]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/spu-multiarch.c
run copyright.sh for 2011.
[thirdparty/binutils-gdb.git] / gdb / spu-multiarch.c
1 /* Cell SPU GNU/Linux multi-architecture debugging support.
2 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "gdbcmd.h"
24 #include "gdb_string.h"
25 #include "gdb_assert.h"
26 #include "arch-utils.h"
27 #include "observer.h"
28 #include "inferior.h"
29 #include "regcache.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "solib.h"
33 #include "solist.h"
34
35 #include "ppc-tdep.h"
36 #include "ppc-linux-tdep.h"
37 #include "spu-tdep.h"
38
39 /* This module's target vector. */
40 static struct target_ops spu_ops;
41
42 /* Number of SPE objects loaded into the current inferior. */
43 static int spu_nr_solib;
44
45 /* Stand-alone SPE executable? */
46 #define spu_standalone_p() \
47 (symfile_objfile && symfile_objfile->obfd \
48 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)
49
50 /* PPU side system calls. */
51 #define INSTR_SC 0x44000002
52 #define NR_spu_run 0x0116
53
54 /* If the PPU thread is currently stopped on a spu_run system call,
55 return to FD and ADDR the file handle and NPC parameter address
56 used with the system call. Return non-zero if successful. */
57 static int
58 parse_spufs_run (ptid_t ptid, int *fd, CORE_ADDR *addr)
59 {
60 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
61 struct gdbarch_tdep *tdep;
62 struct regcache *regcache;
63 char buf[4];
64 CORE_ADDR pc;
65 ULONGEST regval;
66
67 /* If we're not on PPU, there's nothing to detect. */
68 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_powerpc)
69 return 0;
70
71 /* Get PPU-side registers. */
72 regcache = get_thread_arch_regcache (ptid, target_gdbarch);
73 tdep = gdbarch_tdep (target_gdbarch);
74
75 /* Fetch instruction preceding current NIP. */
76 if (target_read_memory (regcache_read_pc (regcache) - 4, buf, 4) != 0)
77 return 0;
78 /* It should be a "sc" instruction. */
79 if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
80 return 0;
81 /* System call number should be NR_spu_run. */
82 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum, &regval);
83 if (regval != NR_spu_run)
84 return 0;
85
86 /* Register 3 contains fd, register 4 the NPC param pointer. */
87 regcache_cooked_read_unsigned (regcache, PPC_ORIG_R3_REGNUM, &regval);
88 *fd = (int) regval;
89 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 4, &regval);
90 *addr = (CORE_ADDR) regval;
91 return 1;
92 }
93
94 /* Find gdbarch for SPU context SPUFS_FD. */
95 static struct gdbarch *
96 spu_gdbarch (int spufs_fd)
97 {
98 struct gdbarch_info info;
99 gdbarch_info_init (&info);
100 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
101 info.byte_order = BFD_ENDIAN_BIG;
102 info.osabi = GDB_OSABI_LINUX;
103 info.tdep_info = (void *) &spufs_fd;
104 return gdbarch_find_by_info (info);
105 }
106
107 /* Override the to_thread_architecture routine. */
108 static struct gdbarch *
109 spu_thread_architecture (struct target_ops *ops, ptid_t ptid)
110 {
111 int spufs_fd;
112 CORE_ADDR spufs_addr;
113
114 if (parse_spufs_run (ptid, &spufs_fd, &spufs_addr))
115 return spu_gdbarch (spufs_fd);
116
117 return target_gdbarch;
118 }
119
120 /* Override the to_region_ok_for_hw_watchpoint routine. */
121 static int
122 spu_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
123 {
124 struct target_ops *ops_beneath = find_target_beneath (&spu_ops);
125 while (ops_beneath && !ops_beneath->to_region_ok_for_hw_watchpoint)
126 ops_beneath = find_target_beneath (ops_beneath);
127
128 /* We cannot watch SPU local store. */
129 if (SPUADDR_SPU (addr) != -1)
130 return 0;
131
132 if (ops_beneath)
133 return ops_beneath->to_region_ok_for_hw_watchpoint (addr, len);
134
135 return 0;
136 }
137
138 /* Override the to_fetch_registers routine. */
139 static void
140 spu_fetch_registers (struct target_ops *ops,
141 struct regcache *regcache, int regno)
142 {
143 struct gdbarch *gdbarch = get_regcache_arch (regcache);
144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
145 struct target_ops *ops_beneath = find_target_beneath (ops);
146 int spufs_fd;
147 CORE_ADDR spufs_addr;
148
149 /* This version applies only if we're currently in spu_run. */
150 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
151 {
152 while (ops_beneath && !ops_beneath->to_fetch_registers)
153 ops_beneath = find_target_beneath (ops_beneath);
154
155 gdb_assert (ops_beneath);
156 ops_beneath->to_fetch_registers (ops_beneath, regcache, regno);
157 return;
158 }
159
160 /* We must be stopped on a spu_run system call. */
161 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
162 return;
163
164 /* The ID register holds the spufs file handle. */
165 if (regno == -1 || regno == SPU_ID_REGNUM)
166 {
167 char buf[4];
168 store_unsigned_integer (buf, 4, byte_order, spufs_fd);
169 regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
170 }
171
172 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
173 if (regno == -1 || regno == SPU_PC_REGNUM)
174 {
175 char buf[4];
176
177 if (target_read (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
178 buf, spufs_addr, sizeof buf) == sizeof buf)
179 regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
180 }
181
182 /* The GPRs are found in the "regs" spufs file. */
183 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
184 {
185 char buf[16 * SPU_NUM_GPRS], annex[32];
186 int i;
187
188 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
189 if (target_read (ops_beneath, TARGET_OBJECT_SPU, annex,
190 buf, 0, sizeof buf) == sizeof buf)
191 for (i = 0; i < SPU_NUM_GPRS; i++)
192 regcache_raw_supply (regcache, i, buf + i*16);
193 }
194 }
195
196 /* Override the to_store_registers routine. */
197 static void
198 spu_store_registers (struct target_ops *ops,
199 struct regcache *regcache, int regno)
200 {
201 struct gdbarch *gdbarch = get_regcache_arch (regcache);
202 struct target_ops *ops_beneath = find_target_beneath (ops);
203 int spufs_fd;
204 CORE_ADDR spufs_addr;
205
206 /* This version applies only if we're currently in spu_run. */
207 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
208 {
209 while (ops_beneath && !ops_beneath->to_fetch_registers)
210 ops_beneath = find_target_beneath (ops_beneath);
211
212 gdb_assert (ops_beneath);
213 ops_beneath->to_store_registers (ops_beneath, regcache, regno);
214 return;
215 }
216
217 /* We must be stopped on a spu_run system call. */
218 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
219 return;
220
221 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
222 if (regno == -1 || regno == SPU_PC_REGNUM)
223 {
224 char buf[4];
225 regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
226
227 target_write (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
228 buf, spufs_addr, sizeof buf);
229 }
230
231 /* The GPRs are found in the "regs" spufs file. */
232 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
233 {
234 char buf[16 * SPU_NUM_GPRS], annex[32];
235 int i;
236
237 for (i = 0; i < SPU_NUM_GPRS; i++)
238 regcache_raw_collect (regcache, i, buf + i*16);
239
240 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
241 target_write (ops_beneath, TARGET_OBJECT_SPU, annex,
242 buf, 0, sizeof buf);
243 }
244 }
245
246 /* Override the to_xfer_partial routine. */
247 static LONGEST
248 spu_xfer_partial (struct target_ops *ops, enum target_object object,
249 const char *annex, gdb_byte *readbuf,
250 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
251 {
252 struct target_ops *ops_beneath = find_target_beneath (ops);
253 while (ops_beneath && !ops_beneath->to_xfer_partial)
254 ops_beneath = find_target_beneath (ops_beneath);
255 gdb_assert (ops_beneath);
256
257 /* Use the "mem" spufs file to access SPU local store. */
258 if (object == TARGET_OBJECT_MEMORY)
259 {
260 int fd = SPUADDR_SPU (offset);
261 CORE_ADDR addr = SPUADDR_ADDR (offset);
262 char mem_annex[32], lslr_annex[32];
263 gdb_byte buf[32];
264 ULONGEST lslr;
265 LONGEST ret;
266
267 if (fd >= 0)
268 {
269 xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
270 ret = ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
271 mem_annex, readbuf, writebuf,
272 addr, len);
273 if (ret > 0)
274 return ret;
275
276 /* SPU local store access wraps the address around at the
277 local store limit. We emulate this here. To avoid needing
278 an extra access to retrieve the LSLR, we only do that after
279 trying the original address first, and getting end-of-file. */
280 xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
281 memset (buf, 0, sizeof buf);
282 if (ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
283 lslr_annex, buf, NULL,
284 0, sizeof buf) <= 0)
285 return ret;
286
287 lslr = strtoulst (buf, NULL, 16);
288 return ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
289 mem_annex, readbuf, writebuf,
290 addr & lslr, len);
291 }
292 }
293
294 return ops_beneath->to_xfer_partial (ops_beneath, object, annex,
295 readbuf, writebuf, offset, len);
296 }
297
298 /* Override the to_search_memory routine. */
299 static int
300 spu_search_memory (struct target_ops* ops,
301 CORE_ADDR start_addr, ULONGEST search_space_len,
302 const gdb_byte *pattern, ULONGEST pattern_len,
303 CORE_ADDR *found_addrp)
304 {
305 struct target_ops *ops_beneath = find_target_beneath (ops);
306 while (ops_beneath && !ops_beneath->to_search_memory)
307 ops_beneath = find_target_beneath (ops_beneath);
308
309 /* For SPU local store, always fall back to the simple method. Likewise
310 if we do not have any target-specific special implementation. */
311 if (!ops_beneath || SPUADDR_SPU (start_addr) >= 0)
312 return simple_search_memory (ops,
313 start_addr, search_space_len,
314 pattern, pattern_len, found_addrp);
315
316 return ops_beneath->to_search_memory (ops_beneath,
317 start_addr, search_space_len,
318 pattern, pattern_len, found_addrp);
319 }
320
321
322 /* Push and pop the SPU multi-architecture support target. */
323
324 static void
325 spu_multiarch_activate (void)
326 {
327 /* If GDB was configured without SPU architecture support,
328 we cannot install SPU multi-architecture support either. */
329 if (spu_gdbarch (-1) == NULL)
330 return;
331
332 push_target (&spu_ops);
333
334 /* Make sure the thread architecture is re-evaluated. */
335 registers_changed ();
336 }
337
338 static void
339 spu_multiarch_deactivate (void)
340 {
341 unpush_target (&spu_ops);
342
343 /* Make sure the thread architecture is re-evaluated. */
344 registers_changed ();
345 }
346
347 static void
348 spu_multiarch_inferior_created (struct target_ops *ops, int from_tty)
349 {
350 if (spu_standalone_p ())
351 spu_multiarch_activate ();
352 }
353
354 static void
355 spu_multiarch_solib_loaded (struct so_list *so)
356 {
357 if (!spu_standalone_p ())
358 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
359 if (spu_nr_solib++ == 0)
360 spu_multiarch_activate ();
361 }
362
363 static void
364 spu_multiarch_solib_unloaded (struct so_list *so)
365 {
366 if (!spu_standalone_p ())
367 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
368 if (--spu_nr_solib == 0)
369 spu_multiarch_deactivate ();
370 }
371
372 static void
373 spu_mourn_inferior (struct target_ops *ops)
374 {
375 struct target_ops *ops_beneath = find_target_beneath (ops);
376 while (ops_beneath && !ops_beneath->to_mourn_inferior)
377 ops_beneath = find_target_beneath (ops_beneath);
378
379 gdb_assert (ops_beneath);
380 ops_beneath->to_mourn_inferior (ops_beneath);
381 spu_multiarch_deactivate ();
382 }
383
384
385 /* Initialize the SPU multi-architecture support target. */
386
387 static void
388 init_spu_ops (void)
389 {
390 spu_ops.to_shortname = "spu";
391 spu_ops.to_longname = "SPU multi-architecture support.";
392 spu_ops.to_doc = "SPU multi-architecture support.";
393 spu_ops.to_mourn_inferior = spu_mourn_inferior;
394 spu_ops.to_fetch_registers = spu_fetch_registers;
395 spu_ops.to_store_registers = spu_store_registers;
396 spu_ops.to_xfer_partial = spu_xfer_partial;
397 spu_ops.to_search_memory = spu_search_memory;
398 spu_ops.to_region_ok_for_hw_watchpoint = spu_region_ok_for_hw_watchpoint;
399 spu_ops.to_thread_architecture = spu_thread_architecture;
400 spu_ops.to_stratum = arch_stratum;
401 spu_ops.to_magic = OPS_MAGIC;
402 }
403
404 void
405 _initialize_spu_multiarch (void)
406 {
407 /* Install ourselves on the target stack. */
408 init_spu_ops ();
409 add_target (&spu_ops);
410
411 /* Install observers to watch for SPU objects. */
412 observer_attach_inferior_created (spu_multiarch_inferior_created);
413 observer_attach_solib_loaded (spu_multiarch_solib_loaded);
414 observer_attach_solib_unloaded (spu_multiarch_solib_unloaded);
415 }
416