]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sparc-tdep.c
Skip gdb.server/ tests if lack of XML support
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2-frame.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "value.h"
37
38 #include "sparc-tdep.h"
39 #include "sparc-ravenscar-thread.h"
40
41 struct regset;
42
43 /* This file implements the SPARC 32-bit ABI as defined by the section
44 "Low-Level System Information" of the SPARC Compliance Definition
45 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
46 lists changes with respect to the original 32-bit psABI as defined
47 in the "System V ABI, SPARC Processor Supplement".
48
49 Note that if we talk about SunOS, we mean SunOS 4.x, which was
50 BSD-based, which is sometimes (retroactively?) referred to as
51 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
52 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
53 suffering from severe version number inflation). Solaris 2.x is
54 also known as SunOS 5.x, since that's what uname(1) says. Solaris
55 2.x is SVR4-based. */
56
57 /* Please use the sparc32_-prefix for 32-bit specific code, the
58 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
59 code that can handle both. The 64-bit specific code lives in
60 sparc64-tdep.c; don't add any here. */
61
62 /* The SPARC Floating-Point Quad-Precision format is similar to
63 big-endian IA-64 Quad-Precision format. */
64 #define floatformats_sparc_quad floatformats_ia64_quad
65
66 /* The stack pointer is offset from the stack frame by a BIAS of 2047
67 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
68 hosts, so undefine it first. */
69 #undef BIAS
70 #define BIAS 2047
71
72 /* Macros to extract fields from SPARC instructions. */
73 #define X_OP(i) (((i) >> 30) & 0x3)
74 #define X_RD(i) (((i) >> 25) & 0x1f)
75 #define X_A(i) (((i) >> 29) & 1)
76 #define X_COND(i) (((i) >> 25) & 0xf)
77 #define X_OP2(i) (((i) >> 22) & 0x7)
78 #define X_IMM22(i) ((i) & 0x3fffff)
79 #define X_OP3(i) (((i) >> 19) & 0x3f)
80 #define X_RS1(i) (((i) >> 14) & 0x1f)
81 #define X_RS2(i) ((i) & 0x1f)
82 #define X_I(i) (((i) >> 13) & 1)
83 /* Sign extension macros. */
84 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
85 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
86 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
87 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
88 /* Macros to identify some instructions. */
89 /* RETURN (RETT in V8) */
90 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
91
92 /* Fetch the instruction at PC. Instructions are always big-endian
93 even if the processor operates in little-endian mode. */
94
95 unsigned long
96 sparc_fetch_instruction (CORE_ADDR pc)
97 {
98 gdb_byte buf[4];
99 unsigned long insn;
100 int i;
101
102 /* If we can't read the instruction at PC, return zero. */
103 if (target_read_memory (pc, buf, sizeof (buf)))
104 return 0;
105
106 insn = 0;
107 for (i = 0; i < sizeof (buf); i++)
108 insn = (insn << 8) | buf[i];
109 return insn;
110 }
111 \f
112
113 /* Return non-zero if the instruction corresponding to PC is an "unimp"
114 instruction. */
115
116 static int
117 sparc_is_unimp_insn (CORE_ADDR pc)
118 {
119 const unsigned long insn = sparc_fetch_instruction (pc);
120
121 return ((insn & 0xc1c00000) == 0);
122 }
123
124 /* Return non-zero if the instruction corresponding to PC is an
125 "annulled" branch, i.e. the annul bit is set. */
126
127 int
128 sparc_is_annulled_branch_insn (CORE_ADDR pc)
129 {
130 /* The branch instructions featuring an annul bit can be identified
131 by the following bit patterns:
132
133 OP=0
134 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
135 OP2=2: Branch on Integer Condition Codes (Bcc).
136 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
137 OP2=6: Branch on FP Condition Codes (FBcc).
138 OP2=3 && Bit28=0:
139 Branch on Integer Register with Prediction (BPr).
140
141 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
142 coprocessor branch instructions (Op2=7). */
143
144 const unsigned long insn = sparc_fetch_instruction (pc);
145 const unsigned op2 = X_OP2 (insn);
146
147 if ((X_OP (insn) == 0)
148 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
149 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
150 return X_A (insn);
151 else
152 return 0;
153 }
154
155 /* OpenBSD/sparc includes StackGhost, which according to the author's
156 website http://stackghost.cerias.purdue.edu "... transparently and
157 automatically protects applications' stack frames; more
158 specifically, it guards the return pointers. The protection
159 mechanisms require no application source or binary modification and
160 imposes only a negligible performance penalty."
161
162 The same website provides the following description of how
163 StackGhost works:
164
165 "StackGhost interfaces with the kernel trap handler that would
166 normally write out registers to the stack and the handler that
167 would read them back in. By XORing a cookie into the
168 return-address saved in the user stack when it is actually written
169 to the stack, and then XOR it out when the return-address is pulled
170 from the stack, StackGhost can cause attacker corrupted return
171 pointers to behave in a manner the attacker cannot predict.
172 StackGhost can also use several unused bits in the return pointer
173 to detect a smashed return pointer and abort the process."
174
175 For GDB this means that whenever we're reading %i7 from a stack
176 frame's window save area, we'll have to XOR the cookie.
177
178 More information on StackGuard can be found on in:
179
180 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
181 Stack Protection." 2001. Published in USENIX Security Symposium
182 '01. */
183
184 /* Fetch StackGhost Per-Process XOR cookie. */
185
186 ULONGEST
187 sparc_fetch_wcookie (struct gdbarch *gdbarch)
188 {
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 struct target_ops *ops = &current_target;
191 gdb_byte buf[8];
192 int len;
193
194 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
195 if (len == -1)
196 return 0;
197
198 /* We should have either an 32-bit or an 64-bit cookie. */
199 gdb_assert (len == 4 || len == 8);
200
201 return extract_unsigned_integer (buf, len, byte_order);
202 }
203 \f
204
205 /* The functions on this page are intended to be used to classify
206 function arguments. */
207
208 /* Check whether TYPE is "Integral or Pointer". */
209
210 static int
211 sparc_integral_or_pointer_p (const struct type *type)
212 {
213 int len = TYPE_LENGTH (type);
214
215 switch (TYPE_CODE (type))
216 {
217 case TYPE_CODE_INT:
218 case TYPE_CODE_BOOL:
219 case TYPE_CODE_CHAR:
220 case TYPE_CODE_ENUM:
221 case TYPE_CODE_RANGE:
222 /* We have byte, half-word, word and extended-word/doubleword
223 integral types. The doubleword is an extension to the
224 original 32-bit ABI by the SCD 2.4.x. */
225 return (len == 1 || len == 2 || len == 4 || len == 8);
226 case TYPE_CODE_PTR:
227 case TYPE_CODE_REF:
228 /* Allow either 32-bit or 64-bit pointers. */
229 return (len == 4 || len == 8);
230 default:
231 break;
232 }
233
234 return 0;
235 }
236
237 /* Check whether TYPE is "Floating". */
238
239 static int
240 sparc_floating_p (const struct type *type)
241 {
242 switch (TYPE_CODE (type))
243 {
244 case TYPE_CODE_FLT:
245 {
246 int len = TYPE_LENGTH (type);
247 return (len == 4 || len == 8 || len == 16);
248 }
249 default:
250 break;
251 }
252
253 return 0;
254 }
255
256 /* Check whether TYPE is "Complex Floating". */
257
258 static int
259 sparc_complex_floating_p (const struct type *type)
260 {
261 switch (TYPE_CODE (type))
262 {
263 case TYPE_CODE_COMPLEX:
264 {
265 int len = TYPE_LENGTH (type);
266 return (len == 8 || len == 16 || len == 32);
267 }
268 default:
269 break;
270 }
271
272 return 0;
273 }
274
275 /* Check whether TYPE is "Structure or Union".
276
277 In terms of Ada subprogram calls, arrays are treated the same as
278 struct and union types. So this function also returns non-zero
279 for array types. */
280
281 static int
282 sparc_structure_or_union_p (const struct type *type)
283 {
284 switch (TYPE_CODE (type))
285 {
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_ARRAY:
289 return 1;
290 default:
291 break;
292 }
293
294 return 0;
295 }
296
297 /* Register information. */
298
299 static const char *sparc32_register_names[] =
300 {
301 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
302 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
303 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
304 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
305
306 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
307 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
308 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
309 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
310
311 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
312 };
313
314 /* Total number of registers. */
315 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
316
317 /* We provide the aliases %d0..%d30 for the floating registers as
318 "psuedo" registers. */
319
320 static const char *sparc32_pseudo_register_names[] =
321 {
322 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
323 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
324 };
325
326 /* Total number of pseudo registers. */
327 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
328
329 /* Return the name of register REGNUM. */
330
331 static const char *
332 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
333 {
334 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
335 return sparc32_register_names[regnum];
336
337 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
338 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
339
340 return NULL;
341 }
342 \f
343 /* Construct types for ISA-specific registers. */
344
345 static struct type *
346 sparc_psr_type (struct gdbarch *gdbarch)
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349
350 if (!tdep->sparc_psr_type)
351 {
352 struct type *type;
353
354 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
355 append_flags_type_flag (type, 5, "ET");
356 append_flags_type_flag (type, 6, "PS");
357 append_flags_type_flag (type, 7, "S");
358 append_flags_type_flag (type, 12, "EF");
359 append_flags_type_flag (type, 13, "EC");
360
361 tdep->sparc_psr_type = type;
362 }
363
364 return tdep->sparc_psr_type;
365 }
366
367 static struct type *
368 sparc_fsr_type (struct gdbarch *gdbarch)
369 {
370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
371
372 if (!tdep->sparc_fsr_type)
373 {
374 struct type *type;
375
376 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
377 append_flags_type_flag (type, 0, "NXA");
378 append_flags_type_flag (type, 1, "DZA");
379 append_flags_type_flag (type, 2, "UFA");
380 append_flags_type_flag (type, 3, "OFA");
381 append_flags_type_flag (type, 4, "NVA");
382 append_flags_type_flag (type, 5, "NXC");
383 append_flags_type_flag (type, 6, "DZC");
384 append_flags_type_flag (type, 7, "UFC");
385 append_flags_type_flag (type, 8, "OFC");
386 append_flags_type_flag (type, 9, "NVC");
387 append_flags_type_flag (type, 22, "NS");
388 append_flags_type_flag (type, 23, "NXM");
389 append_flags_type_flag (type, 24, "DZM");
390 append_flags_type_flag (type, 25, "UFM");
391 append_flags_type_flag (type, 26, "OFM");
392 append_flags_type_flag (type, 27, "NVM");
393
394 tdep->sparc_fsr_type = type;
395 }
396
397 return tdep->sparc_fsr_type;
398 }
399
400 /* Return the GDB type object for the "standard" data type of data in
401 register REGNUM. */
402
403 static struct type *
404 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
405 {
406 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
407 return builtin_type (gdbarch)->builtin_float;
408
409 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
410 return builtin_type (gdbarch)->builtin_double;
411
412 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
413 return builtin_type (gdbarch)->builtin_data_ptr;
414
415 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
416 return builtin_type (gdbarch)->builtin_func_ptr;
417
418 if (regnum == SPARC32_PSR_REGNUM)
419 return sparc_psr_type (gdbarch);
420
421 if (regnum == SPARC32_FSR_REGNUM)
422 return sparc_fsr_type (gdbarch);
423
424 return builtin_type (gdbarch)->builtin_int32;
425 }
426
427 static enum register_status
428 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
429 struct regcache *regcache,
430 int regnum, gdb_byte *buf)
431 {
432 enum register_status status;
433
434 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
435
436 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
437 status = regcache_raw_read (regcache, regnum, buf);
438 if (status == REG_VALID)
439 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
440 return status;
441 }
442
443 static void
444 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
445 struct regcache *regcache,
446 int regnum, const gdb_byte *buf)
447 {
448 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
449
450 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
451 regcache_raw_write (regcache, regnum, buf);
452 regcache_raw_write (regcache, regnum + 1, buf + 4);
453 }
454 \f
455 /* Implement the stack_frame_destroyed_p gdbarch method. */
456
457 int
458 sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
459 {
460 /* This function must return true if we are one instruction after an
461 instruction that destroyed the stack frame of the current
462 function. The SPARC instructions used to restore the callers
463 stack frame are RESTORE and RETURN/RETT.
464
465 Of these RETURN/RETT is a branch instruction and thus we return
466 true if we are in its delay slot.
467
468 RESTORE is almost always found in the delay slot of a branch
469 instruction that transfers control to the caller, such as JMPL.
470 Thus the next instruction is in the caller frame and we don't
471 need to do anything about it. */
472
473 unsigned int insn = sparc_fetch_instruction (pc - 4);
474
475 return X_RETTURN (insn);
476 }
477 \f
478
479 static CORE_ADDR
480 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
481 {
482 /* The ABI requires double-word alignment. */
483 return address & ~0x7;
484 }
485
486 static CORE_ADDR
487 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
488 CORE_ADDR funcaddr,
489 struct value **args, int nargs,
490 struct type *value_type,
491 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
492 struct regcache *regcache)
493 {
494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
495
496 *bp_addr = sp - 4;
497 *real_pc = funcaddr;
498
499 if (using_struct_return (gdbarch, NULL, value_type))
500 {
501 gdb_byte buf[4];
502
503 /* This is an UNIMP instruction. */
504 store_unsigned_integer (buf, 4, byte_order,
505 TYPE_LENGTH (value_type) & 0x1fff);
506 write_memory (sp - 8, buf, 4);
507 return sp - 8;
508 }
509
510 return sp - 4;
511 }
512
513 static CORE_ADDR
514 sparc32_store_arguments (struct regcache *regcache, int nargs,
515 struct value **args, CORE_ADDR sp,
516 int struct_return, CORE_ADDR struct_addr)
517 {
518 struct gdbarch *gdbarch = get_regcache_arch (regcache);
519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
520 /* Number of words in the "parameter array". */
521 int num_elements = 0;
522 int element = 0;
523 int i;
524
525 for (i = 0; i < nargs; i++)
526 {
527 struct type *type = value_type (args[i]);
528 int len = TYPE_LENGTH (type);
529
530 if (sparc_structure_or_union_p (type)
531 || (sparc_floating_p (type) && len == 16)
532 || sparc_complex_floating_p (type))
533 {
534 /* Structure, Union and Quad-Precision Arguments. */
535 sp -= len;
536
537 /* Use doubleword alignment for these values. That's always
538 correct, and wasting a few bytes shouldn't be a problem. */
539 sp &= ~0x7;
540
541 write_memory (sp, value_contents (args[i]), len);
542 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
543 num_elements++;
544 }
545 else if (sparc_floating_p (type))
546 {
547 /* Floating arguments. */
548 gdb_assert (len == 4 || len == 8);
549 num_elements += (len / 4);
550 }
551 else
552 {
553 /* Integral and pointer arguments. */
554 gdb_assert (sparc_integral_or_pointer_p (type));
555
556 if (len < 4)
557 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
558 args[i]);
559 num_elements += ((len + 3) / 4);
560 }
561 }
562
563 /* Always allocate at least six words. */
564 sp -= max (6, num_elements) * 4;
565
566 /* The psABI says that "Software convention requires space for the
567 struct/union return value pointer, even if the word is unused." */
568 sp -= 4;
569
570 /* The psABI says that "Although software convention and the
571 operating system require every stack frame to be doubleword
572 aligned." */
573 sp &= ~0x7;
574
575 for (i = 0; i < nargs; i++)
576 {
577 const bfd_byte *valbuf = value_contents (args[i]);
578 struct type *type = value_type (args[i]);
579 int len = TYPE_LENGTH (type);
580
581 gdb_assert (len == 4 || len == 8);
582
583 if (element < 6)
584 {
585 int regnum = SPARC_O0_REGNUM + element;
586
587 regcache_cooked_write (regcache, regnum, valbuf);
588 if (len > 4 && element < 5)
589 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
590 }
591
592 /* Always store the argument in memory. */
593 write_memory (sp + 4 + element * 4, valbuf, len);
594 element += len / 4;
595 }
596
597 gdb_assert (element == num_elements);
598
599 if (struct_return)
600 {
601 gdb_byte buf[4];
602
603 store_unsigned_integer (buf, 4, byte_order, struct_addr);
604 write_memory (sp, buf, 4);
605 }
606
607 return sp;
608 }
609
610 static CORE_ADDR
611 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
612 struct regcache *regcache, CORE_ADDR bp_addr,
613 int nargs, struct value **args, CORE_ADDR sp,
614 int struct_return, CORE_ADDR struct_addr)
615 {
616 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
617
618 /* Set return address. */
619 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
620
621 /* Set up function arguments. */
622 sp = sparc32_store_arguments (regcache, nargs, args, sp,
623 struct_return, struct_addr);
624
625 /* Allocate the 16-word window save area. */
626 sp -= 16 * 4;
627
628 /* Stack should be doubleword aligned at this point. */
629 gdb_assert (sp % 8 == 0);
630
631 /* Finally, update the stack pointer. */
632 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
633
634 return sp;
635 }
636 \f
637
638 /* Use the program counter to determine the contents and size of a
639 breakpoint instruction. Return a pointer to a string of bytes that
640 encode a breakpoint instruction, store the length of the string in
641 *LEN and optionally adjust *PC to point to the correct memory
642 location for inserting the breakpoint. */
643
644 static const gdb_byte *
645 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
646 {
647 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
648
649 *len = sizeof (break_insn);
650 return break_insn;
651 }
652 \f
653
654 /* Allocate and initialize a frame cache. */
655
656 static struct sparc_frame_cache *
657 sparc_alloc_frame_cache (void)
658 {
659 struct sparc_frame_cache *cache;
660
661 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
662
663 /* Base address. */
664 cache->base = 0;
665 cache->pc = 0;
666
667 /* Frameless until proven otherwise. */
668 cache->frameless_p = 1;
669 cache->frame_offset = 0;
670 cache->saved_regs_mask = 0;
671 cache->copied_regs_mask = 0;
672 cache->struct_return_p = 0;
673
674 return cache;
675 }
676
677 /* GCC generates several well-known sequences of instructions at the begining
678 of each function prologue when compiling with -fstack-check. If one of
679 such sequences starts at START_PC, then return the address of the
680 instruction immediately past this sequence. Otherwise, return START_PC. */
681
682 static CORE_ADDR
683 sparc_skip_stack_check (const CORE_ADDR start_pc)
684 {
685 CORE_ADDR pc = start_pc;
686 unsigned long insn;
687 int probing_loop = 0;
688
689 /* With GCC, all stack checking sequences begin with the same two
690 instructions, plus an optional one in the case of a probing loop:
691
692 sethi <some immediate>, %g1
693 sub %sp, %g1, %g1
694
695 or:
696
697 sethi <some immediate>, %g1
698 sethi <some immediate>, %g4
699 sub %sp, %g1, %g1
700
701 or:
702
703 sethi <some immediate>, %g1
704 sub %sp, %g1, %g1
705 sethi <some immediate>, %g4
706
707 If the optional instruction is found (setting g4), assume that a
708 probing loop will follow. */
709
710 /* sethi <some immediate>, %g1 */
711 insn = sparc_fetch_instruction (pc);
712 pc = pc + 4;
713 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
714 return start_pc;
715
716 /* optional: sethi <some immediate>, %g4 */
717 insn = sparc_fetch_instruction (pc);
718 pc = pc + 4;
719 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
720 {
721 probing_loop = 1;
722 insn = sparc_fetch_instruction (pc);
723 pc = pc + 4;
724 }
725
726 /* sub %sp, %g1, %g1 */
727 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
728 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
729 return start_pc;
730
731 insn = sparc_fetch_instruction (pc);
732 pc = pc + 4;
733
734 /* optional: sethi <some immediate>, %g4 */
735 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
736 {
737 probing_loop = 1;
738 insn = sparc_fetch_instruction (pc);
739 pc = pc + 4;
740 }
741
742 /* First possible sequence:
743 [first two instructions above]
744 clr [%g1 - some immediate] */
745
746 /* clr [%g1 - some immediate] */
747 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
748 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
749 {
750 /* Valid stack-check sequence, return the new PC. */
751 return pc;
752 }
753
754 /* Second possible sequence: A small number of probes.
755 [first two instructions above]
756 clr [%g1]
757 add %g1, -<some immediate>, %g1
758 clr [%g1]
759 [repeat the two instructions above any (small) number of times]
760 clr [%g1 - some immediate] */
761
762 /* clr [%g1] */
763 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
764 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
765 {
766 while (1)
767 {
768 /* add %g1, -<some immediate>, %g1 */
769 insn = sparc_fetch_instruction (pc);
770 pc = pc + 4;
771 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
772 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
773 break;
774
775 /* clr [%g1] */
776 insn = sparc_fetch_instruction (pc);
777 pc = pc + 4;
778 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
779 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
780 return start_pc;
781 }
782
783 /* clr [%g1 - some immediate] */
784 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
785 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
786 return start_pc;
787
788 /* We found a valid stack-check sequence, return the new PC. */
789 return pc;
790 }
791
792 /* Third sequence: A probing loop.
793 [first three instructions above]
794 sub %g1, %g4, %g4
795 cmp %g1, %g4
796 be <disp>
797 add %g1, -<some immediate>, %g1
798 ba <disp>
799 clr [%g1]
800
801 And an optional last probe for the remainder:
802
803 clr [%g4 - some immediate] */
804
805 if (probing_loop)
806 {
807 /* sub %g1, %g4, %g4 */
808 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
809 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
810 return start_pc;
811
812 /* cmp %g1, %g4 */
813 insn = sparc_fetch_instruction (pc);
814 pc = pc + 4;
815 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
816 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
817 return start_pc;
818
819 /* be <disp> */
820 insn = sparc_fetch_instruction (pc);
821 pc = pc + 4;
822 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
823 return start_pc;
824
825 /* add %g1, -<some immediate>, %g1 */
826 insn = sparc_fetch_instruction (pc);
827 pc = pc + 4;
828 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
829 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
830 return start_pc;
831
832 /* ba <disp> */
833 insn = sparc_fetch_instruction (pc);
834 pc = pc + 4;
835 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
836 return start_pc;
837
838 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
839 insn = sparc_fetch_instruction (pc);
840 pc = pc + 4;
841 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
842 && X_RD (insn) == 0 && X_RS1 (insn) == 1
843 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
844 return start_pc;
845
846 /* We found a valid stack-check sequence, return the new PC. */
847
848 /* optional: clr [%g4 - some immediate] */
849 insn = sparc_fetch_instruction (pc);
850 pc = pc + 4;
851 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
852 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
853 return pc - 4;
854 else
855 return pc;
856 }
857
858 /* No stack check code in our prologue, return the start_pc. */
859 return start_pc;
860 }
861
862 /* Record the effect of a SAVE instruction on CACHE. */
863
864 void
865 sparc_record_save_insn (struct sparc_frame_cache *cache)
866 {
867 /* The frame is set up. */
868 cache->frameless_p = 0;
869
870 /* The frame pointer contains the CFA. */
871 cache->frame_offset = 0;
872
873 /* The `local' and `in' registers are all saved. */
874 cache->saved_regs_mask = 0xffff;
875
876 /* The `out' registers are all renamed. */
877 cache->copied_regs_mask = 0xff;
878 }
879
880 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
881 Bail out early if CURRENT_PC is reached. Return the address where
882 the analysis stopped.
883
884 We handle both the traditional register window model and the single
885 register window (aka flat) model. */
886
887 CORE_ADDR
888 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
889 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
890 {
891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
892 unsigned long insn;
893 int offset = 0;
894 int dest = -1;
895
896 pc = sparc_skip_stack_check (pc);
897
898 if (current_pc <= pc)
899 return current_pc;
900
901 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
902 SPARC the linker usually defines a symbol (typically
903 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
904 This symbol makes us end up here with PC pointing at the start of
905 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
906 would do our normal prologue analysis, we would probably conclude
907 that we've got a frame when in reality we don't, since the
908 dynamic linker patches up the first PLT with some code that
909 starts with a SAVE instruction. Patch up PC such that it points
910 at the start of our PLT entry. */
911 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
912 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
913
914 insn = sparc_fetch_instruction (pc);
915
916 /* Recognize store insns and record their sources. */
917 while (X_OP (insn) == 3
918 && (X_OP3 (insn) == 0x4 /* stw */
919 || X_OP3 (insn) == 0x7 /* std */
920 || X_OP3 (insn) == 0xe) /* stx */
921 && X_RS1 (insn) == SPARC_SP_REGNUM)
922 {
923 int regnum = X_RD (insn);
924
925 /* Recognize stores into the corresponding stack slots. */
926 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
927 && ((X_I (insn)
928 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
929 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
930 : (regnum - SPARC_L0_REGNUM) * 4))
931 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
932 {
933 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
934 if (X_OP3 (insn) == 0x7)
935 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
936 }
937
938 offset += 4;
939
940 insn = sparc_fetch_instruction (pc + offset);
941 }
942
943 /* Recognize a SETHI insn and record its destination. */
944 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
945 {
946 dest = X_RD (insn);
947 offset += 4;
948
949 insn = sparc_fetch_instruction (pc + offset);
950 }
951
952 /* Allow for an arithmetic operation on DEST or %g1. */
953 if (X_OP (insn) == 2 && X_I (insn)
954 && (X_RD (insn) == 1 || X_RD (insn) == dest))
955 {
956 offset += 4;
957
958 insn = sparc_fetch_instruction (pc + offset);
959 }
960
961 /* Check for the SAVE instruction that sets up the frame. */
962 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
963 {
964 sparc_record_save_insn (cache);
965 offset += 4;
966 return pc + offset;
967 }
968
969 /* Check for an arithmetic operation on %sp. */
970 if (X_OP (insn) == 2
971 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
972 && X_RS1 (insn) == SPARC_SP_REGNUM
973 && X_RD (insn) == SPARC_SP_REGNUM)
974 {
975 if (X_I (insn))
976 {
977 cache->frame_offset = X_SIMM13 (insn);
978 if (X_OP3 (insn) == 0)
979 cache->frame_offset = -cache->frame_offset;
980 }
981 offset += 4;
982
983 insn = sparc_fetch_instruction (pc + offset);
984
985 /* Check for an arithmetic operation that sets up the frame. */
986 if (X_OP (insn) == 2
987 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
988 && X_RS1 (insn) == SPARC_SP_REGNUM
989 && X_RD (insn) == SPARC_FP_REGNUM)
990 {
991 cache->frameless_p = 0;
992 cache->frame_offset = 0;
993 /* We could check that the amount subtracted to %sp above is the
994 same as the one added here, but this seems superfluous. */
995 cache->copied_regs_mask |= 0x40;
996 offset += 4;
997
998 insn = sparc_fetch_instruction (pc + offset);
999 }
1000
1001 /* Check for a move (or) operation that copies the return register. */
1002 if (X_OP (insn) == 2
1003 && X_OP3 (insn) == 0x2
1004 && !X_I (insn)
1005 && X_RS1 (insn) == SPARC_G0_REGNUM
1006 && X_RS2 (insn) == SPARC_O7_REGNUM
1007 && X_RD (insn) == SPARC_I7_REGNUM)
1008 {
1009 cache->copied_regs_mask |= 0x80;
1010 offset += 4;
1011 }
1012
1013 return pc + offset;
1014 }
1015
1016 return pc;
1017 }
1018
1019 static CORE_ADDR
1020 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1021 {
1022 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1023 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
1024 }
1025
1026 /* Return PC of first real instruction of the function starting at
1027 START_PC. */
1028
1029 static CORE_ADDR
1030 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1031 {
1032 struct symtab_and_line sal;
1033 CORE_ADDR func_start, func_end;
1034 struct sparc_frame_cache cache;
1035
1036 /* This is the preferred method, find the end of the prologue by
1037 using the debugging information. */
1038 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1039 {
1040 sal = find_pc_line (func_start, 0);
1041
1042 if (sal.end < func_end
1043 && start_pc <= sal.end)
1044 return sal.end;
1045 }
1046
1047 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1048
1049 /* The psABI says that "Although the first 6 words of arguments
1050 reside in registers, the standard stack frame reserves space for
1051 them.". It also suggests that a function may use that space to
1052 "write incoming arguments 0 to 5" into that space, and that's
1053 indeed what GCC seems to be doing. In that case GCC will
1054 generate debug information that points to the stack slots instead
1055 of the registers, so we should consider the instructions that
1056 write out these incoming arguments onto the stack. */
1057
1058 while (1)
1059 {
1060 unsigned long insn = sparc_fetch_instruction (start_pc);
1061
1062 /* Recognize instructions that store incoming arguments into the
1063 corresponding stack slots. */
1064 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1065 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1066 {
1067 int regnum = X_RD (insn);
1068
1069 /* Case of arguments still in %o[0..5]. */
1070 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1071 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1072 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1073 {
1074 start_pc += 4;
1075 continue;
1076 }
1077
1078 /* Case of arguments copied into %i[0..5]. */
1079 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1080 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1081 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1082 {
1083 start_pc += 4;
1084 continue;
1085 }
1086 }
1087
1088 break;
1089 }
1090
1091 return start_pc;
1092 }
1093
1094 /* Normal frames. */
1095
1096 struct sparc_frame_cache *
1097 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1098 {
1099 struct sparc_frame_cache *cache;
1100
1101 if (*this_cache)
1102 return (struct sparc_frame_cache *) *this_cache;
1103
1104 cache = sparc_alloc_frame_cache ();
1105 *this_cache = cache;
1106
1107 cache->pc = get_frame_func (this_frame);
1108 if (cache->pc != 0)
1109 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1110 get_frame_pc (this_frame), cache);
1111
1112 if (cache->frameless_p)
1113 {
1114 /* This function is frameless, so %fp (%i6) holds the frame
1115 pointer for our calling frame. Use %sp (%o6) as this frame's
1116 base address. */
1117 cache->base =
1118 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1119 }
1120 else
1121 {
1122 /* For normal frames, %fp (%i6) holds the frame pointer, the
1123 base address for the current stack frame. */
1124 cache->base =
1125 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1126 }
1127
1128 cache->base += cache->frame_offset;
1129
1130 if (cache->base & 1)
1131 cache->base += BIAS;
1132
1133 return cache;
1134 }
1135
1136 static int
1137 sparc32_struct_return_from_sym (struct symbol *sym)
1138 {
1139 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1140 enum type_code code = TYPE_CODE (type);
1141
1142 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1143 {
1144 type = check_typedef (TYPE_TARGET_TYPE (type));
1145 if (sparc_structure_or_union_p (type)
1146 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1147 return 1;
1148 }
1149
1150 return 0;
1151 }
1152
1153 struct sparc_frame_cache *
1154 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1155 {
1156 struct sparc_frame_cache *cache;
1157 struct symbol *sym;
1158
1159 if (*this_cache)
1160 return (struct sparc_frame_cache *) *this_cache;
1161
1162 cache = sparc_frame_cache (this_frame, this_cache);
1163
1164 sym = find_pc_function (cache->pc);
1165 if (sym)
1166 {
1167 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1168 }
1169 else
1170 {
1171 /* There is no debugging information for this function to
1172 help us determine whether this function returns a struct
1173 or not. So we rely on another heuristic which is to check
1174 the instruction at the return address and see if this is
1175 an "unimp" instruction. If it is, then it is a struct-return
1176 function. */
1177 CORE_ADDR pc;
1178 int regnum =
1179 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1180
1181 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1182 if (sparc_is_unimp_insn (pc))
1183 cache->struct_return_p = 1;
1184 }
1185
1186 return cache;
1187 }
1188
1189 static void
1190 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1191 struct frame_id *this_id)
1192 {
1193 struct sparc_frame_cache *cache =
1194 sparc32_frame_cache (this_frame, this_cache);
1195
1196 /* This marks the outermost frame. */
1197 if (cache->base == 0)
1198 return;
1199
1200 (*this_id) = frame_id_build (cache->base, cache->pc);
1201 }
1202
1203 static struct value *
1204 sparc32_frame_prev_register (struct frame_info *this_frame,
1205 void **this_cache, int regnum)
1206 {
1207 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1208 struct sparc_frame_cache *cache =
1209 sparc32_frame_cache (this_frame, this_cache);
1210
1211 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1212 {
1213 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1214
1215 /* If this functions has a Structure, Union or Quad-Precision
1216 return value, we have to skip the UNIMP instruction that encodes
1217 the size of the structure. */
1218 if (cache->struct_return_p)
1219 pc += 4;
1220
1221 regnum =
1222 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1223 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1224 return frame_unwind_got_constant (this_frame, regnum, pc);
1225 }
1226
1227 /* Handle StackGhost. */
1228 {
1229 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1230
1231 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1232 {
1233 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1234 ULONGEST i7;
1235
1236 /* Read the value in from memory. */
1237 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1238 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1239 }
1240 }
1241
1242 /* The previous frame's `local' and `in' registers may have been saved
1243 in the register save area. */
1244 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1245 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1246 {
1247 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1248
1249 return frame_unwind_got_memory (this_frame, regnum, addr);
1250 }
1251
1252 /* The previous frame's `out' registers may be accessible as the current
1253 frame's `in' registers. */
1254 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1255 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1256 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1257
1258 return frame_unwind_got_register (this_frame, regnum, regnum);
1259 }
1260
1261 static const struct frame_unwind sparc32_frame_unwind =
1262 {
1263 NORMAL_FRAME,
1264 default_frame_unwind_stop_reason,
1265 sparc32_frame_this_id,
1266 sparc32_frame_prev_register,
1267 NULL,
1268 default_frame_sniffer
1269 };
1270 \f
1271
1272 static CORE_ADDR
1273 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1274 {
1275 struct sparc_frame_cache *cache =
1276 sparc32_frame_cache (this_frame, this_cache);
1277
1278 return cache->base;
1279 }
1280
1281 static const struct frame_base sparc32_frame_base =
1282 {
1283 &sparc32_frame_unwind,
1284 sparc32_frame_base_address,
1285 sparc32_frame_base_address,
1286 sparc32_frame_base_address
1287 };
1288
1289 static struct frame_id
1290 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1291 {
1292 CORE_ADDR sp;
1293
1294 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1295 if (sp & 1)
1296 sp += BIAS;
1297 return frame_id_build (sp, get_frame_pc (this_frame));
1298 }
1299 \f
1300
1301 /* Extract a function return value of TYPE from REGCACHE, and copy
1302 that into VALBUF. */
1303
1304 static void
1305 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1306 gdb_byte *valbuf)
1307 {
1308 int len = TYPE_LENGTH (type);
1309 gdb_byte buf[32];
1310
1311 gdb_assert (!sparc_structure_or_union_p (type));
1312 gdb_assert (!(sparc_floating_p (type) && len == 16));
1313
1314 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1315 {
1316 /* Floating return values. */
1317 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1318 if (len > 4)
1319 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1320 if (len > 8)
1321 {
1322 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1323 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1324 }
1325 if (len > 16)
1326 {
1327 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1328 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1329 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1330 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1331 }
1332 memcpy (valbuf, buf, len);
1333 }
1334 else
1335 {
1336 /* Integral and pointer return values. */
1337 gdb_assert (sparc_integral_or_pointer_p (type));
1338
1339 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1340 if (len > 4)
1341 {
1342 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1343 gdb_assert (len == 8);
1344 memcpy (valbuf, buf, 8);
1345 }
1346 else
1347 {
1348 /* Just stripping off any unused bytes should preserve the
1349 signed-ness just fine. */
1350 memcpy (valbuf, buf + 4 - len, len);
1351 }
1352 }
1353 }
1354
1355 /* Store the function return value of type TYPE from VALBUF into
1356 REGCACHE. */
1357
1358 static void
1359 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1360 const gdb_byte *valbuf)
1361 {
1362 int len = TYPE_LENGTH (type);
1363 gdb_byte buf[8];
1364
1365 gdb_assert (!sparc_structure_or_union_p (type));
1366 gdb_assert (!(sparc_floating_p (type) && len == 16));
1367 gdb_assert (len <= 8);
1368
1369 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1370 {
1371 /* Floating return values. */
1372 memcpy (buf, valbuf, len);
1373 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1374 if (len > 4)
1375 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1376 if (len > 8)
1377 {
1378 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1379 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1380 }
1381 if (len > 16)
1382 {
1383 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1384 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1385 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1386 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1387 }
1388 }
1389 else
1390 {
1391 /* Integral and pointer return values. */
1392 gdb_assert (sparc_integral_or_pointer_p (type));
1393
1394 if (len > 4)
1395 {
1396 gdb_assert (len == 8);
1397 memcpy (buf, valbuf, 8);
1398 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1399 }
1400 else
1401 {
1402 /* ??? Do we need to do any sign-extension here? */
1403 memcpy (buf + 4 - len, valbuf, len);
1404 }
1405 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1406 }
1407 }
1408
1409 static enum return_value_convention
1410 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1411 struct type *type, struct regcache *regcache,
1412 gdb_byte *readbuf, const gdb_byte *writebuf)
1413 {
1414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1415
1416 /* The psABI says that "...every stack frame reserves the word at
1417 %fp+64. If a function returns a structure, union, or
1418 quad-precision value, this word should hold the address of the
1419 object into which the return value should be copied." This
1420 guarantees that we can always find the return value, not just
1421 before the function returns. */
1422
1423 if (sparc_structure_or_union_p (type)
1424 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1425 {
1426 ULONGEST sp;
1427 CORE_ADDR addr;
1428
1429 if (readbuf)
1430 {
1431 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1432 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1433 read_memory (addr, readbuf, TYPE_LENGTH (type));
1434 }
1435 if (writebuf)
1436 {
1437 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1438 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1439 write_memory (addr, writebuf, TYPE_LENGTH (type));
1440 }
1441
1442 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1443 }
1444
1445 if (readbuf)
1446 sparc32_extract_return_value (type, regcache, readbuf);
1447 if (writebuf)
1448 sparc32_store_return_value (type, regcache, writebuf);
1449
1450 return RETURN_VALUE_REGISTER_CONVENTION;
1451 }
1452
1453 static int
1454 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1455 {
1456 return (sparc_structure_or_union_p (type)
1457 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1458 || sparc_complex_floating_p (type));
1459 }
1460
1461 static int
1462 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1463 {
1464 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1465 struct symbol *sym = find_pc_function (pc);
1466
1467 if (sym)
1468 return sparc32_struct_return_from_sym (sym);
1469 return 0;
1470 }
1471
1472 static void
1473 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1474 struct dwarf2_frame_state_reg *reg,
1475 struct frame_info *this_frame)
1476 {
1477 int off;
1478
1479 switch (regnum)
1480 {
1481 case SPARC_G0_REGNUM:
1482 /* Since %g0 is always zero, there is no point in saving it, and
1483 people will be inclined omit it from the CFI. Make sure we
1484 don't warn about that. */
1485 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1486 break;
1487 case SPARC_SP_REGNUM:
1488 reg->how = DWARF2_FRAME_REG_CFA;
1489 break;
1490 case SPARC32_PC_REGNUM:
1491 case SPARC32_NPC_REGNUM:
1492 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1493 off = 8;
1494 if (sparc32_dwarf2_struct_return_p (this_frame))
1495 off += 4;
1496 if (regnum == SPARC32_NPC_REGNUM)
1497 off += 4;
1498 reg->loc.offset = off;
1499 break;
1500 }
1501 }
1502
1503 \f
1504 /* The SPARC Architecture doesn't have hardware single-step support,
1505 and most operating systems don't implement it either, so we provide
1506 software single-step mechanism. */
1507
1508 static CORE_ADDR
1509 sparc_analyze_control_transfer (struct frame_info *frame,
1510 CORE_ADDR pc, CORE_ADDR *npc)
1511 {
1512 unsigned long insn = sparc_fetch_instruction (pc);
1513 int conditional_p = X_COND (insn) & 0x7;
1514 int branch_p = 0, fused_p = 0;
1515 long offset = 0; /* Must be signed for sign-extend. */
1516
1517 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1518 {
1519 if ((insn & 0x10000000) == 0)
1520 {
1521 /* Branch on Integer Register with Prediction (BPr). */
1522 branch_p = 1;
1523 conditional_p = 1;
1524 }
1525 else
1526 {
1527 /* Compare and Branch */
1528 branch_p = 1;
1529 fused_p = 1;
1530 offset = 4 * X_DISP10 (insn);
1531 }
1532 }
1533 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1534 {
1535 /* Branch on Floating-Point Condition Codes (FBfcc). */
1536 branch_p = 1;
1537 offset = 4 * X_DISP22 (insn);
1538 }
1539 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1540 {
1541 /* Branch on Floating-Point Condition Codes with Prediction
1542 (FBPfcc). */
1543 branch_p = 1;
1544 offset = 4 * X_DISP19 (insn);
1545 }
1546 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1547 {
1548 /* Branch on Integer Condition Codes (Bicc). */
1549 branch_p = 1;
1550 offset = 4 * X_DISP22 (insn);
1551 }
1552 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1553 {
1554 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1555 branch_p = 1;
1556 offset = 4 * X_DISP19 (insn);
1557 }
1558 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1559 {
1560 /* Trap instruction (TRAP). */
1561 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1562 }
1563
1564 /* FIXME: Handle DONE and RETRY instructions. */
1565
1566 if (branch_p)
1567 {
1568 if (fused_p)
1569 {
1570 /* Fused compare-and-branch instructions are non-delayed,
1571 and do not have an annuling capability. So we need to
1572 always set a breakpoint on both the NPC and the branch
1573 target address. */
1574 gdb_assert (offset != 0);
1575 return pc + offset;
1576 }
1577 else if (conditional_p)
1578 {
1579 /* For conditional branches, return nPC + 4 iff the annul
1580 bit is 1. */
1581 return (X_A (insn) ? *npc + 4 : 0);
1582 }
1583 else
1584 {
1585 /* For unconditional branches, return the target if its
1586 specified condition is "always" and return nPC + 4 if the
1587 condition is "never". If the annul bit is 1, set *NPC to
1588 zero. */
1589 if (X_COND (insn) == 0x0)
1590 pc = *npc, offset = 4;
1591 if (X_A (insn))
1592 *npc = 0;
1593
1594 return pc + offset;
1595 }
1596 }
1597
1598 return 0;
1599 }
1600
1601 static CORE_ADDR
1602 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1603 {
1604 return 0;
1605 }
1606
1607 static int
1608 sparc_software_single_step (struct frame_info *frame)
1609 {
1610 struct gdbarch *arch = get_frame_arch (frame);
1611 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1612 struct address_space *aspace = get_frame_address_space (frame);
1613 CORE_ADDR npc, nnpc;
1614
1615 CORE_ADDR pc, orig_npc;
1616
1617 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1618 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1619
1620 /* Analyze the instruction at PC. */
1621 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1622 if (npc != 0)
1623 insert_single_step_breakpoint (arch, aspace, npc);
1624
1625 if (nnpc != 0)
1626 insert_single_step_breakpoint (arch, aspace, nnpc);
1627
1628 /* Assert that we have set at least one breakpoint, and that
1629 they're not set at the same spot - unless we're going
1630 from here straight to NULL, i.e. a call or jump to 0. */
1631 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1632 gdb_assert (nnpc != npc || orig_npc == 0);
1633
1634 return 1;
1635 }
1636
1637 static void
1638 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1639 {
1640 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1641
1642 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1643 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1644 }
1645 \f
1646
1647 /* Iterate over core file register note sections. */
1648
1649 static void
1650 sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1651 iterate_over_regset_sections_cb *cb,
1652 void *cb_data,
1653 const struct regcache *regcache)
1654 {
1655 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1656
1657 cb (".reg", tdep->sizeof_gregset, tdep->gregset, NULL, cb_data);
1658 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
1659 }
1660 \f
1661
1662 static struct gdbarch *
1663 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1664 {
1665 struct gdbarch_tdep *tdep;
1666 struct gdbarch *gdbarch;
1667
1668 /* If there is already a candidate, use it. */
1669 arches = gdbarch_list_lookup_by_info (arches, &info);
1670 if (arches != NULL)
1671 return arches->gdbarch;
1672
1673 /* Allocate space for the new architecture. */
1674 tdep = XCNEW (struct gdbarch_tdep);
1675 gdbarch = gdbarch_alloc (&info, tdep);
1676
1677 tdep->pc_regnum = SPARC32_PC_REGNUM;
1678 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1679 tdep->step_trap = sparc_step_trap;
1680
1681 set_gdbarch_long_double_bit (gdbarch, 128);
1682 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1683
1684 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1685 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1686 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1687 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1688 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1689 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1690
1691 /* Register numbers of various important registers. */
1692 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1693 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1694 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1695
1696 /* Call dummy code. */
1697 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1698 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1699 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1700 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1701
1702 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1703 set_gdbarch_stabs_argument_has_addr
1704 (gdbarch, sparc32_stabs_argument_has_addr);
1705
1706 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1707
1708 /* Stack grows downward. */
1709 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1710
1711 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1712
1713 set_gdbarch_frame_args_skip (gdbarch, 8);
1714
1715 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1716
1717 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1718 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1719
1720 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1721
1722 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1723
1724 frame_base_set_default (gdbarch, &sparc32_frame_base);
1725
1726 /* Hook in the DWARF CFI frame unwinder. */
1727 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1728 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1729 StackGhost issues have been resolved. */
1730
1731 /* Hook in ABI-specific overrides, if they have been registered. */
1732 gdbarch_init_osabi (info, gdbarch);
1733
1734 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1735
1736 /* If we have register sets, enable the generic core file support. */
1737 if (tdep->gregset)
1738 set_gdbarch_iterate_over_regset_sections
1739 (gdbarch, sparc_iterate_over_regset_sections);
1740
1741 register_sparc_ravenscar_ops (gdbarch);
1742
1743 return gdbarch;
1744 }
1745 \f
1746 /* Helper functions for dealing with register windows. */
1747
1748 void
1749 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1750 {
1751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1752 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1753 int offset = 0;
1754 gdb_byte buf[8];
1755 int i;
1756
1757 if (sp & 1)
1758 {
1759 /* Registers are 64-bit. */
1760 sp += BIAS;
1761
1762 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1763 {
1764 if (regnum == i || regnum == -1)
1765 {
1766 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1767
1768 /* Handle StackGhost. */
1769 if (i == SPARC_I7_REGNUM)
1770 {
1771 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1772 ULONGEST i7;
1773
1774 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1775 store_unsigned_integer (buf + offset, 8, byte_order,
1776 i7 ^ wcookie);
1777 }
1778
1779 regcache_raw_supply (regcache, i, buf);
1780 }
1781 }
1782 }
1783 else
1784 {
1785 /* Registers are 32-bit. Toss any sign-extension of the stack
1786 pointer. */
1787 sp &= 0xffffffffUL;
1788
1789 /* Clear out the top half of the temporary buffer, and put the
1790 register value in the bottom half if we're in 64-bit mode. */
1791 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1792 {
1793 memset (buf, 0, 4);
1794 offset = 4;
1795 }
1796
1797 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1798 {
1799 if (regnum == i || regnum == -1)
1800 {
1801 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1802 buf + offset, 4);
1803
1804 /* Handle StackGhost. */
1805 if (i == SPARC_I7_REGNUM)
1806 {
1807 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1808 ULONGEST i7;
1809
1810 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1811 store_unsigned_integer (buf + offset, 4, byte_order,
1812 i7 ^ wcookie);
1813 }
1814
1815 regcache_raw_supply (regcache, i, buf);
1816 }
1817 }
1818 }
1819 }
1820
1821 void
1822 sparc_collect_rwindow (const struct regcache *regcache,
1823 CORE_ADDR sp, int regnum)
1824 {
1825 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1826 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1827 int offset = 0;
1828 gdb_byte buf[8];
1829 int i;
1830
1831 if (sp & 1)
1832 {
1833 /* Registers are 64-bit. */
1834 sp += BIAS;
1835
1836 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1837 {
1838 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1839 {
1840 regcache_raw_collect (regcache, i, buf);
1841
1842 /* Handle StackGhost. */
1843 if (i == SPARC_I7_REGNUM)
1844 {
1845 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1846 ULONGEST i7;
1847
1848 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1849 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1850 }
1851
1852 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1853 }
1854 }
1855 }
1856 else
1857 {
1858 /* Registers are 32-bit. Toss any sign-extension of the stack
1859 pointer. */
1860 sp &= 0xffffffffUL;
1861
1862 /* Only use the bottom half if we're in 64-bit mode. */
1863 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1864 offset = 4;
1865
1866 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1867 {
1868 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1869 {
1870 regcache_raw_collect (regcache, i, buf);
1871
1872 /* Handle StackGhost. */
1873 if (i == SPARC_I7_REGNUM)
1874 {
1875 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1876 ULONGEST i7;
1877
1878 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1879 store_unsigned_integer (buf + offset, 4, byte_order,
1880 i7 ^ wcookie);
1881 }
1882
1883 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1884 buf + offset, 4);
1885 }
1886 }
1887 }
1888 }
1889
1890 /* Helper functions for dealing with register sets. */
1891
1892 void
1893 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
1894 struct regcache *regcache,
1895 int regnum, const void *gregs)
1896 {
1897 const gdb_byte *regs = (const gdb_byte *) gregs;
1898 gdb_byte zero[4] = { 0 };
1899 int i;
1900
1901 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1902 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1903 regs + gregmap->r_psr_offset);
1904
1905 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1906 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1907 regs + gregmap->r_pc_offset);
1908
1909 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1910 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1911 regs + gregmap->r_npc_offset);
1912
1913 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1914 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1915 regs + gregmap->r_y_offset);
1916
1917 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1918 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1919
1920 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1921 {
1922 int offset = gregmap->r_g1_offset;
1923
1924 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1925 {
1926 if (regnum == i || regnum == -1)
1927 regcache_raw_supply (regcache, i, regs + offset);
1928 offset += 4;
1929 }
1930 }
1931
1932 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1933 {
1934 /* Not all of the register set variants include Locals and
1935 Inputs. For those that don't, we read them off the stack. */
1936 if (gregmap->r_l0_offset == -1)
1937 {
1938 ULONGEST sp;
1939
1940 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1941 sparc_supply_rwindow (regcache, sp, regnum);
1942 }
1943 else
1944 {
1945 int offset = gregmap->r_l0_offset;
1946
1947 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1948 {
1949 if (regnum == i || regnum == -1)
1950 regcache_raw_supply (regcache, i, regs + offset);
1951 offset += 4;
1952 }
1953 }
1954 }
1955 }
1956
1957 void
1958 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
1959 const struct regcache *regcache,
1960 int regnum, void *gregs)
1961 {
1962 gdb_byte *regs = (gdb_byte *) gregs;
1963 int i;
1964
1965 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1966 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1967 regs + gregmap->r_psr_offset);
1968
1969 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1970 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1971 regs + gregmap->r_pc_offset);
1972
1973 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1974 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1975 regs + gregmap->r_npc_offset);
1976
1977 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1978 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1979 regs + gregmap->r_y_offset);
1980
1981 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1982 {
1983 int offset = gregmap->r_g1_offset;
1984
1985 /* %g0 is always zero. */
1986 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1987 {
1988 if (regnum == i || regnum == -1)
1989 regcache_raw_collect (regcache, i, regs + offset);
1990 offset += 4;
1991 }
1992 }
1993
1994 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1995 {
1996 /* Not all of the register set variants include Locals and
1997 Inputs. For those that don't, we read them off the stack. */
1998 if (gregmap->r_l0_offset != -1)
1999 {
2000 int offset = gregmap->r_l0_offset;
2001
2002 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2003 {
2004 if (regnum == i || regnum == -1)
2005 regcache_raw_collect (regcache, i, regs + offset);
2006 offset += 4;
2007 }
2008 }
2009 }
2010 }
2011
2012 void
2013 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2014 struct regcache *regcache,
2015 int regnum, const void *fpregs)
2016 {
2017 const gdb_byte *regs = (const gdb_byte *) fpregs;
2018 int i;
2019
2020 for (i = 0; i < 32; i++)
2021 {
2022 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2023 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
2024 regs + fpregmap->r_f0_offset + (i * 4));
2025 }
2026
2027 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2028 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
2029 regs + fpregmap->r_fsr_offset);
2030 }
2031
2032 void
2033 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2034 const struct regcache *regcache,
2035 int regnum, void *fpregs)
2036 {
2037 gdb_byte *regs = (gdb_byte *) fpregs;
2038 int i;
2039
2040 for (i = 0; i < 32; i++)
2041 {
2042 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2043 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
2044 regs + fpregmap->r_f0_offset + (i * 4));
2045 }
2046
2047 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2048 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
2049 regs + fpregmap->r_fsr_offset);
2050 }
2051 \f
2052
2053 /* SunOS 4. */
2054
2055 /* From <machine/reg.h>. */
2056 const struct sparc_gregmap sparc32_sunos4_gregmap =
2057 {
2058 0 * 4, /* %psr */
2059 1 * 4, /* %pc */
2060 2 * 4, /* %npc */
2061 3 * 4, /* %y */
2062 -1, /* %wim */
2063 -1, /* %tbr */
2064 4 * 4, /* %g1 */
2065 -1 /* %l0 */
2066 };
2067
2068 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2069 {
2070 0 * 4, /* %f0 */
2071 33 * 4, /* %fsr */
2072 };
2073
2074 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2075 {
2076 0 * 4, /* %f0 */
2077 32 * 4, /* %fsr */
2078 };
2079 \f
2080
2081 /* Provide a prototype to silence -Wmissing-prototypes. */
2082 void _initialize_sparc_tdep (void);
2083
2084 void
2085 _initialize_sparc_tdep (void)
2086 {
2087 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2088 }