]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sparc-tdep.c
* sparc-tdep.c: Fix typo in comment.
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
38
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
41
42 #include "sparc-tdep.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-Precision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (struct gdbarch *gdbarch)
156 {
157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
158 struct target_ops *ops = &current_target;
159 gdb_byte buf[8];
160 int len;
161
162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
163 if (len == -1)
164 return 0;
165
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
169 return extract_unsigned_integer (buf, len, byte_order);
170 }
171 \f
172
173 /* The functions on this page are intended to be used to classify
174 function arguments. */
175
176 /* Check whether TYPE is "Integral or Pointer". */
177
178 static int
179 sparc_integral_or_pointer_p (const struct type *type)
180 {
181 int len = TYPE_LENGTH (type);
182
183 switch (TYPE_CODE (type))
184 {
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
198 default:
199 break;
200 }
201
202 return 0;
203 }
204
205 /* Check whether TYPE is "Floating". */
206
207 static int
208 sparc_floating_p (const struct type *type)
209 {
210 switch (TYPE_CODE (type))
211 {
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222 }
223
224 /* Check whether TYPE is "Structure or Union".
225
226 In terms of Ada subprogram calls, arrays are treated the same as
227 struct and union types. So this function also returns non-zero
228 for array types. */
229
230 static int
231 sparc_structure_or_union_p (const struct type *type)
232 {
233 switch (TYPE_CODE (type))
234 {
235 case TYPE_CODE_STRUCT:
236 case TYPE_CODE_UNION:
237 case TYPE_CODE_ARRAY:
238 return 1;
239 default:
240 break;
241 }
242
243 return 0;
244 }
245
246 /* Register information. */
247
248 static const char *sparc32_register_names[] =
249 {
250 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
251 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
252 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
253 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
254
255 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
256 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
257 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
258 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
259
260 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
261 };
262
263 /* Total number of registers. */
264 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
265
266 /* We provide the aliases %d0..%d30 for the floating registers as
267 "psuedo" registers. */
268
269 static const char *sparc32_pseudo_register_names[] =
270 {
271 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
272 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
273 };
274
275 /* Total number of pseudo registers. */
276 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
277
278 /* Return the name of register REGNUM. */
279
280 static const char *
281 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
282 {
283 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
284 return sparc32_register_names[regnum];
285
286 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
287 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
288
289 return NULL;
290 }
291 \f
292 /* Construct types for ISA-specific registers. */
293
294 static struct type *
295 sparc_psr_type (struct gdbarch *gdbarch)
296 {
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298
299 if (!tdep->sparc_psr_type)
300 {
301 struct type *type;
302
303 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
304 append_flags_type_flag (type, 5, "ET");
305 append_flags_type_flag (type, 6, "PS");
306 append_flags_type_flag (type, 7, "S");
307 append_flags_type_flag (type, 12, "EF");
308 append_flags_type_flag (type, 13, "EC");
309
310 tdep->sparc_psr_type = type;
311 }
312
313 return tdep->sparc_psr_type;
314 }
315
316 static struct type *
317 sparc_fsr_type (struct gdbarch *gdbarch)
318 {
319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
320
321 if (!tdep->sparc_fsr_type)
322 {
323 struct type *type;
324
325 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
326 append_flags_type_flag (type, 0, "NXA");
327 append_flags_type_flag (type, 1, "DZA");
328 append_flags_type_flag (type, 2, "UFA");
329 append_flags_type_flag (type, 3, "OFA");
330 append_flags_type_flag (type, 4, "NVA");
331 append_flags_type_flag (type, 5, "NXC");
332 append_flags_type_flag (type, 6, "DZC");
333 append_flags_type_flag (type, 7, "UFC");
334 append_flags_type_flag (type, 8, "OFC");
335 append_flags_type_flag (type, 9, "NVC");
336 append_flags_type_flag (type, 22, "NS");
337 append_flags_type_flag (type, 23, "NXM");
338 append_flags_type_flag (type, 24, "DZM");
339 append_flags_type_flag (type, 25, "UFM");
340 append_flags_type_flag (type, 26, "OFM");
341 append_flags_type_flag (type, 27, "NVM");
342
343 tdep->sparc_fsr_type = type;
344 }
345
346 return tdep->sparc_fsr_type;
347 }
348
349 /* Return the GDB type object for the "standard" data type of data in
350 register REGNUM. */
351
352 static struct type *
353 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
354 {
355 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
356 return builtin_type (gdbarch)->builtin_float;
357
358 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
359 return builtin_type (gdbarch)->builtin_double;
360
361 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
362 return builtin_type (gdbarch)->builtin_data_ptr;
363
364 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
365 return builtin_type (gdbarch)->builtin_func_ptr;
366
367 if (regnum == SPARC32_PSR_REGNUM)
368 return sparc_psr_type (gdbarch);
369
370 if (regnum == SPARC32_FSR_REGNUM)
371 return sparc_fsr_type (gdbarch);
372
373 return builtin_type (gdbarch)->builtin_int32;
374 }
375
376 static void
377 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
378 struct regcache *regcache,
379 int regnum, gdb_byte *buf)
380 {
381 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
382
383 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
384 regcache_raw_read (regcache, regnum, buf);
385 regcache_raw_read (regcache, regnum + 1, buf + 4);
386 }
387
388 static void
389 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
390 struct regcache *regcache,
391 int regnum, const gdb_byte *buf)
392 {
393 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
394
395 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
396 regcache_raw_write (regcache, regnum, buf);
397 regcache_raw_write (regcache, regnum + 1, buf + 4);
398 }
399 \f
400
401 static CORE_ADDR
402 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
403 {
404 /* The ABI requires double-word alignment. */
405 return address & ~0x7;
406 }
407
408 static CORE_ADDR
409 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
410 CORE_ADDR funcaddr,
411 struct value **args, int nargs,
412 struct type *value_type,
413 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
414 struct regcache *regcache)
415 {
416 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
417
418 *bp_addr = sp - 4;
419 *real_pc = funcaddr;
420
421 if (using_struct_return (gdbarch, NULL, value_type))
422 {
423 gdb_byte buf[4];
424
425 /* This is an UNIMP instruction. */
426 store_unsigned_integer (buf, 4, byte_order,
427 TYPE_LENGTH (value_type) & 0x1fff);
428 write_memory (sp - 8, buf, 4);
429 return sp - 8;
430 }
431
432 return sp - 4;
433 }
434
435 static CORE_ADDR
436 sparc32_store_arguments (struct regcache *regcache, int nargs,
437 struct value **args, CORE_ADDR sp,
438 int struct_return, CORE_ADDR struct_addr)
439 {
440 struct gdbarch *gdbarch = get_regcache_arch (regcache);
441 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
442 /* Number of words in the "parameter array". */
443 int num_elements = 0;
444 int element = 0;
445 int i;
446
447 for (i = 0; i < nargs; i++)
448 {
449 struct type *type = value_type (args[i]);
450 int len = TYPE_LENGTH (type);
451
452 if (sparc_structure_or_union_p (type)
453 || (sparc_floating_p (type) && len == 16))
454 {
455 /* Structure, Union and Quad-Precision Arguments. */
456 sp -= len;
457
458 /* Use doubleword alignment for these values. That's always
459 correct, and wasting a few bytes shouldn't be a problem. */
460 sp &= ~0x7;
461
462 write_memory (sp, value_contents (args[i]), len);
463 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
464 num_elements++;
465 }
466 else if (sparc_floating_p (type))
467 {
468 /* Floating arguments. */
469 gdb_assert (len == 4 || len == 8);
470 num_elements += (len / 4);
471 }
472 else
473 {
474 /* Integral and pointer arguments. */
475 gdb_assert (sparc_integral_or_pointer_p (type));
476
477 if (len < 4)
478 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
479 args[i]);
480 num_elements += ((len + 3) / 4);
481 }
482 }
483
484 /* Always allocate at least six words. */
485 sp -= max (6, num_elements) * 4;
486
487 /* The psABI says that "Software convention requires space for the
488 struct/union return value pointer, even if the word is unused." */
489 sp -= 4;
490
491 /* The psABI says that "Although software convention and the
492 operating system require every stack frame to be doubleword
493 aligned." */
494 sp &= ~0x7;
495
496 for (i = 0; i < nargs; i++)
497 {
498 const bfd_byte *valbuf = value_contents (args[i]);
499 struct type *type = value_type (args[i]);
500 int len = TYPE_LENGTH (type);
501
502 gdb_assert (len == 4 || len == 8);
503
504 if (element < 6)
505 {
506 int regnum = SPARC_O0_REGNUM + element;
507
508 regcache_cooked_write (regcache, regnum, valbuf);
509 if (len > 4 && element < 5)
510 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
511 }
512
513 /* Always store the argument in memory. */
514 write_memory (sp + 4 + element * 4, valbuf, len);
515 element += len / 4;
516 }
517
518 gdb_assert (element == num_elements);
519
520 if (struct_return)
521 {
522 gdb_byte buf[4];
523
524 store_unsigned_integer (buf, 4, byte_order, struct_addr);
525 write_memory (sp, buf, 4);
526 }
527
528 return sp;
529 }
530
531 static CORE_ADDR
532 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
533 struct regcache *regcache, CORE_ADDR bp_addr,
534 int nargs, struct value **args, CORE_ADDR sp,
535 int struct_return, CORE_ADDR struct_addr)
536 {
537 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
538
539 /* Set return address. */
540 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
541
542 /* Set up function arguments. */
543 sp = sparc32_store_arguments (regcache, nargs, args, sp,
544 struct_return, struct_addr);
545
546 /* Allocate the 16-word window save area. */
547 sp -= 16 * 4;
548
549 /* Stack should be doubleword aligned at this point. */
550 gdb_assert (sp % 8 == 0);
551
552 /* Finally, update the stack pointer. */
553 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
554
555 return sp;
556 }
557 \f
558
559 /* Use the program counter to determine the contents and size of a
560 breakpoint instruction. Return a pointer to a string of bytes that
561 encode a breakpoint instruction, store the length of the string in
562 *LEN and optionally adjust *PC to point to the correct memory
563 location for inserting the breakpoint. */
564
565 static const gdb_byte *
566 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
567 {
568 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
569
570 *len = sizeof (break_insn);
571 return break_insn;
572 }
573 \f
574
575 /* Allocate and initialize a frame cache. */
576
577 static struct sparc_frame_cache *
578 sparc_alloc_frame_cache (void)
579 {
580 struct sparc_frame_cache *cache;
581 int i;
582
583 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
584
585 /* Base address. */
586 cache->base = 0;
587 cache->pc = 0;
588
589 /* Frameless until proven otherwise. */
590 cache->frameless_p = 1;
591
592 cache->struct_return_p = 0;
593
594 return cache;
595 }
596
597 /* GCC generates several well-known sequences of instructions at the begining
598 of each function prologue when compiling with -fstack-check. If one of
599 such sequences starts at START_PC, then return the address of the
600 instruction immediately past this sequence. Otherwise, return START_PC. */
601
602 static CORE_ADDR
603 sparc_skip_stack_check (const CORE_ADDR start_pc)
604 {
605 CORE_ADDR pc = start_pc;
606 unsigned long insn;
607 int offset_stack_checking_sequence = 0;
608
609 /* With GCC, all stack checking sequences begin with the same two
610 instructions. */
611
612 /* sethi <some immediate>,%g1 */
613 insn = sparc_fetch_instruction (pc);
614 pc = pc + 4;
615 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
616 return start_pc;
617
618 /* sub %sp, %g1, %g1 */
619 insn = sparc_fetch_instruction (pc);
620 pc = pc + 4;
621 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
622 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
623 return start_pc;
624
625 insn = sparc_fetch_instruction (pc);
626 pc = pc + 4;
627
628 /* First possible sequence:
629 [first two instructions above]
630 clr [%g1 - some immediate] */
631
632 /* clr [%g1 - some immediate] */
633 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
634 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
635 {
636 /* Valid stack-check sequence, return the new PC. */
637 return pc;
638 }
639
640 /* Second possible sequence: A small number of probes.
641 [first two instructions above]
642 clr [%g1]
643 add %g1, -<some immediate>, %g1
644 clr [%g1]
645 [repeat the two instructions above any (small) number of times]
646 clr [%g1 - some immediate] */
647
648 /* clr [%g1] */
649 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
650 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
651 {
652 while (1)
653 {
654 /* add %g1, -<some immediate>, %g1 */
655 insn = sparc_fetch_instruction (pc);
656 pc = pc + 4;
657 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
658 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
659 break;
660
661 /* clr [%g1] */
662 insn = sparc_fetch_instruction (pc);
663 pc = pc + 4;
664 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
665 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
666 return start_pc;
667 }
668
669 /* clr [%g1 - some immediate] */
670 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
671 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
672 return start_pc;
673
674 /* We found a valid stack-check sequence, return the new PC. */
675 return pc;
676 }
677
678 /* Third sequence: A probing loop.
679 [first two instructions above]
680 sethi <some immediate>, %g4
681 sub %g1, %g4, %g4
682 cmp %g1, %g4
683 be <disp>
684 add %g1, -<some immediate>, %g1
685 ba <disp>
686 clr [%g1]
687 clr [%g4 - some immediate] */
688
689 /* sethi <some immediate>, %g4 */
690 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
691 {
692 /* sub %g1, %g4, %g4 */
693 insn = sparc_fetch_instruction (pc);
694 pc = pc + 4;
695 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
696 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
697 return start_pc;
698
699 /* cmp %g1, %g4 */
700 insn = sparc_fetch_instruction (pc);
701 pc = pc + 4;
702 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
703 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
704 return start_pc;
705
706 /* be <disp> */
707 insn = sparc_fetch_instruction (pc);
708 pc = pc + 4;
709 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
710 return start_pc;
711
712 /* add %g1, -<some immediate>, %g1 */
713 insn = sparc_fetch_instruction (pc);
714 pc = pc + 4;
715 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
716 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
717 return start_pc;
718
719 /* ba <disp> */
720 insn = sparc_fetch_instruction (pc);
721 pc = pc + 4;
722 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
723 return start_pc;
724
725 /* clr [%g1] */
726 insn = sparc_fetch_instruction (pc);
727 pc = pc + 4;
728 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
729 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
730 return start_pc;
731
732 /* clr [%g4 - some immediate] */
733 insn = sparc_fetch_instruction (pc);
734 pc = pc + 4;
735 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
736 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
737 return start_pc;
738
739 /* We found a valid stack-check sequence, return the new PC. */
740 return pc;
741 }
742
743 /* No stack check code in our prologue, return the start_pc. */
744 return start_pc;
745 }
746
747 CORE_ADDR
748 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
749 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
750 {
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
752 unsigned long insn;
753 int offset = 0;
754 int dest = -1;
755
756 pc = sparc_skip_stack_check (pc);
757
758 if (current_pc <= pc)
759 return current_pc;
760
761 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
762 SPARC the linker usually defines a symbol (typically
763 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
764 This symbol makes us end up here with PC pointing at the start of
765 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
766 would do our normal prologue analysis, we would probably conclude
767 that we've got a frame when in reality we don't, since the
768 dynamic linker patches up the first PLT with some code that
769 starts with a SAVE instruction. Patch up PC such that it points
770 at the start of our PLT entry. */
771 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
772 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
773
774 insn = sparc_fetch_instruction (pc);
775
776 /* Recognize a SETHI insn and record its destination. */
777 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
778 {
779 dest = X_RD (insn);
780 offset += 4;
781
782 insn = sparc_fetch_instruction (pc + 4);
783 }
784
785 /* Allow for an arithmetic operation on DEST or %g1. */
786 if (X_OP (insn) == 2 && X_I (insn)
787 && (X_RD (insn) == 1 || X_RD (insn) == dest))
788 {
789 offset += 4;
790
791 insn = sparc_fetch_instruction (pc + 8);
792 }
793
794 /* Check for the SAVE instruction that sets up the frame. */
795 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
796 {
797 cache->frameless_p = 0;
798 return pc + offset + 4;
799 }
800
801 return pc;
802 }
803
804 static CORE_ADDR
805 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
806 {
807 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
808 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
809 }
810
811 /* Return PC of first real instruction of the function starting at
812 START_PC. */
813
814 static CORE_ADDR
815 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
816 {
817 struct symtab_and_line sal;
818 CORE_ADDR func_start, func_end;
819 struct sparc_frame_cache cache;
820
821 /* This is the preferred method, find the end of the prologue by
822 using the debugging information. */
823 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
824 {
825 sal = find_pc_line (func_start, 0);
826
827 if (sal.end < func_end
828 && start_pc <= sal.end)
829 return sal.end;
830 }
831
832 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
833
834 /* The psABI says that "Although the first 6 words of arguments
835 reside in registers, the standard stack frame reserves space for
836 them.". It also suggests that a function may use that space to
837 "write incoming arguments 0 to 5" into that space, and that's
838 indeed what GCC seems to be doing. In that case GCC will
839 generate debug information that points to the stack slots instead
840 of the registers, so we should consider the instructions that
841 write out these incoming arguments onto the stack. Of course we
842 only need to do this if we have a stack frame. */
843
844 while (!cache.frameless_p)
845 {
846 unsigned long insn = sparc_fetch_instruction (start_pc);
847
848 /* Recognize instructions that store incoming arguments in
849 %i0...%i5 into the corresponding stack slot. */
850 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
851 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
852 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
853 {
854 start_pc += 4;
855 continue;
856 }
857
858 break;
859 }
860
861 return start_pc;
862 }
863
864 /* Normal frames. */
865
866 struct sparc_frame_cache *
867 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
868 {
869 struct sparc_frame_cache *cache;
870
871 if (*this_cache)
872 return *this_cache;
873
874 cache = sparc_alloc_frame_cache ();
875 *this_cache = cache;
876
877 cache->pc = get_frame_func (this_frame);
878 if (cache->pc != 0)
879 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
880 get_frame_pc (this_frame), cache);
881
882 if (cache->frameless_p)
883 {
884 /* This function is frameless, so %fp (%i6) holds the frame
885 pointer for our calling frame. Use %sp (%o6) as this frame's
886 base address. */
887 cache->base =
888 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
889 }
890 else
891 {
892 /* For normal frames, %fp (%i6) holds the frame pointer, the
893 base address for the current stack frame. */
894 cache->base =
895 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
896 }
897
898 if (cache->base & 1)
899 cache->base += BIAS;
900
901 return cache;
902 }
903
904 static int
905 sparc32_struct_return_from_sym (struct symbol *sym)
906 {
907 struct type *type = check_typedef (SYMBOL_TYPE (sym));
908 enum type_code code = TYPE_CODE (type);
909
910 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
911 {
912 type = check_typedef (TYPE_TARGET_TYPE (type));
913 if (sparc_structure_or_union_p (type)
914 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
915 return 1;
916 }
917
918 return 0;
919 }
920
921 struct sparc_frame_cache *
922 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
923 {
924 struct sparc_frame_cache *cache;
925 struct symbol *sym;
926
927 if (*this_cache)
928 return *this_cache;
929
930 cache = sparc_frame_cache (this_frame, this_cache);
931
932 sym = find_pc_function (cache->pc);
933 if (sym)
934 {
935 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
936 }
937 else
938 {
939 /* There is no debugging information for this function to
940 help us determine whether this function returns a struct
941 or not. So we rely on another heuristic which is to check
942 the instruction at the return address and see if this is
943 an "unimp" instruction. If it is, then it is a struct-return
944 function. */
945 CORE_ADDR pc;
946 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
947
948 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
949 if (sparc_is_unimp_insn (pc))
950 cache->struct_return_p = 1;
951 }
952
953 return cache;
954 }
955
956 static void
957 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
958 struct frame_id *this_id)
959 {
960 struct sparc_frame_cache *cache =
961 sparc32_frame_cache (this_frame, this_cache);
962
963 /* This marks the outermost frame. */
964 if (cache->base == 0)
965 return;
966
967 (*this_id) = frame_id_build (cache->base, cache->pc);
968 }
969
970 static struct value *
971 sparc32_frame_prev_register (struct frame_info *this_frame,
972 void **this_cache, int regnum)
973 {
974 struct gdbarch *gdbarch = get_frame_arch (this_frame);
975 struct sparc_frame_cache *cache =
976 sparc32_frame_cache (this_frame, this_cache);
977
978 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
979 {
980 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
981
982 /* If this functions has a Structure, Union or Quad-Precision
983 return value, we have to skip the UNIMP instruction that encodes
984 the size of the structure. */
985 if (cache->struct_return_p)
986 pc += 4;
987
988 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
989 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
990 return frame_unwind_got_constant (this_frame, regnum, pc);
991 }
992
993 /* Handle StackGhost. */
994 {
995 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
996
997 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
998 {
999 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1000 ULONGEST i7;
1001
1002 /* Read the value in from memory. */
1003 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1004 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1005 }
1006 }
1007
1008 /* The previous frame's `local' and `in' registers have been saved
1009 in the register save area. */
1010 if (!cache->frameless_p
1011 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
1012 {
1013 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1014
1015 return frame_unwind_got_memory (this_frame, regnum, addr);
1016 }
1017
1018 /* The previous frame's `out' registers are accessible as the
1019 current frame's `in' registers. */
1020 if (!cache->frameless_p
1021 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1022 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1023
1024 return frame_unwind_got_register (this_frame, regnum, regnum);
1025 }
1026
1027 static const struct frame_unwind sparc32_frame_unwind =
1028 {
1029 NORMAL_FRAME,
1030 sparc32_frame_this_id,
1031 sparc32_frame_prev_register,
1032 NULL,
1033 default_frame_sniffer
1034 };
1035 \f
1036
1037 static CORE_ADDR
1038 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1039 {
1040 struct sparc_frame_cache *cache =
1041 sparc32_frame_cache (this_frame, this_cache);
1042
1043 return cache->base;
1044 }
1045
1046 static const struct frame_base sparc32_frame_base =
1047 {
1048 &sparc32_frame_unwind,
1049 sparc32_frame_base_address,
1050 sparc32_frame_base_address,
1051 sparc32_frame_base_address
1052 };
1053
1054 static struct frame_id
1055 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1056 {
1057 CORE_ADDR sp;
1058
1059 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1060 if (sp & 1)
1061 sp += BIAS;
1062 return frame_id_build (sp, get_frame_pc (this_frame));
1063 }
1064 \f
1065
1066 /* Extract a function return value of TYPE from REGCACHE, and copy
1067 that into VALBUF. */
1068
1069 static void
1070 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1071 gdb_byte *valbuf)
1072 {
1073 int len = TYPE_LENGTH (type);
1074 gdb_byte buf[8];
1075
1076 gdb_assert (!sparc_structure_or_union_p (type));
1077 gdb_assert (!(sparc_floating_p (type) && len == 16));
1078
1079 if (sparc_floating_p (type))
1080 {
1081 /* Floating return values. */
1082 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1083 if (len > 4)
1084 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1085 memcpy (valbuf, buf, len);
1086 }
1087 else
1088 {
1089 /* Integral and pointer return values. */
1090 gdb_assert (sparc_integral_or_pointer_p (type));
1091
1092 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1093 if (len > 4)
1094 {
1095 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1096 gdb_assert (len == 8);
1097 memcpy (valbuf, buf, 8);
1098 }
1099 else
1100 {
1101 /* Just stripping off any unused bytes should preserve the
1102 signed-ness just fine. */
1103 memcpy (valbuf, buf + 4 - len, len);
1104 }
1105 }
1106 }
1107
1108 /* Store the function return value of type TYPE from VALBUF into
1109 REGCACHE. */
1110
1111 static void
1112 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1113 const gdb_byte *valbuf)
1114 {
1115 int len = TYPE_LENGTH (type);
1116 gdb_byte buf[8];
1117
1118 gdb_assert (!sparc_structure_or_union_p (type));
1119 gdb_assert (!(sparc_floating_p (type) && len == 16));
1120 gdb_assert (len <= 8);
1121
1122 if (sparc_floating_p (type))
1123 {
1124 /* Floating return values. */
1125 memcpy (buf, valbuf, len);
1126 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1127 if (len > 4)
1128 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1129 }
1130 else
1131 {
1132 /* Integral and pointer return values. */
1133 gdb_assert (sparc_integral_or_pointer_p (type));
1134
1135 if (len > 4)
1136 {
1137 gdb_assert (len == 8);
1138 memcpy (buf, valbuf, 8);
1139 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1140 }
1141 else
1142 {
1143 /* ??? Do we need to do any sign-extension here? */
1144 memcpy (buf + 4 - len, valbuf, len);
1145 }
1146 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1147 }
1148 }
1149
1150 static enum return_value_convention
1151 sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1152 struct type *type, struct regcache *regcache,
1153 gdb_byte *readbuf, const gdb_byte *writebuf)
1154 {
1155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1156
1157 /* The psABI says that "...every stack frame reserves the word at
1158 %fp+64. If a function returns a structure, union, or
1159 quad-precision value, this word should hold the address of the
1160 object into which the return value should be copied." This
1161 guarantees that we can always find the return value, not just
1162 before the function returns. */
1163
1164 if (sparc_structure_or_union_p (type)
1165 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1166 {
1167 if (readbuf)
1168 {
1169 ULONGEST sp;
1170 CORE_ADDR addr;
1171
1172 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1173 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1174 read_memory (addr, readbuf, TYPE_LENGTH (type));
1175 }
1176
1177 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1178 }
1179
1180 if (readbuf)
1181 sparc32_extract_return_value (type, regcache, readbuf);
1182 if (writebuf)
1183 sparc32_store_return_value (type, regcache, writebuf);
1184
1185 return RETURN_VALUE_REGISTER_CONVENTION;
1186 }
1187
1188 static int
1189 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1190 {
1191 return (sparc_structure_or_union_p (type)
1192 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1193 }
1194
1195 static int
1196 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1197 {
1198 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1199 struct symbol *sym = find_pc_function (pc);
1200
1201 if (sym)
1202 return sparc32_struct_return_from_sym (sym);
1203 return 0;
1204 }
1205
1206 static void
1207 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1208 struct dwarf2_frame_state_reg *reg,
1209 struct frame_info *this_frame)
1210 {
1211 int off;
1212
1213 switch (regnum)
1214 {
1215 case SPARC_G0_REGNUM:
1216 /* Since %g0 is always zero, there is no point in saving it, and
1217 people will be inclined omit it from the CFI. Make sure we
1218 don't warn about that. */
1219 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1220 break;
1221 case SPARC_SP_REGNUM:
1222 reg->how = DWARF2_FRAME_REG_CFA;
1223 break;
1224 case SPARC32_PC_REGNUM:
1225 case SPARC32_NPC_REGNUM:
1226 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1227 off = 8;
1228 if (sparc32_dwarf2_struct_return_p (this_frame))
1229 off += 4;
1230 if (regnum == SPARC32_NPC_REGNUM)
1231 off += 4;
1232 reg->loc.offset = off;
1233 break;
1234 }
1235 }
1236
1237 \f
1238 /* The SPARC Architecture doesn't have hardware single-step support,
1239 and most operating systems don't implement it either, so we provide
1240 software single-step mechanism. */
1241
1242 static CORE_ADDR
1243 sparc_analyze_control_transfer (struct frame_info *frame,
1244 CORE_ADDR pc, CORE_ADDR *npc)
1245 {
1246 unsigned long insn = sparc_fetch_instruction (pc);
1247 int conditional_p = X_COND (insn) & 0x7;
1248 int branch_p = 0;
1249 long offset = 0; /* Must be signed for sign-extend. */
1250
1251 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1252 {
1253 /* Branch on Integer Register with Prediction (BPr). */
1254 branch_p = 1;
1255 conditional_p = 1;
1256 }
1257 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1258 {
1259 /* Branch on Floating-Point Condition Codes (FBfcc). */
1260 branch_p = 1;
1261 offset = 4 * X_DISP22 (insn);
1262 }
1263 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1264 {
1265 /* Branch on Floating-Point Condition Codes with Prediction
1266 (FBPfcc). */
1267 branch_p = 1;
1268 offset = 4 * X_DISP19 (insn);
1269 }
1270 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1271 {
1272 /* Branch on Integer Condition Codes (Bicc). */
1273 branch_p = 1;
1274 offset = 4 * X_DISP22 (insn);
1275 }
1276 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1277 {
1278 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1279 branch_p = 1;
1280 offset = 4 * X_DISP19 (insn);
1281 }
1282 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1283 {
1284 /* Trap instruction (TRAP). */
1285 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1286 }
1287
1288 /* FIXME: Handle DONE and RETRY instructions. */
1289
1290 if (branch_p)
1291 {
1292 if (conditional_p)
1293 {
1294 /* For conditional branches, return nPC + 4 iff the annul
1295 bit is 1. */
1296 return (X_A (insn) ? *npc + 4 : 0);
1297 }
1298 else
1299 {
1300 /* For unconditional branches, return the target if its
1301 specified condition is "always" and return nPC + 4 if the
1302 condition is "never". If the annul bit is 1, set *NPC to
1303 zero. */
1304 if (X_COND (insn) == 0x0)
1305 pc = *npc, offset = 4;
1306 if (X_A (insn))
1307 *npc = 0;
1308
1309 gdb_assert (offset != 0);
1310 return pc + offset;
1311 }
1312 }
1313
1314 return 0;
1315 }
1316
1317 static CORE_ADDR
1318 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1319 {
1320 return 0;
1321 }
1322
1323 int
1324 sparc_software_single_step (struct frame_info *frame)
1325 {
1326 struct gdbarch *arch = get_frame_arch (frame);
1327 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1328 struct address_space *aspace = get_frame_address_space (frame);
1329 CORE_ADDR npc, nnpc;
1330
1331 CORE_ADDR pc, orig_npc;
1332
1333 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1334 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1335
1336 /* Analyze the instruction at PC. */
1337 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1338 if (npc != 0)
1339 insert_single_step_breakpoint (arch, aspace, npc);
1340
1341 if (nnpc != 0)
1342 insert_single_step_breakpoint (arch, aspace, nnpc);
1343
1344 /* Assert that we have set at least one breakpoint, and that
1345 they're not set at the same spot - unless we're going
1346 from here straight to NULL, i.e. a call or jump to 0. */
1347 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1348 gdb_assert (nnpc != npc || orig_npc == 0);
1349
1350 return 1;
1351 }
1352
1353 static void
1354 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1355 {
1356 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1357
1358 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1359 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1360 }
1361 \f
1362
1363 /* Return the appropriate register set for the core section identified
1364 by SECT_NAME and SECT_SIZE. */
1365
1366 static const struct regset *
1367 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1368 const char *sect_name, size_t sect_size)
1369 {
1370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1371
1372 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1373 return tdep->gregset;
1374
1375 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1376 return tdep->fpregset;
1377
1378 return NULL;
1379 }
1380 \f
1381
1382 static struct gdbarch *
1383 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1384 {
1385 struct gdbarch_tdep *tdep;
1386 struct gdbarch *gdbarch;
1387
1388 /* If there is already a candidate, use it. */
1389 arches = gdbarch_list_lookup_by_info (arches, &info);
1390 if (arches != NULL)
1391 return arches->gdbarch;
1392
1393 /* Allocate space for the new architecture. */
1394 tdep = XZALLOC (struct gdbarch_tdep);
1395 gdbarch = gdbarch_alloc (&info, tdep);
1396
1397 tdep->pc_regnum = SPARC32_PC_REGNUM;
1398 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1399 tdep->step_trap = sparc_step_trap;
1400
1401 set_gdbarch_long_double_bit (gdbarch, 128);
1402 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1403
1404 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1405 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1406 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1407 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1408 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1409 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1410
1411 /* Register numbers of various important registers. */
1412 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1413 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1414 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1415
1416 /* Call dummy code. */
1417 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1418 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1419 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1420 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1421
1422 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1423 set_gdbarch_stabs_argument_has_addr
1424 (gdbarch, sparc32_stabs_argument_has_addr);
1425
1426 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1427
1428 /* Stack grows downward. */
1429 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1430
1431 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1432
1433 set_gdbarch_frame_args_skip (gdbarch, 8);
1434
1435 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1436
1437 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1438 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1439
1440 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1441
1442 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1443
1444 frame_base_set_default (gdbarch, &sparc32_frame_base);
1445
1446 /* Hook in the DWARF CFI frame unwinder. */
1447 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1448 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1449 StackGhost issues have been resolved. */
1450
1451 /* Hook in ABI-specific overrides, if they have been registered. */
1452 gdbarch_init_osabi (info, gdbarch);
1453
1454 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1455
1456 /* If we have register sets, enable the generic core file support. */
1457 if (tdep->gregset)
1458 set_gdbarch_regset_from_core_section (gdbarch,
1459 sparc_regset_from_core_section);
1460
1461 return gdbarch;
1462 }
1463 \f
1464 /* Helper functions for dealing with register windows. */
1465
1466 void
1467 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1468 {
1469 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1470 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1471 int offset = 0;
1472 gdb_byte buf[8];
1473 int i;
1474
1475 if (sp & 1)
1476 {
1477 /* Registers are 64-bit. */
1478 sp += BIAS;
1479
1480 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1481 {
1482 if (regnum == i || regnum == -1)
1483 {
1484 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1485
1486 /* Handle StackGhost. */
1487 if (i == SPARC_I7_REGNUM)
1488 {
1489 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1490 ULONGEST i7;
1491
1492 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1493 store_unsigned_integer (buf + offset, 8, byte_order,
1494 i7 ^ wcookie);
1495 }
1496
1497 regcache_raw_supply (regcache, i, buf);
1498 }
1499 }
1500 }
1501 else
1502 {
1503 /* Registers are 32-bit. Toss any sign-extension of the stack
1504 pointer. */
1505 sp &= 0xffffffffUL;
1506
1507 /* Clear out the top half of the temporary buffer, and put the
1508 register value in the bottom half if we're in 64-bit mode. */
1509 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1510 {
1511 memset (buf, 0, 4);
1512 offset = 4;
1513 }
1514
1515 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1516 {
1517 if (regnum == i || regnum == -1)
1518 {
1519 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1520 buf + offset, 4);
1521
1522 /* Handle StackGhost. */
1523 if (i == SPARC_I7_REGNUM)
1524 {
1525 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1526 ULONGEST i7;
1527
1528 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1529 store_unsigned_integer (buf + offset, 4, byte_order,
1530 i7 ^ wcookie);
1531 }
1532
1533 regcache_raw_supply (regcache, i, buf);
1534 }
1535 }
1536 }
1537 }
1538
1539 void
1540 sparc_collect_rwindow (const struct regcache *regcache,
1541 CORE_ADDR sp, int regnum)
1542 {
1543 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1545 int offset = 0;
1546 gdb_byte buf[8];
1547 int i;
1548
1549 if (sp & 1)
1550 {
1551 /* Registers are 64-bit. */
1552 sp += BIAS;
1553
1554 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1555 {
1556 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1557 {
1558 regcache_raw_collect (regcache, i, buf);
1559
1560 /* Handle StackGhost. */
1561 if (i == SPARC_I7_REGNUM)
1562 {
1563 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1564 ULONGEST i7;
1565
1566 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1567 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1568 }
1569
1570 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1571 }
1572 }
1573 }
1574 else
1575 {
1576 /* Registers are 32-bit. Toss any sign-extension of the stack
1577 pointer. */
1578 sp &= 0xffffffffUL;
1579
1580 /* Only use the bottom half if we're in 64-bit mode. */
1581 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1582 offset = 4;
1583
1584 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1585 {
1586 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1587 {
1588 regcache_raw_collect (regcache, i, buf);
1589
1590 /* Handle StackGhost. */
1591 if (i == SPARC_I7_REGNUM)
1592 {
1593 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1594 ULONGEST i7;
1595
1596 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1597 store_unsigned_integer (buf + offset, 4, byte_order,
1598 i7 ^ wcookie);
1599 }
1600
1601 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1602 buf + offset, 4);
1603 }
1604 }
1605 }
1606 }
1607
1608 /* Helper functions for dealing with register sets. */
1609
1610 void
1611 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1612 struct regcache *regcache,
1613 int regnum, const void *gregs)
1614 {
1615 const gdb_byte *regs = gregs;
1616 int i;
1617
1618 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1619 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1620 regs + gregset->r_psr_offset);
1621
1622 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1623 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1624 regs + gregset->r_pc_offset);
1625
1626 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1627 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1628 regs + gregset->r_npc_offset);
1629
1630 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1631 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1632 regs + gregset->r_y_offset);
1633
1634 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1635 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1636
1637 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1638 {
1639 int offset = gregset->r_g1_offset;
1640
1641 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1642 {
1643 if (regnum == i || regnum == -1)
1644 regcache_raw_supply (regcache, i, regs + offset);
1645 offset += 4;
1646 }
1647 }
1648
1649 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1650 {
1651 /* Not all of the register set variants include Locals and
1652 Inputs. For those that don't, we read them off the stack. */
1653 if (gregset->r_l0_offset == -1)
1654 {
1655 ULONGEST sp;
1656
1657 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1658 sparc_supply_rwindow (regcache, sp, regnum);
1659 }
1660 else
1661 {
1662 int offset = gregset->r_l0_offset;
1663
1664 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1665 {
1666 if (regnum == i || regnum == -1)
1667 regcache_raw_supply (regcache, i, regs + offset);
1668 offset += 4;
1669 }
1670 }
1671 }
1672 }
1673
1674 void
1675 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1676 const struct regcache *regcache,
1677 int regnum, void *gregs)
1678 {
1679 gdb_byte *regs = gregs;
1680 int i;
1681
1682 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1683 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1684 regs + gregset->r_psr_offset);
1685
1686 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1687 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1688 regs + gregset->r_pc_offset);
1689
1690 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1691 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1692 regs + gregset->r_npc_offset);
1693
1694 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1695 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1696 regs + gregset->r_y_offset);
1697
1698 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1699 {
1700 int offset = gregset->r_g1_offset;
1701
1702 /* %g0 is always zero. */
1703 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1704 {
1705 if (regnum == i || regnum == -1)
1706 regcache_raw_collect (regcache, i, regs + offset);
1707 offset += 4;
1708 }
1709 }
1710
1711 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1712 {
1713 /* Not all of the register set variants include Locals and
1714 Inputs. For those that don't, we read them off the stack. */
1715 if (gregset->r_l0_offset != -1)
1716 {
1717 int offset = gregset->r_l0_offset;
1718
1719 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1720 {
1721 if (regnum == i || regnum == -1)
1722 regcache_raw_collect (regcache, i, regs + offset);
1723 offset += 4;
1724 }
1725 }
1726 }
1727 }
1728
1729 void
1730 sparc32_supply_fpregset (struct regcache *regcache,
1731 int regnum, const void *fpregs)
1732 {
1733 const gdb_byte *regs = fpregs;
1734 int i;
1735
1736 for (i = 0; i < 32; i++)
1737 {
1738 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1739 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1740 }
1741
1742 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1743 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1744 }
1745
1746 void
1747 sparc32_collect_fpregset (const struct regcache *regcache,
1748 int regnum, void *fpregs)
1749 {
1750 gdb_byte *regs = fpregs;
1751 int i;
1752
1753 for (i = 0; i < 32; i++)
1754 {
1755 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1756 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1757 }
1758
1759 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1760 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1761 }
1762 \f
1763
1764 /* SunOS 4. */
1765
1766 /* From <machine/reg.h>. */
1767 const struct sparc_gregset sparc32_sunos4_gregset =
1768 {
1769 0 * 4, /* %psr */
1770 1 * 4, /* %pc */
1771 2 * 4, /* %npc */
1772 3 * 4, /* %y */
1773 -1, /* %wim */
1774 -1, /* %tbr */
1775 4 * 4, /* %g1 */
1776 -1 /* %l0 */
1777 };
1778 \f
1779
1780 /* Provide a prototype to silence -Wmissing-prototypes. */
1781 void _initialize_sparc_tdep (void);
1782
1783 void
1784 _initialize_sparc_tdep (void)
1785 {
1786 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1787 }