]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-frv.c
start change to progspace independence
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include <string.h>
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "solib.h"
25 #include "solist.h"
26 #include "frv-tdep.h"
27 #include "objfiles.h"
28 #include "symtab.h"
29 #include "language.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "elf/frv.h"
33 #include "exceptions.h"
34 #include "gdb_bfd.h"
35
36 /* Flag which indicates whether internal debug messages should be printed. */
37 static unsigned int solib_frv_debug;
38
39 /* FR-V pointers are four bytes wide. */
40 enum { FRV_PTR_SIZE = 4 };
41
42 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
43
44 /* External versions; the size and alignment of the fields should be
45 the same as those on the target. When loaded, the placement of
46 the bits in each field will be the same as on the target. */
47 typedef gdb_byte ext_Elf32_Half[2];
48 typedef gdb_byte ext_Elf32_Addr[4];
49 typedef gdb_byte ext_Elf32_Word[4];
50
51 struct ext_elf32_fdpic_loadseg
52 {
53 /* Core address to which the segment is mapped. */
54 ext_Elf32_Addr addr;
55 /* VMA recorded in the program header. */
56 ext_Elf32_Addr p_vaddr;
57 /* Size of this segment in memory. */
58 ext_Elf32_Word p_memsz;
59 };
60
61 struct ext_elf32_fdpic_loadmap {
62 /* Protocol version number, must be zero. */
63 ext_Elf32_Half version;
64 /* Number of segments in this map. */
65 ext_Elf32_Half nsegs;
66 /* The actual memory map. */
67 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
68 };
69
70 /* Internal versions; the types are GDB types and the data in each
71 of the fields is (or will be) decoded from the external struct
72 for ease of consumption. */
73 struct int_elf32_fdpic_loadseg
74 {
75 /* Core address to which the segment is mapped. */
76 CORE_ADDR addr;
77 /* VMA recorded in the program header. */
78 CORE_ADDR p_vaddr;
79 /* Size of this segment in memory. */
80 long p_memsz;
81 };
82
83 struct int_elf32_fdpic_loadmap {
84 /* Protocol version number, must be zero. */
85 int version;
86 /* Number of segments in this map. */
87 int nsegs;
88 /* The actual memory map. */
89 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
90 };
91
92 /* Given address LDMADDR, fetch and decode the loadmap at that address.
93 Return NULL if there is a problem reading the target memory or if
94 there doesn't appear to be a loadmap at the given address. The
95 allocated space (representing the loadmap) returned by this
96 function may be freed via a single call to xfree(). */
97
98 static struct int_elf32_fdpic_loadmap *
99 fetch_loadmap (CORE_ADDR ldmaddr)
100 {
101 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
102 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
103 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
104 struct int_elf32_fdpic_loadmap *int_ldmbuf;
105 int ext_ldmbuf_size, int_ldmbuf_size;
106 int version, seg, nsegs;
107
108 /* Fetch initial portion of the loadmap. */
109 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
110 sizeof ext_ldmbuf_partial))
111 {
112 /* Problem reading the target's memory. */
113 return NULL;
114 }
115
116 /* Extract the version. */
117 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
118 sizeof ext_ldmbuf_partial.version,
119 byte_order);
120 if (version != 0)
121 {
122 /* We only handle version 0. */
123 return NULL;
124 }
125
126 /* Extract the number of segments. */
127 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
128 sizeof ext_ldmbuf_partial.nsegs,
129 byte_order);
130
131 if (nsegs <= 0)
132 return NULL;
133
134 /* Allocate space for the complete (external) loadmap. */
135 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
136 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
137 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
138
139 /* Copy over the portion of the loadmap that's already been read. */
140 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
141
142 /* Read the rest of the loadmap from the target. */
143 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
144 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
145 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
146 {
147 /* Couldn't read rest of the loadmap. */
148 xfree (ext_ldmbuf);
149 return NULL;
150 }
151
152 /* Allocate space into which to put information extract from the
153 external loadsegs. I.e, allocate the internal loadsegs. */
154 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
155 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
156 int_ldmbuf = xmalloc (int_ldmbuf_size);
157
158 /* Place extracted information in internal structs. */
159 int_ldmbuf->version = version;
160 int_ldmbuf->nsegs = nsegs;
161 for (seg = 0; seg < nsegs; seg++)
162 {
163 int_ldmbuf->segs[seg].addr
164 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
165 sizeof (ext_ldmbuf->segs[seg].addr),
166 byte_order);
167 int_ldmbuf->segs[seg].p_vaddr
168 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
169 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
170 byte_order);
171 int_ldmbuf->segs[seg].p_memsz
172 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
173 sizeof (ext_ldmbuf->segs[seg].p_memsz),
174 byte_order);
175 }
176
177 xfree (ext_ldmbuf);
178 return int_ldmbuf;
179 }
180
181 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
182
183 typedef gdb_byte ext_ptr[4];
184
185 struct ext_elf32_fdpic_loadaddr
186 {
187 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
188 ext_ptr got_value; /* void *got_value; */
189 };
190
191 struct ext_link_map
192 {
193 struct ext_elf32_fdpic_loadaddr l_addr;
194
195 /* Absolute file name object was found in. */
196 ext_ptr l_name; /* char *l_name; */
197
198 /* Dynamic section of the shared object. */
199 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
200
201 /* Chain of loaded objects. */
202 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
203 };
204
205 /* Link map info to include in an allocated so_list entry. */
206
207 struct lm_info
208 {
209 /* The loadmap, digested into an easier to use form. */
210 struct int_elf32_fdpic_loadmap *map;
211 /* The GOT address for this link map entry. */
212 CORE_ADDR got_value;
213 /* The link map address, needed for frv_fetch_objfile_link_map(). */
214 CORE_ADDR lm_addr;
215
216 /* Cached dynamic symbol table and dynamic relocs initialized and
217 used only by find_canonical_descriptor_in_load_object().
218
219 Note: kevinb/2004-02-26: It appears that calls to
220 bfd_canonicalize_dynamic_reloc() will use the same symbols as
221 those supplied to the first call to this function. Therefore,
222 it's important to NOT free the asymbol ** data structure
223 supplied to the first call. Thus the caching of the dynamic
224 symbols (dyn_syms) is critical for correct operation. The
225 caching of the dynamic relocations could be dispensed with. */
226 asymbol **dyn_syms;
227 arelent **dyn_relocs;
228 int dyn_reloc_count; /* Number of dynamic relocs. */
229
230 };
231
232 /* The load map, got value, etc. are not available from the chain
233 of loaded shared objects. ``main_executable_lm_info'' provides
234 a way to get at this information so that it doesn't need to be
235 frequently recomputed. Initialized by frv_relocate_main_executable(). */
236 static struct lm_info *main_executable_lm_info;
237
238 static void frv_relocate_main_executable (void);
239 static CORE_ADDR main_got (void);
240 static int enable_break2 (void);
241
242 /* Implement the "open_symbol_file_object" target_so_ops method. */
243
244 static int
245 open_symbol_file_object (void *from_ttyp)
246 {
247 /* Unimplemented. */
248 return 0;
249 }
250
251 /* Cached value for lm_base(), below. */
252 static CORE_ADDR lm_base_cache = 0;
253
254 /* Link map address for main module. */
255 static CORE_ADDR main_lm_addr = 0;
256
257 /* Return the address from which the link map chain may be found. On
258 the FR-V, this may be found in a number of ways. Assuming that the
259 main executable has already been relocated, the easiest way to find
260 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
261 pointer to the start of the link map will be located at the word found
262 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
263 reserve area mandated by the ABI.) */
264
265 static CORE_ADDR
266 lm_base (void)
267 {
268 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
269 struct bound_minimal_symbol got_sym;
270 CORE_ADDR addr;
271 gdb_byte buf[FRV_PTR_SIZE];
272
273 /* One of our assumptions is that the main executable has been relocated.
274 Bail out if this has not happened. (Note that post_create_inferior()
275 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
276 If we allow this to happen, lm_base_cache will be initialized with
277 a bogus value. */
278 if (main_executable_lm_info == 0)
279 return 0;
280
281 /* If we already have a cached value, return it. */
282 if (lm_base_cache)
283 return lm_base_cache;
284
285 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
286 symfile_objfile);
287 if (got_sym.minsym == 0)
288 {
289 if (solib_frv_debug)
290 fprintf_unfiltered (gdb_stdlog,
291 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
292 return 0;
293 }
294
295 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
296
297 if (solib_frv_debug)
298 fprintf_unfiltered (gdb_stdlog,
299 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
300 hex_string_custom (addr, 8));
301
302 if (target_read_memory (addr, buf, sizeof buf) != 0)
303 return 0;
304 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
305
306 if (solib_frv_debug)
307 fprintf_unfiltered (gdb_stdlog,
308 "lm_base: lm_base_cache = %s\n",
309 hex_string_custom (lm_base_cache, 8));
310
311 return lm_base_cache;
312 }
313
314
315 /* Implement the "current_sos" target_so_ops method. */
316
317 static struct so_list *
318 frv_current_sos (void)
319 {
320 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
321 CORE_ADDR lm_addr, mgot;
322 struct so_list *sos_head = NULL;
323 struct so_list **sos_next_ptr = &sos_head;
324
325 /* Make sure that the main executable has been relocated. This is
326 required in order to find the address of the global offset table,
327 which in turn is used to find the link map info. (See lm_base()
328 for details.)
329
330 Note that the relocation of the main executable is also performed
331 by solib_create_inferior_hook(), however, in the case of core
332 files, this hook is called too late in order to be of benefit to
333 solib_add. solib_add eventually calls this this function,
334 frv_current_sos, and also precedes the call to
335 solib_create_inferior_hook(). (See post_create_inferior() in
336 infcmd.c.) */
337 if (main_executable_lm_info == 0 && core_bfd != NULL)
338 frv_relocate_main_executable ();
339
340 /* Fetch the GOT corresponding to the main executable. */
341 mgot = main_got ();
342
343 /* Locate the address of the first link map struct. */
344 lm_addr = lm_base ();
345
346 /* We have at least one link map entry. Fetch the lot of them,
347 building the solist chain. */
348 while (lm_addr)
349 {
350 struct ext_link_map lm_buf;
351 CORE_ADDR got_addr;
352
353 if (solib_frv_debug)
354 fprintf_unfiltered (gdb_stdlog,
355 "current_sos: reading link_map entry at %s\n",
356 hex_string_custom (lm_addr, 8));
357
358 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
359 sizeof (lm_buf)) != 0)
360 {
361 warning (_("frv_current_sos: Unable to read link map entry. "
362 "Shared object chain may be incomplete."));
363 break;
364 }
365
366 got_addr
367 = extract_unsigned_integer (lm_buf.l_addr.got_value,
368 sizeof (lm_buf.l_addr.got_value),
369 byte_order);
370 /* If the got_addr is the same as mgotr, then we're looking at the
371 entry for the main executable. By convention, we don't include
372 this in the list of shared objects. */
373 if (got_addr != mgot)
374 {
375 int errcode;
376 char *name_buf;
377 struct int_elf32_fdpic_loadmap *loadmap;
378 struct so_list *sop;
379 CORE_ADDR addr;
380
381 /* Fetch the load map address. */
382 addr = extract_unsigned_integer (lm_buf.l_addr.map,
383 sizeof lm_buf.l_addr.map,
384 byte_order);
385 loadmap = fetch_loadmap (addr);
386 if (loadmap == NULL)
387 {
388 warning (_("frv_current_sos: Unable to fetch load map. "
389 "Shared object chain may be incomplete."));
390 break;
391 }
392
393 sop = xcalloc (1, sizeof (struct so_list));
394 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
395 sop->lm_info->map = loadmap;
396 sop->lm_info->got_value = got_addr;
397 sop->lm_info->lm_addr = lm_addr;
398 /* Fetch the name. */
399 addr = extract_unsigned_integer (lm_buf.l_name,
400 sizeof (lm_buf.l_name),
401 byte_order);
402 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
403 &errcode);
404
405 if (solib_frv_debug)
406 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
407 name_buf);
408
409 if (errcode != 0)
410 warning (_("Can't read pathname for link map entry: %s."),
411 safe_strerror (errcode));
412 else
413 {
414 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
415 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
416 xfree (name_buf);
417 strcpy (sop->so_original_name, sop->so_name);
418 }
419
420 *sos_next_ptr = sop;
421 sos_next_ptr = &sop->next;
422 }
423 else
424 {
425 main_lm_addr = lm_addr;
426 }
427
428 lm_addr = extract_unsigned_integer (lm_buf.l_next,
429 sizeof (lm_buf.l_next), byte_order);
430 }
431
432 enable_break2 ();
433
434 return sos_head;
435 }
436
437
438 /* Return 1 if PC lies in the dynamic symbol resolution code of the
439 run time loader. */
440
441 static CORE_ADDR interp_text_sect_low;
442 static CORE_ADDR interp_text_sect_high;
443 static CORE_ADDR interp_plt_sect_low;
444 static CORE_ADDR interp_plt_sect_high;
445
446 static int
447 frv_in_dynsym_resolve_code (CORE_ADDR pc)
448 {
449 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
450 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
451 || in_plt_section (pc));
452 }
453
454 /* Given a loadmap and an address, return the displacement needed
455 to relocate the address. */
456
457 static CORE_ADDR
458 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
459 CORE_ADDR addr)
460 {
461 int seg;
462
463 for (seg = 0; seg < map->nsegs; seg++)
464 {
465 if (map->segs[seg].p_vaddr <= addr
466 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
467 {
468 return map->segs[seg].addr - map->segs[seg].p_vaddr;
469 }
470 }
471
472 return 0;
473 }
474
475 /* Print a warning about being unable to set the dynamic linker
476 breakpoint. */
477
478 static void
479 enable_break_failure_warning (void)
480 {
481 warning (_("Unable to find dynamic linker breakpoint function.\n"
482 "GDB will be unable to debug shared library initializers\n"
483 "and track explicitly loaded dynamic code."));
484 }
485
486 /* Helper function for gdb_bfd_lookup_symbol. */
487
488 static int
489 cmp_name (asymbol *sym, void *data)
490 {
491 return (strcmp (sym->name, (const char *) data) == 0);
492 }
493
494 /* Arrange for dynamic linker to hit breakpoint.
495
496 The dynamic linkers has, as part of its debugger interface, support
497 for arranging for the inferior to hit a breakpoint after mapping in
498 the shared libraries. This function enables that breakpoint.
499
500 On the FR-V, using the shared library (FDPIC) ABI, the symbol
501 _dl_debug_addr points to the r_debug struct which contains
502 a field called r_brk. r_brk is the address of the function
503 descriptor upon which a breakpoint must be placed. Being a
504 function descriptor, we must extract the entry point in order
505 to set the breakpoint.
506
507 Our strategy will be to get the .interp section from the
508 executable. This section will provide us with the name of the
509 interpreter. We'll open the interpreter and then look up
510 the address of _dl_debug_addr. We then relocate this address
511 using the interpreter's loadmap. Once the relocated address
512 is known, we fetch the value (address) corresponding to r_brk
513 and then use that value to fetch the entry point of the function
514 we're interested in. */
515
516 static int enable_break2_done = 0;
517
518 static int
519 enable_break2 (void)
520 {
521 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
522 int success = 0;
523 char **bkpt_namep;
524 asection *interp_sect;
525
526 if (enable_break2_done)
527 return 1;
528
529 interp_text_sect_low = interp_text_sect_high = 0;
530 interp_plt_sect_low = interp_plt_sect_high = 0;
531
532 /* Find the .interp section; if not found, warn the user and drop
533 into the old breakpoint at symbol code. */
534 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
535 if (interp_sect)
536 {
537 unsigned int interp_sect_size;
538 char *buf;
539 bfd *tmp_bfd = NULL;
540 int status;
541 CORE_ADDR addr, interp_loadmap_addr;
542 gdb_byte addr_buf[FRV_PTR_SIZE];
543 struct int_elf32_fdpic_loadmap *ldm;
544 volatile struct gdb_exception ex;
545
546 /* Read the contents of the .interp section into a local buffer;
547 the contents specify the dynamic linker this program uses. */
548 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
549 buf = alloca (interp_sect_size);
550 bfd_get_section_contents (exec_bfd, interp_sect,
551 buf, 0, interp_sect_size);
552
553 /* Now we need to figure out where the dynamic linker was
554 loaded so that we can load its symbols and place a breakpoint
555 in the dynamic linker itself.
556
557 This address is stored on the stack. However, I've been unable
558 to find any magic formula to find it for Solaris (appears to
559 be trivial on GNU/Linux). Therefore, we have to try an alternate
560 mechanism to find the dynamic linker's base address. */
561
562 TRY_CATCH (ex, RETURN_MASK_ALL)
563 {
564 tmp_bfd = solib_bfd_open (buf);
565 }
566 if (tmp_bfd == NULL)
567 {
568 enable_break_failure_warning ();
569 return 0;
570 }
571
572 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
573 &interp_loadmap_addr, 0);
574 if (status < 0)
575 {
576 warning (_("Unable to determine dynamic linker loadmap address."));
577 enable_break_failure_warning ();
578 gdb_bfd_unref (tmp_bfd);
579 return 0;
580 }
581
582 if (solib_frv_debug)
583 fprintf_unfiltered (gdb_stdlog,
584 "enable_break: interp_loadmap_addr = %s\n",
585 hex_string_custom (interp_loadmap_addr, 8));
586
587 ldm = fetch_loadmap (interp_loadmap_addr);
588 if (ldm == NULL)
589 {
590 warning (_("Unable to load dynamic linker loadmap at address %s."),
591 hex_string_custom (interp_loadmap_addr, 8));
592 enable_break_failure_warning ();
593 gdb_bfd_unref (tmp_bfd);
594 return 0;
595 }
596
597 /* Record the relocated start and end address of the dynamic linker
598 text and plt section for svr4_in_dynsym_resolve_code. */
599 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
600 if (interp_sect)
601 {
602 interp_text_sect_low
603 = bfd_section_vma (tmp_bfd, interp_sect);
604 interp_text_sect_low
605 += displacement_from_map (ldm, interp_text_sect_low);
606 interp_text_sect_high
607 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
608 }
609 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
610 if (interp_sect)
611 {
612 interp_plt_sect_low =
613 bfd_section_vma (tmp_bfd, interp_sect);
614 interp_plt_sect_low
615 += displacement_from_map (ldm, interp_plt_sect_low);
616 interp_plt_sect_high =
617 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
618 }
619
620 addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name, "_dl_debug_addr");
621
622 if (addr == 0)
623 {
624 warning (_("Could not find symbol _dl_debug_addr "
625 "in dynamic linker"));
626 enable_break_failure_warning ();
627 gdb_bfd_unref (tmp_bfd);
628 return 0;
629 }
630
631 if (solib_frv_debug)
632 fprintf_unfiltered (gdb_stdlog,
633 "enable_break: _dl_debug_addr "
634 "(prior to relocation) = %s\n",
635 hex_string_custom (addr, 8));
636
637 addr += displacement_from_map (ldm, addr);
638
639 if (solib_frv_debug)
640 fprintf_unfiltered (gdb_stdlog,
641 "enable_break: _dl_debug_addr "
642 "(after relocation) = %s\n",
643 hex_string_custom (addr, 8));
644
645 /* Fetch the address of the r_debug struct. */
646 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
647 {
648 warning (_("Unable to fetch contents of _dl_debug_addr "
649 "(at address %s) from dynamic linker"),
650 hex_string_custom (addr, 8));
651 }
652 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
653
654 if (solib_frv_debug)
655 fprintf_unfiltered (gdb_stdlog,
656 "enable_break: _dl_debug_addr[0..3] = %s\n",
657 hex_string_custom (addr, 8));
658
659 /* If it's zero, then the ldso hasn't initialized yet, and so
660 there are no shared libs yet loaded. */
661 if (addr == 0)
662 {
663 if (solib_frv_debug)
664 fprintf_unfiltered (gdb_stdlog,
665 "enable_break: ldso not yet initialized\n");
666 /* Do not warn, but mark to run again. */
667 return 0;
668 }
669
670 /* Fetch the r_brk field. It's 8 bytes from the start of
671 _dl_debug_addr. */
672 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
673 {
674 warning (_("Unable to fetch _dl_debug_addr->r_brk "
675 "(at address %s) from dynamic linker"),
676 hex_string_custom (addr + 8, 8));
677 enable_break_failure_warning ();
678 gdb_bfd_unref (tmp_bfd);
679 return 0;
680 }
681 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
682
683 /* Now fetch the function entry point. */
684 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
685 {
686 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
687 "(at address %s) from dynamic linker"),
688 hex_string_custom (addr, 8));
689 enable_break_failure_warning ();
690 gdb_bfd_unref (tmp_bfd);
691 return 0;
692 }
693 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
694
695 /* We're done with the temporary bfd. */
696 gdb_bfd_unref (tmp_bfd);
697
698 /* We're also done with the loadmap. */
699 xfree (ldm);
700
701 /* Remove all the solib event breakpoints. Their addresses
702 may have changed since the last time we ran the program. */
703 remove_solib_event_breakpoints ();
704
705 /* Now (finally!) create the solib breakpoint. */
706 create_solib_event_breakpoint (target_gdbarch (), addr);
707
708 enable_break2_done = 1;
709
710 return 1;
711 }
712
713 /* Tell the user we couldn't set a dynamic linker breakpoint. */
714 enable_break_failure_warning ();
715
716 /* Failure return. */
717 return 0;
718 }
719
720 static int
721 enable_break (void)
722 {
723 asection *interp_sect;
724 CORE_ADDR entry_point;
725
726 if (symfile_objfile == NULL)
727 {
728 if (solib_frv_debug)
729 fprintf_unfiltered (gdb_stdlog,
730 "enable_break: No symbol file found.\n");
731 return 0;
732 }
733
734 if (!entry_point_address_query (&entry_point))
735 {
736 if (solib_frv_debug)
737 fprintf_unfiltered (gdb_stdlog,
738 "enable_break: Symbol file has no entry point.\n");
739 return 0;
740 }
741
742 /* Check for the presence of a .interp section. If there is no
743 such section, the executable is statically linked. */
744
745 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
746
747 if (interp_sect == NULL)
748 {
749 if (solib_frv_debug)
750 fprintf_unfiltered (gdb_stdlog,
751 "enable_break: No .interp section found.\n");
752 return 0;
753 }
754
755 create_solib_event_breakpoint (target_gdbarch (), entry_point);
756
757 if (solib_frv_debug)
758 fprintf_unfiltered (gdb_stdlog,
759 "enable_break: solib event breakpoint "
760 "placed at entry point: %s\n",
761 hex_string_custom (entry_point, 8));
762 return 1;
763 }
764
765 /* Implement the "special_symbol_handling" target_so_ops method. */
766
767 static void
768 frv_special_symbol_handling (void)
769 {
770 /* Nothing needed for FRV. */
771 }
772
773 static void
774 frv_relocate_main_executable (void)
775 {
776 int status;
777 CORE_ADDR exec_addr, interp_addr;
778 struct int_elf32_fdpic_loadmap *ldm;
779 struct cleanup *old_chain;
780 struct section_offsets *new_offsets;
781 int changed;
782 struct obj_section *osect;
783
784 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
785 &interp_addr, &exec_addr);
786
787 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
788 {
789 /* Not using FDPIC ABI, so do nothing. */
790 return;
791 }
792
793 /* Fetch the loadmap located at ``exec_addr''. */
794 ldm = fetch_loadmap (exec_addr);
795 if (ldm == NULL)
796 error (_("Unable to load the executable's loadmap."));
797
798 if (main_executable_lm_info)
799 xfree (main_executable_lm_info);
800 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
801 main_executable_lm_info->map = ldm;
802
803 new_offsets = xcalloc (symfile_objfile->num_sections,
804 sizeof (struct section_offsets));
805 old_chain = make_cleanup (xfree, new_offsets);
806 changed = 0;
807
808 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
809 {
810 CORE_ADDR orig_addr, addr, offset;
811 int osect_idx;
812 int seg;
813
814 osect_idx = osect - symfile_objfile->sections;
815
816 /* Current address of section. */
817 addr = obj_section_addr (osect);
818 /* Offset from where this section started. */
819 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
820 /* Original address prior to any past relocations. */
821 orig_addr = addr - offset;
822
823 for (seg = 0; seg < ldm->nsegs; seg++)
824 {
825 if (ldm->segs[seg].p_vaddr <= orig_addr
826 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
827 {
828 new_offsets->offsets[osect_idx]
829 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
830
831 if (new_offsets->offsets[osect_idx] != offset)
832 changed = 1;
833 break;
834 }
835 }
836 }
837
838 if (changed)
839 objfile_relocate (symfile_objfile, new_offsets);
840
841 do_cleanups (old_chain);
842
843 /* Now that symfile_objfile has been relocated, we can compute the
844 GOT value and stash it away. */
845 main_executable_lm_info->got_value = main_got ();
846 }
847
848 /* Implement the "create_inferior_hook" target_solib_ops method.
849
850 For the FR-V shared library ABI (FDPIC), the main executable needs
851 to be relocated. The shared library breakpoints also need to be
852 enabled. */
853
854 static void
855 frv_solib_create_inferior_hook (int from_tty)
856 {
857 /* Relocate main executable. */
858 frv_relocate_main_executable ();
859
860 /* Enable shared library breakpoints. */
861 if (!enable_break ())
862 {
863 warning (_("shared library handler failed to enable breakpoint"));
864 return;
865 }
866 }
867
868 static void
869 frv_clear_solib (void)
870 {
871 lm_base_cache = 0;
872 enable_break2_done = 0;
873 main_lm_addr = 0;
874 if (main_executable_lm_info != 0)
875 {
876 xfree (main_executable_lm_info->map);
877 xfree (main_executable_lm_info->dyn_syms);
878 xfree (main_executable_lm_info->dyn_relocs);
879 xfree (main_executable_lm_info);
880 main_executable_lm_info = 0;
881 }
882 }
883
884 static void
885 frv_free_so (struct so_list *so)
886 {
887 xfree (so->lm_info->map);
888 xfree (so->lm_info->dyn_syms);
889 xfree (so->lm_info->dyn_relocs);
890 xfree (so->lm_info);
891 }
892
893 static void
894 frv_relocate_section_addresses (struct so_list *so,
895 struct target_section *sec)
896 {
897 int seg;
898 struct int_elf32_fdpic_loadmap *map;
899
900 map = so->lm_info->map;
901
902 for (seg = 0; seg < map->nsegs; seg++)
903 {
904 if (map->segs[seg].p_vaddr <= sec->addr
905 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
906 {
907 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
908
909 sec->addr += displ;
910 sec->endaddr += displ;
911 break;
912 }
913 }
914 }
915
916 /* Return the GOT address associated with the main executable. Return
917 0 if it can't be found. */
918
919 static CORE_ADDR
920 main_got (void)
921 {
922 struct bound_minimal_symbol got_sym;
923
924 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
925 NULL, symfile_objfile);
926 if (got_sym.minsym == 0)
927 return 0;
928
929 return BMSYMBOL_VALUE_ADDRESS (got_sym);
930 }
931
932 /* Find the global pointer for the given function address ADDR. */
933
934 CORE_ADDR
935 frv_fdpic_find_global_pointer (CORE_ADDR addr)
936 {
937 struct so_list *so;
938
939 so = master_so_list ();
940 while (so)
941 {
942 int seg;
943 struct int_elf32_fdpic_loadmap *map;
944
945 map = so->lm_info->map;
946
947 for (seg = 0; seg < map->nsegs; seg++)
948 {
949 if (map->segs[seg].addr <= addr
950 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
951 return so->lm_info->got_value;
952 }
953
954 so = so->next;
955 }
956
957 /* Didn't find it in any of the shared objects. So assume it's in the
958 main executable. */
959 return main_got ();
960 }
961
962 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
963 static CORE_ADDR find_canonical_descriptor_in_load_object
964 (CORE_ADDR, CORE_ADDR, const char *, bfd *, struct lm_info *);
965
966 /* Given a function entry point, attempt to find the canonical descriptor
967 associated with that entry point. Return 0 if no canonical descriptor
968 could be found. */
969
970 CORE_ADDR
971 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
972 {
973 const char *name;
974 CORE_ADDR addr;
975 CORE_ADDR got_value;
976 struct int_elf32_fdpic_loadmap *ldm = 0;
977 struct symbol *sym;
978
979 /* Fetch the corresponding global pointer for the entry point. */
980 got_value = frv_fdpic_find_global_pointer (entry_point);
981
982 /* Attempt to find the name of the function. If the name is available,
983 it'll be used as an aid in finding matching functions in the dynamic
984 symbol table. */
985 sym = find_pc_function (entry_point);
986 if (sym == 0)
987 name = 0;
988 else
989 name = SYMBOL_LINKAGE_NAME (sym);
990
991 /* Check the main executable. */
992 addr = find_canonical_descriptor_in_load_object
993 (entry_point, got_value, name, symfile_objfile->obfd,
994 main_executable_lm_info);
995
996 /* If descriptor not found via main executable, check each load object
997 in list of shared objects. */
998 if (addr == 0)
999 {
1000 struct so_list *so;
1001
1002 so = master_so_list ();
1003 while (so)
1004 {
1005 addr = find_canonical_descriptor_in_load_object
1006 (entry_point, got_value, name, so->abfd, so->lm_info);
1007
1008 if (addr != 0)
1009 break;
1010
1011 so = so->next;
1012 }
1013 }
1014
1015 return addr;
1016 }
1017
1018 static CORE_ADDR
1019 find_canonical_descriptor_in_load_object
1020 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
1021 struct lm_info *lm)
1022 {
1023 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1024 arelent *rel;
1025 unsigned int i;
1026 CORE_ADDR addr = 0;
1027
1028 /* Nothing to do if no bfd. */
1029 if (abfd == 0)
1030 return 0;
1031
1032 /* Nothing to do if no link map. */
1033 if (lm == 0)
1034 return 0;
1035
1036 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1037 (More about this later.) But in order to fetch the relocs, we
1038 need to first fetch the dynamic symbols. These symbols need to
1039 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1040 works. (See the comments in the declaration of struct lm_info
1041 for more information.) */
1042 if (lm->dyn_syms == NULL)
1043 {
1044 long storage_needed;
1045 unsigned int number_of_symbols;
1046
1047 /* Determine amount of space needed to hold the dynamic symbol table. */
1048 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1049
1050 /* If there are no dynamic symbols, there's nothing to do. */
1051 if (storage_needed <= 0)
1052 return 0;
1053
1054 /* Allocate space for the dynamic symbol table. */
1055 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1056
1057 /* Fetch the dynamic symbol table. */
1058 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1059
1060 if (number_of_symbols == 0)
1061 return 0;
1062 }
1063
1064 /* Fetch the dynamic relocations if not already cached. */
1065 if (lm->dyn_relocs == NULL)
1066 {
1067 long storage_needed;
1068
1069 /* Determine amount of space needed to hold the dynamic relocs. */
1070 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1071
1072 /* Bail out if there are no dynamic relocs. */
1073 if (storage_needed <= 0)
1074 return 0;
1075
1076 /* Allocate space for the relocs. */
1077 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1078
1079 /* Fetch the dynamic relocs. */
1080 lm->dyn_reloc_count
1081 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1082 }
1083
1084 /* Search the dynamic relocs. */
1085 for (i = 0; i < lm->dyn_reloc_count; i++)
1086 {
1087 rel = lm->dyn_relocs[i];
1088
1089 /* Relocs of interest are those which meet the following
1090 criteria:
1091
1092 - the names match (assuming the caller could provide
1093 a name which matches ``entry_point'').
1094 - the relocation type must be R_FRV_FUNCDESC. Relocs
1095 of this type are used (by the dynamic linker) to
1096 look up the address of a canonical descriptor (allocating
1097 it if need be) and initializing the GOT entry referred
1098 to by the offset to the address of the descriptor.
1099
1100 These relocs of interest may be used to obtain a
1101 candidate descriptor by first adjusting the reloc's
1102 address according to the link map and then dereferencing
1103 this address (which is a GOT entry) to obtain a descriptor
1104 address. */
1105 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1106 && rel->howto->type == R_FRV_FUNCDESC)
1107 {
1108 gdb_byte buf [FRV_PTR_SIZE];
1109
1110 /* Compute address of address of candidate descriptor. */
1111 addr = rel->address + displacement_from_map (lm->map, rel->address);
1112
1113 /* Fetch address of candidate descriptor. */
1114 if (target_read_memory (addr, buf, sizeof buf) != 0)
1115 continue;
1116 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1117
1118 /* Check for matching entry point. */
1119 if (target_read_memory (addr, buf, sizeof buf) != 0)
1120 continue;
1121 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1122 != entry_point)
1123 continue;
1124
1125 /* Check for matching got value. */
1126 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1127 continue;
1128 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1129 != got_value)
1130 continue;
1131
1132 /* Match was successful! Exit loop. */
1133 break;
1134 }
1135 }
1136
1137 return addr;
1138 }
1139
1140 /* Given an objfile, return the address of its link map. This value is
1141 needed for TLS support. */
1142 CORE_ADDR
1143 frv_fetch_objfile_link_map (struct objfile *objfile)
1144 {
1145 struct so_list *so;
1146
1147 /* Cause frv_current_sos() to be run if it hasn't been already. */
1148 if (main_lm_addr == 0)
1149 solib_add (0, 0, 0, 1);
1150
1151 /* frv_current_sos() will set main_lm_addr for the main executable. */
1152 if (objfile == symfile_objfile)
1153 return main_lm_addr;
1154
1155 /* The other link map addresses may be found by examining the list
1156 of shared libraries. */
1157 for (so = master_so_list (); so; so = so->next)
1158 {
1159 if (so->objfile == objfile)
1160 return so->lm_info->lm_addr;
1161 }
1162
1163 /* Not found! */
1164 return 0;
1165 }
1166
1167 struct target_so_ops frv_so_ops;
1168
1169 /* Provide a prototype to silence -Wmissing-prototypes. */
1170 extern initialize_file_ftype _initialize_frv_solib;
1171
1172 void
1173 _initialize_frv_solib (void)
1174 {
1175 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1176 frv_so_ops.free_so = frv_free_so;
1177 frv_so_ops.clear_solib = frv_clear_solib;
1178 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1179 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1180 frv_so_ops.current_sos = frv_current_sos;
1181 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1182 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1183 frv_so_ops.bfd_open = solib_bfd_open;
1184
1185 /* Debug this file's internals. */
1186 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1187 &solib_frv_debug, _("\
1188 Set internal debugging of shared library code for FR-V."), _("\
1189 Show internal debugging of shared library code for FR-V."), _("\
1190 When non-zero, FR-V solib specific internal debugging is enabled."),
1191 NULL,
1192 NULL, /* FIXME: i18n: */
1193 &setdebuglist, &showdebuglist);
1194 }