]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sparc64-obsd-tdep.c
gdb: move store/extract integer functions to extract-store-integer.{c,h}
[thirdparty/binutils-gdb.git] / gdb / sparc64-obsd-tdep.c
1 /* Target-dependent code for OpenBSD/sparc64.
2
3 Copyright (C) 2004-2024 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "extract-store-integer.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "gdbcore.h"
24 #include "osabi.h"
25 #include "regcache.h"
26 #include "regset.h"
27 #include "symtab.h"
28 #include "objfiles.h"
29 #include "trad-frame.h"
30 #include "inferior.h"
31
32 #include "obsd-tdep.h"
33 #include "sparc64-tdep.h"
34 #include "solib-svr4.h"
35 #include "bsd-uthread.h"
36
37 /* Older OpenBSD versions used the traditional NetBSD core file
38 format, even for ports that use ELF. These core files don't use
39 multiple register sets. Instead, the general-purpose and
40 floating-point registers are lumped together in a single section.
41 Unlike on NetBSD, OpenBSD uses a different layout for its
42 general-purpose registers than the layout used for ptrace(2).
43
44 Newer OpenBSD versions use ELF core files. Here the register sets
45 match the ptrace(2) layout. */
46
47 /* From <machine/reg.h>. */
48 const struct sparc_gregmap sparc64obsd_gregmap =
49 {
50 0 * 8, /* "tstate" */
51 1 * 8, /* %pc */
52 2 * 8, /* %npc */
53 3 * 8, /* %y */
54 -1, /* %fprs */
55 -1,
56 5 * 8, /* %g1 */
57 20 * 8, /* %l0 */
58 4 /* sizeof (%y) */
59 };
60
61 const struct sparc_gregmap sparc64obsd_core_gregmap =
62 {
63 0 * 8, /* "tstate" */
64 1 * 8, /* %pc */
65 2 * 8, /* %npc */
66 3 * 8, /* %y */
67 -1, /* %fprs */
68 -1,
69 7 * 8, /* %g1 */
70 22 * 8, /* %l0 */
71 4 /* sizeof (%y) */
72 };
73
74 static void
75 sparc64obsd_supply_gregset (const struct regset *regset,
76 struct regcache *regcache,
77 int regnum, const void *gregs, size_t len)
78 {
79 const void *fpregs = (char *)gregs + 288;
80
81 if (len < 832)
82 {
83 sparc64_supply_gregset (&sparc64obsd_gregmap, regcache, regnum, gregs);
84 return;
85 }
86
87 sparc64_supply_gregset (&sparc64obsd_core_gregmap, regcache, regnum, gregs);
88 sparc64_supply_fpregset (&sparc64_bsd_fpregmap, regcache, regnum, fpregs);
89 }
90
91 static void
92 sparc64obsd_supply_fpregset (const struct regset *regset,
93 struct regcache *regcache,
94 int regnum, const void *fpregs, size_t len)
95 {
96 sparc64_supply_fpregset (&sparc64_bsd_fpregmap, regcache, regnum, fpregs);
97 }
98 \f
99
100 /* Signal trampolines. */
101
102 /* Since OpenBSD 3.2, the sigtramp routine is mapped at a random page
103 in virtual memory. The randomness makes it somewhat tricky to
104 detect it, but fortunately we can rely on the fact that the start
105 of the sigtramp routine is page-aligned. We recognize the
106 trampoline by looking for the code that invokes the sigreturn
107 system call. The offset where we can find that code varies from
108 release to release.
109
110 By the way, the mapping mentioned above is read-only, so you cannot
111 place a breakpoint in the signal trampoline. */
112
113 /* Default page size. */
114 static const int sparc64obsd_page_size = 8192;
115
116 /* Offset for sigreturn(2). */
117 static const int sparc64obsd_sigreturn_offset[] = {
118 0xf0, /* OpenBSD 3.8 */
119 0xec, /* OpenBSD 3.6 */
120 0xe8, /* OpenBSD 3.2 */
121 -1
122 };
123
124 static int
125 sparc64obsd_pc_in_sigtramp (CORE_ADDR pc, const char *name)
126 {
127 CORE_ADDR start_pc = (pc & ~(sparc64obsd_page_size - 1));
128 unsigned long insn;
129 const int *offset;
130
131 if (name)
132 return 0;
133
134 for (offset = sparc64obsd_sigreturn_offset; *offset != -1; offset++)
135 {
136 /* Check for "restore %g0, SYS_sigreturn, %g1". */
137 insn = sparc_fetch_instruction (start_pc + *offset);
138 if (insn != 0x83e82067)
139 continue;
140
141 /* Check for "t ST_SYSCALL". */
142 insn = sparc_fetch_instruction (start_pc + *offset + 8);
143 if (insn != 0x91d02000)
144 continue;
145
146 return 1;
147 }
148
149 return 0;
150 }
151
152 static struct sparc_frame_cache *
153 sparc64obsd_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
154 {
155 struct sparc_frame_cache *cache;
156 CORE_ADDR addr;
157
158 if (*this_cache)
159 return (struct sparc_frame_cache *) *this_cache;
160
161 cache = sparc_frame_cache (this_frame, this_cache);
162 gdb_assert (cache == *this_cache);
163
164 /* If we couldn't find the frame's function, we're probably dealing
165 with an on-stack signal trampoline. */
166 if (cache->pc == 0)
167 {
168 cache->pc = get_frame_pc (this_frame);
169 cache->pc &= ~(sparc64obsd_page_size - 1);
170
171 /* Since we couldn't find the frame's function, the cache was
172 initialized under the assumption that we're frameless. */
173 sparc_record_save_insn (cache);
174 addr = get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
175 if (addr & 1)
176 addr += BIAS;
177 cache->base = addr;
178 }
179
180 /* We find the appropriate instance of `struct sigcontext' at a
181 fixed offset in the signal frame. */
182 addr = cache->base + 128 + 16;
183 cache->saved_regs = sparc64nbsd_sigcontext_saved_regs (addr, this_frame);
184
185 return cache;
186 }
187
188 static void
189 sparc64obsd_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
190 struct frame_id *this_id)
191 {
192 struct sparc_frame_cache *cache =
193 sparc64obsd_frame_cache (this_frame, this_cache);
194
195 (*this_id) = frame_id_build (cache->base, cache->pc);
196 }
197
198 static struct value *
199 sparc64obsd_frame_prev_register (const frame_info_ptr &this_frame,
200 void **this_cache, int regnum)
201 {
202 struct sparc_frame_cache *cache =
203 sparc64obsd_frame_cache (this_frame, this_cache);
204
205 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
206 }
207
208 static int
209 sparc64obsd_sigtramp_frame_sniffer (const struct frame_unwind *self,
210 const frame_info_ptr &this_frame,
211 void **this_cache)
212 {
213 CORE_ADDR pc = get_frame_pc (this_frame);
214 const char *name;
215
216 find_pc_partial_function (pc, &name, NULL, NULL);
217 if (sparc64obsd_pc_in_sigtramp (pc, name))
218 return 1;
219
220 return 0;
221 }
222
223 static const struct frame_unwind sparc64obsd_frame_unwind =
224 {
225 "sparc64 openbsd sigtramp",
226 SIGTRAMP_FRAME,
227 default_frame_unwind_stop_reason,
228 sparc64obsd_frame_this_id,
229 sparc64obsd_frame_prev_register,
230 NULL,
231 sparc64obsd_sigtramp_frame_sniffer
232 };
233 \f
234 /* Kernel debugging support. */
235
236 static struct sparc_frame_cache *
237 sparc64obsd_trapframe_cache (const frame_info_ptr &this_frame, void **this_cache)
238 {
239 struct sparc_frame_cache *cache;
240 CORE_ADDR sp, trapframe_addr;
241 int regnum;
242
243 if (*this_cache)
244 return (struct sparc_frame_cache *) *this_cache;
245
246 cache = sparc_frame_cache (this_frame, this_cache);
247 gdb_assert (cache == *this_cache);
248
249 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
250 trapframe_addr = sp + BIAS + 176;
251
252 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
253
254 cache->saved_regs[SPARC64_STATE_REGNUM].set_addr (trapframe_addr);
255 cache->saved_regs[SPARC64_PC_REGNUM].set_addr (trapframe_addr + 8);
256 cache->saved_regs[SPARC64_NPC_REGNUM].set_addr (trapframe_addr + 16);
257
258 for (regnum = SPARC_G0_REGNUM; regnum <= SPARC_I7_REGNUM; regnum++)
259 cache->saved_regs[regnum].set_addr (trapframe_addr + 48
260 + (regnum - SPARC_G0_REGNUM) * 8);
261
262 return cache;
263 }
264
265 static void
266 sparc64obsd_trapframe_this_id (const frame_info_ptr &this_frame,
267 void **this_cache, struct frame_id *this_id)
268 {
269 struct sparc_frame_cache *cache =
270 sparc64obsd_trapframe_cache (this_frame, this_cache);
271
272 (*this_id) = frame_id_build (cache->base, cache->pc);
273 }
274
275 static struct value *
276 sparc64obsd_trapframe_prev_register (const frame_info_ptr &this_frame,
277 void **this_cache, int regnum)
278 {
279 struct sparc_frame_cache *cache =
280 sparc64obsd_trapframe_cache (this_frame, this_cache);
281
282 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
283 }
284
285 static int
286 sparc64obsd_trapframe_sniffer (const struct frame_unwind *self,
287 const frame_info_ptr &this_frame,
288 void **this_cache)
289 {
290 CORE_ADDR pc;
291 ULONGEST pstate;
292 const char *name;
293
294 /* Check whether we are in privileged mode, and bail out if we're not. */
295 pstate = get_frame_register_unsigned (this_frame, SPARC64_PSTATE_REGNUM);
296 if ((pstate & SPARC64_PSTATE_PRIV) == 0)
297 return 0;
298
299 pc = get_frame_address_in_block (this_frame);
300 find_pc_partial_function (pc, &name, NULL, NULL);
301 if (name && strcmp (name, "Lslowtrap_reenter") == 0)
302 return 1;
303
304 return 0;
305 }
306
307 static const struct frame_unwind sparc64obsd_trapframe_unwind =
308 {
309 "sparc64 openbsd trap",
310 NORMAL_FRAME,
311 default_frame_unwind_stop_reason,
312 sparc64obsd_trapframe_this_id,
313 sparc64obsd_trapframe_prev_register,
314 NULL,
315 sparc64obsd_trapframe_sniffer
316 };
317 \f
318
319 /* Threads support. */
320
321 /* Offset wthin the thread structure where we can find %fp and %i7. */
322 #define SPARC64OBSD_UTHREAD_FP_OFFSET 232
323 #define SPARC64OBSD_UTHREAD_PC_OFFSET 240
324
325 static void
326 sparc64obsd_supply_uthread (struct regcache *regcache,
327 int regnum, CORE_ADDR addr)
328 {
329 struct gdbarch *gdbarch = regcache->arch ();
330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
331 CORE_ADDR fp, fp_addr = addr + SPARC64OBSD_UTHREAD_FP_OFFSET;
332 gdb_byte buf[8];
333
334 /* This function calls functions that depend on the global current thread. */
335 gdb_assert (regcache->ptid () == inferior_ptid);
336
337 gdb_assert (regnum >= -1);
338
339 fp = read_memory_unsigned_integer (fp_addr, 8, byte_order);
340 if (regnum == SPARC_SP_REGNUM || regnum == -1)
341 {
342 store_unsigned_integer (buf, 8, byte_order, fp);
343 regcache->raw_supply (SPARC_SP_REGNUM, buf);
344
345 if (regnum == SPARC_SP_REGNUM)
346 return;
347 }
348
349 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM
350 || regnum == -1)
351 {
352 CORE_ADDR i7, i7_addr = addr + SPARC64OBSD_UTHREAD_PC_OFFSET;
353
354 i7 = read_memory_unsigned_integer (i7_addr, 8, byte_order);
355 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
356 {
357 store_unsigned_integer (buf, 8, byte_order, i7 + 8);
358 regcache->raw_supply (SPARC64_PC_REGNUM, buf);
359 }
360 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
361 {
362 store_unsigned_integer (buf, 8, byte_order, i7 + 12);
363 regcache->raw_supply (SPARC64_NPC_REGNUM, buf);
364 }
365
366 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
367 return;
368 }
369
370 sparc_supply_rwindow (regcache, fp, regnum);
371 }
372
373 static void
374 sparc64obsd_collect_uthread(const struct regcache *regcache,
375 int regnum, CORE_ADDR addr)
376 {
377 struct gdbarch *gdbarch = regcache->arch ();
378 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
379 CORE_ADDR sp;
380 gdb_byte buf[8];
381
382 /* This function calls functions that depend on the global current thread. */
383 gdb_assert (regcache->ptid () == inferior_ptid);
384
385 gdb_assert (regnum >= -1);
386
387 if (regnum == SPARC_SP_REGNUM || regnum == -1)
388 {
389 CORE_ADDR fp_addr = addr + SPARC64OBSD_UTHREAD_FP_OFFSET;
390
391 regcache->raw_collect (SPARC_SP_REGNUM, buf);
392 write_memory (fp_addr,buf, 8);
393 }
394
395 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
396 {
397 CORE_ADDR i7, i7_addr = addr + SPARC64OBSD_UTHREAD_PC_OFFSET;
398
399 regcache->raw_collect (SPARC64_PC_REGNUM, buf);
400 i7 = extract_unsigned_integer (buf, 8, byte_order) - 8;
401 write_memory_unsigned_integer (i7_addr, 8, byte_order, i7);
402
403 if (regnum == SPARC64_PC_REGNUM)
404 return;
405 }
406
407 regcache->raw_collect (SPARC_SP_REGNUM, buf);
408 sp = extract_unsigned_integer (buf, 8, byte_order);
409 sparc_collect_rwindow (regcache, sp, regnum);
410 }
411 \f
412
413 static const struct regset sparc64obsd_gregset =
414 {
415 NULL, sparc64obsd_supply_gregset, NULL
416 };
417
418 static const struct regset sparc64obsd_fpregset =
419 {
420 NULL, sparc64obsd_supply_fpregset, NULL
421 };
422
423 static void
424 sparc64obsd_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
425 {
426 sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);
427
428 tdep->gregset = &sparc64obsd_gregset;
429 tdep->sizeof_gregset = 288;
430 tdep->fpregset = &sparc64obsd_fpregset;
431 tdep->sizeof_fpregset = 272;
432
433 /* Make sure we can single-step "new" syscalls. */
434 tdep->step_trap = sparcnbsd_step_trap;
435
436 frame_unwind_append_unwinder (gdbarch, &sparc64obsd_frame_unwind);
437 frame_unwind_append_unwinder (gdbarch, &sparc64obsd_trapframe_unwind);
438
439 sparc64_init_abi (info, gdbarch);
440 obsd_init_abi (info, gdbarch);
441
442 /* OpenBSD/sparc64 has SVR4-style shared libraries. */
443 set_solib_svr4_fetch_link_map_offsets
444 (gdbarch, svr4_lp64_fetch_link_map_offsets);
445 set_gdbarch_skip_solib_resolver (gdbarch, obsd_skip_solib_resolver);
446
447 /* OpenBSD provides a user-level threads implementation. */
448 bsd_uthread_set_supply_uthread (gdbarch, sparc64obsd_supply_uthread);
449 bsd_uthread_set_collect_uthread (gdbarch, sparc64obsd_collect_uthread);
450 }
451
452 void _initialize_sparc64obsd_tdep ();
453 void
454 _initialize_sparc64obsd_tdep ()
455 {
456 gdbarch_register_osabi (bfd_arch_sparc, bfd_mach_sparc_v9,
457 GDB_OSABI_OPENBSD, sparc64obsd_init_abi);
458 }