]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-irix.c
* win32-low.c (win32_add_one_solib): If the dll name is
[thirdparty/binutils-gdb.git] / gdb / solib-irix.c
1 /* Shared library support for IRIX.
2 Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004,
3 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file was created using portions of irix5-nat.c originally
6 contributed to GDB by Ian Lance Taylor.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24
25 #include "symtab.h"
26 #include "bfd.h"
27 /* FIXME: ezannoni/2004-02-13 Verify that the include below is
28 really needed. */
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcore.h"
32 #include "target.h"
33 #include "inferior.h"
34 #include "gdbthread.h"
35
36 #include "solist.h"
37 #include "solib.h"
38 #include "solib-irix.h"
39
40
41 /* Link map info to include in an allocate so_list entry. Unlike some
42 of the other solib backends, this (Irix) backend chooses to decode
43 the link map info obtained from the target and store it as (mostly)
44 CORE_ADDRs which need no further decoding. This is more convenient
45 because there are three different link map formats to worry about.
46 We use a single routine (fetch_lm_info) to read (and decode) the target
47 specific link map data. */
48
49 struct lm_info
50 {
51 CORE_ADDR addr; /* address of obj_info or obj_list
52 struct on target (from which the
53 following information is obtained). */
54 CORE_ADDR next; /* address of next item in list. */
55 CORE_ADDR reloc_offset; /* amount to relocate by */
56 CORE_ADDR pathname_addr; /* address of pathname */
57 int pathname_len; /* length of pathname */
58 };
59
60 /* It's not desirable to use the system header files to obtain the
61 structure of the obj_list or obj_info structs. Therefore, we use a
62 platform neutral representation which has been derived from the IRIX
63 header files. */
64
65 typedef struct
66 {
67 gdb_byte b[4];
68 }
69 gdb_int32_bytes;
70 typedef struct
71 {
72 gdb_byte b[8];
73 }
74 gdb_int64_bytes;
75
76 /* The "old" obj_list struct. This is used with old (o32) binaries.
77 The ``data'' member points at a much larger and more complicated
78 struct which we will only refer to by offsets. See
79 fetch_lm_info(). */
80
81 struct irix_obj_list
82 {
83 gdb_int32_bytes data;
84 gdb_int32_bytes next;
85 gdb_int32_bytes prev;
86 };
87
88 /* The ELF32 and ELF64 versions of the above struct. The oi_magic value
89 corresponds to the ``data'' value in the "old" struct. When this value
90 is 0xffffffff, the data will be in one of the following formats. The
91 ``oi_size'' field is used to decide which one we actually have. */
92
93 struct irix_elf32_obj_info
94 {
95 gdb_int32_bytes oi_magic;
96 gdb_int32_bytes oi_size;
97 gdb_int32_bytes oi_next;
98 gdb_int32_bytes oi_prev;
99 gdb_int32_bytes oi_ehdr;
100 gdb_int32_bytes oi_orig_ehdr;
101 gdb_int32_bytes oi_pathname;
102 gdb_int32_bytes oi_pathname_len;
103 };
104
105 struct irix_elf64_obj_info
106 {
107 gdb_int32_bytes oi_magic;
108 gdb_int32_bytes oi_size;
109 gdb_int64_bytes oi_next;
110 gdb_int64_bytes oi_prev;
111 gdb_int64_bytes oi_ehdr;
112 gdb_int64_bytes oi_orig_ehdr;
113 gdb_int64_bytes oi_pathname;
114 gdb_int32_bytes oi_pathname_len;
115 gdb_int32_bytes padding;
116 };
117
118 /* Union of all of the above (plus a split out magic field). */
119
120 union irix_obj_info
121 {
122 gdb_int32_bytes magic;
123 struct irix_obj_list ol32;
124 struct irix_elf32_obj_info oi32;
125 struct irix_elf64_obj_info oi64;
126 };
127
128 /* MIPS sign extends its 32 bit addresses. We could conceivably use
129 extract_typed_address here, but to do so, we'd have to construct an
130 appropriate type. Calling extract_signed_integer seems simpler. */
131
132 static CORE_ADDR
133 extract_mips_address (void *addr, int len, enum bfd_endian byte_order)
134 {
135 return extract_signed_integer (addr, len, byte_order);
136 }
137
138 /* Fetch and return the link map data associated with ADDR. Note that
139 this routine automatically determines which (of three) link map
140 formats is in use by the target. */
141
142 static struct lm_info
143 fetch_lm_info (CORE_ADDR addr)
144 {
145 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
146 struct lm_info li;
147 union irix_obj_info buf;
148
149 li.addr = addr;
150
151 /* The smallest region that we'll need is for buf.ol32. We'll read
152 that first. We'll read more of the buffer later if we have to deal
153 with one of the other cases. (We don't want to incur a memory error
154 if we were to read a larger region that generates an error due to
155 being at the end of a page or the like.) */
156 read_memory (addr, (char *) &buf, sizeof (buf.ol32));
157
158 if (extract_unsigned_integer (buf.magic.b, sizeof (buf.magic), byte_order)
159 != 0xffffffff)
160 {
161 /* Use buf.ol32... */
162 char obj_buf[432];
163 CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
164 sizeof (buf.ol32.data),
165 byte_order);
166 li.next = extract_mips_address (&buf.ol32.next,
167 sizeof (buf.ol32.next), byte_order);
168
169 read_memory (obj_addr, obj_buf, sizeof (obj_buf));
170
171 li.pathname_addr = extract_mips_address (&obj_buf[236], 4, byte_order);
172 li.pathname_len = 0; /* unknown */
173 li.reloc_offset = extract_mips_address (&obj_buf[196], 4, byte_order)
174 - extract_mips_address (&obj_buf[248], 4, byte_order);
175
176 }
177 else if (extract_unsigned_integer (buf.oi32.oi_size.b,
178 sizeof (buf.oi32.oi_size), byte_order)
179 == sizeof (buf.oi32))
180 {
181 /* Use buf.oi32... */
182
183 /* Read rest of buffer. */
184 read_memory (addr + sizeof (buf.ol32),
185 ((char *) &buf) + sizeof (buf.ol32),
186 sizeof (buf.oi32) - sizeof (buf.ol32));
187
188 /* Fill in fields using buffer contents. */
189 li.next = extract_mips_address (&buf.oi32.oi_next,
190 sizeof (buf.oi32.oi_next), byte_order);
191 li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
192 sizeof (buf.oi32.oi_ehdr),
193 byte_order)
194 - extract_mips_address (&buf.oi32.oi_orig_ehdr,
195 sizeof (buf.oi32.oi_orig_ehdr), byte_order);
196 li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
197 sizeof (buf.oi32.oi_pathname),
198 byte_order);
199 li.pathname_len = extract_unsigned_integer (buf.oi32.oi_pathname_len.b,
200 sizeof (buf.oi32.
201 oi_pathname_len),
202 byte_order);
203 }
204 else if (extract_unsigned_integer (buf.oi64.oi_size.b,
205 sizeof (buf.oi64.oi_size), byte_order)
206 == sizeof (buf.oi64))
207 {
208 /* Use buf.oi64... */
209
210 /* Read rest of buffer. */
211 read_memory (addr + sizeof (buf.ol32),
212 ((char *) &buf) + sizeof (buf.ol32),
213 sizeof (buf.oi64) - sizeof (buf.ol32));
214
215 /* Fill in fields using buffer contents. */
216 li.next = extract_mips_address (&buf.oi64.oi_next,
217 sizeof (buf.oi64.oi_next), byte_order);
218 li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
219 sizeof (buf.oi64.oi_ehdr),
220 byte_order)
221 - extract_mips_address (&buf.oi64.oi_orig_ehdr,
222 sizeof (buf.oi64.oi_orig_ehdr), byte_order);
223 li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
224 sizeof (buf.oi64.oi_pathname),
225 byte_order);
226 li.pathname_len = extract_unsigned_integer (buf.oi64.oi_pathname_len.b,
227 sizeof (buf.oi64.
228 oi_pathname_len),
229 byte_order);
230 }
231 else
232 {
233 error (_("Unable to fetch shared library obj_info or obj_list info."));
234 }
235
236 return li;
237 }
238
239 /* The symbol which starts off the list of shared libraries. */
240 #define DEBUG_BASE "__rld_obj_head"
241
242 static void *base_breakpoint;
243
244 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
245
246 /*
247
248 LOCAL FUNCTION
249
250 locate_base -- locate the base address of dynamic linker structs
251
252 SYNOPSIS
253
254 CORE_ADDR locate_base (void)
255
256 DESCRIPTION
257
258 For both the SunOS and SVR4 shared library implementations, if the
259 inferior executable has been linked dynamically, there is a single
260 address somewhere in the inferior's data space which is the key to
261 locating all of the dynamic linker's runtime structures. This
262 address is the value of the symbol defined by the macro DEBUG_BASE.
263 The job of this function is to find and return that address, or to
264 return 0 if there is no such address (the executable is statically
265 linked for example).
266
267 For SunOS, the job is almost trivial, since the dynamic linker and
268 all of it's structures are statically linked to the executable at
269 link time. Thus the symbol for the address we are looking for has
270 already been added to the minimal symbol table for the executable's
271 objfile at the time the symbol file's symbols were read, and all we
272 have to do is look it up there. Note that we explicitly do NOT want
273 to find the copies in the shared library.
274
275 The SVR4 version is much more complicated because the dynamic linker
276 and it's structures are located in the shared C library, which gets
277 run as the executable's "interpreter" by the kernel. We have to go
278 to a lot more work to discover the address of DEBUG_BASE. Because
279 of this complexity, we cache the value we find and return that value
280 on subsequent invocations. Note there is no copy in the executable
281 symbol tables.
282
283 Irix 5 is basically like SunOS.
284
285 Note that we can assume nothing about the process state at the time
286 we need to find this address. We may be stopped on the first instruc-
287 tion of the interpreter (C shared library), the first instruction of
288 the executable itself, or somewhere else entirely (if we attached
289 to the process for example).
290
291 */
292
293 static CORE_ADDR
294 locate_base (void)
295 {
296 struct minimal_symbol *msymbol;
297 CORE_ADDR address = 0;
298
299 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
300 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
301 {
302 address = SYMBOL_VALUE_ADDRESS (msymbol);
303 }
304 return (address);
305 }
306
307 /*
308
309 LOCAL FUNCTION
310
311 disable_break -- remove the "mapping changed" breakpoint
312
313 SYNOPSIS
314
315 static int disable_break ()
316
317 DESCRIPTION
318
319 Removes the breakpoint that gets hit when the dynamic linker
320 completes a mapping change.
321
322 */
323
324 static int
325 disable_break (void)
326 {
327 int status = 1;
328
329
330 /* Note that breakpoint address and original contents are in our address
331 space, so we just need to write the original contents back. */
332
333 if (deprecated_remove_raw_breakpoint (target_gdbarch, base_breakpoint) != 0)
334 {
335 status = 0;
336 }
337
338 base_breakpoint = NULL;
339
340 /* Note that it is possible that we have stopped at a location that
341 is different from the location where we inserted our breakpoint.
342 On mips-irix, we can actually land in __dbx_init(), so we should
343 not check the PC against our breakpoint address here. See procfs.c
344 for more details. */
345
346 return (status);
347 }
348
349 /*
350
351 LOCAL FUNCTION
352
353 enable_break -- arrange for dynamic linker to hit breakpoint
354
355 SYNOPSIS
356
357 int enable_break (void)
358
359 DESCRIPTION
360
361 This functions inserts a breakpoint at the entry point of the
362 main executable, where all shared libraries are mapped in.
363 */
364
365 static int
366 enable_break (void)
367 {
368 if (symfile_objfile != NULL && has_stack_frames ())
369 {
370 struct frame_info *frame = get_current_frame ();
371 struct address_space *aspace = get_frame_address_space (frame);
372 CORE_ADDR entry_point;
373
374 if (!entry_point_address_query (&entry_point))
375 return 0;
376
377 base_breakpoint = deprecated_insert_raw_breakpoint (target_gdbarch,
378 aspace, entry_point);
379
380 if (base_breakpoint != NULL)
381 return 1;
382 }
383
384 return 0;
385 }
386
387 /*
388
389 LOCAL FUNCTION
390
391 irix_solib_create_inferior_hook -- shared library startup support
392
393 SYNOPSIS
394
395 void solib_create_inferior_hook ()
396
397 DESCRIPTION
398
399 When gdb starts up the inferior, it nurses it along (through the
400 shell) until it is ready to execute it's first instruction. At this
401 point, this function gets called via expansion of the macro
402 SOLIB_CREATE_INFERIOR_HOOK.
403
404 For SunOS executables, this first instruction is typically the
405 one at "_start", or a similar text label, regardless of whether
406 the executable is statically or dynamically linked. The runtime
407 startup code takes care of dynamically linking in any shared
408 libraries, once gdb allows the inferior to continue.
409
410 For SVR4 executables, this first instruction is either the first
411 instruction in the dynamic linker (for dynamically linked
412 executables) or the instruction at "start" for statically linked
413 executables. For dynamically linked executables, the system
414 first exec's /lib/libc.so.N, which contains the dynamic linker,
415 and starts it running. The dynamic linker maps in any needed
416 shared libraries, maps in the actual user executable, and then
417 jumps to "start" in the user executable.
418
419 For both SunOS shared libraries, and SVR4 shared libraries, we
420 can arrange to cooperate with the dynamic linker to discover the
421 names of shared libraries that are dynamically linked, and the
422 base addresses to which they are linked.
423
424 This function is responsible for discovering those names and
425 addresses, and saving sufficient information about them to allow
426 their symbols to be read at a later time.
427
428 FIXME
429
430 Between enable_break() and disable_break(), this code does not
431 properly handle hitting breakpoints which the user might have
432 set in the startup code or in the dynamic linker itself. Proper
433 handling will probably have to wait until the implementation is
434 changed to use the "breakpoint handler function" method.
435
436 Also, what if child has exit()ed? Must exit loop somehow.
437 */
438
439 static void
440 irix_solib_create_inferior_hook (void)
441 {
442 struct inferior *inf;
443 struct thread_info *tp;
444
445 if (!enable_break ())
446 {
447 warning (_("shared library handler failed to enable breakpoint"));
448 return;
449 }
450
451 /* Now run the target. It will eventually hit the breakpoint, at
452 which point all of the libraries will have been mapped in and we
453 can go groveling around in the dynamic linker structures to find
454 out what we need to know about them. */
455
456 inf = current_inferior ();
457 tp = inferior_thread ();
458
459 clear_proceed_status ();
460
461 inf->stop_soon = STOP_QUIETLY;
462 tp->stop_signal = TARGET_SIGNAL_0;
463
464 do
465 {
466 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
467 wait_for_inferior (0);
468 }
469 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
470
471 /* We are now either at the "mapping complete" breakpoint (or somewhere
472 else, a condition we aren't prepared to deal with anyway), so adjust
473 the PC as necessary after a breakpoint, disable the breakpoint, and
474 add any shared libraries that were mapped in. */
475
476 if (!disable_break ())
477 {
478 warning (_("shared library handler failed to disable breakpoint"));
479 }
480
481 /* solib_add will call reinit_frame_cache.
482 But we are stopped in the startup code and we might not have symbols
483 for the startup code, so heuristic_proc_start could be called
484 and will put out an annoying warning.
485 Delaying the resetting of stop_soon until after symbol loading
486 suppresses the warning. */
487 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
488 inf->stop_soon = NO_STOP_QUIETLY;
489 }
490
491 /* LOCAL FUNCTION
492
493 current_sos -- build a list of currently loaded shared objects
494
495 SYNOPSIS
496
497 struct so_list *current_sos ()
498
499 DESCRIPTION
500
501 Build a list of `struct so_list' objects describing the shared
502 objects currently loaded in the inferior. This list does not
503 include an entry for the main executable file.
504
505 Note that we only gather information directly available from the
506 inferior --- we don't examine any of the shared library files
507 themselves. The declaration of `struct so_list' says which fields
508 we provide values for. */
509
510 static struct so_list *
511 irix_current_sos (void)
512 {
513 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
514 int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
515 CORE_ADDR lma;
516 char addr_buf[8];
517 struct so_list *head = 0;
518 struct so_list **link_ptr = &head;
519 int is_first = 1;
520 struct lm_info lm;
521
522 /* Make sure we've looked up the inferior's dynamic linker's base
523 structure. */
524 if (!debug_base)
525 {
526 debug_base = locate_base ();
527
528 /* If we can't find the dynamic linker's base structure, this
529 must not be a dynamically linked executable. Hmm. */
530 if (!debug_base)
531 return 0;
532 }
533
534 read_memory (debug_base, addr_buf, addr_size);
535 lma = extract_mips_address (addr_buf, addr_size, byte_order);
536
537 while (lma)
538 {
539 lm = fetch_lm_info (lma);
540 if (!is_first)
541 {
542 int errcode;
543 char *name_buf;
544 int name_size;
545 struct so_list *new
546 = (struct so_list *) xmalloc (sizeof (struct so_list));
547 struct cleanup *old_chain = make_cleanup (xfree, new);
548
549 memset (new, 0, sizeof (*new));
550
551 new->lm_info = xmalloc (sizeof (struct lm_info));
552 make_cleanup (xfree, new->lm_info);
553
554 *new->lm_info = lm;
555
556 /* Extract this shared object's name. */
557 name_size = lm.pathname_len;
558 if (name_size == 0)
559 name_size = SO_NAME_MAX_PATH_SIZE - 1;
560
561 if (name_size >= SO_NAME_MAX_PATH_SIZE)
562 {
563 name_size = SO_NAME_MAX_PATH_SIZE - 1;
564 warning
565 ("current_sos: truncating name of %d characters to only %d characters",
566 lm.pathname_len, name_size);
567 }
568
569 target_read_string (lm.pathname_addr, &name_buf,
570 name_size, &errcode);
571 if (errcode != 0)
572 warning (_("Can't read pathname for load map: %s."),
573 safe_strerror (errcode));
574 else
575 {
576 strncpy (new->so_name, name_buf, name_size);
577 new->so_name[name_size] = '\0';
578 xfree (name_buf);
579 strcpy (new->so_original_name, new->so_name);
580 }
581
582 new->next = 0;
583 *link_ptr = new;
584 link_ptr = &new->next;
585
586 discard_cleanups (old_chain);
587 }
588 is_first = 0;
589 lma = lm.next;
590 }
591
592 return head;
593 }
594
595 /*
596
597 LOCAL FUNCTION
598
599 irix_open_symbol_file_object
600
601 SYNOPSIS
602
603 void irix_open_symbol_file_object (void *from_tty)
604
605 DESCRIPTION
606
607 If no open symbol file, attempt to locate and open the main symbol
608 file. On IRIX, this is the first link map entry. If its name is
609 here, we can open it. Useful when attaching to a process without
610 first loading its symbol file.
611
612 If FROM_TTYP dereferences to a non-zero integer, allow messages to
613 be printed. This parameter is a pointer rather than an int because
614 open_symbol_file_object() is called via catch_errors() and
615 catch_errors() requires a pointer argument. */
616
617 static int
618 irix_open_symbol_file_object (void *from_ttyp)
619 {
620 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
621 int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
622 CORE_ADDR lma;
623 char addr_buf[8];
624 struct lm_info lm;
625 struct cleanup *cleanups;
626 int errcode;
627 int from_tty = *(int *) from_ttyp;
628 char *filename;
629
630 if (symfile_objfile)
631 if (!query (_("Attempt to reload symbols from process? ")))
632 return 0;
633
634 if ((debug_base = locate_base ()) == 0)
635 return 0; /* failed somehow... */
636
637 /* First link map member should be the executable. */
638 read_memory (debug_base, addr_buf, addr_size);
639 lma = extract_mips_address (addr_buf, addr_size, byte_order);
640 if (lma == 0)
641 return 0; /* failed somehow... */
642
643 lm = fetch_lm_info (lma);
644
645 if (lm.pathname_addr == 0)
646 return 0; /* No filename. */
647
648 /* Now fetch the filename from target memory. */
649 target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
650 &errcode);
651
652 if (errcode)
653 {
654 warning (_("failed to read exec filename from attached file: %s"),
655 safe_strerror (errcode));
656 return 0;
657 }
658
659 cleanups = make_cleanup (xfree, filename);
660 /* Have a pathname: read the symbol file. */
661 symbol_file_add_main (filename, from_tty);
662
663 do_cleanups (cleanups);
664
665 return 1;
666 }
667
668
669 /*
670
671 LOCAL FUNCTION
672
673 irix_special_symbol_handling -- additional shared library symbol handling
674
675 SYNOPSIS
676
677 void irix_special_symbol_handling ()
678
679 DESCRIPTION
680
681 Once the symbols from a shared object have been loaded in the usual
682 way, we are called to do any system specific symbol handling that
683 is needed.
684
685 For SunOS4, this consisted of grunging around in the dynamic
686 linkers structures to find symbol definitions for "common" symbols
687 and adding them to the minimal symbol table for the runtime common
688 objfile.
689
690 However, for IRIX, there's nothing to do.
691
692 */
693
694 static void
695 irix_special_symbol_handling (void)
696 {
697 }
698
699 /* Using the solist entry SO, relocate the addresses in SEC. */
700
701 static void
702 irix_relocate_section_addresses (struct so_list *so,
703 struct target_section *sec)
704 {
705 sec->addr += so->lm_info->reloc_offset;
706 sec->endaddr += so->lm_info->reloc_offset;
707 }
708
709 /* Free the lm_info struct. */
710
711 static void
712 irix_free_so (struct so_list *so)
713 {
714 xfree (so->lm_info);
715 }
716
717 /* Clear backend specific state. */
718
719 static void
720 irix_clear_solib (void)
721 {
722 debug_base = 0;
723 }
724
725 /* Return 1 if PC lies in the dynamic symbol resolution code of the
726 run time loader. */
727 static int
728 irix_in_dynsym_resolve_code (CORE_ADDR pc)
729 {
730 return 0;
731 }
732
733 struct target_so_ops irix_so_ops;
734
735 /* Provide a prototype to silence -Wmissing-prototypes. */
736 extern initialize_file_ftype _initialize_irix_solib;
737
738 void
739 _initialize_irix_solib (void)
740 {
741 irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
742 irix_so_ops.free_so = irix_free_so;
743 irix_so_ops.clear_solib = irix_clear_solib;
744 irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
745 irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
746 irix_so_ops.current_sos = irix_current_sos;
747 irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
748 irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
749 irix_so_ops.bfd_open = solib_bfd_open;
750 }