]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/spu-multiarch.c
Convert observers to C++
[thirdparty/binutils-gdb.git] / gdb / spu-multiarch.c
1 /* Cell SPU GNU/Linux multi-architecture debugging support.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "gdbcmd.h"
24 #include "arch-utils.h"
25 #include "observable.h"
26 #include "inferior.h"
27 #include "regcache.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "solib.h"
31 #include "solist.h"
32
33 #include "ppc-tdep.h"
34 #include "ppc-linux-tdep.h"
35 #include "spu-tdep.h"
36
37 /* This module's target vector. */
38 static struct target_ops spu_ops;
39
40 /* Number of SPE objects loaded into the current inferior. */
41 static int spu_nr_solib;
42
43 /* Stand-alone SPE executable? */
44 #define spu_standalone_p() \
45 (symfile_objfile && symfile_objfile->obfd \
46 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)
47
48 /* PPU side system calls. */
49 #define INSTR_SC 0x44000002
50 #define NR_spu_run 0x0116
51
52 /* If the PPU thread is currently stopped on a spu_run system call,
53 return to FD and ADDR the file handle and NPC parameter address
54 used with the system call. Return non-zero if successful. */
55 static int
56 parse_spufs_run (ptid_t ptid, int *fd, CORE_ADDR *addr)
57 {
58 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
59 struct gdbarch_tdep *tdep;
60 struct regcache *regcache;
61 gdb_byte buf[4];
62 ULONGEST regval;
63
64 /* If we're not on PPU, there's nothing to detect. */
65 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_powerpc)
66 return 0;
67
68 /* If we're called too early (e.g. after fork), we cannot
69 access the inferior yet. */
70 if (find_inferior_ptid (ptid) == NULL)
71 return 0;
72
73 /* Get PPU-side registers. */
74 regcache = get_thread_arch_regcache (ptid, target_gdbarch ());
75 tdep = gdbarch_tdep (target_gdbarch ());
76
77 /* Fetch instruction preceding current NIP. */
78 {
79 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
80 inferior_ptid = ptid;
81 regval = target_read_memory (regcache_read_pc (regcache) - 4, buf, 4);
82 }
83 if (regval != 0)
84 return 0;
85 /* It should be a "sc" instruction. */
86 if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
87 return 0;
88 /* System call number should be NR_spu_run. */
89 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum, &regval);
90 if (regval != NR_spu_run)
91 return 0;
92
93 /* Register 3 contains fd, register 4 the NPC param pointer. */
94 regcache_cooked_read_unsigned (regcache, PPC_ORIG_R3_REGNUM, &regval);
95 *fd = (int) regval;
96 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 4, &regval);
97 *addr = (CORE_ADDR) regval;
98 return 1;
99 }
100
101 /* Find gdbarch for SPU context SPUFS_FD. */
102 static struct gdbarch *
103 spu_gdbarch (int spufs_fd)
104 {
105 struct gdbarch_info info;
106 gdbarch_info_init (&info);
107 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
108 info.byte_order = BFD_ENDIAN_BIG;
109 info.osabi = GDB_OSABI_LINUX;
110 info.id = &spufs_fd;
111 return gdbarch_find_by_info (info);
112 }
113
114 /* Override the to_thread_architecture routine. */
115 static struct gdbarch *
116 spu_thread_architecture (struct target_ops *ops, ptid_t ptid)
117 {
118 int spufs_fd;
119 CORE_ADDR spufs_addr;
120
121 if (parse_spufs_run (ptid, &spufs_fd, &spufs_addr))
122 return spu_gdbarch (spufs_fd);
123
124 target_ops *beneath = find_target_beneath (ops);
125 return beneath->to_thread_architecture (beneath, ptid);
126 }
127
128 /* Override the to_region_ok_for_hw_watchpoint routine. */
129 static int
130 spu_region_ok_for_hw_watchpoint (struct target_ops *self,
131 CORE_ADDR addr, int len)
132 {
133 struct target_ops *ops_beneath = find_target_beneath (self);
134
135 /* We cannot watch SPU local store. */
136 if (SPUADDR_SPU (addr) != -1)
137 return 0;
138
139 return ops_beneath->to_region_ok_for_hw_watchpoint (ops_beneath, addr, len);
140 }
141
142 /* Override the to_fetch_registers routine. */
143 static void
144 spu_fetch_registers (struct target_ops *ops,
145 struct regcache *regcache, int regno)
146 {
147 struct gdbarch *gdbarch = regcache->arch ();
148 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
149 struct target_ops *ops_beneath = find_target_beneath (ops);
150 int spufs_fd;
151 CORE_ADDR spufs_addr;
152
153 /* Since we use functions that rely on inferior_ptid, we need to set and
154 restore it. */
155 scoped_restore save_ptid
156 = make_scoped_restore (&inferior_ptid, regcache_get_ptid (regcache));
157
158 /* This version applies only if we're currently in spu_run. */
159 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
160 {
161 ops_beneath->to_fetch_registers (ops_beneath, regcache, regno);
162 return;
163 }
164
165 /* We must be stopped on a spu_run system call. */
166 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
167 return;
168
169 /* The ID register holds the spufs file handle. */
170 if (regno == -1 || regno == SPU_ID_REGNUM)
171 {
172 gdb_byte buf[4];
173 store_unsigned_integer (buf, 4, byte_order, spufs_fd);
174 regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
175 }
176
177 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
178 if (regno == -1 || regno == SPU_PC_REGNUM)
179 {
180 gdb_byte buf[4];
181
182 if (target_read (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
183 buf, spufs_addr, sizeof buf) == sizeof buf)
184 regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
185 }
186
187 /* The GPRs are found in the "regs" spufs file. */
188 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
189 {
190 gdb_byte buf[16 * SPU_NUM_GPRS];
191 char annex[32];
192 int i;
193
194 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
195 if (target_read (ops_beneath, TARGET_OBJECT_SPU, annex,
196 buf, 0, sizeof buf) == sizeof buf)
197 for (i = 0; i < SPU_NUM_GPRS; i++)
198 regcache_raw_supply (regcache, i, buf + i*16);
199 }
200 }
201
202 /* Override the to_store_registers routine. */
203 static void
204 spu_store_registers (struct target_ops *ops,
205 struct regcache *regcache, int regno)
206 {
207 struct gdbarch *gdbarch = regcache->arch ();
208 struct target_ops *ops_beneath = find_target_beneath (ops);
209 int spufs_fd;
210 CORE_ADDR spufs_addr;
211
212 /* Since we use functions that rely on inferior_ptid, we need to set and
213 restore it. */
214 scoped_restore save_ptid
215 = make_scoped_restore (&inferior_ptid, regcache_get_ptid (regcache));
216
217 /* This version applies only if we're currently in spu_run. */
218 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
219 {
220 ops_beneath->to_store_registers (ops_beneath, regcache, regno);
221 return;
222 }
223
224 /* We must be stopped on a spu_run system call. */
225 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
226 return;
227
228 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
229 if (regno == -1 || regno == SPU_PC_REGNUM)
230 {
231 gdb_byte buf[4];
232 regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
233
234 target_write (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
235 buf, spufs_addr, sizeof buf);
236 }
237
238 /* The GPRs are found in the "regs" spufs file. */
239 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
240 {
241 gdb_byte buf[16 * SPU_NUM_GPRS];
242 char annex[32];
243 int i;
244
245 for (i = 0; i < SPU_NUM_GPRS; i++)
246 regcache_raw_collect (regcache, i, buf + i*16);
247
248 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
249 target_write (ops_beneath, TARGET_OBJECT_SPU, annex,
250 buf, 0, sizeof buf);
251 }
252 }
253
254 /* Override the to_xfer_partial routine. */
255 static enum target_xfer_status
256 spu_xfer_partial (struct target_ops *ops, enum target_object object,
257 const char *annex, gdb_byte *readbuf,
258 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
259 ULONGEST *xfered_len)
260 {
261 struct target_ops *ops_beneath = find_target_beneath (ops);
262
263 /* Use the "mem" spufs file to access SPU local store. */
264 if (object == TARGET_OBJECT_MEMORY)
265 {
266 int fd = SPUADDR_SPU (offset);
267 CORE_ADDR addr = SPUADDR_ADDR (offset);
268 char mem_annex[32], lslr_annex[32];
269 gdb_byte buf[32];
270 ULONGEST lslr;
271 enum target_xfer_status ret;
272
273 if (fd >= 0)
274 {
275 xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
276 ret = ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
277 mem_annex, readbuf, writebuf,
278 addr, len, xfered_len);
279 if (ret == TARGET_XFER_OK)
280 return ret;
281
282 /* SPU local store access wraps the address around at the
283 local store limit. We emulate this here. To avoid needing
284 an extra access to retrieve the LSLR, we only do that after
285 trying the original address first, and getting end-of-file. */
286 xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
287 memset (buf, 0, sizeof buf);
288 if (ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
289 lslr_annex, buf, NULL,
290 0, sizeof buf, xfered_len)
291 != TARGET_XFER_OK)
292 return ret;
293
294 lslr = strtoulst ((char *) buf, NULL, 16);
295 return ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
296 mem_annex, readbuf, writebuf,
297 addr & lslr, len, xfered_len);
298 }
299 }
300
301 return ops_beneath->to_xfer_partial (ops_beneath, object, annex,
302 readbuf, writebuf, offset, len, xfered_len);
303 }
304
305 /* Override the to_search_memory routine. */
306 static int
307 spu_search_memory (struct target_ops* ops,
308 CORE_ADDR start_addr, ULONGEST search_space_len,
309 const gdb_byte *pattern, ULONGEST pattern_len,
310 CORE_ADDR *found_addrp)
311 {
312 struct target_ops *ops_beneath = find_target_beneath (ops);
313
314 /* For SPU local store, always fall back to the simple method. */
315 if (SPUADDR_SPU (start_addr) >= 0)
316 return simple_search_memory (ops,
317 start_addr, search_space_len,
318 pattern, pattern_len, found_addrp);
319
320 return ops_beneath->to_search_memory (ops_beneath,
321 start_addr, search_space_len,
322 pattern, pattern_len, found_addrp);
323 }
324
325
326 /* Push and pop the SPU multi-architecture support target. */
327
328 static void
329 spu_multiarch_activate (void)
330 {
331 /* If GDB was configured without SPU architecture support,
332 we cannot install SPU multi-architecture support either. */
333 if (spu_gdbarch (-1) == NULL)
334 return;
335
336 push_target (&spu_ops);
337
338 /* Make sure the thread architecture is re-evaluated. */
339 registers_changed ();
340 }
341
342 static void
343 spu_multiarch_deactivate (void)
344 {
345 unpush_target (&spu_ops);
346
347 /* Make sure the thread architecture is re-evaluated. */
348 registers_changed ();
349 }
350
351 static void
352 spu_multiarch_inferior_created (struct target_ops *ops, int from_tty)
353 {
354 if (spu_standalone_p ())
355 spu_multiarch_activate ();
356 }
357
358 static void
359 spu_multiarch_solib_loaded (struct so_list *so)
360 {
361 if (!spu_standalone_p ())
362 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
363 if (spu_nr_solib++ == 0)
364 spu_multiarch_activate ();
365 }
366
367 static void
368 spu_multiarch_solib_unloaded (struct so_list *so)
369 {
370 if (!spu_standalone_p ())
371 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
372 if (--spu_nr_solib == 0)
373 spu_multiarch_deactivate ();
374 }
375
376 static void
377 spu_mourn_inferior (struct target_ops *ops)
378 {
379 struct target_ops *ops_beneath = find_target_beneath (ops);
380
381 ops_beneath->to_mourn_inferior (ops_beneath);
382 spu_multiarch_deactivate ();
383 }
384
385
386 /* Initialize the SPU multi-architecture support target. */
387
388 static void
389 init_spu_ops (void)
390 {
391 spu_ops.to_shortname = "spu";
392 spu_ops.to_longname = "SPU multi-architecture support.";
393 spu_ops.to_doc = "SPU multi-architecture support.";
394 spu_ops.to_mourn_inferior = spu_mourn_inferior;
395 spu_ops.to_fetch_registers = spu_fetch_registers;
396 spu_ops.to_store_registers = spu_store_registers;
397 spu_ops.to_xfer_partial = spu_xfer_partial;
398 spu_ops.to_search_memory = spu_search_memory;
399 spu_ops.to_region_ok_for_hw_watchpoint = spu_region_ok_for_hw_watchpoint;
400 spu_ops.to_thread_architecture = spu_thread_architecture;
401 spu_ops.to_stratum = arch_stratum;
402 spu_ops.to_magic = OPS_MAGIC;
403 }
404
405 void
406 _initialize_spu_multiarch (void)
407 {
408 /* Install ourselves on the target stack. */
409 init_spu_ops ();
410 complete_target_initialization (&spu_ops);
411
412 /* Install observers to watch for SPU objects. */
413 gdb::observers::inferior_created.attach (spu_multiarch_inferior_created);
414 gdb::observers::solib_loaded.attach (spu_multiarch_solib_loaded);
415 gdb::observers::solib_unloaded.attach (spu_multiarch_solib_unloaded);
416 }
417