]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-frv.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
20
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "solist.h"
27 #include "frv-tdep.h"
28 #include "objfiles.h"
29 #include "symtab.h"
30 #include "language.h"
31 #include "command.h"
32 #include "gdbcmd.h"
33 #include "elf/frv.h"
34
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static int solib_frv_debug;
37
38 /* FR-V pointers are four bytes wide. */
39 enum { FRV_PTR_SIZE = 4 };
40
41 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
42
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half[2];
47 typedef gdb_byte ext_Elf32_Addr[4];
48 typedef gdb_byte ext_Elf32_Word[4];
49
50 struct ext_elf32_fdpic_loadseg
51 {
52 /* Core address to which the segment is mapped. */
53 ext_Elf32_Addr addr;
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz;
58 };
59
60 struct ext_elf32_fdpic_loadmap {
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Half version;
63 /* Number of segments in this map. */
64 ext_Elf32_Half nsegs;
65 /* The actual memory map. */
66 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
67 };
68
69 /* Internal versions; the types are GDB types and the data in each
70 of the fields is (or will be) decoded from the external struct
71 for ease of consumption. */
72 struct int_elf32_fdpic_loadseg
73 {
74 /* Core address to which the segment is mapped. */
75 CORE_ADDR addr;
76 /* VMA recorded in the program header. */
77 CORE_ADDR p_vaddr;
78 /* Size of this segment in memory. */
79 long p_memsz;
80 };
81
82 struct int_elf32_fdpic_loadmap {
83 /* Protocol version number, must be zero. */
84 int version;
85 /* Number of segments in this map. */
86 int nsegs;
87 /* The actual memory map. */
88 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
89 };
90
91 /* Given address LDMADDR, fetch and decode the loadmap at that address.
92 Return NULL if there is a problem reading the target memory or if
93 there doesn't appear to be a loadmap at the given address. The
94 allocated space (representing the loadmap) returned by this
95 function may be freed via a single call to xfree(). */
96
97 static struct int_elf32_fdpic_loadmap *
98 fetch_loadmap (CORE_ADDR ldmaddr)
99 {
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version);
117 if (version != 0)
118 {
119 /* We only handle version 0. */
120 return NULL;
121 }
122
123 /* Extract the number of segments. */
124 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
125 sizeof ext_ldmbuf_partial.nsegs);
126
127 /* Allocate space for the complete (external) loadmap. */
128 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
129 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
130 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
131
132 /* Copy over the portion of the loadmap that's already been read. */
133 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
134
135 /* Read the rest of the loadmap from the target. */
136 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
137 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
138 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
139 {
140 /* Couldn't read rest of the loadmap. */
141 xfree (ext_ldmbuf);
142 return NULL;
143 }
144
145 /* Allocate space into which to put information extract from the
146 external loadsegs. I.e, allocate the internal loadsegs. */
147 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
148 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
149 int_ldmbuf = xmalloc (int_ldmbuf_size);
150
151 /* Place extracted information in internal structs. */
152 int_ldmbuf->version = version;
153 int_ldmbuf->nsegs = nsegs;
154 for (seg = 0; seg < nsegs; seg++)
155 {
156 int_ldmbuf->segs[seg].addr
157 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
158 sizeof (ext_ldmbuf->segs[seg].addr));
159 int_ldmbuf->segs[seg].p_vaddr
160 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
161 sizeof (ext_ldmbuf->segs[seg].p_vaddr));
162 int_ldmbuf->segs[seg].p_memsz
163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
164 sizeof (ext_ldmbuf->segs[seg].p_memsz));
165 }
166
167 xfree (ext_ldmbuf);
168 return int_ldmbuf;
169 }
170
171 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
172
173 typedef gdb_byte ext_ptr[4];
174
175 struct ext_elf32_fdpic_loadaddr
176 {
177 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
178 ext_ptr got_value; /* void *got_value; */
179 };
180
181 struct ext_link_map
182 {
183 struct ext_elf32_fdpic_loadaddr l_addr;
184
185 /* Absolute file name object was found in. */
186 ext_ptr l_name; /* char *l_name; */
187
188 /* Dynamic section of the shared object. */
189 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
190
191 /* Chain of loaded objects. */
192 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
193 };
194
195 /* Link map info to include in an allocated so_list entry */
196
197 struct lm_info
198 {
199 /* The loadmap, digested into an easier to use form. */
200 struct int_elf32_fdpic_loadmap *map;
201 /* The GOT address for this link map entry. */
202 CORE_ADDR got_value;
203 /* The link map address, needed for frv_fetch_objfile_link_map(). */
204 CORE_ADDR lm_addr;
205
206 /* Cached dynamic symbol table and dynamic relocs initialized and
207 used only by find_canonical_descriptor_in_load_object().
208
209 Note: kevinb/2004-02-26: It appears that calls to
210 bfd_canonicalize_dynamic_reloc() will use the same symbols as
211 those supplied to the first call to this function. Therefore,
212 it's important to NOT free the asymbol ** data structure
213 supplied to the first call. Thus the caching of the dynamic
214 symbols (dyn_syms) is critical for correct operation. The
215 caching of the dynamic relocations could be dispensed with. */
216 asymbol **dyn_syms;
217 arelent **dyn_relocs;
218 int dyn_reloc_count; /* number of dynamic relocs. */
219
220 };
221
222 /* The load map, got value, etc. are not available from the chain
223 of loaded shared objects. ``main_executable_lm_info'' provides
224 a way to get at this information so that it doesn't need to be
225 frequently recomputed. Initialized by frv_relocate_main_executable(). */
226 static struct lm_info *main_executable_lm_info;
227
228 static void frv_relocate_main_executable (void);
229 static CORE_ADDR main_got (void);
230 static int enable_break2 (void);
231
232 /*
233
234 LOCAL FUNCTION
235
236 bfd_lookup_symbol -- lookup the value for a specific symbol
237
238 SYNOPSIS
239
240 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
241
242 DESCRIPTION
243
244 An expensive way to lookup the value of a single symbol for
245 bfd's that are only temporary anyway. This is used by the
246 shared library support to find the address of the debugger
247 interface structures in the shared library.
248
249 Note that 0 is specifically allowed as an error return (no
250 such symbol).
251 */
252
253 static CORE_ADDR
254 bfd_lookup_symbol (bfd *abfd, char *symname)
255 {
256 long storage_needed;
257 asymbol *sym;
258 asymbol **symbol_table;
259 unsigned int number_of_symbols;
260 unsigned int i;
261 struct cleanup *back_to;
262 CORE_ADDR symaddr = 0;
263
264 storage_needed = bfd_get_symtab_upper_bound (abfd);
265
266 if (storage_needed > 0)
267 {
268 symbol_table = (asymbol **) xmalloc (storage_needed);
269 back_to = make_cleanup (xfree, symbol_table);
270 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
271
272 for (i = 0; i < number_of_symbols; i++)
273 {
274 sym = *symbol_table++;
275 if (strcmp (sym->name, symname) == 0)
276 {
277 /* Bfd symbols are section relative. */
278 symaddr = sym->value + sym->section->vma;
279 break;
280 }
281 }
282 do_cleanups (back_to);
283 }
284
285 if (symaddr)
286 return symaddr;
287
288 /* Look for the symbol in the dynamic string table too. */
289
290 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
291
292 if (storage_needed > 0)
293 {
294 symbol_table = (asymbol **) xmalloc (storage_needed);
295 back_to = make_cleanup (xfree, symbol_table);
296 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
297
298 for (i = 0; i < number_of_symbols; i++)
299 {
300 sym = *symbol_table++;
301 if (strcmp (sym->name, symname) == 0)
302 {
303 /* Bfd symbols are section relative. */
304 symaddr = sym->value + sym->section->vma;
305 break;
306 }
307 }
308 do_cleanups (back_to);
309 }
310
311 return symaddr;
312 }
313
314
315 /*
316
317 LOCAL FUNCTION
318
319 open_symbol_file_object
320
321 SYNOPSIS
322
323 void open_symbol_file_object (void *from_tty)
324
325 DESCRIPTION
326
327 If no open symbol file, attempt to locate and open the main symbol
328 file.
329
330 If FROM_TTYP dereferences to a non-zero integer, allow messages to
331 be printed. This parameter is a pointer rather than an int because
332 open_symbol_file_object() is called via catch_errors() and
333 catch_errors() requires a pointer argument. */
334
335 static int
336 open_symbol_file_object (void *from_ttyp)
337 {
338 /* Unimplemented. */
339 return 0;
340 }
341
342 /* Cached value for lm_base(), below. */
343 static CORE_ADDR lm_base_cache = 0;
344
345 /* Link map address for main module. */
346 static CORE_ADDR main_lm_addr = 0;
347
348 /* Return the address from which the link map chain may be found. On
349 the FR-V, this may be found in a number of ways. Assuming that the
350 main executable has already been relocated, the easiest way to find
351 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
352 pointer to the start of the link map will be located at the word found
353 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
354 reserve area mandated by the ABI.) */
355
356 static CORE_ADDR
357 lm_base (void)
358 {
359 struct minimal_symbol *got_sym;
360 CORE_ADDR addr;
361 gdb_byte buf[FRV_PTR_SIZE];
362
363 /* If we already have a cached value, return it. */
364 if (lm_base_cache)
365 return lm_base_cache;
366
367 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
368 symfile_objfile);
369 if (got_sym == 0)
370 {
371 if (solib_frv_debug)
372 fprintf_unfiltered (gdb_stdlog,
373 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
374 return 0;
375 }
376
377 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
378
379 if (solib_frv_debug)
380 fprintf_unfiltered (gdb_stdlog,
381 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
382 hex_string_custom (addr, 8));
383
384 if (target_read_memory (addr, buf, sizeof buf) != 0)
385 return 0;
386 lm_base_cache = extract_unsigned_integer (buf, sizeof buf);
387
388 if (solib_frv_debug)
389 fprintf_unfiltered (gdb_stdlog,
390 "lm_base: lm_base_cache = %s\n",
391 hex_string_custom (lm_base_cache, 8));
392
393 return lm_base_cache;
394 }
395
396
397 /* LOCAL FUNCTION
398
399 frv_current_sos -- build a list of currently loaded shared objects
400
401 SYNOPSIS
402
403 struct so_list *frv_current_sos ()
404
405 DESCRIPTION
406
407 Build a list of `struct so_list' objects describing the shared
408 objects currently loaded in the inferior. This list does not
409 include an entry for the main executable file.
410
411 Note that we only gather information directly available from the
412 inferior --- we don't examine any of the shared library files
413 themselves. The declaration of `struct so_list' says which fields
414 we provide values for. */
415
416 static struct so_list *
417 frv_current_sos (void)
418 {
419 CORE_ADDR lm_addr, mgot;
420 struct so_list *sos_head = NULL;
421 struct so_list **sos_next_ptr = &sos_head;
422
423 /* Make sure that the main executable has been relocated. This is
424 required in order to find the address of the global offset table,
425 which in turn is used to find the link map info. (See lm_base()
426 for details.)
427
428 Note that the relocation of the main executable is also performed
429 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
430 files, this hook is called too late in order to be of benefit to
431 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
432 frv_current_sos, and also precedes the call to
433 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
434 infcmd.c.) */
435 if (main_executable_lm_info == 0 && core_bfd != NULL)
436 frv_relocate_main_executable ();
437
438 /* Fetch the GOT corresponding to the main executable. */
439 mgot = main_got ();
440
441 /* Locate the address of the first link map struct. */
442 lm_addr = lm_base ();
443
444 /* We have at least one link map entry. Fetch the the lot of them,
445 building the solist chain. */
446 while (lm_addr)
447 {
448 struct ext_link_map lm_buf;
449 CORE_ADDR got_addr;
450
451 if (solib_frv_debug)
452 fprintf_unfiltered (gdb_stdlog,
453 "current_sos: reading link_map entry at %s\n",
454 hex_string_custom (lm_addr, 8));
455
456 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
457 {
458 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
459 break;
460 }
461
462 got_addr
463 = extract_unsigned_integer (lm_buf.l_addr.got_value,
464 sizeof (lm_buf.l_addr.got_value));
465 /* If the got_addr is the same as mgotr, then we're looking at the
466 entry for the main executable. By convention, we don't include
467 this in the list of shared objects. */
468 if (got_addr != mgot)
469 {
470 int errcode;
471 char *name_buf;
472 struct int_elf32_fdpic_loadmap *loadmap;
473 struct so_list *sop;
474 CORE_ADDR addr;
475
476 /* Fetch the load map address. */
477 addr = extract_unsigned_integer (lm_buf.l_addr.map,
478 sizeof lm_buf.l_addr.map);
479 loadmap = fetch_loadmap (addr);
480 if (loadmap == NULL)
481 {
482 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
483 break;
484 }
485
486 sop = xcalloc (1, sizeof (struct so_list));
487 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
488 sop->lm_info->map = loadmap;
489 sop->lm_info->got_value = got_addr;
490 sop->lm_info->lm_addr = lm_addr;
491 /* Fetch the name. */
492 addr = extract_unsigned_integer (lm_buf.l_name,
493 sizeof (lm_buf.l_name));
494 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
495 &errcode);
496
497 if (solib_frv_debug)
498 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
499 name_buf);
500
501 if (errcode != 0)
502 warning (_("Can't read pathname for link map entry: %s."),
503 safe_strerror (errcode));
504 else
505 {
506 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
507 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
508 xfree (name_buf);
509 strcpy (sop->so_original_name, sop->so_name);
510 }
511
512 *sos_next_ptr = sop;
513 sos_next_ptr = &sop->next;
514 }
515 else
516 {
517 main_lm_addr = lm_addr;
518 }
519
520 lm_addr = extract_unsigned_integer (lm_buf.l_next, sizeof (lm_buf.l_next));
521 }
522
523 enable_break2 ();
524
525 return sos_head;
526 }
527
528
529 /* Return 1 if PC lies in the dynamic symbol resolution code of the
530 run time loader. */
531
532 static CORE_ADDR interp_text_sect_low;
533 static CORE_ADDR interp_text_sect_high;
534 static CORE_ADDR interp_plt_sect_low;
535 static CORE_ADDR interp_plt_sect_high;
536
537 static int
538 frv_in_dynsym_resolve_code (CORE_ADDR pc)
539 {
540 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
541 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
542 || in_plt_section (pc, NULL));
543 }
544
545 /* Given a loadmap and an address, return the displacement needed
546 to relocate the address. */
547
548 CORE_ADDR
549 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
550 CORE_ADDR addr)
551 {
552 int seg;
553
554 for (seg = 0; seg < map->nsegs; seg++)
555 {
556 if (map->segs[seg].p_vaddr <= addr
557 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
558 {
559 return map->segs[seg].addr - map->segs[seg].p_vaddr;
560 }
561 }
562
563 return 0;
564 }
565
566 /* Print a warning about being unable to set the dynamic linker
567 breakpoint. */
568
569 static void
570 enable_break_failure_warning (void)
571 {
572 warning (_("Unable to find dynamic linker breakpoint function.\n"
573 "GDB will be unable to debug shared library initializers\n"
574 "and track explicitly loaded dynamic code."));
575 }
576
577 /*
578
579 LOCAL FUNCTION
580
581 enable_break -- arrange for dynamic linker to hit breakpoint
582
583 SYNOPSIS
584
585 int enable_break (void)
586
587 DESCRIPTION
588
589 The dynamic linkers has, as part of its debugger interface, support
590 for arranging for the inferior to hit a breakpoint after mapping in
591 the shared libraries. This function enables that breakpoint.
592
593 On the FR-V, using the shared library (FDPIC) ABI, the symbol
594 _dl_debug_addr points to the r_debug struct which contains
595 a field called r_brk. r_brk is the address of the function
596 descriptor upon which a breakpoint must be placed. Being a
597 function descriptor, we must extract the entry point in order
598 to set the breakpoint.
599
600 Our strategy will be to get the .interp section from the
601 executable. This section will provide us with the name of the
602 interpreter. We'll open the interpreter and then look up
603 the address of _dl_debug_addr. We then relocate this address
604 using the interpreter's loadmap. Once the relocated address
605 is known, we fetch the value (address) corresponding to r_brk
606 and then use that value to fetch the entry point of the function
607 we're interested in.
608
609 */
610
611 static int enable_break1_done = 0;
612 static int enable_break2_done = 0;
613
614 static int
615 enable_break2 (void)
616 {
617 int success = 0;
618 char **bkpt_namep;
619 asection *interp_sect;
620
621 if (!enable_break1_done || enable_break2_done)
622 return 1;
623
624 enable_break2_done = 1;
625
626 /* First, remove all the solib event breakpoints. Their addresses
627 may have changed since the last time we ran the program. */
628 remove_solib_event_breakpoints ();
629
630 interp_text_sect_low = interp_text_sect_high = 0;
631 interp_plt_sect_low = interp_plt_sect_high = 0;
632
633 /* Find the .interp section; if not found, warn the user and drop
634 into the old breakpoint at symbol code. */
635 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
636 if (interp_sect)
637 {
638 unsigned int interp_sect_size;
639 gdb_byte *buf;
640 bfd *tmp_bfd = NULL;
641 int tmp_fd = -1;
642 char *tmp_pathname = NULL;
643 int status;
644 CORE_ADDR addr, interp_loadmap_addr;
645 gdb_byte addr_buf[FRV_PTR_SIZE];
646 struct int_elf32_fdpic_loadmap *ldm;
647
648 /* Read the contents of the .interp section into a local buffer;
649 the contents specify the dynamic linker this program uses. */
650 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
651 buf = alloca (interp_sect_size);
652 bfd_get_section_contents (exec_bfd, interp_sect,
653 buf, 0, interp_sect_size);
654
655 /* Now we need to figure out where the dynamic linker was
656 loaded so that we can load its symbols and place a breakpoint
657 in the dynamic linker itself.
658
659 This address is stored on the stack. However, I've been unable
660 to find any magic formula to find it for Solaris (appears to
661 be trivial on GNU/Linux). Therefore, we have to try an alternate
662 mechanism to find the dynamic linker's base address. */
663
664 tmp_fd = solib_open (buf, &tmp_pathname);
665 if (tmp_fd >= 0)
666 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
667
668 if (tmp_bfd == NULL)
669 {
670 enable_break_failure_warning ();
671 return 0;
672 }
673
674 /* Make sure the dynamic linker is really a useful object. */
675 if (!bfd_check_format (tmp_bfd, bfd_object))
676 {
677 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
678 enable_break_failure_warning ();
679 bfd_close (tmp_bfd);
680 return 0;
681 }
682
683 status = frv_fdpic_loadmap_addresses (current_gdbarch,
684 &interp_loadmap_addr, 0);
685 if (status < 0)
686 {
687 warning (_("Unable to determine dynamic linker loadmap address."));
688 enable_break_failure_warning ();
689 bfd_close (tmp_bfd);
690 return 0;
691 }
692
693 if (solib_frv_debug)
694 fprintf_unfiltered (gdb_stdlog,
695 "enable_break: interp_loadmap_addr = %s\n",
696 hex_string_custom (interp_loadmap_addr, 8));
697
698 ldm = fetch_loadmap (interp_loadmap_addr);
699 if (ldm == NULL)
700 {
701 warning (_("Unable to load dynamic linker loadmap at address %s."),
702 hex_string_custom (interp_loadmap_addr, 8));
703 enable_break_failure_warning ();
704 bfd_close (tmp_bfd);
705 return 0;
706 }
707
708 /* Record the relocated start and end address of the dynamic linker
709 text and plt section for svr4_in_dynsym_resolve_code. */
710 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
711 if (interp_sect)
712 {
713 interp_text_sect_low
714 = bfd_section_vma (tmp_bfd, interp_sect);
715 interp_text_sect_low
716 += displacement_from_map (ldm, interp_text_sect_low);
717 interp_text_sect_high
718 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
719 }
720 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
721 if (interp_sect)
722 {
723 interp_plt_sect_low =
724 bfd_section_vma (tmp_bfd, interp_sect);
725 interp_plt_sect_low
726 += displacement_from_map (ldm, interp_plt_sect_low);
727 interp_plt_sect_high =
728 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
729 }
730
731 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
732 if (addr == 0)
733 {
734 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
735 enable_break_failure_warning ();
736 bfd_close (tmp_bfd);
737 return 0;
738 }
739
740 if (solib_frv_debug)
741 fprintf_unfiltered (gdb_stdlog,
742 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
743 hex_string_custom (addr, 8));
744
745 addr += displacement_from_map (ldm, addr);
746
747 if (solib_frv_debug)
748 fprintf_unfiltered (gdb_stdlog,
749 "enable_break: _dl_debug_addr (after relocation) = %s\n",
750 hex_string_custom (addr, 8));
751
752 /* Fetch the address of the r_debug struct. */
753 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
754 {
755 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
756 hex_string_custom (addr, 8));
757 }
758 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
759
760 /* Fetch the r_brk field. It's 8 bytes from the start of
761 _dl_debug_addr. */
762 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
763 {
764 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
765 hex_string_custom (addr + 8, 8));
766 enable_break_failure_warning ();
767 bfd_close (tmp_bfd);
768 return 0;
769 }
770 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
771
772 /* Now fetch the function entry point. */
773 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
774 {
775 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
776 hex_string_custom (addr, 8));
777 enable_break_failure_warning ();
778 bfd_close (tmp_bfd);
779 return 0;
780 }
781 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
782
783 /* We're done with the temporary bfd. */
784 bfd_close (tmp_bfd);
785
786 /* We're also done with the loadmap. */
787 xfree (ldm);
788
789 /* Now (finally!) create the solib breakpoint. */
790 create_solib_event_breakpoint (addr);
791
792 return 1;
793 }
794
795 /* Tell the user we couldn't set a dynamic linker breakpoint. */
796 enable_break_failure_warning ();
797
798 /* Failure return. */
799 return 0;
800 }
801
802 static int
803 enable_break (void)
804 {
805 asection *interp_sect;
806
807 /* Remove all the solib event breakpoints. Their addresses
808 may have changed since the last time we ran the program. */
809 remove_solib_event_breakpoints ();
810
811 /* Check for the presence of a .interp section. If there is no
812 such section, the executable is statically linked. */
813
814 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
815
816 if (interp_sect)
817 {
818 enable_break1_done = 1;
819 create_solib_event_breakpoint (symfile_objfile->ei.entry_point);
820
821 if (solib_frv_debug)
822 fprintf_unfiltered (gdb_stdlog,
823 "enable_break: solib event breakpoint placed at entry point: %s\n",
824 hex_string_custom
825 (symfile_objfile->ei.entry_point, 8));
826 }
827 else
828 {
829 if (solib_frv_debug)
830 fprintf_unfiltered (gdb_stdlog,
831 "enable_break: No .interp section found.\n");
832 }
833
834 return 1;
835 }
836
837 /*
838
839 LOCAL FUNCTION
840
841 special_symbol_handling -- additional shared library symbol handling
842
843 SYNOPSIS
844
845 void special_symbol_handling ()
846
847 DESCRIPTION
848
849 Once the symbols from a shared object have been loaded in the usual
850 way, we are called to do any system specific symbol handling that
851 is needed.
852
853 */
854
855 static void
856 frv_special_symbol_handling (void)
857 {
858 /* Nothing needed (yet) for FRV. */
859 }
860
861 static void
862 frv_relocate_main_executable (void)
863 {
864 int status;
865 CORE_ADDR exec_addr;
866 struct int_elf32_fdpic_loadmap *ldm;
867 struct cleanup *old_chain;
868 struct section_offsets *new_offsets;
869 int changed;
870 struct obj_section *osect;
871
872 status = frv_fdpic_loadmap_addresses (current_gdbarch, 0, &exec_addr);
873
874 if (status < 0)
875 {
876 /* Not using FDPIC ABI, so do nothing. */
877 return;
878 }
879
880 /* Fetch the loadmap located at ``exec_addr''. */
881 ldm = fetch_loadmap (exec_addr);
882 if (ldm == NULL)
883 error (_("Unable to load the executable's loadmap."));
884
885 if (main_executable_lm_info)
886 xfree (main_executable_lm_info);
887 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
888 main_executable_lm_info->map = ldm;
889
890 new_offsets = xcalloc (symfile_objfile->num_sections,
891 sizeof (struct section_offsets));
892 old_chain = make_cleanup (xfree, new_offsets);
893 changed = 0;
894
895 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
896 {
897 CORE_ADDR orig_addr, addr, offset;
898 int osect_idx;
899 int seg;
900
901 osect_idx = osect->the_bfd_section->index;
902
903 /* Current address of section. */
904 addr = osect->addr;
905 /* Offset from where this section started. */
906 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
907 /* Original address prior to any past relocations. */
908 orig_addr = addr - offset;
909
910 for (seg = 0; seg < ldm->nsegs; seg++)
911 {
912 if (ldm->segs[seg].p_vaddr <= orig_addr
913 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
914 {
915 new_offsets->offsets[osect_idx]
916 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
917
918 if (new_offsets->offsets[osect_idx] != offset)
919 changed = 1;
920 break;
921 }
922 }
923 }
924
925 if (changed)
926 objfile_relocate (symfile_objfile, new_offsets);
927
928 do_cleanups (old_chain);
929
930 /* Now that symfile_objfile has been relocated, we can compute the
931 GOT value and stash it away. */
932 main_executable_lm_info->got_value = main_got ();
933 }
934
935 /*
936
937 GLOBAL FUNCTION
938
939 frv_solib_create_inferior_hook -- shared library startup support
940
941 SYNOPSIS
942
943 void frv_solib_create_inferior_hook ()
944
945 DESCRIPTION
946
947 When gdb starts up the inferior, it nurses it along (through the
948 shell) until it is ready to execute it's first instruction. At this
949 point, this function gets called via expansion of the macro
950 SOLIB_CREATE_INFERIOR_HOOK.
951
952 For the FR-V shared library ABI (FDPIC), the main executable
953 needs to be relocated. The shared library breakpoints also need
954 to be enabled.
955 */
956
957 static void
958 frv_solib_create_inferior_hook (void)
959 {
960 /* Relocate main executable. */
961 frv_relocate_main_executable ();
962
963 /* Enable shared library breakpoints. */
964 if (!enable_break ())
965 {
966 warning (_("shared library handler failed to enable breakpoint"));
967 return;
968 }
969 }
970
971 static void
972 frv_clear_solib (void)
973 {
974 lm_base_cache = 0;
975 enable_break1_done = 0;
976 enable_break2_done = 0;
977 main_lm_addr = 0;
978 if (main_executable_lm_info != 0)
979 {
980 xfree (main_executable_lm_info->map);
981 xfree (main_executable_lm_info->dyn_syms);
982 xfree (main_executable_lm_info->dyn_relocs);
983 xfree (main_executable_lm_info);
984 main_executable_lm_info = 0;
985 }
986 }
987
988 static void
989 frv_free_so (struct so_list *so)
990 {
991 xfree (so->lm_info->map);
992 xfree (so->lm_info->dyn_syms);
993 xfree (so->lm_info->dyn_relocs);
994 xfree (so->lm_info);
995 }
996
997 static void
998 frv_relocate_section_addresses (struct so_list *so,
999 struct section_table *sec)
1000 {
1001 int seg;
1002 struct int_elf32_fdpic_loadmap *map;
1003
1004 map = so->lm_info->map;
1005
1006 for (seg = 0; seg < map->nsegs; seg++)
1007 {
1008 if (map->segs[seg].p_vaddr <= sec->addr
1009 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1010 {
1011 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1012 sec->addr += displ;
1013 sec->endaddr += displ;
1014 break;
1015 }
1016 }
1017 }
1018
1019 /* Return the GOT address associated with the main executable. Return
1020 0 if it can't be found. */
1021
1022 static CORE_ADDR
1023 main_got (void)
1024 {
1025 struct minimal_symbol *got_sym;
1026
1027 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1028 if (got_sym == 0)
1029 return 0;
1030
1031 return SYMBOL_VALUE_ADDRESS (got_sym);
1032 }
1033
1034 /* Find the global pointer for the given function address ADDR. */
1035
1036 CORE_ADDR
1037 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1038 {
1039 struct so_list *so;
1040
1041 so = master_so_list ();
1042 while (so)
1043 {
1044 int seg;
1045 struct int_elf32_fdpic_loadmap *map;
1046
1047 map = so->lm_info->map;
1048
1049 for (seg = 0; seg < map->nsegs; seg++)
1050 {
1051 if (map->segs[seg].addr <= addr
1052 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1053 return so->lm_info->got_value;
1054 }
1055
1056 so = so->next;
1057 }
1058
1059 /* Didn't find it it any of the shared objects. So assume it's in the
1060 main executable. */
1061 return main_got ();
1062 }
1063
1064 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1065 static CORE_ADDR find_canonical_descriptor_in_load_object
1066 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1067
1068 /* Given a function entry point, attempt to find the canonical descriptor
1069 associated with that entry point. Return 0 if no canonical descriptor
1070 could be found. */
1071
1072 CORE_ADDR
1073 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1074 {
1075 char *name;
1076 CORE_ADDR addr;
1077 CORE_ADDR got_value;
1078 struct int_elf32_fdpic_loadmap *ldm = 0;
1079 struct symbol *sym;
1080 int status;
1081 CORE_ADDR exec_loadmap_addr;
1082
1083 /* Fetch the corresponding global pointer for the entry point. */
1084 got_value = frv_fdpic_find_global_pointer (entry_point);
1085
1086 /* Attempt to find the name of the function. If the name is available,
1087 it'll be used as an aid in finding matching functions in the dynamic
1088 symbol table. */
1089 sym = find_pc_function (entry_point);
1090 if (sym == 0)
1091 name = 0;
1092 else
1093 name = SYMBOL_LINKAGE_NAME (sym);
1094
1095 /* Check the main executable. */
1096 addr = find_canonical_descriptor_in_load_object
1097 (entry_point, got_value, name, symfile_objfile->obfd,
1098 main_executable_lm_info);
1099
1100 /* If descriptor not found via main executable, check each load object
1101 in list of shared objects. */
1102 if (addr == 0)
1103 {
1104 struct so_list *so;
1105
1106 so = master_so_list ();
1107 while (so)
1108 {
1109 addr = find_canonical_descriptor_in_load_object
1110 (entry_point, got_value, name, so->abfd, so->lm_info);
1111
1112 if (addr != 0)
1113 break;
1114
1115 so = so->next;
1116 }
1117 }
1118
1119 return addr;
1120 }
1121
1122 static CORE_ADDR
1123 find_canonical_descriptor_in_load_object
1124 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1125 struct lm_info *lm)
1126 {
1127 arelent *rel;
1128 unsigned int i;
1129 CORE_ADDR addr = 0;
1130
1131 /* Nothing to do if no bfd. */
1132 if (abfd == 0)
1133 return 0;
1134
1135 /* Nothing to do if no link map. */
1136 if (lm == 0)
1137 return 0;
1138
1139 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1140 (More about this later.) But in order to fetch the relocs, we
1141 need to first fetch the dynamic symbols. These symbols need to
1142 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1143 works. (See the comments in the declaration of struct lm_info
1144 for more information.) */
1145 if (lm->dyn_syms == NULL)
1146 {
1147 long storage_needed;
1148 unsigned int number_of_symbols;
1149
1150 /* Determine amount of space needed to hold the dynamic symbol table. */
1151 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1152
1153 /* If there are no dynamic symbols, there's nothing to do. */
1154 if (storage_needed <= 0)
1155 return 0;
1156
1157 /* Allocate space for the dynamic symbol table. */
1158 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1159
1160 /* Fetch the dynamic symbol table. */
1161 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1162
1163 if (number_of_symbols == 0)
1164 return 0;
1165 }
1166
1167 /* Fetch the dynamic relocations if not already cached. */
1168 if (lm->dyn_relocs == NULL)
1169 {
1170 long storage_needed;
1171
1172 /* Determine amount of space needed to hold the dynamic relocs. */
1173 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1174
1175 /* Bail out if there are no dynamic relocs. */
1176 if (storage_needed <= 0)
1177 return 0;
1178
1179 /* Allocate space for the relocs. */
1180 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1181
1182 /* Fetch the dynamic relocs. */
1183 lm->dyn_reloc_count
1184 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1185 }
1186
1187 /* Search the dynamic relocs. */
1188 for (i = 0; i < lm->dyn_reloc_count; i++)
1189 {
1190 rel = lm->dyn_relocs[i];
1191
1192 /* Relocs of interest are those which meet the following
1193 criteria:
1194
1195 - the names match (assuming the caller could provide
1196 a name which matches ``entry_point'').
1197 - the relocation type must be R_FRV_FUNCDESC. Relocs
1198 of this type are used (by the dynamic linker) to
1199 look up the address of a canonical descriptor (allocating
1200 it if need be) and initializing the GOT entry referred
1201 to by the offset to the address of the descriptor.
1202
1203 These relocs of interest may be used to obtain a
1204 candidate descriptor by first adjusting the reloc's
1205 address according to the link map and then dereferencing
1206 this address (which is a GOT entry) to obtain a descriptor
1207 address. */
1208 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1209 && rel->howto->type == R_FRV_FUNCDESC)
1210 {
1211 gdb_byte buf [FRV_PTR_SIZE];
1212
1213 /* Compute address of address of candidate descriptor. */
1214 addr = rel->address + displacement_from_map (lm->map, rel->address);
1215
1216 /* Fetch address of candidate descriptor. */
1217 if (target_read_memory (addr, buf, sizeof buf) != 0)
1218 continue;
1219 addr = extract_unsigned_integer (buf, sizeof buf);
1220
1221 /* Check for matching entry point. */
1222 if (target_read_memory (addr, buf, sizeof buf) != 0)
1223 continue;
1224 if (extract_unsigned_integer (buf, sizeof buf) != entry_point)
1225 continue;
1226
1227 /* Check for matching got value. */
1228 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1229 continue;
1230 if (extract_unsigned_integer (buf, sizeof buf) != got_value)
1231 continue;
1232
1233 /* Match was successful! Exit loop. */
1234 break;
1235 }
1236 }
1237
1238 return addr;
1239 }
1240
1241 /* Given an objfile, return the address of its link map. This value is
1242 needed for TLS support. */
1243 CORE_ADDR
1244 frv_fetch_objfile_link_map (struct objfile *objfile)
1245 {
1246 struct so_list *so;
1247
1248 /* Cause frv_current_sos() to be run if it hasn't been already. */
1249 if (main_lm_addr == 0)
1250 solib_add (0, 0, 0, 1);
1251
1252 /* frv_current_sos() will set main_lm_addr for the main executable. */
1253 if (objfile == symfile_objfile)
1254 return main_lm_addr;
1255
1256 /* The other link map addresses may be found by examining the list
1257 of shared libraries. */
1258 for (so = master_so_list (); so; so = so->next)
1259 {
1260 if (so->objfile == objfile)
1261 return so->lm_info->lm_addr;
1262 }
1263
1264 /* Not found! */
1265 return 0;
1266 }
1267
1268 static struct target_so_ops frv_so_ops;
1269
1270 void
1271 _initialize_frv_solib (void)
1272 {
1273 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1274 frv_so_ops.free_so = frv_free_so;
1275 frv_so_ops.clear_solib = frv_clear_solib;
1276 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1277 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1278 frv_so_ops.current_sos = frv_current_sos;
1279 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1280 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1281
1282 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1283 current_target_so_ops = &frv_so_ops;
1284
1285 /* Debug this file's internals. */
1286 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1287 &solib_frv_debug, _("\
1288 Set internal debugging of shared library code for FR-V."), _("\
1289 Show internal debugging of shared library code for FR-V."), _("\
1290 When non-zero, FR-V solib specific internal debugging is enabled."),
1291 NULL,
1292 NULL, /* FIXME: i18n: */
1293 &setdebuglist, &showdebuglist);
1294 }