]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sparc-tdep.c
* alpha-tdep.c (alpha_register_type): Use builtin_type (gdbarch)
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
38
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
41
42 #include "sparc-tdep.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (void)
156 {
157 struct target_ops *ops = &current_target;
158 gdb_byte buf[8];
159 int len;
160
161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
162 if (len == -1)
163 return 0;
164
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
168 return extract_unsigned_integer (buf, len);
169 }
170 \f
171
172 /* The functions on this page are intended to be used to classify
173 function arguments. */
174
175 /* Check whether TYPE is "Integral or Pointer". */
176
177 static int
178 sparc_integral_or_pointer_p (const struct type *type)
179 {
180 int len = TYPE_LENGTH (type);
181
182 switch (TYPE_CODE (type))
183 {
184 case TYPE_CODE_INT:
185 case TYPE_CODE_BOOL:
186 case TYPE_CODE_CHAR:
187 case TYPE_CODE_ENUM:
188 case TYPE_CODE_RANGE:
189 /* We have byte, half-word, word and extended-word/doubleword
190 integral types. The doubleword is an extension to the
191 original 32-bit ABI by the SCD 2.4.x. */
192 return (len == 1 || len == 2 || len == 4 || len == 8);
193 case TYPE_CODE_PTR:
194 case TYPE_CODE_REF:
195 /* Allow either 32-bit or 64-bit pointers. */
196 return (len == 4 || len == 8);
197 default:
198 break;
199 }
200
201 return 0;
202 }
203
204 /* Check whether TYPE is "Floating". */
205
206 static int
207 sparc_floating_p (const struct type *type)
208 {
209 switch (TYPE_CODE (type))
210 {
211 case TYPE_CODE_FLT:
212 {
213 int len = TYPE_LENGTH (type);
214 return (len == 4 || len == 8 || len == 16);
215 }
216 default:
217 break;
218 }
219
220 return 0;
221 }
222
223 /* Check whether TYPE is "Structure or Union". */
224
225 static int
226 sparc_structure_or_union_p (const struct type *type)
227 {
228 switch (TYPE_CODE (type))
229 {
230 case TYPE_CODE_STRUCT:
231 case TYPE_CODE_UNION:
232 return 1;
233 default:
234 break;
235 }
236
237 return 0;
238 }
239
240 /* Register information. */
241
242 static const char *sparc32_register_names[] =
243 {
244 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
245 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
246 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
247 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
248
249 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
250 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
251 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
252 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
253
254 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
255 };
256
257 /* Total number of registers. */
258 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
259
260 /* We provide the aliases %d0..%d30 for the floating registers as
261 "psuedo" registers. */
262
263 static const char *sparc32_pseudo_register_names[] =
264 {
265 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
266 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
267 };
268
269 /* Total number of pseudo registers. */
270 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
271
272 /* Return the name of register REGNUM. */
273
274 static const char *
275 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
276 {
277 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
278 return sparc32_register_names[regnum];
279
280 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
281 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
282
283 return NULL;
284 }
285 \f
286
287 /* Type for %psr. */
288 struct type *sparc_psr_type;
289
290 /* Type for %fsr. */
291 struct type *sparc_fsr_type;
292
293 /* Construct types for ISA-specific registers. */
294
295 static void
296 sparc_init_types (void)
297 {
298 struct type *type;
299
300 type = init_flags_type ("builtin_type_sparc_psr", 4);
301 append_flags_type_flag (type, 5, "ET");
302 append_flags_type_flag (type, 6, "PS");
303 append_flags_type_flag (type, 7, "S");
304 append_flags_type_flag (type, 12, "EF");
305 append_flags_type_flag (type, 13, "EC");
306 sparc_psr_type = type;
307
308 type = init_flags_type ("builtin_type_sparc_fsr", 4);
309 append_flags_type_flag (type, 0, "NXA");
310 append_flags_type_flag (type, 1, "DZA");
311 append_flags_type_flag (type, 2, "UFA");
312 append_flags_type_flag (type, 3, "OFA");
313 append_flags_type_flag (type, 4, "NVA");
314 append_flags_type_flag (type, 5, "NXC");
315 append_flags_type_flag (type, 6, "DZC");
316 append_flags_type_flag (type, 7, "UFC");
317 append_flags_type_flag (type, 8, "OFC");
318 append_flags_type_flag (type, 9, "NVC");
319 append_flags_type_flag (type, 22, "NS");
320 append_flags_type_flag (type, 23, "NXM");
321 append_flags_type_flag (type, 24, "DZM");
322 append_flags_type_flag (type, 25, "UFM");
323 append_flags_type_flag (type, 26, "OFM");
324 append_flags_type_flag (type, 27, "NVM");
325 sparc_fsr_type = type;
326 }
327
328 /* Return the GDB type object for the "standard" data type of data in
329 register REGNUM. */
330
331 static struct type *
332 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
333 {
334 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
335 return builtin_type (gdbarch)->builtin_float;
336
337 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
338 return builtin_type (gdbarch)->builtin_double;
339
340 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
341 return builtin_type (gdbarch)->builtin_data_ptr;
342
343 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
344 return builtin_type (gdbarch)->builtin_func_ptr;
345
346 if (regnum == SPARC32_PSR_REGNUM)
347 return sparc_psr_type;
348
349 if (regnum == SPARC32_FSR_REGNUM)
350 return sparc_fsr_type;
351
352 return builtin_type_int32;
353 }
354
355 static void
356 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
357 struct regcache *regcache,
358 int regnum, gdb_byte *buf)
359 {
360 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
361
362 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
363 regcache_raw_read (regcache, regnum, buf);
364 regcache_raw_read (regcache, regnum + 1, buf + 4);
365 }
366
367 static void
368 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
369 struct regcache *regcache,
370 int regnum, const gdb_byte *buf)
371 {
372 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
373
374 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
375 regcache_raw_write (regcache, regnum, buf);
376 regcache_raw_write (regcache, regnum + 1, buf + 4);
377 }
378 \f
379
380 static CORE_ADDR
381 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
382 CORE_ADDR funcaddr,
383 struct value **args, int nargs,
384 struct type *value_type,
385 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
386 struct regcache *regcache)
387 {
388 *bp_addr = sp - 4;
389 *real_pc = funcaddr;
390
391 if (using_struct_return (NULL, value_type))
392 {
393 gdb_byte buf[4];
394
395 /* This is an UNIMP instruction. */
396 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
397 write_memory (sp - 8, buf, 4);
398 return sp - 8;
399 }
400
401 return sp - 4;
402 }
403
404 static CORE_ADDR
405 sparc32_store_arguments (struct regcache *regcache, int nargs,
406 struct value **args, CORE_ADDR sp,
407 int struct_return, CORE_ADDR struct_addr)
408 {
409 /* Number of words in the "parameter array". */
410 int num_elements = 0;
411 int element = 0;
412 int i;
413
414 for (i = 0; i < nargs; i++)
415 {
416 struct type *type = value_type (args[i]);
417 int len = TYPE_LENGTH (type);
418
419 if (sparc_structure_or_union_p (type)
420 || (sparc_floating_p (type) && len == 16))
421 {
422 /* Structure, Union and Quad-Precision Arguments. */
423 sp -= len;
424
425 /* Use doubleword alignment for these values. That's always
426 correct, and wasting a few bytes shouldn't be a problem. */
427 sp &= ~0x7;
428
429 write_memory (sp, value_contents (args[i]), len);
430 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
431 num_elements++;
432 }
433 else if (sparc_floating_p (type))
434 {
435 /* Floating arguments. */
436 gdb_assert (len == 4 || len == 8);
437 num_elements += (len / 4);
438 }
439 else
440 {
441 /* Integral and pointer arguments. */
442 gdb_assert (sparc_integral_or_pointer_p (type));
443
444 if (len < 4)
445 args[i] = value_cast (builtin_type_int32, args[i]);
446 num_elements += ((len + 3) / 4);
447 }
448 }
449
450 /* Always allocate at least six words. */
451 sp -= max (6, num_elements) * 4;
452
453 /* The psABI says that "Software convention requires space for the
454 struct/union return value pointer, even if the word is unused." */
455 sp -= 4;
456
457 /* The psABI says that "Although software convention and the
458 operating system require every stack frame to be doubleword
459 aligned." */
460 sp &= ~0x7;
461
462 for (i = 0; i < nargs; i++)
463 {
464 const bfd_byte *valbuf = value_contents (args[i]);
465 struct type *type = value_type (args[i]);
466 int len = TYPE_LENGTH (type);
467
468 gdb_assert (len == 4 || len == 8);
469
470 if (element < 6)
471 {
472 int regnum = SPARC_O0_REGNUM + element;
473
474 regcache_cooked_write (regcache, regnum, valbuf);
475 if (len > 4 && element < 5)
476 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
477 }
478
479 /* Always store the argument in memory. */
480 write_memory (sp + 4 + element * 4, valbuf, len);
481 element += len / 4;
482 }
483
484 gdb_assert (element == num_elements);
485
486 if (struct_return)
487 {
488 gdb_byte buf[4];
489
490 store_unsigned_integer (buf, 4, struct_addr);
491 write_memory (sp, buf, 4);
492 }
493
494 return sp;
495 }
496
497 static CORE_ADDR
498 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
499 struct regcache *regcache, CORE_ADDR bp_addr,
500 int nargs, struct value **args, CORE_ADDR sp,
501 int struct_return, CORE_ADDR struct_addr)
502 {
503 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
504
505 /* Set return address. */
506 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
507
508 /* Set up function arguments. */
509 sp = sparc32_store_arguments (regcache, nargs, args, sp,
510 struct_return, struct_addr);
511
512 /* Allocate the 16-word window save area. */
513 sp -= 16 * 4;
514
515 /* Stack should be doubleword aligned at this point. */
516 gdb_assert (sp % 8 == 0);
517
518 /* Finally, update the stack pointer. */
519 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
520
521 return sp;
522 }
523 \f
524
525 /* Use the program counter to determine the contents and size of a
526 breakpoint instruction. Return a pointer to a string of bytes that
527 encode a breakpoint instruction, store the length of the string in
528 *LEN and optionally adjust *PC to point to the correct memory
529 location for inserting the breakpoint. */
530
531 static const gdb_byte *
532 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
533 {
534 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
535
536 *len = sizeof (break_insn);
537 return break_insn;
538 }
539 \f
540
541 /* Allocate and initialize a frame cache. */
542
543 static struct sparc_frame_cache *
544 sparc_alloc_frame_cache (void)
545 {
546 struct sparc_frame_cache *cache;
547 int i;
548
549 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
550
551 /* Base address. */
552 cache->base = 0;
553 cache->pc = 0;
554
555 /* Frameless until proven otherwise. */
556 cache->frameless_p = 1;
557
558 cache->struct_return_p = 0;
559
560 return cache;
561 }
562
563 /* GCC generates several well-known sequences of instructions at the begining
564 of each function prologue when compiling with -fstack-check. If one of
565 such sequences starts at START_PC, then return the address of the
566 instruction immediately past this sequence. Otherwise, return START_PC. */
567
568 static CORE_ADDR
569 sparc_skip_stack_check (const CORE_ADDR start_pc)
570 {
571 CORE_ADDR pc = start_pc;
572 unsigned long insn;
573 int offset_stack_checking_sequence = 0;
574
575 /* With GCC, all stack checking sequences begin with the same two
576 instructions. */
577
578 /* sethi <some immediate>,%g1 */
579 insn = sparc_fetch_instruction (pc);
580 pc = pc + 4;
581 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
582 return start_pc;
583
584 /* sub %sp, %g1, %g1 */
585 insn = sparc_fetch_instruction (pc);
586 pc = pc + 4;
587 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
588 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
589 return start_pc;
590
591 insn = sparc_fetch_instruction (pc);
592 pc = pc + 4;
593
594 /* First possible sequence:
595 [first two instructions above]
596 clr [%g1 - some immediate] */
597
598 /* clr [%g1 - some immediate] */
599 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
600 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
601 {
602 /* Valid stack-check sequence, return the new PC. */
603 return pc;
604 }
605
606 /* Second possible sequence: A small number of probes.
607 [first two instructions above]
608 clr [%g1]
609 add %g1, -<some immediate>, %g1
610 clr [%g1]
611 [repeat the two instructions above any (small) number of times]
612 clr [%g1 - some immediate] */
613
614 /* clr [%g1] */
615 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
616 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
617 {
618 while (1)
619 {
620 /* add %g1, -<some immediate>, %g1 */
621 insn = sparc_fetch_instruction (pc);
622 pc = pc + 4;
623 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
624 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
625 break;
626
627 /* clr [%g1] */
628 insn = sparc_fetch_instruction (pc);
629 pc = pc + 4;
630 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
631 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
632 return start_pc;
633 }
634
635 /* clr [%g1 - some immediate] */
636 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
637 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
638 return start_pc;
639
640 /* We found a valid stack-check sequence, return the new PC. */
641 return pc;
642 }
643
644 /* Third sequence: A probing loop.
645 [first two instructions above]
646 sethi <some immediate>, %g4
647 sub %g1, %g4, %g4
648 cmp %g1, %g4
649 be <disp>
650 add %g1, -<some immediate>, %g1
651 ba <disp>
652 clr [%g1]
653 clr [%g4 - some immediate] */
654
655 /* sethi <some immediate>, %g4 */
656 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
657 {
658 /* sub %g1, %g4, %g4 */
659 insn = sparc_fetch_instruction (pc);
660 pc = pc + 4;
661 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
662 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
663 return start_pc;
664
665 /* cmp %g1, %g4 */
666 insn = sparc_fetch_instruction (pc);
667 pc = pc + 4;
668 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
669 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
670 return start_pc;
671
672 /* be <disp> */
673 insn = sparc_fetch_instruction (pc);
674 pc = pc + 4;
675 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
676 return start_pc;
677
678 /* add %g1, -<some immediate>, %g1 */
679 insn = sparc_fetch_instruction (pc);
680 pc = pc + 4;
681 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
682 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
683 return start_pc;
684
685 /* ba <disp> */
686 insn = sparc_fetch_instruction (pc);
687 pc = pc + 4;
688 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
689 return start_pc;
690
691 /* clr [%g1] */
692 insn = sparc_fetch_instruction (pc);
693 pc = pc + 4;
694 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
695 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
696 return start_pc;
697
698 /* clr [%g4 - some immediate] */
699 insn = sparc_fetch_instruction (pc);
700 pc = pc + 4;
701 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
702 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
703 return start_pc;
704
705 /* We found a valid stack-check sequence, return the new PC. */
706 return pc;
707 }
708
709 /* No stack check code in our prologue, return the start_pc. */
710 return start_pc;
711 }
712
713 CORE_ADDR
714 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
715 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
716 {
717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
718 unsigned long insn;
719 int offset = 0;
720 int dest = -1;
721
722 pc = sparc_skip_stack_check (pc);
723
724 if (current_pc <= pc)
725 return current_pc;
726
727 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
728 SPARC the linker usually defines a symbol (typically
729 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
730 This symbol makes us end up here with PC pointing at the start of
731 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
732 would do our normal prologue analysis, we would probably conclude
733 that we've got a frame when in reality we don't, since the
734 dynamic linker patches up the first PLT with some code that
735 starts with a SAVE instruction. Patch up PC such that it points
736 at the start of our PLT entry. */
737 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
738 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
739
740 insn = sparc_fetch_instruction (pc);
741
742 /* Recognize a SETHI insn and record its destination. */
743 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
744 {
745 dest = X_RD (insn);
746 offset += 4;
747
748 insn = sparc_fetch_instruction (pc + 4);
749 }
750
751 /* Allow for an arithmetic operation on DEST or %g1. */
752 if (X_OP (insn) == 2 && X_I (insn)
753 && (X_RD (insn) == 1 || X_RD (insn) == dest))
754 {
755 offset += 4;
756
757 insn = sparc_fetch_instruction (pc + 8);
758 }
759
760 /* Check for the SAVE instruction that sets up the frame. */
761 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
762 {
763 cache->frameless_p = 0;
764 return pc + offset + 4;
765 }
766
767 return pc;
768 }
769
770 static CORE_ADDR
771 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
772 {
773 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
774 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
775 }
776
777 /* Return PC of first real instruction of the function starting at
778 START_PC. */
779
780 static CORE_ADDR
781 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
782 {
783 struct symtab_and_line sal;
784 CORE_ADDR func_start, func_end;
785 struct sparc_frame_cache cache;
786
787 /* This is the preferred method, find the end of the prologue by
788 using the debugging information. */
789 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
790 {
791 sal = find_pc_line (func_start, 0);
792
793 if (sal.end < func_end
794 && start_pc <= sal.end)
795 return sal.end;
796 }
797
798 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
799
800 /* The psABI says that "Although the first 6 words of arguments
801 reside in registers, the standard stack frame reserves space for
802 them.". It also suggests that a function may use that space to
803 "write incoming arguments 0 to 5" into that space, and that's
804 indeed what GCC seems to be doing. In that case GCC will
805 generate debug information that points to the stack slots instead
806 of the registers, so we should consider the instructions that
807 write out these incoming arguments onto the stack. Of course we
808 only need to do this if we have a stack frame. */
809
810 while (!cache.frameless_p)
811 {
812 unsigned long insn = sparc_fetch_instruction (start_pc);
813
814 /* Recognize instructions that store incoming arguments in
815 %i0...%i5 into the corresponding stack slot. */
816 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
817 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
818 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
819 {
820 start_pc += 4;
821 continue;
822 }
823
824 break;
825 }
826
827 return start_pc;
828 }
829
830 /* Normal frames. */
831
832 struct sparc_frame_cache *
833 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
834 {
835 struct sparc_frame_cache *cache;
836
837 if (*this_cache)
838 return *this_cache;
839
840 cache = sparc_alloc_frame_cache ();
841 *this_cache = cache;
842
843 cache->pc = get_frame_func (this_frame);
844 if (cache->pc != 0)
845 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
846 get_frame_pc (this_frame), cache);
847
848 if (cache->frameless_p)
849 {
850 /* This function is frameless, so %fp (%i6) holds the frame
851 pointer for our calling frame. Use %sp (%o6) as this frame's
852 base address. */
853 cache->base =
854 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
855 }
856 else
857 {
858 /* For normal frames, %fp (%i6) holds the frame pointer, the
859 base address for the current stack frame. */
860 cache->base =
861 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
862 }
863
864 if (cache->base & 1)
865 cache->base += BIAS;
866
867 return cache;
868 }
869
870 static int
871 sparc32_struct_return_from_sym (struct symbol *sym)
872 {
873 struct type *type = check_typedef (SYMBOL_TYPE (sym));
874 enum type_code code = TYPE_CODE (type);
875
876 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
877 {
878 type = check_typedef (TYPE_TARGET_TYPE (type));
879 if (sparc_structure_or_union_p (type)
880 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
881 return 1;
882 }
883
884 return 0;
885 }
886
887 struct sparc_frame_cache *
888 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
889 {
890 struct sparc_frame_cache *cache;
891 struct symbol *sym;
892
893 if (*this_cache)
894 return *this_cache;
895
896 cache = sparc_frame_cache (this_frame, this_cache);
897
898 sym = find_pc_function (cache->pc);
899 if (sym)
900 {
901 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
902 }
903 else
904 {
905 /* There is no debugging information for this function to
906 help us determine whether this function returns a struct
907 or not. So we rely on another heuristic which is to check
908 the instruction at the return address and see if this is
909 an "unimp" instruction. If it is, then it is a struct-return
910 function. */
911 CORE_ADDR pc;
912 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
913
914 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
915 if (sparc_is_unimp_insn (pc))
916 cache->struct_return_p = 1;
917 }
918
919 return cache;
920 }
921
922 static void
923 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
924 struct frame_id *this_id)
925 {
926 struct sparc_frame_cache *cache =
927 sparc32_frame_cache (this_frame, this_cache);
928
929 /* This marks the outermost frame. */
930 if (cache->base == 0)
931 return;
932
933 (*this_id) = frame_id_build (cache->base, cache->pc);
934 }
935
936 static struct value *
937 sparc32_frame_prev_register (struct frame_info *this_frame,
938 void **this_cache, int regnum)
939 {
940 struct sparc_frame_cache *cache =
941 sparc32_frame_cache (this_frame, this_cache);
942
943 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
944 {
945 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
946
947 /* If this functions has a Structure, Union or Quad-Precision
948 return value, we have to skip the UNIMP instruction that encodes
949 the size of the structure. */
950 if (cache->struct_return_p)
951 pc += 4;
952
953 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
954 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
955 return frame_unwind_got_constant (this_frame, regnum, pc);
956 }
957
958 /* Handle StackGhost. */
959 {
960 ULONGEST wcookie = sparc_fetch_wcookie ();
961
962 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
963 {
964 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
965 ULONGEST i7;
966
967 /* Read the value in from memory. */
968 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
969 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
970 }
971 }
972
973 /* The previous frame's `local' and `in' registers have been saved
974 in the register save area. */
975 if (!cache->frameless_p
976 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
977 {
978 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
979
980 return frame_unwind_got_memory (this_frame, regnum, addr);
981 }
982
983 /* The previous frame's `out' registers are accessible as the
984 current frame's `in' registers. */
985 if (!cache->frameless_p
986 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
987 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
988
989 return frame_unwind_got_register (this_frame, regnum, regnum);
990 }
991
992 static const struct frame_unwind sparc32_frame_unwind =
993 {
994 NORMAL_FRAME,
995 sparc32_frame_this_id,
996 sparc32_frame_prev_register,
997 NULL,
998 default_frame_sniffer
999 };
1000 \f
1001
1002 static CORE_ADDR
1003 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1004 {
1005 struct sparc_frame_cache *cache =
1006 sparc32_frame_cache (this_frame, this_cache);
1007
1008 return cache->base;
1009 }
1010
1011 static const struct frame_base sparc32_frame_base =
1012 {
1013 &sparc32_frame_unwind,
1014 sparc32_frame_base_address,
1015 sparc32_frame_base_address,
1016 sparc32_frame_base_address
1017 };
1018
1019 static struct frame_id
1020 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1021 {
1022 CORE_ADDR sp;
1023
1024 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1025 if (sp & 1)
1026 sp += BIAS;
1027 return frame_id_build (sp, get_frame_pc (this_frame));
1028 }
1029 \f
1030
1031 /* Extract a function return value of TYPE from REGCACHE, and copy
1032 that into VALBUF. */
1033
1034 static void
1035 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1036 gdb_byte *valbuf)
1037 {
1038 int len = TYPE_LENGTH (type);
1039 gdb_byte buf[8];
1040
1041 gdb_assert (!sparc_structure_or_union_p (type));
1042 gdb_assert (!(sparc_floating_p (type) && len == 16));
1043
1044 if (sparc_floating_p (type))
1045 {
1046 /* Floating return values. */
1047 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1048 if (len > 4)
1049 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1050 memcpy (valbuf, buf, len);
1051 }
1052 else
1053 {
1054 /* Integral and pointer return values. */
1055 gdb_assert (sparc_integral_or_pointer_p (type));
1056
1057 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1058 if (len > 4)
1059 {
1060 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1061 gdb_assert (len == 8);
1062 memcpy (valbuf, buf, 8);
1063 }
1064 else
1065 {
1066 /* Just stripping off any unused bytes should preserve the
1067 signed-ness just fine. */
1068 memcpy (valbuf, buf + 4 - len, len);
1069 }
1070 }
1071 }
1072
1073 /* Store the function return value of type TYPE from VALBUF into
1074 REGCACHE. */
1075
1076 static void
1077 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1078 const gdb_byte *valbuf)
1079 {
1080 int len = TYPE_LENGTH (type);
1081 gdb_byte buf[8];
1082
1083 gdb_assert (!sparc_structure_or_union_p (type));
1084 gdb_assert (!(sparc_floating_p (type) && len == 16));
1085
1086 if (sparc_floating_p (type))
1087 {
1088 /* Floating return values. */
1089 memcpy (buf, valbuf, len);
1090 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1091 if (len > 4)
1092 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1093 }
1094 else
1095 {
1096 /* Integral and pointer return values. */
1097 gdb_assert (sparc_integral_or_pointer_p (type));
1098
1099 if (len > 4)
1100 {
1101 gdb_assert (len == 8);
1102 memcpy (buf, valbuf, 8);
1103 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1104 }
1105 else
1106 {
1107 /* ??? Do we need to do any sign-extension here? */
1108 memcpy (buf + 4 - len, valbuf, len);
1109 }
1110 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1111 }
1112 }
1113
1114 static enum return_value_convention
1115 sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1116 struct type *type, struct regcache *regcache,
1117 gdb_byte *readbuf, const gdb_byte *writebuf)
1118 {
1119 /* The psABI says that "...every stack frame reserves the word at
1120 %fp+64. If a function returns a structure, union, or
1121 quad-precision value, this word should hold the address of the
1122 object into which the return value should be copied." This
1123 guarantees that we can always find the return value, not just
1124 before the function returns. */
1125
1126 if (sparc_structure_or_union_p (type)
1127 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1128 {
1129 if (readbuf)
1130 {
1131 ULONGEST sp;
1132 CORE_ADDR addr;
1133
1134 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1135 addr = read_memory_unsigned_integer (sp + 64, 4);
1136 read_memory (addr, readbuf, TYPE_LENGTH (type));
1137 }
1138
1139 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1140 }
1141
1142 if (readbuf)
1143 sparc32_extract_return_value (type, regcache, readbuf);
1144 if (writebuf)
1145 sparc32_store_return_value (type, regcache, writebuf);
1146
1147 return RETURN_VALUE_REGISTER_CONVENTION;
1148 }
1149
1150 static int
1151 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1152 {
1153 return (sparc_structure_or_union_p (type)
1154 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1155 }
1156
1157 static int
1158 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1159 {
1160 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1161 struct symbol *sym = find_pc_function (pc);
1162
1163 if (sym)
1164 return sparc32_struct_return_from_sym (sym);
1165 return 0;
1166 }
1167
1168 static void
1169 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1170 struct dwarf2_frame_state_reg *reg,
1171 struct frame_info *this_frame)
1172 {
1173 int off;
1174
1175 switch (regnum)
1176 {
1177 case SPARC_G0_REGNUM:
1178 /* Since %g0 is always zero, there is no point in saving it, and
1179 people will be inclined omit it from the CFI. Make sure we
1180 don't warn about that. */
1181 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1182 break;
1183 case SPARC_SP_REGNUM:
1184 reg->how = DWARF2_FRAME_REG_CFA;
1185 break;
1186 case SPARC32_PC_REGNUM:
1187 case SPARC32_NPC_REGNUM:
1188 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1189 off = 8;
1190 if (sparc32_dwarf2_struct_return_p (this_frame))
1191 off += 4;
1192 if (regnum == SPARC32_NPC_REGNUM)
1193 off += 4;
1194 reg->loc.offset = off;
1195 break;
1196 }
1197 }
1198
1199 \f
1200 /* The SPARC Architecture doesn't have hardware single-step support,
1201 and most operating systems don't implement it either, so we provide
1202 software single-step mechanism. */
1203
1204 static CORE_ADDR
1205 sparc_analyze_control_transfer (struct frame_info *frame,
1206 CORE_ADDR pc, CORE_ADDR *npc)
1207 {
1208 unsigned long insn = sparc_fetch_instruction (pc);
1209 int conditional_p = X_COND (insn) & 0x7;
1210 int branch_p = 0;
1211 long offset = 0; /* Must be signed for sign-extend. */
1212
1213 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1214 {
1215 /* Branch on Integer Register with Prediction (BPr). */
1216 branch_p = 1;
1217 conditional_p = 1;
1218 }
1219 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1220 {
1221 /* Branch on Floating-Point Condition Codes (FBfcc). */
1222 branch_p = 1;
1223 offset = 4 * X_DISP22 (insn);
1224 }
1225 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1226 {
1227 /* Branch on Floating-Point Condition Codes with Prediction
1228 (FBPfcc). */
1229 branch_p = 1;
1230 offset = 4 * X_DISP19 (insn);
1231 }
1232 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1233 {
1234 /* Branch on Integer Condition Codes (Bicc). */
1235 branch_p = 1;
1236 offset = 4 * X_DISP22 (insn);
1237 }
1238 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1239 {
1240 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1241 branch_p = 1;
1242 offset = 4 * X_DISP19 (insn);
1243 }
1244 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1245 {
1246 /* Trap instruction (TRAP). */
1247 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1248 }
1249
1250 /* FIXME: Handle DONE and RETRY instructions. */
1251
1252 if (branch_p)
1253 {
1254 if (conditional_p)
1255 {
1256 /* For conditional branches, return nPC + 4 iff the annul
1257 bit is 1. */
1258 return (X_A (insn) ? *npc + 4 : 0);
1259 }
1260 else
1261 {
1262 /* For unconditional branches, return the target if its
1263 specified condition is "always" and return nPC + 4 if the
1264 condition is "never". If the annul bit is 1, set *NPC to
1265 zero. */
1266 if (X_COND (insn) == 0x0)
1267 pc = *npc, offset = 4;
1268 if (X_A (insn))
1269 *npc = 0;
1270
1271 gdb_assert (offset != 0);
1272 return pc + offset;
1273 }
1274 }
1275
1276 return 0;
1277 }
1278
1279 static CORE_ADDR
1280 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1281 {
1282 return 0;
1283 }
1284
1285 int
1286 sparc_software_single_step (struct frame_info *frame)
1287 {
1288 struct gdbarch *arch = get_frame_arch (frame);
1289 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1290 CORE_ADDR npc, nnpc;
1291
1292 CORE_ADDR pc, orig_npc;
1293
1294 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1295 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1296
1297 /* Analyze the instruction at PC. */
1298 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1299 if (npc != 0)
1300 insert_single_step_breakpoint (npc);
1301
1302 if (nnpc != 0)
1303 insert_single_step_breakpoint (nnpc);
1304
1305 /* Assert that we have set at least one breakpoint, and that
1306 they're not set at the same spot - unless we're going
1307 from here straight to NULL, i.e. a call or jump to 0. */
1308 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1309 gdb_assert (nnpc != npc || orig_npc == 0);
1310
1311 return 1;
1312 }
1313
1314 static void
1315 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1316 {
1317 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1318
1319 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1320 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1321 }
1322 \f
1323
1324 /* Return the appropriate register set for the core section identified
1325 by SECT_NAME and SECT_SIZE. */
1326
1327 const struct regset *
1328 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1329 const char *sect_name, size_t sect_size)
1330 {
1331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1332
1333 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1334 return tdep->gregset;
1335
1336 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1337 return tdep->fpregset;
1338
1339 return NULL;
1340 }
1341 \f
1342
1343 static struct gdbarch *
1344 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1345 {
1346 struct gdbarch_tdep *tdep;
1347 struct gdbarch *gdbarch;
1348
1349 /* If there is already a candidate, use it. */
1350 arches = gdbarch_list_lookup_by_info (arches, &info);
1351 if (arches != NULL)
1352 return arches->gdbarch;
1353
1354 /* Allocate space for the new architecture. */
1355 tdep = XMALLOC (struct gdbarch_tdep);
1356 gdbarch = gdbarch_alloc (&info, tdep);
1357
1358 tdep->pc_regnum = SPARC32_PC_REGNUM;
1359 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1360 tdep->gregset = NULL;
1361 tdep->sizeof_gregset = 0;
1362 tdep->fpregset = NULL;
1363 tdep->sizeof_fpregset = 0;
1364 tdep->plt_entry_size = 0;
1365 tdep->step_trap = sparc_step_trap;
1366
1367 set_gdbarch_long_double_bit (gdbarch, 128);
1368 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1369
1370 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1371 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1372 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1373 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1374 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1375 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1376
1377 /* Register numbers of various important registers. */
1378 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1379 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1380 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1381
1382 /* Call dummy code. */
1383 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1384 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1385 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1386
1387 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1388 set_gdbarch_stabs_argument_has_addr
1389 (gdbarch, sparc32_stabs_argument_has_addr);
1390
1391 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1392
1393 /* Stack grows downward. */
1394 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1395
1396 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1397
1398 set_gdbarch_frame_args_skip (gdbarch, 8);
1399
1400 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1401
1402 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1403 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1404
1405 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1406
1407 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1408
1409 frame_base_set_default (gdbarch, &sparc32_frame_base);
1410
1411 /* Hook in the DWARF CFI frame unwinder. */
1412 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1413 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1414 StackGhost issues have been resolved. */
1415
1416 /* Hook in ABI-specific overrides, if they have been registered. */
1417 gdbarch_init_osabi (info, gdbarch);
1418
1419 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1420
1421 /* If we have register sets, enable the generic core file support. */
1422 if (tdep->gregset)
1423 set_gdbarch_regset_from_core_section (gdbarch,
1424 sparc_regset_from_core_section);
1425
1426 return gdbarch;
1427 }
1428 \f
1429 /* Helper functions for dealing with register windows. */
1430
1431 void
1432 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1433 {
1434 int offset = 0;
1435 gdb_byte buf[8];
1436 int i;
1437
1438 if (sp & 1)
1439 {
1440 /* Registers are 64-bit. */
1441 sp += BIAS;
1442
1443 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1444 {
1445 if (regnum == i || regnum == -1)
1446 {
1447 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1448
1449 /* Handle StackGhost. */
1450 if (i == SPARC_I7_REGNUM)
1451 {
1452 ULONGEST wcookie = sparc_fetch_wcookie ();
1453 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1454
1455 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1456 }
1457
1458 regcache_raw_supply (regcache, i, buf);
1459 }
1460 }
1461 }
1462 else
1463 {
1464 /* Registers are 32-bit. Toss any sign-extension of the stack
1465 pointer. */
1466 sp &= 0xffffffffUL;
1467
1468 /* Clear out the top half of the temporary buffer, and put the
1469 register value in the bottom half if we're in 64-bit mode. */
1470 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1471 {
1472 memset (buf, 0, 4);
1473 offset = 4;
1474 }
1475
1476 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1477 {
1478 if (regnum == i || regnum == -1)
1479 {
1480 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1481 buf + offset, 4);
1482
1483 /* Handle StackGhost. */
1484 if (i == SPARC_I7_REGNUM)
1485 {
1486 ULONGEST wcookie = sparc_fetch_wcookie ();
1487 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1488
1489 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1490 }
1491
1492 regcache_raw_supply (regcache, i, buf);
1493 }
1494 }
1495 }
1496 }
1497
1498 void
1499 sparc_collect_rwindow (const struct regcache *regcache,
1500 CORE_ADDR sp, int regnum)
1501 {
1502 int offset = 0;
1503 gdb_byte buf[8];
1504 int i;
1505
1506 if (sp & 1)
1507 {
1508 /* Registers are 64-bit. */
1509 sp += BIAS;
1510
1511 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1512 {
1513 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1514 {
1515 regcache_raw_collect (regcache, i, buf);
1516
1517 /* Handle StackGhost. */
1518 if (i == SPARC_I7_REGNUM)
1519 {
1520 ULONGEST wcookie = sparc_fetch_wcookie ();
1521 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1522
1523 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1524 }
1525
1526 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1527 }
1528 }
1529 }
1530 else
1531 {
1532 /* Registers are 32-bit. Toss any sign-extension of the stack
1533 pointer. */
1534 sp &= 0xffffffffUL;
1535
1536 /* Only use the bottom half if we're in 64-bit mode. */
1537 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1538 offset = 4;
1539
1540 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1541 {
1542 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1543 {
1544 regcache_raw_collect (regcache, i, buf);
1545
1546 /* Handle StackGhost. */
1547 if (i == SPARC_I7_REGNUM)
1548 {
1549 ULONGEST wcookie = sparc_fetch_wcookie ();
1550 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1551
1552 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1553 }
1554
1555 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1556 buf + offset, 4);
1557 }
1558 }
1559 }
1560 }
1561
1562 /* Helper functions for dealing with register sets. */
1563
1564 void
1565 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1566 struct regcache *regcache,
1567 int regnum, const void *gregs)
1568 {
1569 const gdb_byte *regs = gregs;
1570 int i;
1571
1572 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1573 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1574 regs + gregset->r_psr_offset);
1575
1576 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1577 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1578 regs + gregset->r_pc_offset);
1579
1580 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1581 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1582 regs + gregset->r_npc_offset);
1583
1584 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1585 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1586 regs + gregset->r_y_offset);
1587
1588 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1589 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1590
1591 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1592 {
1593 int offset = gregset->r_g1_offset;
1594
1595 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1596 {
1597 if (regnum == i || regnum == -1)
1598 regcache_raw_supply (regcache, i, regs + offset);
1599 offset += 4;
1600 }
1601 }
1602
1603 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1604 {
1605 /* Not all of the register set variants include Locals and
1606 Inputs. For those that don't, we read them off the stack. */
1607 if (gregset->r_l0_offset == -1)
1608 {
1609 ULONGEST sp;
1610
1611 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1612 sparc_supply_rwindow (regcache, sp, regnum);
1613 }
1614 else
1615 {
1616 int offset = gregset->r_l0_offset;
1617
1618 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1619 {
1620 if (regnum == i || regnum == -1)
1621 regcache_raw_supply (regcache, i, regs + offset);
1622 offset += 4;
1623 }
1624 }
1625 }
1626 }
1627
1628 void
1629 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1630 const struct regcache *regcache,
1631 int regnum, void *gregs)
1632 {
1633 gdb_byte *regs = gregs;
1634 int i;
1635
1636 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1637 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1638 regs + gregset->r_psr_offset);
1639
1640 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1641 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1642 regs + gregset->r_pc_offset);
1643
1644 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1645 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1646 regs + gregset->r_npc_offset);
1647
1648 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1649 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1650 regs + gregset->r_y_offset);
1651
1652 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1653 {
1654 int offset = gregset->r_g1_offset;
1655
1656 /* %g0 is always zero. */
1657 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1658 {
1659 if (regnum == i || regnum == -1)
1660 regcache_raw_collect (regcache, i, regs + offset);
1661 offset += 4;
1662 }
1663 }
1664
1665 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1666 {
1667 /* Not all of the register set variants include Locals and
1668 Inputs. For those that don't, we read them off the stack. */
1669 if (gregset->r_l0_offset != -1)
1670 {
1671 int offset = gregset->r_l0_offset;
1672
1673 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1674 {
1675 if (regnum == i || regnum == -1)
1676 regcache_raw_collect (regcache, i, regs + offset);
1677 offset += 4;
1678 }
1679 }
1680 }
1681 }
1682
1683 void
1684 sparc32_supply_fpregset (struct regcache *regcache,
1685 int regnum, const void *fpregs)
1686 {
1687 const gdb_byte *regs = fpregs;
1688 int i;
1689
1690 for (i = 0; i < 32; i++)
1691 {
1692 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1693 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1694 }
1695
1696 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1697 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1698 }
1699
1700 void
1701 sparc32_collect_fpregset (const struct regcache *regcache,
1702 int regnum, void *fpregs)
1703 {
1704 gdb_byte *regs = fpregs;
1705 int i;
1706
1707 for (i = 0; i < 32; i++)
1708 {
1709 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1710 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1711 }
1712
1713 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1714 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1715 }
1716 \f
1717
1718 /* SunOS 4. */
1719
1720 /* From <machine/reg.h>. */
1721 const struct sparc_gregset sparc32_sunos4_gregset =
1722 {
1723 0 * 4, /* %psr */
1724 1 * 4, /* %pc */
1725 2 * 4, /* %npc */
1726 3 * 4, /* %y */
1727 -1, /* %wim */
1728 -1, /* %tbr */
1729 4 * 4, /* %g1 */
1730 -1 /* %l0 */
1731 };
1732 \f
1733
1734 /* Provide a prototype to silence -Wmissing-prototypes. */
1735 void _initialize_sparc_tdep (void);
1736
1737 void
1738 _initialize_sparc_tdep (void)
1739 {
1740 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1741
1742 /* Initialize the SPARC-specific register types. */
1743 sparc_init_types();
1744 }