]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sparc-tdep.c
Change "set debug symtab-create" to take a verbosity level.
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2-frame.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "value.h"
37
38 #include "gdb_assert.h"
39 #include "gdb_string.h"
40
41 #include "sparc-tdep.h"
42 #include "sparc-ravenscar-thread.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-Precision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
90 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
91
92 /* Fetch the instruction at PC. Instructions are always big-endian
93 even if the processor operates in little-endian mode. */
94
95 unsigned long
96 sparc_fetch_instruction (CORE_ADDR pc)
97 {
98 gdb_byte buf[4];
99 unsigned long insn;
100 int i;
101
102 /* If we can't read the instruction at PC, return zero. */
103 if (target_read_memory (pc, buf, sizeof (buf)))
104 return 0;
105
106 insn = 0;
107 for (i = 0; i < sizeof (buf); i++)
108 insn = (insn << 8) | buf[i];
109 return insn;
110 }
111 \f
112
113 /* Return non-zero if the instruction corresponding to PC is an "unimp"
114 instruction. */
115
116 static int
117 sparc_is_unimp_insn (CORE_ADDR pc)
118 {
119 const unsigned long insn = sparc_fetch_instruction (pc);
120
121 return ((insn & 0xc1c00000) == 0);
122 }
123
124 /* OpenBSD/sparc includes StackGhost, which according to the author's
125 website http://stackghost.cerias.purdue.edu "... transparently and
126 automatically protects applications' stack frames; more
127 specifically, it guards the return pointers. The protection
128 mechanisms require no application source or binary modification and
129 imposes only a negligible performance penalty."
130
131 The same website provides the following description of how
132 StackGhost works:
133
134 "StackGhost interfaces with the kernel trap handler that would
135 normally write out registers to the stack and the handler that
136 would read them back in. By XORing a cookie into the
137 return-address saved in the user stack when it is actually written
138 to the stack, and then XOR it out when the return-address is pulled
139 from the stack, StackGhost can cause attacker corrupted return
140 pointers to behave in a manner the attacker cannot predict.
141 StackGhost can also use several unused bits in the return pointer
142 to detect a smashed return pointer and abort the process."
143
144 For GDB this means that whenever we're reading %i7 from a stack
145 frame's window save area, we'll have to XOR the cookie.
146
147 More information on StackGuard can be found on in:
148
149 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
150 Stack Protection." 2001. Published in USENIX Security Symposium
151 '01. */
152
153 /* Fetch StackGhost Per-Process XOR cookie. */
154
155 ULONGEST
156 sparc_fetch_wcookie (struct gdbarch *gdbarch)
157 {
158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
159 struct target_ops *ops = &current_target;
160 gdb_byte buf[8];
161 int len;
162
163 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
164 if (len == -1)
165 return 0;
166
167 /* We should have either an 32-bit or an 64-bit cookie. */
168 gdb_assert (len == 4 || len == 8);
169
170 return extract_unsigned_integer (buf, len, byte_order);
171 }
172 \f
173
174 /* The functions on this page are intended to be used to classify
175 function arguments. */
176
177 /* Check whether TYPE is "Integral or Pointer". */
178
179 static int
180 sparc_integral_or_pointer_p (const struct type *type)
181 {
182 int len = TYPE_LENGTH (type);
183
184 switch (TYPE_CODE (type))
185 {
186 case TYPE_CODE_INT:
187 case TYPE_CODE_BOOL:
188 case TYPE_CODE_CHAR:
189 case TYPE_CODE_ENUM:
190 case TYPE_CODE_RANGE:
191 /* We have byte, half-word, word and extended-word/doubleword
192 integral types. The doubleword is an extension to the
193 original 32-bit ABI by the SCD 2.4.x. */
194 return (len == 1 || len == 2 || len == 4 || len == 8);
195 case TYPE_CODE_PTR:
196 case TYPE_CODE_REF:
197 /* Allow either 32-bit or 64-bit pointers. */
198 return (len == 4 || len == 8);
199 default:
200 break;
201 }
202
203 return 0;
204 }
205
206 /* Check whether TYPE is "Floating". */
207
208 static int
209 sparc_floating_p (const struct type *type)
210 {
211 switch (TYPE_CODE (type))
212 {
213 case TYPE_CODE_FLT:
214 {
215 int len = TYPE_LENGTH (type);
216 return (len == 4 || len == 8 || len == 16);
217 }
218 default:
219 break;
220 }
221
222 return 0;
223 }
224
225 /* Check whether TYPE is "Complex Floating". */
226
227 static int
228 sparc_complex_floating_p (const struct type *type)
229 {
230 switch (TYPE_CODE (type))
231 {
232 case TYPE_CODE_COMPLEX:
233 {
234 int len = TYPE_LENGTH (type);
235 return (len == 8 || len == 16 || len == 32);
236 }
237 default:
238 break;
239 }
240
241 return 0;
242 }
243
244 /* Check whether TYPE is "Structure or Union".
245
246 In terms of Ada subprogram calls, arrays are treated the same as
247 struct and union types. So this function also returns non-zero
248 for array types. */
249
250 static int
251 sparc_structure_or_union_p (const struct type *type)
252 {
253 switch (TYPE_CODE (type))
254 {
255 case TYPE_CODE_STRUCT:
256 case TYPE_CODE_UNION:
257 case TYPE_CODE_ARRAY:
258 return 1;
259 default:
260 break;
261 }
262
263 return 0;
264 }
265
266 /* Register information. */
267
268 static const char *sparc32_register_names[] =
269 {
270 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
271 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
272 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
273 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
274
275 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
276 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
277 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
278 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
279
280 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
281 };
282
283 /* Total number of registers. */
284 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
285
286 /* We provide the aliases %d0..%d30 for the floating registers as
287 "psuedo" registers. */
288
289 static const char *sparc32_pseudo_register_names[] =
290 {
291 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
292 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
293 };
294
295 /* Total number of pseudo registers. */
296 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
297
298 /* Return the name of register REGNUM. */
299
300 static const char *
301 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
302 {
303 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
304 return sparc32_register_names[regnum];
305
306 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
307 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
308
309 return NULL;
310 }
311 \f
312 /* Construct types for ISA-specific registers. */
313
314 static struct type *
315 sparc_psr_type (struct gdbarch *gdbarch)
316 {
317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
318
319 if (!tdep->sparc_psr_type)
320 {
321 struct type *type;
322
323 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
324 append_flags_type_flag (type, 5, "ET");
325 append_flags_type_flag (type, 6, "PS");
326 append_flags_type_flag (type, 7, "S");
327 append_flags_type_flag (type, 12, "EF");
328 append_flags_type_flag (type, 13, "EC");
329
330 tdep->sparc_psr_type = type;
331 }
332
333 return tdep->sparc_psr_type;
334 }
335
336 static struct type *
337 sparc_fsr_type (struct gdbarch *gdbarch)
338 {
339 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
340
341 if (!tdep->sparc_fsr_type)
342 {
343 struct type *type;
344
345 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
346 append_flags_type_flag (type, 0, "NXA");
347 append_flags_type_flag (type, 1, "DZA");
348 append_flags_type_flag (type, 2, "UFA");
349 append_flags_type_flag (type, 3, "OFA");
350 append_flags_type_flag (type, 4, "NVA");
351 append_flags_type_flag (type, 5, "NXC");
352 append_flags_type_flag (type, 6, "DZC");
353 append_flags_type_flag (type, 7, "UFC");
354 append_flags_type_flag (type, 8, "OFC");
355 append_flags_type_flag (type, 9, "NVC");
356 append_flags_type_flag (type, 22, "NS");
357 append_flags_type_flag (type, 23, "NXM");
358 append_flags_type_flag (type, 24, "DZM");
359 append_flags_type_flag (type, 25, "UFM");
360 append_flags_type_flag (type, 26, "OFM");
361 append_flags_type_flag (type, 27, "NVM");
362
363 tdep->sparc_fsr_type = type;
364 }
365
366 return tdep->sparc_fsr_type;
367 }
368
369 /* Return the GDB type object for the "standard" data type of data in
370 register REGNUM. */
371
372 static struct type *
373 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
374 {
375 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
376 return builtin_type (gdbarch)->builtin_float;
377
378 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
379 return builtin_type (gdbarch)->builtin_double;
380
381 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
382 return builtin_type (gdbarch)->builtin_data_ptr;
383
384 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
385 return builtin_type (gdbarch)->builtin_func_ptr;
386
387 if (regnum == SPARC32_PSR_REGNUM)
388 return sparc_psr_type (gdbarch);
389
390 if (regnum == SPARC32_FSR_REGNUM)
391 return sparc_fsr_type (gdbarch);
392
393 return builtin_type (gdbarch)->builtin_int32;
394 }
395
396 static enum register_status
397 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
398 struct regcache *regcache,
399 int regnum, gdb_byte *buf)
400 {
401 enum register_status status;
402
403 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
404
405 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
406 status = regcache_raw_read (regcache, regnum, buf);
407 if (status == REG_VALID)
408 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
409 return status;
410 }
411
412 static void
413 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
414 struct regcache *regcache,
415 int regnum, const gdb_byte *buf)
416 {
417 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
418
419 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
420 regcache_raw_write (regcache, regnum, buf);
421 regcache_raw_write (regcache, regnum + 1, buf + 4);
422 }
423 \f
424
425 static CORE_ADDR
426 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
427 {
428 /* The ABI requires double-word alignment. */
429 return address & ~0x7;
430 }
431
432 static CORE_ADDR
433 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
434 CORE_ADDR funcaddr,
435 struct value **args, int nargs,
436 struct type *value_type,
437 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
438 struct regcache *regcache)
439 {
440 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
441
442 *bp_addr = sp - 4;
443 *real_pc = funcaddr;
444
445 if (using_struct_return (gdbarch, NULL, value_type))
446 {
447 gdb_byte buf[4];
448
449 /* This is an UNIMP instruction. */
450 store_unsigned_integer (buf, 4, byte_order,
451 TYPE_LENGTH (value_type) & 0x1fff);
452 write_memory (sp - 8, buf, 4);
453 return sp - 8;
454 }
455
456 return sp - 4;
457 }
458
459 static CORE_ADDR
460 sparc32_store_arguments (struct regcache *regcache, int nargs,
461 struct value **args, CORE_ADDR sp,
462 int struct_return, CORE_ADDR struct_addr)
463 {
464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466 /* Number of words in the "parameter array". */
467 int num_elements = 0;
468 int element = 0;
469 int i;
470
471 for (i = 0; i < nargs; i++)
472 {
473 struct type *type = value_type (args[i]);
474 int len = TYPE_LENGTH (type);
475
476 if (sparc_structure_or_union_p (type)
477 || (sparc_floating_p (type) && len == 16)
478 || sparc_complex_floating_p (type))
479 {
480 /* Structure, Union and Quad-Precision Arguments. */
481 sp -= len;
482
483 /* Use doubleword alignment for these values. That's always
484 correct, and wasting a few bytes shouldn't be a problem. */
485 sp &= ~0x7;
486
487 write_memory (sp, value_contents (args[i]), len);
488 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
489 num_elements++;
490 }
491 else if (sparc_floating_p (type))
492 {
493 /* Floating arguments. */
494 gdb_assert (len == 4 || len == 8);
495 num_elements += (len / 4);
496 }
497 else
498 {
499 /* Integral and pointer arguments. */
500 gdb_assert (sparc_integral_or_pointer_p (type));
501
502 if (len < 4)
503 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
504 args[i]);
505 num_elements += ((len + 3) / 4);
506 }
507 }
508
509 /* Always allocate at least six words. */
510 sp -= max (6, num_elements) * 4;
511
512 /* The psABI says that "Software convention requires space for the
513 struct/union return value pointer, even if the word is unused." */
514 sp -= 4;
515
516 /* The psABI says that "Although software convention and the
517 operating system require every stack frame to be doubleword
518 aligned." */
519 sp &= ~0x7;
520
521 for (i = 0; i < nargs; i++)
522 {
523 const bfd_byte *valbuf = value_contents (args[i]);
524 struct type *type = value_type (args[i]);
525 int len = TYPE_LENGTH (type);
526
527 gdb_assert (len == 4 || len == 8);
528
529 if (element < 6)
530 {
531 int regnum = SPARC_O0_REGNUM + element;
532
533 regcache_cooked_write (regcache, regnum, valbuf);
534 if (len > 4 && element < 5)
535 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
536 }
537
538 /* Always store the argument in memory. */
539 write_memory (sp + 4 + element * 4, valbuf, len);
540 element += len / 4;
541 }
542
543 gdb_assert (element == num_elements);
544
545 if (struct_return)
546 {
547 gdb_byte buf[4];
548
549 store_unsigned_integer (buf, 4, byte_order, struct_addr);
550 write_memory (sp, buf, 4);
551 }
552
553 return sp;
554 }
555
556 static CORE_ADDR
557 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
558 struct regcache *regcache, CORE_ADDR bp_addr,
559 int nargs, struct value **args, CORE_ADDR sp,
560 int struct_return, CORE_ADDR struct_addr)
561 {
562 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
563
564 /* Set return address. */
565 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
566
567 /* Set up function arguments. */
568 sp = sparc32_store_arguments (regcache, nargs, args, sp,
569 struct_return, struct_addr);
570
571 /* Allocate the 16-word window save area. */
572 sp -= 16 * 4;
573
574 /* Stack should be doubleword aligned at this point. */
575 gdb_assert (sp % 8 == 0);
576
577 /* Finally, update the stack pointer. */
578 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
579
580 return sp;
581 }
582 \f
583
584 /* Use the program counter to determine the contents and size of a
585 breakpoint instruction. Return a pointer to a string of bytes that
586 encode a breakpoint instruction, store the length of the string in
587 *LEN and optionally adjust *PC to point to the correct memory
588 location for inserting the breakpoint. */
589
590 static const gdb_byte *
591 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
592 {
593 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
594
595 *len = sizeof (break_insn);
596 return break_insn;
597 }
598 \f
599
600 /* Allocate and initialize a frame cache. */
601
602 static struct sparc_frame_cache *
603 sparc_alloc_frame_cache (void)
604 {
605 struct sparc_frame_cache *cache;
606
607 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
608
609 /* Base address. */
610 cache->base = 0;
611 cache->pc = 0;
612
613 /* Frameless until proven otherwise. */
614 cache->frameless_p = 1;
615 cache->frame_offset = 0;
616 cache->saved_regs_mask = 0;
617 cache->copied_regs_mask = 0;
618 cache->struct_return_p = 0;
619
620 return cache;
621 }
622
623 /* GCC generates several well-known sequences of instructions at the begining
624 of each function prologue when compiling with -fstack-check. If one of
625 such sequences starts at START_PC, then return the address of the
626 instruction immediately past this sequence. Otherwise, return START_PC. */
627
628 static CORE_ADDR
629 sparc_skip_stack_check (const CORE_ADDR start_pc)
630 {
631 CORE_ADDR pc = start_pc;
632 unsigned long insn;
633 int offset_stack_checking_sequence = 0;
634 int probing_loop = 0;
635
636 /* With GCC, all stack checking sequences begin with the same two
637 instructions, plus an optional one in the case of a probing loop:
638
639 sethi <some immediate>, %g1
640 sub %sp, %g1, %g1
641
642 or:
643
644 sethi <some immediate>, %g1
645 sethi <some immediate>, %g4
646 sub %sp, %g1, %g1
647
648 or:
649
650 sethi <some immediate>, %g1
651 sub %sp, %g1, %g1
652 sethi <some immediate>, %g4
653
654 If the optional instruction is found (setting g4), assume that a
655 probing loop will follow. */
656
657 /* sethi <some immediate>, %g1 */
658 insn = sparc_fetch_instruction (pc);
659 pc = pc + 4;
660 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
661 return start_pc;
662
663 /* optional: sethi <some immediate>, %g4 */
664 insn = sparc_fetch_instruction (pc);
665 pc = pc + 4;
666 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
667 {
668 probing_loop = 1;
669 insn = sparc_fetch_instruction (pc);
670 pc = pc + 4;
671 }
672
673 /* sub %sp, %g1, %g1 */
674 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
675 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
676 return start_pc;
677
678 insn = sparc_fetch_instruction (pc);
679 pc = pc + 4;
680
681 /* optional: sethi <some immediate>, %g4 */
682 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
683 {
684 probing_loop = 1;
685 insn = sparc_fetch_instruction (pc);
686 pc = pc + 4;
687 }
688
689 /* First possible sequence:
690 [first two instructions above]
691 clr [%g1 - some immediate] */
692
693 /* clr [%g1 - some immediate] */
694 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
695 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
696 {
697 /* Valid stack-check sequence, return the new PC. */
698 return pc;
699 }
700
701 /* Second possible sequence: A small number of probes.
702 [first two instructions above]
703 clr [%g1]
704 add %g1, -<some immediate>, %g1
705 clr [%g1]
706 [repeat the two instructions above any (small) number of times]
707 clr [%g1 - some immediate] */
708
709 /* clr [%g1] */
710 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
711 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
712 {
713 while (1)
714 {
715 /* add %g1, -<some immediate>, %g1 */
716 insn = sparc_fetch_instruction (pc);
717 pc = pc + 4;
718 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
719 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
720 break;
721
722 /* clr [%g1] */
723 insn = sparc_fetch_instruction (pc);
724 pc = pc + 4;
725 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
726 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
727 return start_pc;
728 }
729
730 /* clr [%g1 - some immediate] */
731 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
732 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
733 return start_pc;
734
735 /* We found a valid stack-check sequence, return the new PC. */
736 return pc;
737 }
738
739 /* Third sequence: A probing loop.
740 [first three instructions above]
741 sub %g1, %g4, %g4
742 cmp %g1, %g4
743 be <disp>
744 add %g1, -<some immediate>, %g1
745 ba <disp>
746 clr [%g1]
747
748 And an optional last probe for the remainder:
749
750 clr [%g4 - some immediate] */
751
752 if (probing_loop)
753 {
754 /* sub %g1, %g4, %g4 */
755 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
756 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
757 return start_pc;
758
759 /* cmp %g1, %g4 */
760 insn = sparc_fetch_instruction (pc);
761 pc = pc + 4;
762 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
763 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
764 return start_pc;
765
766 /* be <disp> */
767 insn = sparc_fetch_instruction (pc);
768 pc = pc + 4;
769 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
770 return start_pc;
771
772 /* add %g1, -<some immediate>, %g1 */
773 insn = sparc_fetch_instruction (pc);
774 pc = pc + 4;
775 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
776 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
777 return start_pc;
778
779 /* ba <disp> */
780 insn = sparc_fetch_instruction (pc);
781 pc = pc + 4;
782 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
783 return start_pc;
784
785 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
786 insn = sparc_fetch_instruction (pc);
787 pc = pc + 4;
788 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
789 && X_RD (insn) == 0 && X_RS1 (insn) == 1
790 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
791 return start_pc;
792
793 /* We found a valid stack-check sequence, return the new PC. */
794
795 /* optional: clr [%g4 - some immediate] */
796 insn = sparc_fetch_instruction (pc);
797 pc = pc + 4;
798 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
799 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
800 return pc - 4;
801 else
802 return pc;
803 }
804
805 /* No stack check code in our prologue, return the start_pc. */
806 return start_pc;
807 }
808
809 /* Record the effect of a SAVE instruction on CACHE. */
810
811 void
812 sparc_record_save_insn (struct sparc_frame_cache *cache)
813 {
814 /* The frame is set up. */
815 cache->frameless_p = 0;
816
817 /* The frame pointer contains the CFA. */
818 cache->frame_offset = 0;
819
820 /* The `local' and `in' registers are all saved. */
821 cache->saved_regs_mask = 0xffff;
822
823 /* The `out' registers are all renamed. */
824 cache->copied_regs_mask = 0xff;
825 }
826
827 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
828 Bail out early if CURRENT_PC is reached. Return the address where
829 the analysis stopped.
830
831 We handle both the traditional register window model and the single
832 register window (aka flat) model. */
833
834 CORE_ADDR
835 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
836 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
837 {
838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
839 unsigned long insn;
840 int offset = 0;
841 int dest = -1;
842
843 pc = sparc_skip_stack_check (pc);
844
845 if (current_pc <= pc)
846 return current_pc;
847
848 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
849 SPARC the linker usually defines a symbol (typically
850 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
851 This symbol makes us end up here with PC pointing at the start of
852 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
853 would do our normal prologue analysis, we would probably conclude
854 that we've got a frame when in reality we don't, since the
855 dynamic linker patches up the first PLT with some code that
856 starts with a SAVE instruction. Patch up PC such that it points
857 at the start of our PLT entry. */
858 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
859 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
860
861 insn = sparc_fetch_instruction (pc);
862
863 /* Recognize store insns and record their sources. */
864 while (X_OP (insn) == 3
865 && (X_OP3 (insn) == 0x4 /* stw */
866 || X_OP3 (insn) == 0x7 /* std */
867 || X_OP3 (insn) == 0xe) /* stx */
868 && X_RS1 (insn) == SPARC_SP_REGNUM)
869 {
870 int regnum = X_RD (insn);
871
872 /* Recognize stores into the corresponding stack slots. */
873 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
874 && ((X_I (insn)
875 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
876 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
877 : (regnum - SPARC_L0_REGNUM) * 4))
878 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
879 {
880 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
881 if (X_OP3 (insn) == 0x7)
882 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
883 }
884
885 offset += 4;
886
887 insn = sparc_fetch_instruction (pc + offset);
888 }
889
890 /* Recognize a SETHI insn and record its destination. */
891 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
892 {
893 dest = X_RD (insn);
894 offset += 4;
895
896 insn = sparc_fetch_instruction (pc + offset);
897 }
898
899 /* Allow for an arithmetic operation on DEST or %g1. */
900 if (X_OP (insn) == 2 && X_I (insn)
901 && (X_RD (insn) == 1 || X_RD (insn) == dest))
902 {
903 offset += 4;
904
905 insn = sparc_fetch_instruction (pc + offset);
906 }
907
908 /* Check for the SAVE instruction that sets up the frame. */
909 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
910 {
911 sparc_record_save_insn (cache);
912 offset += 4;
913 return pc + offset;
914 }
915
916 /* Check for an arithmetic operation on %sp. */
917 if (X_OP (insn) == 2
918 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
919 && X_RS1 (insn) == SPARC_SP_REGNUM
920 && X_RD (insn) == SPARC_SP_REGNUM)
921 {
922 if (X_I (insn))
923 {
924 cache->frame_offset = X_SIMM13 (insn);
925 if (X_OP3 (insn) == 0)
926 cache->frame_offset = -cache->frame_offset;
927 }
928 offset += 4;
929
930 insn = sparc_fetch_instruction (pc + offset);
931
932 /* Check for an arithmetic operation that sets up the frame. */
933 if (X_OP (insn) == 2
934 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
935 && X_RS1 (insn) == SPARC_SP_REGNUM
936 && X_RD (insn) == SPARC_FP_REGNUM)
937 {
938 cache->frameless_p = 0;
939 cache->frame_offset = 0;
940 /* We could check that the amount subtracted to %sp above is the
941 same as the one added here, but this seems superfluous. */
942 cache->copied_regs_mask |= 0x40;
943 offset += 4;
944
945 insn = sparc_fetch_instruction (pc + offset);
946 }
947
948 /* Check for a move (or) operation that copies the return register. */
949 if (X_OP (insn) == 2
950 && X_OP3 (insn) == 0x2
951 && !X_I (insn)
952 && X_RS1 (insn) == SPARC_G0_REGNUM
953 && X_RS2 (insn) == SPARC_O7_REGNUM
954 && X_RD (insn) == SPARC_I7_REGNUM)
955 {
956 cache->copied_regs_mask |= 0x80;
957 offset += 4;
958 }
959
960 return pc + offset;
961 }
962
963 return pc;
964 }
965
966 static CORE_ADDR
967 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
968 {
969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
970 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
971 }
972
973 /* Return PC of first real instruction of the function starting at
974 START_PC. */
975
976 static CORE_ADDR
977 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
978 {
979 struct symtab_and_line sal;
980 CORE_ADDR func_start, func_end;
981 struct sparc_frame_cache cache;
982
983 /* This is the preferred method, find the end of the prologue by
984 using the debugging information. */
985 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
986 {
987 sal = find_pc_line (func_start, 0);
988
989 if (sal.end < func_end
990 && start_pc <= sal.end)
991 return sal.end;
992 }
993
994 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
995
996 /* The psABI says that "Although the first 6 words of arguments
997 reside in registers, the standard stack frame reserves space for
998 them.". It also suggests that a function may use that space to
999 "write incoming arguments 0 to 5" into that space, and that's
1000 indeed what GCC seems to be doing. In that case GCC will
1001 generate debug information that points to the stack slots instead
1002 of the registers, so we should consider the instructions that
1003 write out these incoming arguments onto the stack. */
1004
1005 while (1)
1006 {
1007 unsigned long insn = sparc_fetch_instruction (start_pc);
1008
1009 /* Recognize instructions that store incoming arguments into the
1010 corresponding stack slots. */
1011 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1012 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1013 {
1014 int regnum = X_RD (insn);
1015
1016 /* Case of arguments still in %o[0..5]. */
1017 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1018 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1019 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1020 {
1021 start_pc += 4;
1022 continue;
1023 }
1024
1025 /* Case of arguments copied into %i[0..5]. */
1026 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1027 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1028 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1029 {
1030 start_pc += 4;
1031 continue;
1032 }
1033 }
1034
1035 break;
1036 }
1037
1038 return start_pc;
1039 }
1040
1041 /* Normal frames. */
1042
1043 struct sparc_frame_cache *
1044 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1045 {
1046 struct sparc_frame_cache *cache;
1047
1048 if (*this_cache)
1049 return *this_cache;
1050
1051 cache = sparc_alloc_frame_cache ();
1052 *this_cache = cache;
1053
1054 cache->pc = get_frame_func (this_frame);
1055 if (cache->pc != 0)
1056 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1057 get_frame_pc (this_frame), cache);
1058
1059 if (cache->frameless_p)
1060 {
1061 /* This function is frameless, so %fp (%i6) holds the frame
1062 pointer for our calling frame. Use %sp (%o6) as this frame's
1063 base address. */
1064 cache->base =
1065 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1066 }
1067 else
1068 {
1069 /* For normal frames, %fp (%i6) holds the frame pointer, the
1070 base address for the current stack frame. */
1071 cache->base =
1072 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1073 }
1074
1075 cache->base += cache->frame_offset;
1076
1077 if (cache->base & 1)
1078 cache->base += BIAS;
1079
1080 return cache;
1081 }
1082
1083 static int
1084 sparc32_struct_return_from_sym (struct symbol *sym)
1085 {
1086 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1087 enum type_code code = TYPE_CODE (type);
1088
1089 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1090 {
1091 type = check_typedef (TYPE_TARGET_TYPE (type));
1092 if (sparc_structure_or_union_p (type)
1093 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1094 return 1;
1095 }
1096
1097 return 0;
1098 }
1099
1100 struct sparc_frame_cache *
1101 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1102 {
1103 struct sparc_frame_cache *cache;
1104 struct symbol *sym;
1105
1106 if (*this_cache)
1107 return *this_cache;
1108
1109 cache = sparc_frame_cache (this_frame, this_cache);
1110
1111 sym = find_pc_function (cache->pc);
1112 if (sym)
1113 {
1114 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1115 }
1116 else
1117 {
1118 /* There is no debugging information for this function to
1119 help us determine whether this function returns a struct
1120 or not. So we rely on another heuristic which is to check
1121 the instruction at the return address and see if this is
1122 an "unimp" instruction. If it is, then it is a struct-return
1123 function. */
1124 CORE_ADDR pc;
1125 int regnum =
1126 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1127
1128 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1129 if (sparc_is_unimp_insn (pc))
1130 cache->struct_return_p = 1;
1131 }
1132
1133 return cache;
1134 }
1135
1136 static void
1137 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1138 struct frame_id *this_id)
1139 {
1140 struct sparc_frame_cache *cache =
1141 sparc32_frame_cache (this_frame, this_cache);
1142
1143 /* This marks the outermost frame. */
1144 if (cache->base == 0)
1145 return;
1146
1147 (*this_id) = frame_id_build (cache->base, cache->pc);
1148 }
1149
1150 static struct value *
1151 sparc32_frame_prev_register (struct frame_info *this_frame,
1152 void **this_cache, int regnum)
1153 {
1154 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1155 struct sparc_frame_cache *cache =
1156 sparc32_frame_cache (this_frame, this_cache);
1157
1158 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1159 {
1160 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1161
1162 /* If this functions has a Structure, Union or Quad-Precision
1163 return value, we have to skip the UNIMP instruction that encodes
1164 the size of the structure. */
1165 if (cache->struct_return_p)
1166 pc += 4;
1167
1168 regnum =
1169 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1170 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1171 return frame_unwind_got_constant (this_frame, regnum, pc);
1172 }
1173
1174 /* Handle StackGhost. */
1175 {
1176 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1177
1178 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1179 {
1180 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1181 ULONGEST i7;
1182
1183 /* Read the value in from memory. */
1184 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1185 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1186 }
1187 }
1188
1189 /* The previous frame's `local' and `in' registers may have been saved
1190 in the register save area. */
1191 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1192 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1193 {
1194 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1195
1196 return frame_unwind_got_memory (this_frame, regnum, addr);
1197 }
1198
1199 /* The previous frame's `out' registers may be accessible as the current
1200 frame's `in' registers. */
1201 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1202 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1203 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1204
1205 return frame_unwind_got_register (this_frame, regnum, regnum);
1206 }
1207
1208 static const struct frame_unwind sparc32_frame_unwind =
1209 {
1210 NORMAL_FRAME,
1211 default_frame_unwind_stop_reason,
1212 sparc32_frame_this_id,
1213 sparc32_frame_prev_register,
1214 NULL,
1215 default_frame_sniffer
1216 };
1217 \f
1218
1219 static CORE_ADDR
1220 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1221 {
1222 struct sparc_frame_cache *cache =
1223 sparc32_frame_cache (this_frame, this_cache);
1224
1225 return cache->base;
1226 }
1227
1228 static const struct frame_base sparc32_frame_base =
1229 {
1230 &sparc32_frame_unwind,
1231 sparc32_frame_base_address,
1232 sparc32_frame_base_address,
1233 sparc32_frame_base_address
1234 };
1235
1236 static struct frame_id
1237 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1238 {
1239 CORE_ADDR sp;
1240
1241 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1242 if (sp & 1)
1243 sp += BIAS;
1244 return frame_id_build (sp, get_frame_pc (this_frame));
1245 }
1246 \f
1247
1248 /* Extract a function return value of TYPE from REGCACHE, and copy
1249 that into VALBUF. */
1250
1251 static void
1252 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1253 gdb_byte *valbuf)
1254 {
1255 int len = TYPE_LENGTH (type);
1256 gdb_byte buf[32];
1257
1258 gdb_assert (!sparc_structure_or_union_p (type));
1259 gdb_assert (!(sparc_floating_p (type) && len == 16));
1260
1261 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1262 {
1263 /* Floating return values. */
1264 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1265 if (len > 4)
1266 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1267 if (len > 8)
1268 {
1269 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1270 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1271 }
1272 if (len > 16)
1273 {
1274 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1275 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1276 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1277 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1278 }
1279 memcpy (valbuf, buf, len);
1280 }
1281 else
1282 {
1283 /* Integral and pointer return values. */
1284 gdb_assert (sparc_integral_or_pointer_p (type));
1285
1286 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1287 if (len > 4)
1288 {
1289 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1290 gdb_assert (len == 8);
1291 memcpy (valbuf, buf, 8);
1292 }
1293 else
1294 {
1295 /* Just stripping off any unused bytes should preserve the
1296 signed-ness just fine. */
1297 memcpy (valbuf, buf + 4 - len, len);
1298 }
1299 }
1300 }
1301
1302 /* Store the function return value of type TYPE from VALBUF into
1303 REGCACHE. */
1304
1305 static void
1306 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1307 const gdb_byte *valbuf)
1308 {
1309 int len = TYPE_LENGTH (type);
1310 gdb_byte buf[8];
1311
1312 gdb_assert (!sparc_structure_or_union_p (type));
1313 gdb_assert (!(sparc_floating_p (type) && len == 16));
1314 gdb_assert (len <= 8);
1315
1316 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1317 {
1318 /* Floating return values. */
1319 memcpy (buf, valbuf, len);
1320 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1321 if (len > 4)
1322 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1323 if (len > 8)
1324 {
1325 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1326 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1327 }
1328 if (len > 16)
1329 {
1330 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1331 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1332 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1333 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1334 }
1335 }
1336 else
1337 {
1338 /* Integral and pointer return values. */
1339 gdb_assert (sparc_integral_or_pointer_p (type));
1340
1341 if (len > 4)
1342 {
1343 gdb_assert (len == 8);
1344 memcpy (buf, valbuf, 8);
1345 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1346 }
1347 else
1348 {
1349 /* ??? Do we need to do any sign-extension here? */
1350 memcpy (buf + 4 - len, valbuf, len);
1351 }
1352 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1353 }
1354 }
1355
1356 static enum return_value_convention
1357 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1358 struct type *type, struct regcache *regcache,
1359 gdb_byte *readbuf, const gdb_byte *writebuf)
1360 {
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1362
1363 /* The psABI says that "...every stack frame reserves the word at
1364 %fp+64. If a function returns a structure, union, or
1365 quad-precision value, this word should hold the address of the
1366 object into which the return value should be copied." This
1367 guarantees that we can always find the return value, not just
1368 before the function returns. */
1369
1370 if (sparc_structure_or_union_p (type)
1371 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1372 {
1373 ULONGEST sp;
1374 CORE_ADDR addr;
1375
1376 if (readbuf)
1377 {
1378 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1379 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1380 read_memory (addr, readbuf, TYPE_LENGTH (type));
1381 }
1382 if (writebuf)
1383 {
1384 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1385 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1386 write_memory (addr, writebuf, TYPE_LENGTH (type));
1387 }
1388
1389 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1390 }
1391
1392 if (readbuf)
1393 sparc32_extract_return_value (type, regcache, readbuf);
1394 if (writebuf)
1395 sparc32_store_return_value (type, regcache, writebuf);
1396
1397 return RETURN_VALUE_REGISTER_CONVENTION;
1398 }
1399
1400 static int
1401 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1402 {
1403 return (sparc_structure_or_union_p (type)
1404 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1405 || sparc_complex_floating_p (type));
1406 }
1407
1408 static int
1409 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1410 {
1411 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1412 struct symbol *sym = find_pc_function (pc);
1413
1414 if (sym)
1415 return sparc32_struct_return_from_sym (sym);
1416 return 0;
1417 }
1418
1419 static void
1420 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1421 struct dwarf2_frame_state_reg *reg,
1422 struct frame_info *this_frame)
1423 {
1424 int off;
1425
1426 switch (regnum)
1427 {
1428 case SPARC_G0_REGNUM:
1429 /* Since %g0 is always zero, there is no point in saving it, and
1430 people will be inclined omit it from the CFI. Make sure we
1431 don't warn about that. */
1432 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1433 break;
1434 case SPARC_SP_REGNUM:
1435 reg->how = DWARF2_FRAME_REG_CFA;
1436 break;
1437 case SPARC32_PC_REGNUM:
1438 case SPARC32_NPC_REGNUM:
1439 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1440 off = 8;
1441 if (sparc32_dwarf2_struct_return_p (this_frame))
1442 off += 4;
1443 if (regnum == SPARC32_NPC_REGNUM)
1444 off += 4;
1445 reg->loc.offset = off;
1446 break;
1447 }
1448 }
1449
1450 \f
1451 /* The SPARC Architecture doesn't have hardware single-step support,
1452 and most operating systems don't implement it either, so we provide
1453 software single-step mechanism. */
1454
1455 static CORE_ADDR
1456 sparc_analyze_control_transfer (struct frame_info *frame,
1457 CORE_ADDR pc, CORE_ADDR *npc)
1458 {
1459 unsigned long insn = sparc_fetch_instruction (pc);
1460 int conditional_p = X_COND (insn) & 0x7;
1461 int branch_p = 0, fused_p = 0;
1462 long offset = 0; /* Must be signed for sign-extend. */
1463
1464 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1465 {
1466 if ((insn & 0x10000000) == 0)
1467 {
1468 /* Branch on Integer Register with Prediction (BPr). */
1469 branch_p = 1;
1470 conditional_p = 1;
1471 }
1472 else
1473 {
1474 /* Compare and Branch */
1475 branch_p = 1;
1476 fused_p = 1;
1477 offset = 4 * X_DISP10 (insn);
1478 }
1479 }
1480 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1481 {
1482 /* Branch on Floating-Point Condition Codes (FBfcc). */
1483 branch_p = 1;
1484 offset = 4 * X_DISP22 (insn);
1485 }
1486 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1487 {
1488 /* Branch on Floating-Point Condition Codes with Prediction
1489 (FBPfcc). */
1490 branch_p = 1;
1491 offset = 4 * X_DISP19 (insn);
1492 }
1493 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1494 {
1495 /* Branch on Integer Condition Codes (Bicc). */
1496 branch_p = 1;
1497 offset = 4 * X_DISP22 (insn);
1498 }
1499 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1500 {
1501 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1502 branch_p = 1;
1503 offset = 4 * X_DISP19 (insn);
1504 }
1505 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1506 {
1507 /* Trap instruction (TRAP). */
1508 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1509 }
1510
1511 /* FIXME: Handle DONE and RETRY instructions. */
1512
1513 if (branch_p)
1514 {
1515 if (fused_p)
1516 {
1517 /* Fused compare-and-branch instructions are non-delayed,
1518 and do not have an annuling capability. So we need to
1519 always set a breakpoint on both the NPC and the branch
1520 target address. */
1521 gdb_assert (offset != 0);
1522 return pc + offset;
1523 }
1524 else if (conditional_p)
1525 {
1526 /* For conditional branches, return nPC + 4 iff the annul
1527 bit is 1. */
1528 return (X_A (insn) ? *npc + 4 : 0);
1529 }
1530 else
1531 {
1532 /* For unconditional branches, return the target if its
1533 specified condition is "always" and return nPC + 4 if the
1534 condition is "never". If the annul bit is 1, set *NPC to
1535 zero. */
1536 if (X_COND (insn) == 0x0)
1537 pc = *npc, offset = 4;
1538 if (X_A (insn))
1539 *npc = 0;
1540
1541 return pc + offset;
1542 }
1543 }
1544
1545 return 0;
1546 }
1547
1548 static CORE_ADDR
1549 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1550 {
1551 return 0;
1552 }
1553
1554 int
1555 sparc_software_single_step (struct frame_info *frame)
1556 {
1557 struct gdbarch *arch = get_frame_arch (frame);
1558 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1559 struct address_space *aspace = get_frame_address_space (frame);
1560 CORE_ADDR npc, nnpc;
1561
1562 CORE_ADDR pc, orig_npc;
1563
1564 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1565 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1566
1567 /* Analyze the instruction at PC. */
1568 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1569 if (npc != 0)
1570 insert_single_step_breakpoint (arch, aspace, npc);
1571
1572 if (nnpc != 0)
1573 insert_single_step_breakpoint (arch, aspace, nnpc);
1574
1575 /* Assert that we have set at least one breakpoint, and that
1576 they're not set at the same spot - unless we're going
1577 from here straight to NULL, i.e. a call or jump to 0. */
1578 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1579 gdb_assert (nnpc != npc || orig_npc == 0);
1580
1581 return 1;
1582 }
1583
1584 static void
1585 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1586 {
1587 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1588
1589 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1590 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1591 }
1592 \f
1593
1594 /* Return the appropriate register set for the core section identified
1595 by SECT_NAME and SECT_SIZE. */
1596
1597 static const struct regset *
1598 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1599 const char *sect_name, size_t sect_size)
1600 {
1601 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1602
1603 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1604 return tdep->gregset;
1605
1606 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1607 return tdep->fpregset;
1608
1609 return NULL;
1610 }
1611 \f
1612
1613 static struct gdbarch *
1614 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1615 {
1616 struct gdbarch_tdep *tdep;
1617 struct gdbarch *gdbarch;
1618
1619 /* If there is already a candidate, use it. */
1620 arches = gdbarch_list_lookup_by_info (arches, &info);
1621 if (arches != NULL)
1622 return arches->gdbarch;
1623
1624 /* Allocate space for the new architecture. */
1625 tdep = XZALLOC (struct gdbarch_tdep);
1626 gdbarch = gdbarch_alloc (&info, tdep);
1627
1628 tdep->pc_regnum = SPARC32_PC_REGNUM;
1629 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1630 tdep->step_trap = sparc_step_trap;
1631
1632 set_gdbarch_long_double_bit (gdbarch, 128);
1633 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1634
1635 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1636 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1637 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1638 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1639 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1640 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1641
1642 /* Register numbers of various important registers. */
1643 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1644 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1645 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1646
1647 /* Call dummy code. */
1648 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1649 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1650 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1651 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1652
1653 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1654 set_gdbarch_stabs_argument_has_addr
1655 (gdbarch, sparc32_stabs_argument_has_addr);
1656
1657 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1658
1659 /* Stack grows downward. */
1660 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1661
1662 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1663
1664 set_gdbarch_frame_args_skip (gdbarch, 8);
1665
1666 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1667
1668 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1669 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1670
1671 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1672
1673 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1674
1675 frame_base_set_default (gdbarch, &sparc32_frame_base);
1676
1677 /* Hook in the DWARF CFI frame unwinder. */
1678 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1679 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1680 StackGhost issues have been resolved. */
1681
1682 /* Hook in ABI-specific overrides, if they have been registered. */
1683 gdbarch_init_osabi (info, gdbarch);
1684
1685 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1686
1687 /* If we have register sets, enable the generic core file support. */
1688 if (tdep->gregset)
1689 set_gdbarch_regset_from_core_section (gdbarch,
1690 sparc_regset_from_core_section);
1691
1692 register_sparc_ravenscar_ops (gdbarch);
1693
1694 return gdbarch;
1695 }
1696 \f
1697 /* Helper functions for dealing with register windows. */
1698
1699 void
1700 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1701 {
1702 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1704 int offset = 0;
1705 gdb_byte buf[8];
1706 int i;
1707
1708 if (sp & 1)
1709 {
1710 /* Registers are 64-bit. */
1711 sp += BIAS;
1712
1713 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1714 {
1715 if (regnum == i || regnum == -1)
1716 {
1717 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1718
1719 /* Handle StackGhost. */
1720 if (i == SPARC_I7_REGNUM)
1721 {
1722 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1723 ULONGEST i7;
1724
1725 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1726 store_unsigned_integer (buf + offset, 8, byte_order,
1727 i7 ^ wcookie);
1728 }
1729
1730 regcache_raw_supply (regcache, i, buf);
1731 }
1732 }
1733 }
1734 else
1735 {
1736 /* Registers are 32-bit. Toss any sign-extension of the stack
1737 pointer. */
1738 sp &= 0xffffffffUL;
1739
1740 /* Clear out the top half of the temporary buffer, and put the
1741 register value in the bottom half if we're in 64-bit mode. */
1742 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1743 {
1744 memset (buf, 0, 4);
1745 offset = 4;
1746 }
1747
1748 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1749 {
1750 if (regnum == i || regnum == -1)
1751 {
1752 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1753 buf + offset, 4);
1754
1755 /* Handle StackGhost. */
1756 if (i == SPARC_I7_REGNUM)
1757 {
1758 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1759 ULONGEST i7;
1760
1761 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1762 store_unsigned_integer (buf + offset, 4, byte_order,
1763 i7 ^ wcookie);
1764 }
1765
1766 regcache_raw_supply (regcache, i, buf);
1767 }
1768 }
1769 }
1770 }
1771
1772 void
1773 sparc_collect_rwindow (const struct regcache *regcache,
1774 CORE_ADDR sp, int regnum)
1775 {
1776 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1777 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1778 int offset = 0;
1779 gdb_byte buf[8];
1780 int i;
1781
1782 if (sp & 1)
1783 {
1784 /* Registers are 64-bit. */
1785 sp += BIAS;
1786
1787 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1788 {
1789 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1790 {
1791 regcache_raw_collect (regcache, i, buf);
1792
1793 /* Handle StackGhost. */
1794 if (i == SPARC_I7_REGNUM)
1795 {
1796 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1797 ULONGEST i7;
1798
1799 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1800 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1801 }
1802
1803 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1804 }
1805 }
1806 }
1807 else
1808 {
1809 /* Registers are 32-bit. Toss any sign-extension of the stack
1810 pointer. */
1811 sp &= 0xffffffffUL;
1812
1813 /* Only use the bottom half if we're in 64-bit mode. */
1814 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1815 offset = 4;
1816
1817 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1818 {
1819 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1820 {
1821 regcache_raw_collect (regcache, i, buf);
1822
1823 /* Handle StackGhost. */
1824 if (i == SPARC_I7_REGNUM)
1825 {
1826 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1827 ULONGEST i7;
1828
1829 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1830 store_unsigned_integer (buf + offset, 4, byte_order,
1831 i7 ^ wcookie);
1832 }
1833
1834 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1835 buf + offset, 4);
1836 }
1837 }
1838 }
1839 }
1840
1841 /* Helper functions for dealing with register sets. */
1842
1843 void
1844 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1845 struct regcache *regcache,
1846 int regnum, const void *gregs)
1847 {
1848 const gdb_byte *regs = gregs;
1849 gdb_byte zero[4] = { 0 };
1850 int i;
1851
1852 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1853 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1854 regs + gregset->r_psr_offset);
1855
1856 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1857 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1858 regs + gregset->r_pc_offset);
1859
1860 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1861 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1862 regs + gregset->r_npc_offset);
1863
1864 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1865 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1866 regs + gregset->r_y_offset);
1867
1868 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1869 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1870
1871 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1872 {
1873 int offset = gregset->r_g1_offset;
1874
1875 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1876 {
1877 if (regnum == i || regnum == -1)
1878 regcache_raw_supply (regcache, i, regs + offset);
1879 offset += 4;
1880 }
1881 }
1882
1883 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1884 {
1885 /* Not all of the register set variants include Locals and
1886 Inputs. For those that don't, we read them off the stack. */
1887 if (gregset->r_l0_offset == -1)
1888 {
1889 ULONGEST sp;
1890
1891 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1892 sparc_supply_rwindow (regcache, sp, regnum);
1893 }
1894 else
1895 {
1896 int offset = gregset->r_l0_offset;
1897
1898 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1899 {
1900 if (regnum == i || regnum == -1)
1901 regcache_raw_supply (regcache, i, regs + offset);
1902 offset += 4;
1903 }
1904 }
1905 }
1906 }
1907
1908 void
1909 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1910 const struct regcache *regcache,
1911 int regnum, void *gregs)
1912 {
1913 gdb_byte *regs = gregs;
1914 int i;
1915
1916 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1917 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1918 regs + gregset->r_psr_offset);
1919
1920 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1921 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1922 regs + gregset->r_pc_offset);
1923
1924 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1925 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1926 regs + gregset->r_npc_offset);
1927
1928 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1929 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1930 regs + gregset->r_y_offset);
1931
1932 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1933 {
1934 int offset = gregset->r_g1_offset;
1935
1936 /* %g0 is always zero. */
1937 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1938 {
1939 if (regnum == i || regnum == -1)
1940 regcache_raw_collect (regcache, i, regs + offset);
1941 offset += 4;
1942 }
1943 }
1944
1945 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1946 {
1947 /* Not all of the register set variants include Locals and
1948 Inputs. For those that don't, we read them off the stack. */
1949 if (gregset->r_l0_offset != -1)
1950 {
1951 int offset = gregset->r_l0_offset;
1952
1953 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1954 {
1955 if (regnum == i || regnum == -1)
1956 regcache_raw_collect (regcache, i, regs + offset);
1957 offset += 4;
1958 }
1959 }
1960 }
1961 }
1962
1963 void
1964 sparc32_supply_fpregset (const struct sparc_fpregset *fpregset,
1965 struct regcache *regcache,
1966 int regnum, const void *fpregs)
1967 {
1968 const gdb_byte *regs = fpregs;
1969 int i;
1970
1971 for (i = 0; i < 32; i++)
1972 {
1973 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1974 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
1975 regs + fpregset->r_f0_offset + (i * 4));
1976 }
1977
1978 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1979 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
1980 regs + fpregset->r_fsr_offset);
1981 }
1982
1983 void
1984 sparc32_collect_fpregset (const struct sparc_fpregset *fpregset,
1985 const struct regcache *regcache,
1986 int regnum, void *fpregs)
1987 {
1988 gdb_byte *regs = fpregs;
1989 int i;
1990
1991 for (i = 0; i < 32; i++)
1992 {
1993 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1994 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
1995 regs + fpregset->r_f0_offset + (i * 4));
1996 }
1997
1998 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1999 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
2000 regs + fpregset->r_fsr_offset);
2001 }
2002 \f
2003
2004 /* SunOS 4. */
2005
2006 /* From <machine/reg.h>. */
2007 const struct sparc_gregset sparc32_sunos4_gregset =
2008 {
2009 0 * 4, /* %psr */
2010 1 * 4, /* %pc */
2011 2 * 4, /* %npc */
2012 3 * 4, /* %y */
2013 -1, /* %wim */
2014 -1, /* %tbr */
2015 4 * 4, /* %g1 */
2016 -1 /* %l0 */
2017 };
2018
2019 const struct sparc_fpregset sparc32_sunos4_fpregset =
2020 {
2021 0 * 4, /* %f0 */
2022 33 * 4, /* %fsr */
2023 };
2024
2025 const struct sparc_fpregset sparc32_bsd_fpregset =
2026 {
2027 0 * 4, /* %f0 */
2028 32 * 4, /* %fsr */
2029 };
2030 \f
2031
2032 /* Provide a prototype to silence -Wmissing-prototypes. */
2033 void _initialize_sparc_tdep (void);
2034
2035 void
2036 _initialize_sparc_tdep (void)
2037 {
2038 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2039 }