unfiltered (gdb_stdlog,
631 "enable_break: _dl_debug_addr "
632 "(prior to relocation) = %s\n",
633 hex_string_custom (addr, 8));
634
635 addr += displacement_from_map (ldm, addr);
636
637 if (solib_frv_debug)
638 fprintf_unfiltered (gdb_stdlog,
639 "enable_break: _dl_debug_addr "
640 "(after relocation) = %s\n",
641 hex_string_custom (addr, 8));
642
643 /* Fetch the address of the r_debug struct. */
644 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
645 {
646 warning (_("Unable to fetch contents of _dl_debug_addr "
647 "(at address %s) from dynamic linker"),
648 hex_string_custom (addr, 8));
649 }
650 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
651
652 if (solib_frv_debug)
653 fprintf_unfiltered (gdb_stdlog,
654 "enable_break: _dl_debug_addr[0..3] = %s\n",
655 hex_string_custom (addr, 8));
656
657 /* If it's zero, then the ldso hasn't initialized yet, and so
658 there are no shared libs yet loaded. */
659 if (addr == 0)
660 {
661 if (solib_frv_debug)
662 fprintf_unfiltered (gdb_stdlog,
663 "enable_break: ldso not yet initialized\n");
664 /* Do not warn, but mark to run again. */
665 return 0;
666 }
667
668 /* Fetch the r_brk field. It's 8 bytes from the start of
669 _dl_debug_addr. */
670 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
671 {
672 warning (_("Unable to fetch _dl_debug_addr->r_brk "
673 "(at address %s) from dynamic linker"),
674 hex_string_custom (addr + 8, 8));
675 enable_break_failure_warning ();
676 gdb_bfd_unref (tmp_bfd);
677 return 0;
678 }
679 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
680
681 /* Now fetch the function entry point. */
682 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
683 {
684 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
685 "(at address %s) from dynamic linker"),
686 hex_string_custom (addr, 8));
687 enable_break_failure_warning ();
688 gdb_bfd_unref (tmp_bfd);
689 return 0;
690 }
691 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
692
693 /* We're done with the temporary bfd. */
694 gdb_bfd_unref (tmp_bfd);
695
696 /* We're also done with the loadmap. */
697 xfree (ldm);
698
699 /* Remove all the solib event breakpoints. Their addresses
700 may have changed since the last time we ran the program. */
701 remove_solib_event_breakpoints ();
702
703 /* Now (finally!) create the solib breakpoint. */
704 create_solib_event_breakpoint (target_gdbarch (), addr);
705
706 enable_break2_done = 1;
707
708 return 1;
709 }
710
711 /* Tell the user we couldn't set a dynamic linker breakpoint. */
712 enable_break_failure_warning ();
713
714 /* Failure return. */
715 return 0;
716 }
717
718 static int
719 enable_break (void)
720 {
721 asection *interp_sect;
722 CORE_ADDR entry_point;
723
724 if (symfile_objfile == NULL)
725 {
726 if (solib_frv_debug)
727 fprintf_unfiltered (gdb_stdlog,
728 "enable_break: No symbol file found.\n");
729 return 0;
730 }
731
732 if (!entry_point_address_query (&entry_point))
733 {
734 if (solib_frv_debug)
735 fprintf_unfiltered (gdb_stdlog,
736 "enable_break: Symbol file has no entry point.\n");
737 return 0;
738 }
739
740 /* Check for the presence of a .interp section. If there is no
741 such section, the executable is statically linked. */
742
743 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
744
745 if (interp_sect == NULL)
746 {
747 if (solib_frv_debug)
748 fprintf_unfiltered (gdb_stdlog,
749 "enable_break: No .interp section found.\n");
750 return 0;
751 }
752
753 create_solib_event_breakpoint (target_gdbarch (), entry_point);
754
755 if (solib_frv_debug)
756 fprintf_unfiltered (gdb_stdlog,
757 "enable_break: solib event breakpoint "
758 "placed at entry point: %s\n",
759 hex_string_custom (entry_point, 8));
760 return 1;
761 }
762
763 /* Implement the "special_symbol_handling" target_so_ops method. */
764
765 static void
766 frv_special_symbol_handling (void)
767 {
768 /* Nothing needed for FRV. */
769 }
770
771 static void
772 frv_relocate_main_executable (void)
773 {
774 int status;
775 CORE_ADDR exec_addr, interp_addr;
776 struct int_elf32_fdpic_loadmap *ldm;
777 struct cleanup *old_chain;
778 struct section_offsets *new_offsets;
779 int changed;
780 struct obj_section *osect;
781
782 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
783 &interp_addr, &exec_addr);
784
785 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
786 {
787 /* Not using FDPIC ABI, so do nothing. */
788 return;
789 }
790
791 /* Fetch the loadmap located at ``exec_addr''. */
792 ldm = fetch_loadmap (exec_addr);
793 if (ldm == NULL)
794 error (_("Unable to load the executable's loadmap."));
795
796 if (main_executable_lm_info)
797 xfree (main_executable_lm_info);
798 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
799 main_executable_lm_info->map = ldm;
800
801 new_offsets = xcalloc (symfile_objfile->num_sections,
802 sizeof (struct section_offsets));
803 old_chain = make_cleanup (xfree, new_offsets);
804 changed = 0;
805
806 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
807 {
808 CORE_ADDR orig_addr, addr, offset;
809 int osect_idx;
810 int seg;
811
812 osect_idx = osect - symfile_objfile->sections;
813
814 /* Current address of section. */
815 addr = obj_section_addr (osect);
816 /* Offset from where this section started. */
817 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
818 /* Original address prior to any past relocations. */
819 orig_addr = addr - offset;
820
821 for (seg = 0; seg < ldm->nsegs; seg++)
822 {
823 if (ldm->segs[seg].p_vaddr <= orig_addr
824 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
825 {
826 new_offsets->offsets[osect_idx]
827 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
828
829 if (new_offsets->offsets[osect_idx] != offset)
830 changed = 1;
831 break;
832 }
833 }
834 }
835
836 if (changed)
837 objfile_relocate (symfile_objfile, new_offsets);
838
839 do_cleanups (old_chain);
840
841 /* Now that symfile_objfile has been relocated, we can compute the
842 GOT value and stash it away. */
843 main_executable_lm_info->got_value = main_got ();
844 }
845
846 /* Implement the "create_inferior_hook" target_solib_ops method.
847
848 For the FR-V shared library ABI (FDPIC), the main executable needs
849 to be relocated. The shared library breakpoints also need to be
850 enabled. */
851
852 static void
853 frv_solib_create_inferior_hook (int from_tty)
854 {
855 /* Relocate main executable. */
856 frv_relocate_main_executable ();
857
858 /* Enable shared library breakpoints. */
859 if (!enable_break ())
860 {
861 warning (_("shared library handler failed to enable breakpoint"));
862 return;
863 }
864 }
865
866 static void
867 frv_clear_solib (void)
868 {
869 lm_base_cache = 0;
870 enable_break2_done = 0;
871 main_lm_addr = 0;
872 if (main_executable_lm_info != 0)
873 {
874 xfree (main_executable_lm_info->map);
875 xfree (main_executable_lm_info->dyn_syms);
876 xfree (main_executable_lm_info->dyn_relocs);
877 xfree (main_executable_lm_info);
878 main_executable_lm_info = 0;
879 }
880 }
881
882 static void
883 frv_free_so (struct so_list *so)
884 {
885 xfree (so->lm_info->map);
886 xfree (so->lm_info->dyn_syms);
887 xfree (so->lm_info->dyn_relocs);
888 xfree (so->lm_info);
889 }
890
891 static void
892 frv_relocate_section_addresses (struct so_list *so,
893 struct target_section *sec)
894 {
895 int seg;
896 struct int_elf32_fdpic_loadmap *map;
897
898 map = so->lm_info->map;
899
900 for (seg = 0; seg < map->nsegs; seg++)
901 {
902 if (map->segs[seg].p_vaddr <= sec->addr
903 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
904 {
905 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
906
907 sec->addr += displ;
908 sec->endaddr += displ;
909 break;
910 }
911 }
912 }
913
914 /* Return the GOT address associated with the main executable. Return
915 0 if it can't be found. */
916
917 static CORE_ADDR
918 main_got (void)
919 {
920 struct bound_minimal_symbol got_sym;
921
922 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
923 NULL, symfile_objfile);
924 if (got_sym.minsym == 0)
925 return 0;
926
927 return BMSYMBOL_VALUE_ADDRESS (got_sym);
928 }
929
930 /* Find the global pointer for the given function address ADDR. */
931
932 CORE_ADDR
933 frv_fdpic_find_global_pointer (CORE_ADDR addr)
934 {
935 struct so_list *so;
936
937 so = master_so_list ();
938 while (so)
939 {
940 int seg;
941 struct int_elf32_fdpic_loadmap *map;
942
943 map = so->lm_info->map;
944
945 for (seg = 0; seg < map->nsegs; seg++)
946 {
947 if (map->segs[seg].addr <= addr
948 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
949 return so->lm_info->got_value;
950 }
951
952 so = so->next;
953 }
954
955 /* Didn't find it in any of the shared objects. So assume it's in the
956 main executable. */
957 return main_got ();
958 }
959
960 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
961 static CORE_ADDR find_canonical_descriptor_in_load_object
962 (CORE_ADDR, CORE_ADDR, const char *, bfd *, struct lm_info *);
963
964 /* Given a function entry point, attempt to find the canonical descriptor
965 associated with that entry point. Return 0 if no canonical descriptor
966 could be found. */
967
968 CORE_ADDR
969 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
970 {
971 const char *name;
972 CORE_ADDR addr;
973 CORE_ADDR got_value;
974 struct int_elf32_fdpic_loadmap *ldm = 0;
975 struct symbol *sym;
976
977 /* Fetch the corresponding global pointer for the entry point. */
978 got_value = frv_fdpic_find_global_pointer (entry_point);
979
980 /* Attempt to find the name of the function. If the name is available,
981 it'll be used as an aid in finding matching functions in the dynamic
982 symbol table. */
983 sym = find_pc_function (entry_point);
984 if (sym == 0)
985 name = 0;
986 else
987 name = SYMBOL_LINKAGE_NAME (sym);
988
989 /* Check the main executable. */
990 addr = find_canonical_descriptor_in_load_object
991 (entry_point, got_value, name, symfile_objfile->obfd,
992 main_executable_lm_info);
993
994 /* If descriptor not found via main executable, check each load object
995 in list of shared objects. */
996 if (addr == 0)
997 {
998 struct so_list *so;
999
1000 so = master_so_list ();
1001 while (so)
1002 {
1003 addr = find_canonical_descriptor_in_load_object
1004 (entry_point, got_value, name, so->abfd, so->lm_info);
1005
1006 if (addr != 0)
1007 break;
1008
1009 so = so->next;
1010 }
1011 }
1012
1013 return addr;
1014 }
1015
1016 static CORE_ADDR
1017 find_canonical_descriptor_in_load_object
1018 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
1019 struct lm_info *lm)
1020 {
1021 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1022 arelent *rel;
1023 unsigned int i;
1024 CORE_ADDR addr = 0;
1025
1026 /* Nothing to do if no bfd. */
1027 if (abfd == 0)
1028 return 0;
1029
1030 /* Nothing to do if no link map. */
1031 if (lm == 0)
1032 return 0;
1033
1034 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1035 (More about this later.) But in order to fetch the relocs, we
1036 need to first fetch the dynamic symbols. These symbols need to
1037 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1038 works. (See the comments in the declaration of struct lm_info
1039 for more information.) */
1040 if (lm->dyn_syms == NULL)
1041 {
1042 long storage_needed;
1043 unsigned int number_of_symbols;
1044
1045 /* Determine amount of space needed to hold the dynamic symbol table. */
1046 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1047
1048 /* If there are no dynamic symbols, there's nothing to do. */
1049 if (storage_needed <= 0)
1050 return 0;
1051
1052 /* Allocate space for the dynamic symbol table. */
1053 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1054
1055 /* Fetch the dynamic symbol table. */
1056 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1057
1058 if (number_of_symbols == 0)
1059 return 0;
1060 }
1061
1062 /* Fetch the dynamic relocations if not already cached. */
1063 if (lm->dyn_relocs == NULL)
1064 {
1065 long storage_needed;
1066
1067 /* Determine amount of space needed to hold the dynamic relocs. */
1068 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1069
1070 /* Bail out if there are no dynamic relocs. */
1071 if (storage_needed <= 0)
1072 return 0;
1073
1074 /* Allocate space for the relocs. */
1075 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1076
1077 /* Fetch the dynamic relocs. */
1078 lm->dyn_reloc_count
1079 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1080 }
1081
1082 /* Search the dynamic relocs. */
1083 for (i = 0; i < lm->dyn_reloc_count; i++)
1084 {
1085 rel = lm->dyn_relocs[i];
1086
1087 /* Relocs of interest are those which meet the following
1088 criteria:
1089
1090 - the names match (assuming the caller could provide
1091 a name which matches ``entry_point'').
1092 - the relocation type must be R_FRV_FUNCDESC. Relocs
1093 of this type are used (by the dynamic linker) to
1094 look up the address of a canonical descriptor (allocating
1095 it if need be) and initializing the GOT entry referred
1096 to by the offset to the address of the descriptor.
1097
1098 These relocs of interest may be used to obtain a
1099 candidate descriptor by first adjusting the reloc's
1100 address according to the link map and then dereferencing
1101 this address (which is a GOT entry) to obtain a descriptor
1102 address. */
1103 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1104 && rel->howto->type == R_FRV_FUNCDESC)
1105 {
1106 gdb_byte buf [FRV_PTR_SIZE];
1107
1108 /* Compute address of address of candidate descriptor. */
1109 addr = rel->address + displacement_from_map (lm->map, rel->address);
1110
1111 /* Fetch address of candidate descriptor. */
1112 if (target_read_memory (addr, buf, sizeof buf) != 0)
1113 continue;
1114 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1115
1116 /* Check for matching entry point. */
1117 if (target_read_memory (addr, buf, sizeof buf) != 0)
1118 continue;
1119 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1120 != entry_point)
1121 continue;
1122
1123 /* Check for matching got value. */
1124 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1125 continue;
1126 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1127 != got_value)
1128 continue;
1129
1130 /* Match was successful! Exit loop. */
1131 break;
1132 }
1133 }
1134
1135 return addr;
1136 }
1137
1138 /* Given an objfile, return the address of its link map. This value is
1139 needed for TLS support. */
1140 CORE_ADDR
1141 frv_fetch_objfile_link_map (struct objfile *objfile)
1142 {
1143 struct so_list *so;
1144
1145 /* Cause frv_current_sos() to be run if it hasn't been already. */
1146 if (main_lm_addr == 0)
1147 solib_add (0, 0, 0, 1);
1148
1149 /* frv_current_sos() will set main_lm_addr for the main executable. */
1150 if (objfile == symfile_objfile)
1151 return main_lm_addr;
1152
1153 /* The other link map addresses may be found by examining the list
1154 of shared libraries. */
1155 for (so = master_so_list (); so; so = so->next)
1156 {
1157 if (so->objfile == objfile)
1158 return so->lm_info->lm_addr;
1159 }
1160
1161 /* Not found! */
1162 return 0;
1163 }
1164
1165 struct target_so_ops frv_so_ops;
1166
1167 /* Provide a prototype to silence -Wmissing-prototypes. */
1168 extern initialize_file_ftype _initialize_frv_solib;
1169
1170 void
1171 _initialize_frv_solib (void)
1172 {
1173 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1174 frv_so_ops.free_so = frv_free_so;
1175 frv_so_ops.clear_solib = frv_clear_solib;
1176 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1177 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1178 frv_so_ops.current_sos = frv_current_sos;
1179 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1180 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1181 frv_so_ops.bfd_open = solib_bfd_open;
1182
1183 /* Debug this file's internals. */
1184 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1185 &solib_frv_debug, _("\
1186 Set internal debugging of shared library code for FR-V."), _("\
1187 Show internal debugging of shared library code for FR-V."), _("\
1188 When non-zero, FR-V solib specific internal debugging is enabled."),
1189 NULL,
1190 NULL, /* FIXME: i18n: */
1191 &setdebuglist, &showdebuglist);
1192 }