]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/spu-tdep.c
-Wwrite-strings: The Rest
[thirdparty/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "disasm.h"
37 #include "objfiles.h"
38 #include "language.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "floatformat.h"
42 #include "block.h"
43 #include "observer.h"
44 #include "infcall.h"
45 #include "dwarf2.h"
46 #include "dwarf2-frame.h"
47 #include "ax.h"
48 #include "spu-tdep.h"
49 #include "location.h"
50
51 /* The list of available "set spu " and "show spu " commands. */
52 static struct cmd_list_element *setspucmdlist = NULL;
53 static struct cmd_list_element *showspucmdlist = NULL;
54
55 /* Whether to stop for new SPE contexts. */
56 static int spu_stop_on_load_p = 0;
57 /* Whether to automatically flush the SW-managed cache. */
58 static int spu_auto_flush_cache_p = 1;
59
60
61 /* The tdep structure. */
62 struct gdbarch_tdep
63 {
64 /* The spufs ID identifying our address space. */
65 int id;
66
67 /* SPU-specific vector type. */
68 struct type *spu_builtin_type_vec128;
69 };
70
71
72 /* SPU-specific vector type. */
73 static struct type *
74 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75 {
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->spu_builtin_type_vec128)
79 {
80 const struct builtin_type *bt = builtin_type (gdbarch);
81 struct type *t;
82
83 t = arch_composite_type (gdbarch,
84 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
85 append_composite_type_field (t, "uint128", bt->builtin_int128);
86 append_composite_type_field (t, "v2_int64",
87 init_vector_type (bt->builtin_int64, 2));
88 append_composite_type_field (t, "v4_int32",
89 init_vector_type (bt->builtin_int32, 4));
90 append_composite_type_field (t, "v8_int16",
91 init_vector_type (bt->builtin_int16, 8));
92 append_composite_type_field (t, "v16_int8",
93 init_vector_type (bt->builtin_int8, 16));
94 append_composite_type_field (t, "v2_double",
95 init_vector_type (bt->builtin_double, 2));
96 append_composite_type_field (t, "v4_float",
97 init_vector_type (bt->builtin_float, 4));
98
99 TYPE_VECTOR (t) = 1;
100 TYPE_NAME (t) = "spu_builtin_type_vec128";
101
102 tdep->spu_builtin_type_vec128 = t;
103 }
104
105 return tdep->spu_builtin_type_vec128;
106 }
107
108
109 /* The list of available "info spu " commands. */
110 static struct cmd_list_element *infospucmdlist = NULL;
111
112 /* Registers. */
113
114 static const char *
115 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
116 {
117 static const char *register_names[] =
118 {
119 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
120 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
121 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
122 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
123 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
124 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
125 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
126 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
127 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
128 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
129 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
130 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
131 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
132 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
133 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
134 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
135 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
136 };
137
138 if (reg_nr < 0)
139 return NULL;
140 if (reg_nr >= sizeof register_names / sizeof *register_names)
141 return NULL;
142
143 return register_names[reg_nr];
144 }
145
146 static struct type *
147 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148 {
149 if (reg_nr < SPU_NUM_GPRS)
150 return spu_builtin_type_vec128 (gdbarch);
151
152 switch (reg_nr)
153 {
154 case SPU_ID_REGNUM:
155 return builtin_type (gdbarch)->builtin_uint32;
156
157 case SPU_PC_REGNUM:
158 return builtin_type (gdbarch)->builtin_func_ptr;
159
160 case SPU_SP_REGNUM:
161 return builtin_type (gdbarch)->builtin_data_ptr;
162
163 case SPU_FPSCR_REGNUM:
164 return builtin_type (gdbarch)->builtin_uint128;
165
166 case SPU_SRR0_REGNUM:
167 return builtin_type (gdbarch)->builtin_uint32;
168
169 case SPU_LSLR_REGNUM:
170 return builtin_type (gdbarch)->builtin_uint32;
171
172 case SPU_DECR_REGNUM:
173 return builtin_type (gdbarch)->builtin_uint32;
174
175 case SPU_DECR_STATUS_REGNUM:
176 return builtin_type (gdbarch)->builtin_uint32;
177
178 default:
179 internal_error (__FILE__, __LINE__, _("invalid regnum"));
180 }
181 }
182
183 /* Pseudo registers for preferred slots - stack pointer. */
184
185 static enum register_status
186 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
187 gdb_byte *buf)
188 {
189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 enum register_status status;
192 gdb_byte reg[32];
193 char annex[32];
194 ULONGEST id;
195 ULONGEST ul;
196
197 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
198 if (status != REG_VALID)
199 return status;
200 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
201 memset (reg, 0, sizeof reg);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex,
203 reg, 0, sizeof reg);
204
205 ul = strtoulst ((char *) reg, NULL, 16);
206 store_unsigned_integer (buf, 4, byte_order, ul);
207 return REG_VALID;
208 }
209
210 static enum register_status
211 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
212 int regnum, gdb_byte *buf)
213 {
214 gdb_byte reg[16];
215 char annex[32];
216 ULONGEST id;
217 enum register_status status;
218
219 switch (regnum)
220 {
221 case SPU_SP_REGNUM:
222 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
223 if (status != REG_VALID)
224 return status;
225 memcpy (buf, reg, 4);
226 return status;
227
228 case SPU_FPSCR_REGNUM:
229 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
230 if (status != REG_VALID)
231 return status;
232 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
233 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
234 return status;
235
236 case SPU_SRR0_REGNUM:
237 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
238
239 case SPU_LSLR_REGNUM:
240 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
241
242 case SPU_DECR_REGNUM:
243 return spu_pseudo_register_read_spu (regcache, "decr", buf);
244
245 case SPU_DECR_STATUS_REGNUM:
246 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
247
248 default:
249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
250 }
251 }
252
253 static void
254 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
255 const gdb_byte *buf)
256 {
257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
259 char reg[32];
260 char annex[32];
261 ULONGEST id;
262
263 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
264 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
265 xsnprintf (reg, sizeof reg, "0x%s",
266 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
267 target_write (&current_target, TARGET_OBJECT_SPU, annex,
268 (gdb_byte *) reg, 0, strlen (reg));
269 }
270
271 static void
272 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
273 int regnum, const gdb_byte *buf)
274 {
275 gdb_byte reg[16];
276 char annex[32];
277 ULONGEST id;
278
279 switch (regnum)
280 {
281 case SPU_SP_REGNUM:
282 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
283 memcpy (reg, buf, 4);
284 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
285 break;
286
287 case SPU_FPSCR_REGNUM:
288 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
289 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
290 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
291 break;
292
293 case SPU_SRR0_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "srr0", buf);
295 break;
296
297 case SPU_LSLR_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "lslr", buf);
299 break;
300
301 case SPU_DECR_REGNUM:
302 spu_pseudo_register_write_spu (regcache, "decr", buf);
303 break;
304
305 case SPU_DECR_STATUS_REGNUM:
306 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
307 break;
308
309 default:
310 internal_error (__FILE__, __LINE__, _("invalid regnum"));
311 }
312 }
313
314 static int
315 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
316 struct agent_expr *ax, int regnum)
317 {
318 switch (regnum)
319 {
320 case SPU_SP_REGNUM:
321 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
322 return 0;
323
324 case SPU_FPSCR_REGNUM:
325 case SPU_SRR0_REGNUM:
326 case SPU_LSLR_REGNUM:
327 case SPU_DECR_REGNUM:
328 case SPU_DECR_STATUS_REGNUM:
329 return -1;
330
331 default:
332 internal_error (__FILE__, __LINE__, _("invalid regnum"));
333 }
334 }
335
336 static int
337 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
338 struct agent_expr *ax, int regnum)
339 {
340 switch (regnum)
341 {
342 case SPU_SP_REGNUM:
343 ax_reg (ax, SPU_RAW_SP_REGNUM);
344 return 0;
345
346 case SPU_FPSCR_REGNUM:
347 case SPU_SRR0_REGNUM:
348 case SPU_LSLR_REGNUM:
349 case SPU_DECR_REGNUM:
350 case SPU_DECR_STATUS_REGNUM:
351 return -1;
352
353 default:
354 internal_error (__FILE__, __LINE__, _("invalid regnum"));
355 }
356 }
357
358
359 /* Value conversion -- access scalar values at the preferred slot. */
360
361 static struct value *
362 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
363 int regnum, struct frame_id frame_id)
364 {
365 struct value *value = default_value_from_register (gdbarch, type,
366 regnum, frame_id);
367 LONGEST len = TYPE_LENGTH (type);
368
369 if (regnum < SPU_NUM_GPRS && len < 16)
370 {
371 int preferred_slot = len < 4 ? 4 - len : 0;
372 set_value_offset (value, preferred_slot);
373 }
374
375 return value;
376 }
377
378 /* Register groups. */
379
380 static int
381 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
382 struct reggroup *group)
383 {
384 /* Registers displayed via 'info regs'. */
385 if (group == general_reggroup)
386 return 1;
387
388 /* Registers displayed via 'info float'. */
389 if (group == float_reggroup)
390 return 0;
391
392 /* Registers that need to be saved/restored in order to
393 push or pop frames. */
394 if (group == save_reggroup || group == restore_reggroup)
395 return 1;
396
397 return default_register_reggroup_p (gdbarch, regnum, group);
398 }
399
400 /* DWARF-2 register numbers. */
401
402 static int
403 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
404 {
405 /* Use cooked instead of raw SP. */
406 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
407 }
408
409
410 /* Address handling. */
411
412 static int
413 spu_gdbarch_id (struct gdbarch *gdbarch)
414 {
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416 int id = tdep->id;
417
418 /* The objfile architecture of a standalone SPU executable does not
419 provide an SPU ID. Retrieve it from the objfile's relocated
420 address range in this special case. */
421 if (id == -1
422 && symfile_objfile && symfile_objfile->obfd
423 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
424 && symfile_objfile->sections != symfile_objfile->sections_end)
425 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
426
427 return id;
428 }
429
430 static int
431 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
432 {
433 if (dwarf2_addr_class == 1)
434 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
435 else
436 return 0;
437 }
438
439 static const char *
440 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
441 {
442 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
443 return "__ea";
444 else
445 return NULL;
446 }
447
448 static int
449 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
450 const char *name, int *type_flags_ptr)
451 {
452 if (strcmp (name, "__ea") == 0)
453 {
454 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
455 return 1;
456 }
457 else
458 return 0;
459 }
460
461 static void
462 spu_address_to_pointer (struct gdbarch *gdbarch,
463 struct type *type, gdb_byte *buf, CORE_ADDR addr)
464 {
465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
467 SPUADDR_ADDR (addr));
468 }
469
470 static CORE_ADDR
471 spu_pointer_to_address (struct gdbarch *gdbarch,
472 struct type *type, const gdb_byte *buf)
473 {
474 int id = spu_gdbarch_id (gdbarch);
475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
476 ULONGEST addr
477 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
478
479 /* Do not convert __ea pointers. */
480 if (TYPE_ADDRESS_CLASS_1 (type))
481 return addr;
482
483 return addr? SPUADDR (id, addr) : 0;
484 }
485
486 static CORE_ADDR
487 spu_integer_to_address (struct gdbarch *gdbarch,
488 struct type *type, const gdb_byte *buf)
489 {
490 int id = spu_gdbarch_id (gdbarch);
491 ULONGEST addr = unpack_long (type, buf);
492
493 return SPUADDR (id, addr);
494 }
495
496
497 /* Decoding SPU instructions. */
498
499 enum
500 {
501 op_lqd = 0x34,
502 op_lqx = 0x3c4,
503 op_lqa = 0x61,
504 op_lqr = 0x67,
505 op_stqd = 0x24,
506 op_stqx = 0x144,
507 op_stqa = 0x41,
508 op_stqr = 0x47,
509
510 op_il = 0x081,
511 op_ila = 0x21,
512 op_a = 0x0c0,
513 op_ai = 0x1c,
514
515 op_selb = 0x8,
516
517 op_br = 0x64,
518 op_bra = 0x60,
519 op_brsl = 0x66,
520 op_brasl = 0x62,
521 op_brnz = 0x42,
522 op_brz = 0x40,
523 op_brhnz = 0x46,
524 op_brhz = 0x44,
525 op_bi = 0x1a8,
526 op_bisl = 0x1a9,
527 op_biz = 0x128,
528 op_binz = 0x129,
529 op_bihz = 0x12a,
530 op_bihnz = 0x12b,
531 };
532
533 static int
534 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
535 {
536 if ((insn >> 21) == op)
537 {
538 *rt = insn & 127;
539 *ra = (insn >> 7) & 127;
540 *rb = (insn >> 14) & 127;
541 return 1;
542 }
543
544 return 0;
545 }
546
547 static int
548 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
549 {
550 if ((insn >> 28) == op)
551 {
552 *rt = (insn >> 21) & 127;
553 *ra = (insn >> 7) & 127;
554 *rb = (insn >> 14) & 127;
555 *rc = insn & 127;
556 return 1;
557 }
558
559 return 0;
560 }
561
562 static int
563 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
564 {
565 if ((insn >> 21) == op)
566 {
567 *rt = insn & 127;
568 *ra = (insn >> 7) & 127;
569 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
570 return 1;
571 }
572
573 return 0;
574 }
575
576 static int
577 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
578 {
579 if ((insn >> 24) == op)
580 {
581 *rt = insn & 127;
582 *ra = (insn >> 7) & 127;
583 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
584 return 1;
585 }
586
587 return 0;
588 }
589
590 static int
591 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
592 {
593 if ((insn >> 23) == op)
594 {
595 *rt = insn & 127;
596 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
597 return 1;
598 }
599
600 return 0;
601 }
602
603 static int
604 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
605 {
606 if ((insn >> 25) == op)
607 {
608 *rt = insn & 127;
609 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
610 return 1;
611 }
612
613 return 0;
614 }
615
616 static int
617 is_branch (unsigned int insn, int *offset, int *reg)
618 {
619 int rt, i7, i16;
620
621 if (is_ri16 (insn, op_br, &rt, &i16)
622 || is_ri16 (insn, op_brsl, &rt, &i16)
623 || is_ri16 (insn, op_brnz, &rt, &i16)
624 || is_ri16 (insn, op_brz, &rt, &i16)
625 || is_ri16 (insn, op_brhnz, &rt, &i16)
626 || is_ri16 (insn, op_brhz, &rt, &i16))
627 {
628 *reg = SPU_PC_REGNUM;
629 *offset = i16 << 2;
630 return 1;
631 }
632
633 if (is_ri16 (insn, op_bra, &rt, &i16)
634 || is_ri16 (insn, op_brasl, &rt, &i16))
635 {
636 *reg = -1;
637 *offset = i16 << 2;
638 return 1;
639 }
640
641 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
642 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
643 || is_ri7 (insn, op_biz, &rt, reg, &i7)
644 || is_ri7 (insn, op_binz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
646 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
647 {
648 *offset = 0;
649 return 1;
650 }
651
652 return 0;
653 }
654
655
656 /* Prolog parsing. */
657
658 struct spu_prologue_data
659 {
660 /* Stack frame size. -1 if analysis was unsuccessful. */
661 int size;
662
663 /* How to find the CFA. The CFA is equal to SP at function entry. */
664 int cfa_reg;
665 int cfa_offset;
666
667 /* Offset relative to CFA where a register is saved. -1 if invalid. */
668 int reg_offset[SPU_NUM_GPRS];
669 };
670
671 static CORE_ADDR
672 spu_analyze_prologue (struct gdbarch *gdbarch,
673 CORE_ADDR start_pc, CORE_ADDR end_pc,
674 struct spu_prologue_data *data)
675 {
676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
677 int found_sp = 0;
678 int found_fp = 0;
679 int found_lr = 0;
680 int found_bc = 0;
681 int reg_immed[SPU_NUM_GPRS];
682 gdb_byte buf[16];
683 CORE_ADDR prolog_pc = start_pc;
684 CORE_ADDR pc;
685 int i;
686
687
688 /* Initialize DATA to default values. */
689 data->size = -1;
690
691 data->cfa_reg = SPU_RAW_SP_REGNUM;
692 data->cfa_offset = 0;
693
694 for (i = 0; i < SPU_NUM_GPRS; i++)
695 data->reg_offset[i] = -1;
696
697 /* Set up REG_IMMED array. This is non-zero for a register if we know its
698 preferred slot currently holds this immediate value. */
699 for (i = 0; i < SPU_NUM_GPRS; i++)
700 reg_immed[i] = 0;
701
702 /* Scan instructions until the first branch.
703
704 The following instructions are important prolog components:
705
706 - The first instruction to set up the stack pointer.
707 - The first instruction to set up the frame pointer.
708 - The first instruction to save the link register.
709 - The first instruction to save the backchain.
710
711 We return the instruction after the latest of these four,
712 or the incoming PC if none is found. The first instruction
713 to set up the stack pointer also defines the frame size.
714
715 Note that instructions saving incoming arguments to their stack
716 slots are not counted as important, because they are hard to
717 identify with certainty. This should not matter much, because
718 arguments are relevant only in code compiled with debug data,
719 and in such code the GDB core will advance until the first source
720 line anyway, using SAL data.
721
722 For purposes of stack unwinding, we analyze the following types
723 of instructions in addition:
724
725 - Any instruction adding to the current frame pointer.
726 - Any instruction loading an immediate constant into a register.
727 - Any instruction storing a register onto the stack.
728
729 These are used to compute the CFA and REG_OFFSET output. */
730
731 for (pc = start_pc; pc < end_pc; pc += 4)
732 {
733 unsigned int insn;
734 int rt, ra, rb, rc, immed;
735
736 if (target_read_memory (pc, buf, 4))
737 break;
738 insn = extract_unsigned_integer (buf, 4, byte_order);
739
740 /* AI is the typical instruction to set up a stack frame.
741 It is also used to initialize the frame pointer. */
742 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
743 {
744 if (rt == data->cfa_reg && ra == data->cfa_reg)
745 data->cfa_offset -= immed;
746
747 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
748 && !found_sp)
749 {
750 found_sp = 1;
751 prolog_pc = pc + 4;
752
753 data->size = -immed;
754 }
755 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
756 && !found_fp)
757 {
758 found_fp = 1;
759 prolog_pc = pc + 4;
760
761 data->cfa_reg = SPU_FP_REGNUM;
762 data->cfa_offset -= immed;
763 }
764 }
765
766 /* A is used to set up stack frames of size >= 512 bytes.
767 If we have tracked the contents of the addend register,
768 we can handle this as well. */
769 else if (is_rr (insn, op_a, &rt, &ra, &rb))
770 {
771 if (rt == data->cfa_reg && ra == data->cfa_reg)
772 {
773 if (reg_immed[rb] != 0)
774 data->cfa_offset -= reg_immed[rb];
775 else
776 data->cfa_reg = -1; /* We don't know the CFA any more. */
777 }
778
779 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
780 && !found_sp)
781 {
782 found_sp = 1;
783 prolog_pc = pc + 4;
784
785 if (reg_immed[rb] != 0)
786 data->size = -reg_immed[rb];
787 }
788 }
789
790 /* We need to track IL and ILA used to load immediate constants
791 in case they are later used as input to an A instruction. */
792 else if (is_ri16 (insn, op_il, &rt, &immed))
793 {
794 reg_immed[rt] = immed;
795
796 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
797 found_sp = 1;
798 }
799
800 else if (is_ri18 (insn, op_ila, &rt, &immed))
801 {
802 reg_immed[rt] = immed & 0x3ffff;
803
804 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
805 found_sp = 1;
806 }
807
808 /* STQD is used to save registers to the stack. */
809 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
810 {
811 if (ra == data->cfa_reg)
812 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
813
814 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
815 && !found_lr)
816 {
817 found_lr = 1;
818 prolog_pc = pc + 4;
819 }
820
821 if (ra == SPU_RAW_SP_REGNUM
822 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
823 && !found_bc)
824 {
825 found_bc = 1;
826 prolog_pc = pc + 4;
827 }
828 }
829
830 /* _start uses SELB to set up the stack pointer. */
831 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
832 {
833 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
834 found_sp = 1;
835 }
836
837 /* We terminate if we find a branch. */
838 else if (is_branch (insn, &immed, &ra))
839 break;
840 }
841
842
843 /* If we successfully parsed until here, and didn't find any instruction
844 modifying SP, we assume we have a frameless function. */
845 if (!found_sp)
846 data->size = 0;
847
848 /* Return cooked instead of raw SP. */
849 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
850 data->cfa_reg = SPU_SP_REGNUM;
851
852 return prolog_pc;
853 }
854
855 /* Return the first instruction after the prologue starting at PC. */
856 static CORE_ADDR
857 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
858 {
859 struct spu_prologue_data data;
860 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
861 }
862
863 /* Return the frame pointer in use at address PC. */
864 static void
865 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
866 int *reg, LONGEST *offset)
867 {
868 struct spu_prologue_data data;
869 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
870
871 if (data.size != -1 && data.cfa_reg != -1)
872 {
873 /* The 'frame pointer' address is CFA minus frame size. */
874 *reg = data.cfa_reg;
875 *offset = data.cfa_offset - data.size;
876 }
877 else
878 {
879 /* ??? We don't really know ... */
880 *reg = SPU_SP_REGNUM;
881 *offset = 0;
882 }
883 }
884
885 /* Implement the stack_frame_destroyed_p gdbarch method.
886
887 1) scan forward from the point of execution:
888 a) If you find an instruction that modifies the stack pointer
889 or transfers control (except a return), execution is not in
890 an epilogue, return.
891 b) Stop scanning if you find a return instruction or reach the
892 end of the function or reach the hard limit for the size of
893 an epilogue.
894 2) scan backward from the point of execution:
895 a) If you find an instruction that modifies the stack pointer,
896 execution *is* in an epilogue, return.
897 b) Stop scanning if you reach an instruction that transfers
898 control or the beginning of the function or reach the hard
899 limit for the size of an epilogue. */
900
901 static int
902 spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
903 {
904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
905 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
906 bfd_byte buf[4];
907 unsigned int insn;
908 int rt, ra, rb, immed;
909
910 /* Find the search limits based on function boundaries and hard limit.
911 We assume the epilogue can be up to 64 instructions long. */
912
913 const int spu_max_epilogue_size = 64 * 4;
914
915 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
916 return 0;
917
918 if (pc - func_start < spu_max_epilogue_size)
919 epilogue_start = func_start;
920 else
921 epilogue_start = pc - spu_max_epilogue_size;
922
923 if (func_end - pc < spu_max_epilogue_size)
924 epilogue_end = func_end;
925 else
926 epilogue_end = pc + spu_max_epilogue_size;
927
928 /* Scan forward until next 'bi $0'. */
929
930 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
931 {
932 if (target_read_memory (scan_pc, buf, 4))
933 return 0;
934 insn = extract_unsigned_integer (buf, 4, byte_order);
935
936 if (is_branch (insn, &immed, &ra))
937 {
938 if (immed == 0 && ra == SPU_LR_REGNUM)
939 break;
940
941 return 0;
942 }
943
944 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
945 || is_rr (insn, op_a, &rt, &ra, &rb)
946 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
947 {
948 if (rt == SPU_RAW_SP_REGNUM)
949 return 0;
950 }
951 }
952
953 if (scan_pc >= epilogue_end)
954 return 0;
955
956 /* Scan backward until adjustment to stack pointer (R1). */
957
958 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
959 {
960 if (target_read_memory (scan_pc, buf, 4))
961 return 0;
962 insn = extract_unsigned_integer (buf, 4, byte_order);
963
964 if (is_branch (insn, &immed, &ra))
965 return 0;
966
967 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
968 || is_rr (insn, op_a, &rt, &ra, &rb)
969 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
970 {
971 if (rt == SPU_RAW_SP_REGNUM)
972 return 1;
973 }
974 }
975
976 return 0;
977 }
978
979
980 /* Normal stack frames. */
981
982 struct spu_unwind_cache
983 {
984 CORE_ADDR func;
985 CORE_ADDR frame_base;
986 CORE_ADDR local_base;
987
988 struct trad_frame_saved_reg *saved_regs;
989 };
990
991 static struct spu_unwind_cache *
992 spu_frame_unwind_cache (struct frame_info *this_frame,
993 void **this_prologue_cache)
994 {
995 struct gdbarch *gdbarch = get_frame_arch (this_frame);
996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
998 struct spu_unwind_cache *info;
999 struct spu_prologue_data data;
1000 CORE_ADDR id = tdep->id;
1001 gdb_byte buf[16];
1002
1003 if (*this_prologue_cache)
1004 return (struct spu_unwind_cache *) *this_prologue_cache;
1005
1006 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1007 *this_prologue_cache = info;
1008 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1009 info->frame_base = 0;
1010 info->local_base = 0;
1011
1012 /* Find the start of the current function, and analyze its prologue. */
1013 info->func = get_frame_func (this_frame);
1014 if (info->func == 0)
1015 {
1016 /* Fall back to using the current PC as frame ID. */
1017 info->func = get_frame_pc (this_frame);
1018 data.size = -1;
1019 }
1020 else
1021 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1022 &data);
1023
1024 /* If successful, use prologue analysis data. */
1025 if (data.size != -1 && data.cfa_reg != -1)
1026 {
1027 CORE_ADDR cfa;
1028 int i;
1029
1030 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1031 get_frame_register (this_frame, data.cfa_reg, buf);
1032 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1033 cfa = SPUADDR (id, cfa);
1034
1035 /* Call-saved register slots. */
1036 for (i = 0; i < SPU_NUM_GPRS; i++)
1037 if (i == SPU_LR_REGNUM
1038 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1039 if (data.reg_offset[i] != -1)
1040 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1041
1042 /* Frame bases. */
1043 info->frame_base = cfa;
1044 info->local_base = cfa - data.size;
1045 }
1046
1047 /* Otherwise, fall back to reading the backchain link. */
1048 else
1049 {
1050 CORE_ADDR reg;
1051 LONGEST backchain;
1052 ULONGEST lslr;
1053 int status;
1054
1055 /* Get local store limit. */
1056 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1057 if (!lslr)
1058 lslr = (ULONGEST) -1;
1059
1060 /* Get the backchain. */
1061 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1062 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1063 &backchain);
1064
1065 /* A zero backchain terminates the frame chain. Also, sanity
1066 check against the local store size limit. */
1067 if (status && backchain > 0 && backchain <= lslr)
1068 {
1069 /* Assume the link register is saved into its slot. */
1070 if (backchain + 16 <= lslr)
1071 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1072 backchain + 16);
1073
1074 /* Frame bases. */
1075 info->frame_base = SPUADDR (id, backchain);
1076 info->local_base = SPUADDR (id, reg);
1077 }
1078 }
1079
1080 /* If we didn't find a frame, we cannot determine SP / return address. */
1081 if (info->frame_base == 0)
1082 return info;
1083
1084 /* The previous SP is equal to the CFA. */
1085 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1086 SPUADDR_ADDR (info->frame_base));
1087
1088 /* Read full contents of the unwound link register in order to
1089 be able to determine the return address. */
1090 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1091 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1092 else
1093 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1094
1095 /* Normally, the return address is contained in the slot 0 of the
1096 link register, and slots 1-3 are zero. For an overlay return,
1097 slot 0 contains the address of the overlay manager return stub,
1098 slot 1 contains the partition number of the overlay section to
1099 be returned to, and slot 2 contains the return address within
1100 that section. Return the latter address in that case. */
1101 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1102 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1103 extract_unsigned_integer (buf + 8, 4, byte_order));
1104 else
1105 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1106 extract_unsigned_integer (buf, 4, byte_order));
1107
1108 return info;
1109 }
1110
1111 static void
1112 spu_frame_this_id (struct frame_info *this_frame,
1113 void **this_prologue_cache, struct frame_id *this_id)
1114 {
1115 struct spu_unwind_cache *info =
1116 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1117
1118 if (info->frame_base == 0)
1119 return;
1120
1121 *this_id = frame_id_build (info->frame_base, info->func);
1122 }
1123
1124 static struct value *
1125 spu_frame_prev_register (struct frame_info *this_frame,
1126 void **this_prologue_cache, int regnum)
1127 {
1128 struct spu_unwind_cache *info
1129 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1130
1131 /* Special-case the stack pointer. */
1132 if (regnum == SPU_RAW_SP_REGNUM)
1133 regnum = SPU_SP_REGNUM;
1134
1135 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1136 }
1137
1138 static const struct frame_unwind spu_frame_unwind = {
1139 NORMAL_FRAME,
1140 default_frame_unwind_stop_reason,
1141 spu_frame_this_id,
1142 spu_frame_prev_register,
1143 NULL,
1144 default_frame_sniffer
1145 };
1146
1147 static CORE_ADDR
1148 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1149 {
1150 struct spu_unwind_cache *info
1151 = spu_frame_unwind_cache (this_frame, this_cache);
1152 return info->local_base;
1153 }
1154
1155 static const struct frame_base spu_frame_base = {
1156 &spu_frame_unwind,
1157 spu_frame_base_address,
1158 spu_frame_base_address,
1159 spu_frame_base_address
1160 };
1161
1162 static CORE_ADDR
1163 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1164 {
1165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1166 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1167 /* Mask off interrupt enable bit. */
1168 return SPUADDR (tdep->id, pc & -4);
1169 }
1170
1171 static CORE_ADDR
1172 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1173 {
1174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1175 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1176 return SPUADDR (tdep->id, sp);
1177 }
1178
1179 static CORE_ADDR
1180 spu_read_pc (struct regcache *regcache)
1181 {
1182 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1183 ULONGEST pc;
1184 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1185 /* Mask off interrupt enable bit. */
1186 return SPUADDR (tdep->id, pc & -4);
1187 }
1188
1189 static void
1190 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1191 {
1192 /* Keep interrupt enabled state unchanged. */
1193 ULONGEST old_pc;
1194
1195 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1196 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1197 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1198 }
1199
1200
1201 /* Cell/B.E. cross-architecture unwinder support. */
1202
1203 struct spu2ppu_cache
1204 {
1205 struct frame_id frame_id;
1206 struct regcache *regcache;
1207 };
1208
1209 static struct gdbarch *
1210 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1211 {
1212 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1213 return get_regcache_arch (cache->regcache);
1214 }
1215
1216 static void
1217 spu2ppu_this_id (struct frame_info *this_frame,
1218 void **this_cache, struct frame_id *this_id)
1219 {
1220 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1221 *this_id = cache->frame_id;
1222 }
1223
1224 static struct value *
1225 spu2ppu_prev_register (struct frame_info *this_frame,
1226 void **this_cache, int regnum)
1227 {
1228 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1229 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1230 gdb_byte *buf;
1231
1232 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1233 regcache_cooked_read (cache->regcache, regnum, buf);
1234 return frame_unwind_got_bytes (this_frame, regnum, buf);
1235 }
1236
1237 static int
1238 spu2ppu_sniffer (const struct frame_unwind *self,
1239 struct frame_info *this_frame, void **this_prologue_cache)
1240 {
1241 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1242 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1243 CORE_ADDR base, func, backchain;
1244 gdb_byte buf[4];
1245
1246 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1247 return 0;
1248
1249 base = get_frame_sp (this_frame);
1250 func = get_frame_pc (this_frame);
1251 if (target_read_memory (base, buf, 4))
1252 return 0;
1253 backchain = extract_unsigned_integer (buf, 4, byte_order);
1254
1255 if (!backchain)
1256 {
1257 struct frame_info *fi;
1258
1259 struct spu2ppu_cache *cache
1260 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1261
1262 cache->frame_id = frame_id_build (base + 16, func);
1263
1264 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1265 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1266 break;
1267
1268 if (fi)
1269 {
1270 cache->regcache = frame_save_as_regcache (fi);
1271 *this_prologue_cache = cache;
1272 return 1;
1273 }
1274 else
1275 {
1276 struct regcache *regcache;
1277 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1278 cache->regcache = regcache_dup (regcache);
1279 *this_prologue_cache = cache;
1280 return 1;
1281 }
1282 }
1283
1284 return 0;
1285 }
1286
1287 static void
1288 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1289 {
1290 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
1291 regcache_xfree (cache->regcache);
1292 }
1293
1294 static const struct frame_unwind spu2ppu_unwind = {
1295 ARCH_FRAME,
1296 default_frame_unwind_stop_reason,
1297 spu2ppu_this_id,
1298 spu2ppu_prev_register,
1299 NULL,
1300 spu2ppu_sniffer,
1301 spu2ppu_dealloc_cache,
1302 spu2ppu_prev_arch,
1303 };
1304
1305
1306 /* Function calling convention. */
1307
1308 static CORE_ADDR
1309 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1310 {
1311 return sp & ~15;
1312 }
1313
1314 static CORE_ADDR
1315 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1316 struct value **args, int nargs, struct type *value_type,
1317 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1318 struct regcache *regcache)
1319 {
1320 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1321 sp = (sp - 4) & ~15;
1322 /* Store the address of that breakpoint */
1323 *bp_addr = sp;
1324 /* The call starts at the callee's entry point. */
1325 *real_pc = funaddr;
1326
1327 return sp;
1328 }
1329
1330 static int
1331 spu_scalar_value_p (struct type *type)
1332 {
1333 switch (TYPE_CODE (type))
1334 {
1335 case TYPE_CODE_INT:
1336 case TYPE_CODE_ENUM:
1337 case TYPE_CODE_RANGE:
1338 case TYPE_CODE_CHAR:
1339 case TYPE_CODE_BOOL:
1340 case TYPE_CODE_PTR:
1341 case TYPE_CODE_REF:
1342 case TYPE_CODE_RVALUE_REF:
1343 return TYPE_LENGTH (type) <= 16;
1344
1345 default:
1346 return 0;
1347 }
1348 }
1349
1350 static void
1351 spu_value_to_regcache (struct regcache *regcache, int regnum,
1352 struct type *type, const gdb_byte *in)
1353 {
1354 int len = TYPE_LENGTH (type);
1355
1356 if (spu_scalar_value_p (type))
1357 {
1358 int preferred_slot = len < 4 ? 4 - len : 0;
1359 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1360 }
1361 else
1362 {
1363 while (len >= 16)
1364 {
1365 regcache_cooked_write (regcache, regnum++, in);
1366 in += 16;
1367 len -= 16;
1368 }
1369
1370 if (len > 0)
1371 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1372 }
1373 }
1374
1375 static void
1376 spu_regcache_to_value (struct regcache *regcache, int regnum,
1377 struct type *type, gdb_byte *out)
1378 {
1379 int len = TYPE_LENGTH (type);
1380
1381 if (spu_scalar_value_p (type))
1382 {
1383 int preferred_slot = len < 4 ? 4 - len : 0;
1384 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1385 }
1386 else
1387 {
1388 while (len >= 16)
1389 {
1390 regcache_cooked_read (regcache, regnum++, out);
1391 out += 16;
1392 len -= 16;
1393 }
1394
1395 if (len > 0)
1396 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1397 }
1398 }
1399
1400 static CORE_ADDR
1401 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1402 struct regcache *regcache, CORE_ADDR bp_addr,
1403 int nargs, struct value **args, CORE_ADDR sp,
1404 int struct_return, CORE_ADDR struct_addr)
1405 {
1406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1407 CORE_ADDR sp_delta;
1408 int i;
1409 int regnum = SPU_ARG1_REGNUM;
1410 int stack_arg = -1;
1411 gdb_byte buf[16];
1412
1413 /* Set the return address. */
1414 memset (buf, 0, sizeof buf);
1415 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1416 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1417
1418 /* If STRUCT_RETURN is true, then the struct return address (in
1419 STRUCT_ADDR) will consume the first argument-passing register.
1420 Both adjust the register count and store that value. */
1421 if (struct_return)
1422 {
1423 memset (buf, 0, sizeof buf);
1424 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1425 regcache_cooked_write (regcache, regnum++, buf);
1426 }
1427
1428 /* Fill in argument registers. */
1429 for (i = 0; i < nargs; i++)
1430 {
1431 struct value *arg = args[i];
1432 struct type *type = check_typedef (value_type (arg));
1433 const gdb_byte *contents = value_contents (arg);
1434 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1435
1436 /* If the argument doesn't wholly fit into registers, it and
1437 all subsequent arguments go to the stack. */
1438 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1439 {
1440 stack_arg = i;
1441 break;
1442 }
1443
1444 spu_value_to_regcache (regcache, regnum, type, contents);
1445 regnum += n_regs;
1446 }
1447
1448 /* Overflow arguments go to the stack. */
1449 if (stack_arg != -1)
1450 {
1451 CORE_ADDR ap;
1452
1453 /* Allocate all required stack size. */
1454 for (i = stack_arg; i < nargs; i++)
1455 {
1456 struct type *type = check_typedef (value_type (args[i]));
1457 sp -= align_up (TYPE_LENGTH (type), 16);
1458 }
1459
1460 /* Fill in stack arguments. */
1461 ap = sp;
1462 for (i = stack_arg; i < nargs; i++)
1463 {
1464 struct value *arg = args[i];
1465 struct type *type = check_typedef (value_type (arg));
1466 int len = TYPE_LENGTH (type);
1467 int preferred_slot;
1468
1469 if (spu_scalar_value_p (type))
1470 preferred_slot = len < 4 ? 4 - len : 0;
1471 else
1472 preferred_slot = 0;
1473
1474 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1475 ap += align_up (TYPE_LENGTH (type), 16);
1476 }
1477 }
1478
1479 /* Allocate stack frame header. */
1480 sp -= 32;
1481
1482 /* Store stack back chain. */
1483 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1484 target_write_memory (sp, buf, 16);
1485
1486 /* Finally, update all slots of the SP register. */
1487 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1488 for (i = 0; i < 4; i++)
1489 {
1490 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1491 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1492 }
1493 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1494
1495 return sp;
1496 }
1497
1498 static struct frame_id
1499 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1500 {
1501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1502 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1503 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1504 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1505 }
1506
1507 /* Function return value access. */
1508
1509 static enum return_value_convention
1510 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1511 struct type *type, struct regcache *regcache,
1512 gdb_byte *out, const gdb_byte *in)
1513 {
1514 struct type *func_type = function ? value_type (function) : NULL;
1515 enum return_value_convention rvc;
1516 int opencl_vector = 0;
1517
1518 if (func_type)
1519 {
1520 func_type = check_typedef (func_type);
1521
1522 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1523 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1524
1525 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1526 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1527 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1528 && TYPE_VECTOR (type))
1529 opencl_vector = 1;
1530 }
1531
1532 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1533 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1534 else
1535 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1536
1537 if (in)
1538 {
1539 switch (rvc)
1540 {
1541 case RETURN_VALUE_REGISTER_CONVENTION:
1542 if (opencl_vector && TYPE_LENGTH (type) == 2)
1543 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1544 else
1545 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1546 break;
1547
1548 case RETURN_VALUE_STRUCT_CONVENTION:
1549 error (_("Cannot set function return value."));
1550 break;
1551 }
1552 }
1553 else if (out)
1554 {
1555 switch (rvc)
1556 {
1557 case RETURN_VALUE_REGISTER_CONVENTION:
1558 if (opencl_vector && TYPE_LENGTH (type) == 2)
1559 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1560 else
1561 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1562 break;
1563
1564 case RETURN_VALUE_STRUCT_CONVENTION:
1565 error (_("Function return value unknown."));
1566 break;
1567 }
1568 }
1569
1570 return rvc;
1571 }
1572
1573
1574 /* Breakpoints. */
1575 constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
1576
1577 typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
1578
1579 static int
1580 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1581 struct bp_target_info *bp_tgt)
1582 {
1583 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1584 that in a combined application, we have some breakpoints inserted in SPU
1585 code, and now the application forks (on the PPU side). GDB common code
1586 will assume that the fork system call copied all breakpoints into the new
1587 process' address space, and that all those copies now need to be removed
1588 (see breakpoint.c:detach_breakpoints).
1589
1590 While this is certainly true for PPU side breakpoints, it is not true
1591 for SPU side breakpoints. fork will clone the SPU context file
1592 descriptors, so that all the existing SPU contexts are in accessible
1593 in the new process. However, the contents of the SPU contexts themselves
1594 are *not* cloned. Therefore the effect of detach_breakpoints is to
1595 remove SPU breakpoints from the *original* SPU context's local store
1596 -- this is not the correct behaviour.
1597
1598 The workaround is to check whether the PID we are asked to remove this
1599 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1600 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1601 true in the context of detach_breakpoints. If so, we simply do nothing.
1602 [ Note that for the fork child process, it does not matter if breakpoints
1603 remain inserted, because those SPU contexts are not runnable anyway --
1604 the Linux kernel allows only the original process to invoke spu_run. */
1605
1606 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1607 return 0;
1608
1609 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1610 }
1611
1612
1613 /* Software single-stepping support. */
1614
1615 static VEC (CORE_ADDR) *
1616 spu_software_single_step (struct regcache *regcache)
1617 {
1618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1619 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1620 CORE_ADDR pc, next_pc;
1621 unsigned int insn;
1622 int offset, reg;
1623 gdb_byte buf[4];
1624 ULONGEST lslr;
1625 VEC (CORE_ADDR) *next_pcs = NULL;
1626
1627 pc = regcache_read_pc (regcache);
1628
1629 if (target_read_memory (pc, buf, 4))
1630 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1631 paddress (gdbarch, pc));
1632
1633 insn = extract_unsigned_integer (buf, 4, byte_order);
1634
1635 /* Get local store limit. */
1636 lslr = regcache_raw_get_unsigned (regcache, SPU_LSLR_REGNUM);
1637 if (!lslr)
1638 lslr = (ULONGEST) -1;
1639
1640 /* Next sequential instruction is at PC + 4, except if the current
1641 instruction is a PPE-assisted call, in which case it is at PC + 8.
1642 Wrap around LS limit to be on the safe side. */
1643 if ((insn & 0xffffff00) == 0x00002100)
1644 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1645 else
1646 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1647
1648 VEC_safe_push (CORE_ADDR, next_pcs, SPUADDR (SPUADDR_SPU (pc), next_pc));
1649
1650 if (is_branch (insn, &offset, &reg))
1651 {
1652 CORE_ADDR target = offset;
1653
1654 if (reg == SPU_PC_REGNUM)
1655 target += SPUADDR_ADDR (pc);
1656 else if (reg != -1)
1657 target += regcache_raw_get_unsigned (regcache, reg) & -4;
1658
1659 target = target & lslr;
1660 if (target != next_pc)
1661 VEC_safe_push (CORE_ADDR, next_pcs, SPUADDR (SPUADDR_SPU (pc),
1662 target));
1663 }
1664
1665 return next_pcs;
1666 }
1667
1668
1669 /* Longjmp support. */
1670
1671 static int
1672 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1673 {
1674 struct gdbarch *gdbarch = get_frame_arch (frame);
1675 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1677 gdb_byte buf[4];
1678 CORE_ADDR jb_addr;
1679 int optim, unavail;
1680
1681 /* Jump buffer is pointed to by the argument register $r3. */
1682 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1683 &optim, &unavail))
1684 return 0;
1685
1686 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1687 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1688 return 0;
1689
1690 *pc = extract_unsigned_integer (buf, 4, byte_order);
1691 *pc = SPUADDR (tdep->id, *pc);
1692 return 1;
1693 }
1694
1695
1696 /* Disassembler. */
1697
1698 struct spu_dis_asm_info : disassemble_info
1699 {
1700 int id;
1701 };
1702
1703 static void
1704 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1705 {
1706 struct spu_dis_asm_info *data = (struct spu_dis_asm_info *) info;
1707 gdb_disassembler *di
1708 = static_cast<gdb_disassembler *>(info->application_data);
1709
1710 print_address (di->arch (), SPUADDR (data->id, addr),
1711 (struct ui_file *) info->stream);
1712 }
1713
1714 static int
1715 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1716 {
1717 /* The opcodes disassembler does 18-bit address arithmetic. Make
1718 sure the SPU ID encoded in the high bits is added back when we
1719 call print_address. */
1720 struct spu_dis_asm_info spu_info;
1721
1722 memcpy (&spu_info, info, sizeof (*info));
1723 spu_info.id = SPUADDR_SPU (memaddr);
1724 spu_info.print_address_func = spu_dis_asm_print_address;
1725 return print_insn_spu (memaddr, &spu_info);
1726 }
1727
1728
1729 /* Target overlays for the SPU overlay manager.
1730
1731 See the documentation of simple_overlay_update for how the
1732 interface is supposed to work.
1733
1734 Data structures used by the overlay manager:
1735
1736 struct ovly_table
1737 {
1738 u32 vma;
1739 u32 size;
1740 u32 pos;
1741 u32 buf;
1742 } _ovly_table[]; -- one entry per overlay section
1743
1744 struct ovly_buf_table
1745 {
1746 u32 mapped;
1747 } _ovly_buf_table[]; -- one entry per overlay buffer
1748
1749 _ovly_table should never change.
1750
1751 Both tables are aligned to a 16-byte boundary, the symbols
1752 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1753 size set to the size of the respective array. buf in _ovly_table is
1754 an index into _ovly_buf_table.
1755
1756 mapped is an index into _ovly_table. Both the mapped and buf indices start
1757 from one to reference the first entry in their respective tables. */
1758
1759 /* Using the per-objfile private data mechanism, we store for each
1760 objfile an array of "struct spu_overlay_table" structures, one
1761 for each obj_section of the objfile. This structure holds two
1762 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1763 is *not* an overlay section. If it is non-zero, it represents
1764 a target address. The overlay section is mapped iff the target
1765 integer at this location equals MAPPED_VAL. */
1766
1767 static const struct objfile_data *spu_overlay_data;
1768
1769 struct spu_overlay_table
1770 {
1771 CORE_ADDR mapped_ptr;
1772 CORE_ADDR mapped_val;
1773 };
1774
1775 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1776 the _ovly_table data structure from the target and initialize the
1777 spu_overlay_table data structure from it. */
1778 static struct spu_overlay_table *
1779 spu_get_overlay_table (struct objfile *objfile)
1780 {
1781 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1782 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1783 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1784 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1785 unsigned ovly_table_size, ovly_buf_table_size;
1786 struct spu_overlay_table *tbl;
1787 struct obj_section *osect;
1788 gdb_byte *ovly_table;
1789 int i;
1790
1791 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
1792 if (tbl)
1793 return tbl;
1794
1795 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1796 if (!ovly_table_msym.minsym)
1797 return NULL;
1798
1799 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1800 NULL, objfile);
1801 if (!ovly_buf_table_msym.minsym)
1802 return NULL;
1803
1804 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1805 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1806
1807 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1808 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1809
1810 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
1811 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1812
1813 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1814 objfile->sections_end - objfile->sections,
1815 struct spu_overlay_table);
1816
1817 for (i = 0; i < ovly_table_size / 16; i++)
1818 {
1819 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1820 4, byte_order);
1821 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1822 4, byte_order);
1823 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1824 4, byte_order);
1825 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1826 4, byte_order);
1827
1828 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1829 continue;
1830
1831 ALL_OBJFILE_OSECTIONS (objfile, osect)
1832 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1833 && pos == osect->the_bfd_section->filepos)
1834 {
1835 int ndx = osect - objfile->sections;
1836 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1837 tbl[ndx].mapped_val = i + 1;
1838 break;
1839 }
1840 }
1841
1842 xfree (ovly_table);
1843 set_objfile_data (objfile, spu_overlay_data, tbl);
1844 return tbl;
1845 }
1846
1847 /* Read _ovly_buf_table entry from the target to dermine whether
1848 OSECT is currently mapped, and update the mapped state. */
1849 static void
1850 spu_overlay_update_osect (struct obj_section *osect)
1851 {
1852 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1853 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1854 struct spu_overlay_table *ovly_table;
1855 CORE_ADDR id, val;
1856
1857 ovly_table = spu_get_overlay_table (osect->objfile);
1858 if (!ovly_table)
1859 return;
1860
1861 ovly_table += osect - osect->objfile->sections;
1862 if (ovly_table->mapped_ptr == 0)
1863 return;
1864
1865 id = SPUADDR_SPU (obj_section_addr (osect));
1866 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1867 4, byte_order);
1868 osect->ovly_mapped = (val == ovly_table->mapped_val);
1869 }
1870
1871 /* If OSECT is NULL, then update all sections' mapped state.
1872 If OSECT is non-NULL, then update only OSECT's mapped state. */
1873 static void
1874 spu_overlay_update (struct obj_section *osect)
1875 {
1876 /* Just one section. */
1877 if (osect)
1878 spu_overlay_update_osect (osect);
1879
1880 /* All sections. */
1881 else
1882 {
1883 struct objfile *objfile;
1884
1885 ALL_OBJSECTIONS (objfile, osect)
1886 if (section_is_overlay (osect))
1887 spu_overlay_update_osect (osect);
1888 }
1889 }
1890
1891 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1892 If there is one, go through all sections and make sure for non-
1893 overlay sections LMA equals VMA, while for overlay sections LMA
1894 is larger than SPU_OVERLAY_LMA. */
1895 static void
1896 spu_overlay_new_objfile (struct objfile *objfile)
1897 {
1898 struct spu_overlay_table *ovly_table;
1899 struct obj_section *osect;
1900
1901 /* If we've already touched this file, do nothing. */
1902 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1903 return;
1904
1905 /* Consider only SPU objfiles. */
1906 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1907 return;
1908
1909 /* Check if this objfile has overlays. */
1910 ovly_table = spu_get_overlay_table (objfile);
1911 if (!ovly_table)
1912 return;
1913
1914 /* Now go and fiddle with all the LMAs. */
1915 ALL_OBJFILE_OSECTIONS (objfile, osect)
1916 {
1917 bfd *obfd = objfile->obfd;
1918 asection *bsect = osect->the_bfd_section;
1919 int ndx = osect - objfile->sections;
1920
1921 if (ovly_table[ndx].mapped_ptr == 0)
1922 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1923 else
1924 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1925 }
1926 }
1927
1928
1929 /* Insert temporary breakpoint on "main" function of newly loaded
1930 SPE context OBJFILE. */
1931 static void
1932 spu_catch_start (struct objfile *objfile)
1933 {
1934 struct bound_minimal_symbol minsym;
1935 struct compunit_symtab *cust;
1936 CORE_ADDR pc;
1937 struct event_location *location;
1938 struct cleanup *back_to;
1939
1940 /* Do this only if requested by "set spu stop-on-load on". */
1941 if (!spu_stop_on_load_p)
1942 return;
1943
1944 /* Consider only SPU objfiles. */
1945 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1946 return;
1947
1948 /* The main objfile is handled differently. */
1949 if (objfile == symfile_objfile)
1950 return;
1951
1952 /* There can be multiple symbols named "main". Search for the
1953 "main" in *this* objfile. */
1954 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1955 if (!minsym.minsym)
1956 return;
1957
1958 /* If we have debugging information, try to use it -- this
1959 will allow us to properly skip the prologue. */
1960 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1961 cust
1962 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1963 minsym.minsym));
1964 if (cust != NULL)
1965 {
1966 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1967 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1968 struct symbol *sym;
1969 struct symtab_and_line sal;
1970
1971 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
1972 if (sym)
1973 {
1974 fixup_symbol_section (sym, objfile);
1975 sal = find_function_start_sal (sym, 1);
1976 pc = sal.pc;
1977 }
1978 }
1979
1980 /* Use a numerical address for the set_breakpoint command to avoid having
1981 the breakpoint re-set incorrectly. */
1982 location = new_address_location (pc, NULL, 0);
1983 back_to = make_cleanup_delete_event_location (location);
1984 create_breakpoint (get_objfile_arch (objfile), location,
1985 NULL /* cond_string */, -1 /* thread */,
1986 NULL /* extra_string */,
1987 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1988 bp_breakpoint /* type_wanted */,
1989 0 /* ignore_count */,
1990 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1991 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
1992 1 /* enabled */, 0 /* internal */, 0);
1993 do_cleanups (back_to);
1994 }
1995
1996
1997 /* Look up OBJFILE loaded into FRAME's SPU context. */
1998 static struct objfile *
1999 spu_objfile_from_frame (struct frame_info *frame)
2000 {
2001 struct gdbarch *gdbarch = get_frame_arch (frame);
2002 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2003 struct objfile *obj;
2004
2005 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2006 return NULL;
2007
2008 ALL_OBJFILES (obj)
2009 {
2010 if (obj->sections != obj->sections_end
2011 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2012 return obj;
2013 }
2014
2015 return NULL;
2016 }
2017
2018 /* Flush cache for ea pointer access if available. */
2019 static void
2020 flush_ea_cache (void)
2021 {
2022 struct bound_minimal_symbol msymbol;
2023 struct objfile *obj;
2024
2025 if (!has_stack_frames ())
2026 return;
2027
2028 obj = spu_objfile_from_frame (get_current_frame ());
2029 if (obj == NULL)
2030 return;
2031
2032 /* Lookup inferior function __cache_flush. */
2033 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2034 if (msymbol.minsym != NULL)
2035 {
2036 struct type *type;
2037 CORE_ADDR addr;
2038
2039 type = objfile_type (obj)->builtin_void;
2040 type = lookup_function_type (type);
2041 type = lookup_pointer_type (type);
2042 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2043
2044 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2045 }
2046 }
2047
2048 /* This handler is called when the inferior has stopped. If it is stopped in
2049 SPU architecture then flush the ea cache if used. */
2050 static void
2051 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2052 {
2053 if (!spu_auto_flush_cache_p)
2054 return;
2055
2056 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2057 re-entering this function when __cache_flush stops. */
2058 spu_auto_flush_cache_p = 0;
2059 flush_ea_cache ();
2060 spu_auto_flush_cache_p = 1;
2061 }
2062
2063
2064 /* "info spu" commands. */
2065
2066 static void
2067 info_spu_event_command (char *args, int from_tty)
2068 {
2069 struct frame_info *frame = get_selected_frame (NULL);
2070 ULONGEST event_status = 0;
2071 ULONGEST event_mask = 0;
2072 struct cleanup *chain;
2073 gdb_byte buf[100];
2074 char annex[32];
2075 LONGEST len;
2076 int id;
2077
2078 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2079 error (_("\"info spu\" is only supported on the SPU architecture."));
2080
2081 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2082
2083 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2084 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2085 buf, 0, (sizeof (buf) - 1));
2086 if (len <= 0)
2087 error (_("Could not read event_status."));
2088 buf[len] = '\0';
2089 event_status = strtoulst ((char *) buf, NULL, 16);
2090
2091 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2092 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2093 buf, 0, (sizeof (buf) - 1));
2094 if (len <= 0)
2095 error (_("Could not read event_mask."));
2096 buf[len] = '\0';
2097 event_mask = strtoulst ((char *) buf, NULL, 16);
2098
2099 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2100
2101 if (current_uiout->is_mi_like_p ())
2102 {
2103 current_uiout->field_fmt ("event_status",
2104 "0x%s", phex_nz (event_status, 4));
2105 current_uiout->field_fmt ("event_mask",
2106 "0x%s", phex_nz (event_mask, 4));
2107 }
2108 else
2109 {
2110 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2111 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2112 }
2113
2114 do_cleanups (chain);
2115 }
2116
2117 static void
2118 info_spu_signal_command (char *args, int from_tty)
2119 {
2120 struct frame_info *frame = get_selected_frame (NULL);
2121 struct gdbarch *gdbarch = get_frame_arch (frame);
2122 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2123 ULONGEST signal1 = 0;
2124 ULONGEST signal1_type = 0;
2125 int signal1_pending = 0;
2126 ULONGEST signal2 = 0;
2127 ULONGEST signal2_type = 0;
2128 int signal2_pending = 0;
2129 struct cleanup *chain;
2130 char annex[32];
2131 gdb_byte buf[100];
2132 LONGEST len;
2133 int id;
2134
2135 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2136 error (_("\"info spu\" is only supported on the SPU architecture."));
2137
2138 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2139
2140 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2141 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2142 if (len < 0)
2143 error (_("Could not read signal1."));
2144 else if (len == 4)
2145 {
2146 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2147 signal1_pending = 1;
2148 }
2149
2150 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2151 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2152 buf, 0, (sizeof (buf) - 1));
2153 if (len <= 0)
2154 error (_("Could not read signal1_type."));
2155 buf[len] = '\0';
2156 signal1_type = strtoulst ((char *) buf, NULL, 16);
2157
2158 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2159 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2160 if (len < 0)
2161 error (_("Could not read signal2."));
2162 else if (len == 4)
2163 {
2164 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2165 signal2_pending = 1;
2166 }
2167
2168 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2169 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2170 buf, 0, (sizeof (buf) - 1));
2171 if (len <= 0)
2172 error (_("Could not read signal2_type."));
2173 buf[len] = '\0';
2174 signal2_type = strtoulst ((char *) buf, NULL, 16);
2175
2176 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2177
2178 if (current_uiout->is_mi_like_p ())
2179 {
2180 current_uiout->field_int ("signal1_pending", signal1_pending);
2181 current_uiout->field_fmt ("signal1", "0x%s", phex_nz (signal1, 4));
2182 current_uiout->field_int ("signal1_type", signal1_type);
2183 current_uiout->field_int ("signal2_pending", signal2_pending);
2184 current_uiout->field_fmt ("signal2", "0x%s", phex_nz (signal2, 4));
2185 current_uiout->field_int ("signal2_type", signal2_type);
2186 }
2187 else
2188 {
2189 if (signal1_pending)
2190 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2191 else
2192 printf_filtered (_("Signal 1 not pending "));
2193
2194 if (signal1_type)
2195 printf_filtered (_("(Type Or)\n"));
2196 else
2197 printf_filtered (_("(Type Overwrite)\n"));
2198
2199 if (signal2_pending)
2200 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2201 else
2202 printf_filtered (_("Signal 2 not pending "));
2203
2204 if (signal2_type)
2205 printf_filtered (_("(Type Or)\n"));
2206 else
2207 printf_filtered (_("(Type Overwrite)\n"));
2208 }
2209
2210 do_cleanups (chain);
2211 }
2212
2213 static void
2214 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2215 const char *field, const char *msg)
2216 {
2217 struct cleanup *chain;
2218 int i;
2219
2220 if (nr <= 0)
2221 return;
2222
2223 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2224
2225 current_uiout->table_header (32, ui_left, field, msg);
2226 current_uiout->table_body ();
2227
2228 for (i = 0; i < nr; i++)
2229 {
2230 struct cleanup *val_chain;
2231 ULONGEST val;
2232 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2233 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2234 current_uiout->field_fmt (field, "0x%s", phex (val, 4));
2235 do_cleanups (val_chain);
2236
2237 if (!current_uiout->is_mi_like_p ())
2238 printf_filtered ("\n");
2239 }
2240
2241 do_cleanups (chain);
2242 }
2243
2244 static void
2245 info_spu_mailbox_command (char *args, int from_tty)
2246 {
2247 struct frame_info *frame = get_selected_frame (NULL);
2248 struct gdbarch *gdbarch = get_frame_arch (frame);
2249 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2250 struct cleanup *chain;
2251 char annex[32];
2252 gdb_byte buf[1024];
2253 LONGEST len;
2254 int id;
2255
2256 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2257 error (_("\"info spu\" is only supported on the SPU architecture."));
2258
2259 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2260
2261 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2262
2263 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2264 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2265 buf, 0, sizeof buf);
2266 if (len < 0)
2267 error (_("Could not read mbox_info."));
2268
2269 info_spu_mailbox_list (buf, len / 4, byte_order,
2270 "mbox", "SPU Outbound Mailbox");
2271
2272 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2273 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2274 buf, 0, sizeof buf);
2275 if (len < 0)
2276 error (_("Could not read ibox_info."));
2277
2278 info_spu_mailbox_list (buf, len / 4, byte_order,
2279 "ibox", "SPU Outbound Interrupt Mailbox");
2280
2281 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2282 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2283 buf, 0, sizeof buf);
2284 if (len < 0)
2285 error (_("Could not read wbox_info."));
2286
2287 info_spu_mailbox_list (buf, len / 4, byte_order,
2288 "wbox", "SPU Inbound Mailbox");
2289
2290 do_cleanups (chain);
2291 }
2292
2293 static ULONGEST
2294 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2295 {
2296 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2297 return (word >> (63 - last)) & mask;
2298 }
2299
2300 static void
2301 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2302 {
2303 static const char *spu_mfc_opcode[256] =
2304 {
2305 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2306 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2307 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2308 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2309 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2310 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2311 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2312 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2313 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2314 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2315 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2316 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2317 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2318 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2319 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2320 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2321 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2322 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2323 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2325 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2326 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2327 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2328 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2329 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2330 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2331 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2332 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2333 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2334 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2336 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 };
2338
2339 int *seq = XALLOCAVEC (int, nr);
2340 int done = 0;
2341 struct cleanup *chain;
2342 int i, j;
2343
2344
2345 /* Determine sequence in which to display (valid) entries. */
2346 for (i = 0; i < nr; i++)
2347 {
2348 /* Search for the first valid entry all of whose
2349 dependencies are met. */
2350 for (j = 0; j < nr; j++)
2351 {
2352 ULONGEST mfc_cq_dw3;
2353 ULONGEST dependencies;
2354
2355 if (done & (1 << (nr - 1 - j)))
2356 continue;
2357
2358 mfc_cq_dw3
2359 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2360 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2361 continue;
2362
2363 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2364 if ((dependencies & done) != dependencies)
2365 continue;
2366
2367 seq[i] = j;
2368 done |= 1 << (nr - 1 - j);
2369 break;
2370 }
2371
2372 if (j == nr)
2373 break;
2374 }
2375
2376 nr = i;
2377
2378
2379 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2380 "dma_cmd");
2381
2382 current_uiout->table_header (7, ui_left, "opcode", "Opcode");
2383 current_uiout->table_header (3, ui_left, "tag", "Tag");
2384 current_uiout->table_header (3, ui_left, "tid", "TId");
2385 current_uiout->table_header (3, ui_left, "rid", "RId");
2386 current_uiout->table_header (18, ui_left, "ea", "EA");
2387 current_uiout->table_header (7, ui_left, "lsa", "LSA");
2388 current_uiout->table_header (7, ui_left, "size", "Size");
2389 current_uiout->table_header (7, ui_left, "lstaddr", "LstAddr");
2390 current_uiout->table_header (7, ui_left, "lstsize", "LstSize");
2391 current_uiout->table_header (1, ui_left, "error_p", "E");
2392
2393 current_uiout->table_body ();
2394
2395 for (i = 0; i < nr; i++)
2396 {
2397 struct cleanup *cmd_chain;
2398 ULONGEST mfc_cq_dw0;
2399 ULONGEST mfc_cq_dw1;
2400 ULONGEST mfc_cq_dw2;
2401 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2402 int list_lsa, list_size, mfc_lsa, mfc_size;
2403 ULONGEST mfc_ea;
2404 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2405
2406 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2407 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2408
2409 mfc_cq_dw0
2410 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2411 mfc_cq_dw1
2412 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2413 mfc_cq_dw2
2414 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2415
2416 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2417 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2418 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2419 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2420 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2421 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2422 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2423
2424 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2425 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2426
2427 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2428 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2429 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2430 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2431 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2432
2433 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2434
2435 if (spu_mfc_opcode[mfc_cmd_opcode])
2436 current_uiout->field_string ("opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2437 else
2438 current_uiout->field_int ("opcode", mfc_cmd_opcode);
2439
2440 current_uiout->field_int ("tag", mfc_cmd_tag);
2441 current_uiout->field_int ("tid", tclass_id);
2442 current_uiout->field_int ("rid", rclass_id);
2443
2444 if (ea_valid_p)
2445 current_uiout->field_fmt ("ea", "0x%s", phex (mfc_ea, 8));
2446 else
2447 current_uiout->field_skip ("ea");
2448
2449 current_uiout->field_fmt ("lsa", "0x%05x", mfc_lsa << 4);
2450 if (qw_valid_p)
2451 current_uiout->field_fmt ("size", "0x%05x", mfc_size << 4);
2452 else
2453 current_uiout->field_fmt ("size", "0x%05x", mfc_size);
2454
2455 if (list_valid_p)
2456 {
2457 current_uiout->field_fmt ("lstaddr", "0x%05x", list_lsa << 3);
2458 current_uiout->field_fmt ("lstsize", "0x%05x", list_size << 3);
2459 }
2460 else
2461 {
2462 current_uiout->field_skip ("lstaddr");
2463 current_uiout->field_skip ("lstsize");
2464 }
2465
2466 if (cmd_error_p)
2467 current_uiout->field_string ("error_p", "*");
2468 else
2469 current_uiout->field_skip ("error_p");
2470
2471 do_cleanups (cmd_chain);
2472
2473 if (!current_uiout->is_mi_like_p ())
2474 printf_filtered ("\n");
2475 }
2476
2477 do_cleanups (chain);
2478 }
2479
2480 static void
2481 info_spu_dma_command (char *args, int from_tty)
2482 {
2483 struct frame_info *frame = get_selected_frame (NULL);
2484 struct gdbarch *gdbarch = get_frame_arch (frame);
2485 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2486 ULONGEST dma_info_type;
2487 ULONGEST dma_info_mask;
2488 ULONGEST dma_info_status;
2489 ULONGEST dma_info_stall_and_notify;
2490 ULONGEST dma_info_atomic_command_status;
2491 struct cleanup *chain;
2492 char annex[32];
2493 gdb_byte buf[1024];
2494 LONGEST len;
2495 int id;
2496
2497 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2498 error (_("\"info spu\" is only supported on the SPU architecture."));
2499
2500 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2501
2502 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2503 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2504 buf, 0, 40 + 16 * 32);
2505 if (len <= 0)
2506 error (_("Could not read dma_info."));
2507
2508 dma_info_type
2509 = extract_unsigned_integer (buf, 8, byte_order);
2510 dma_info_mask
2511 = extract_unsigned_integer (buf + 8, 8, byte_order);
2512 dma_info_status
2513 = extract_unsigned_integer (buf + 16, 8, byte_order);
2514 dma_info_stall_and_notify
2515 = extract_unsigned_integer (buf + 24, 8, byte_order);
2516 dma_info_atomic_command_status
2517 = extract_unsigned_integer (buf + 32, 8, byte_order);
2518
2519 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2520
2521 if (current_uiout->is_mi_like_p ())
2522 {
2523 current_uiout->field_fmt ("dma_info_type", "0x%s",
2524 phex_nz (dma_info_type, 4));
2525 current_uiout->field_fmt ("dma_info_mask", "0x%s",
2526 phex_nz (dma_info_mask, 4));
2527 current_uiout->field_fmt ("dma_info_status", "0x%s",
2528 phex_nz (dma_info_status, 4));
2529 current_uiout->field_fmt ("dma_info_stall_and_notify", "0x%s",
2530 phex_nz (dma_info_stall_and_notify, 4));
2531 current_uiout->field_fmt ("dma_info_atomic_command_status", "0x%s",
2532 phex_nz (dma_info_atomic_command_status, 4));
2533 }
2534 else
2535 {
2536 const char *query_msg = _("no query pending");
2537
2538 if (dma_info_type & 4)
2539 switch (dma_info_type & 3)
2540 {
2541 case 1: query_msg = _("'any' query pending"); break;
2542 case 2: query_msg = _("'all' query pending"); break;
2543 default: query_msg = _("undefined query type"); break;
2544 }
2545
2546 printf_filtered (_("Tag-Group Status 0x%s\n"),
2547 phex (dma_info_status, 4));
2548 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2549 phex (dma_info_mask, 4), query_msg);
2550 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2551 phex (dma_info_stall_and_notify, 4));
2552 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2553 phex (dma_info_atomic_command_status, 4));
2554 printf_filtered ("\n");
2555 }
2556
2557 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2558 do_cleanups (chain);
2559 }
2560
2561 static void
2562 info_spu_proxydma_command (char *args, int from_tty)
2563 {
2564 struct frame_info *frame = get_selected_frame (NULL);
2565 struct gdbarch *gdbarch = get_frame_arch (frame);
2566 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2567 ULONGEST dma_info_type;
2568 ULONGEST dma_info_mask;
2569 ULONGEST dma_info_status;
2570 struct cleanup *chain;
2571 char annex[32];
2572 gdb_byte buf[1024];
2573 LONGEST len;
2574 int id;
2575
2576 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2577 error (_("\"info spu\" is only supported on the SPU architecture."));
2578
2579 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2580
2581 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2582 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2583 buf, 0, 24 + 8 * 32);
2584 if (len <= 0)
2585 error (_("Could not read proxydma_info."));
2586
2587 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2588 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2589 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2590
2591 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2592 "SPUInfoProxyDMA");
2593
2594 if (current_uiout->is_mi_like_p ())
2595 {
2596 current_uiout->field_fmt ("proxydma_info_type", "0x%s",
2597 phex_nz (dma_info_type, 4));
2598 current_uiout->field_fmt ("proxydma_info_mask", "0x%s",
2599 phex_nz (dma_info_mask, 4));
2600 current_uiout->field_fmt ("proxydma_info_status", "0x%s",
2601 phex_nz (dma_info_status, 4));
2602 }
2603 else
2604 {
2605 const char *query_msg;
2606
2607 switch (dma_info_type & 3)
2608 {
2609 case 0: query_msg = _("no query pending"); break;
2610 case 1: query_msg = _("'any' query pending"); break;
2611 case 2: query_msg = _("'all' query pending"); break;
2612 default: query_msg = _("undefined query type"); break;
2613 }
2614
2615 printf_filtered (_("Tag-Group Status 0x%s\n"),
2616 phex (dma_info_status, 4));
2617 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2618 phex (dma_info_mask, 4), query_msg);
2619 printf_filtered ("\n");
2620 }
2621
2622 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2623 do_cleanups (chain);
2624 }
2625
2626 static void
2627 info_spu_command (char *args, int from_tty)
2628 {
2629 printf_unfiltered (_("\"info spu\" must be followed by "
2630 "the name of an SPU facility.\n"));
2631 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2632 }
2633
2634
2635 /* Root of all "set spu "/"show spu " commands. */
2636
2637 static void
2638 show_spu_command (char *args, int from_tty)
2639 {
2640 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2641 }
2642
2643 static void
2644 set_spu_command (char *args, int from_tty)
2645 {
2646 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2647 }
2648
2649 static void
2650 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2651 struct cmd_list_element *c, const char *value)
2652 {
2653 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2654 value);
2655 }
2656
2657 static void
2658 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2659 struct cmd_list_element *c, const char *value)
2660 {
2661 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2662 value);
2663 }
2664
2665
2666 /* Set up gdbarch struct. */
2667
2668 static struct gdbarch *
2669 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2670 {
2671 struct gdbarch *gdbarch;
2672 struct gdbarch_tdep *tdep;
2673 int id = -1;
2674
2675 /* Which spufs ID was requested as address space? */
2676 if (info.tdep_info)
2677 id = *(int *)info.tdep_info;
2678 /* For objfile architectures of SPU solibs, decode the ID from the name.
2679 This assumes the filename convention employed by solib-spu.c. */
2680 else if (info.abfd)
2681 {
2682 const char *name = strrchr (info.abfd->filename, '@');
2683 if (name)
2684 sscanf (name, "@0x%*x <%d>", &id);
2685 }
2686
2687 /* Find a candidate among extant architectures. */
2688 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2689 arches != NULL;
2690 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2691 {
2692 tdep = gdbarch_tdep (arches->gdbarch);
2693 if (tdep && tdep->id == id)
2694 return arches->gdbarch;
2695 }
2696
2697 /* None found, so create a new architecture. */
2698 tdep = XCNEW (struct gdbarch_tdep);
2699 tdep->id = id;
2700 gdbarch = gdbarch_alloc (&info, tdep);
2701
2702 /* Disassembler. */
2703 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2704
2705 /* Registers. */
2706 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2707 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2708 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2709 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2710 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2711 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2712 set_gdbarch_register_name (gdbarch, spu_register_name);
2713 set_gdbarch_register_type (gdbarch, spu_register_type);
2714 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2715 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2716 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2717 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2718 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2719 set_gdbarch_ax_pseudo_register_collect
2720 (gdbarch, spu_ax_pseudo_register_collect);
2721 set_gdbarch_ax_pseudo_register_push_stack
2722 (gdbarch, spu_ax_pseudo_register_push_stack);
2723
2724 /* Data types. */
2725 set_gdbarch_char_signed (gdbarch, 0);
2726 set_gdbarch_ptr_bit (gdbarch, 32);
2727 set_gdbarch_addr_bit (gdbarch, 32);
2728 set_gdbarch_short_bit (gdbarch, 16);
2729 set_gdbarch_int_bit (gdbarch, 32);
2730 set_gdbarch_long_bit (gdbarch, 32);
2731 set_gdbarch_long_long_bit (gdbarch, 64);
2732 set_gdbarch_float_bit (gdbarch, 32);
2733 set_gdbarch_double_bit (gdbarch, 64);
2734 set_gdbarch_long_double_bit (gdbarch, 64);
2735 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2736 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2737 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2738
2739 /* Address handling. */
2740 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2741 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2742 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2743 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2744 set_gdbarch_address_class_type_flags_to_name
2745 (gdbarch, spu_address_class_type_flags_to_name);
2746 set_gdbarch_address_class_name_to_type_flags
2747 (gdbarch, spu_address_class_name_to_type_flags);
2748
2749
2750 /* Inferior function calls. */
2751 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2752 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2753 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2754 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2755 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2756 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2757 set_gdbarch_return_value (gdbarch, spu_return_value);
2758
2759 /* Frame handling. */
2760 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2761 dwarf2_append_unwinders (gdbarch);
2762 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2763 frame_base_set_default (gdbarch, &spu_frame_base);
2764 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2765 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2766 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2767 set_gdbarch_frame_args_skip (gdbarch, 0);
2768 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2769 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
2770
2771 /* Cell/B.E. cross-architecture unwinder support. */
2772 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2773
2774 /* Breakpoints. */
2775 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2776 set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
2777 set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
2778 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2779 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2780 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2781
2782 /* Overlays. */
2783 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2784
2785 return gdbarch;
2786 }
2787
2788 /* Provide a prototype to silence -Wmissing-prototypes. */
2789 extern initialize_file_ftype _initialize_spu_tdep;
2790
2791 void
2792 _initialize_spu_tdep (void)
2793 {
2794 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2795
2796 /* Add ourselves to objfile event chain. */
2797 observer_attach_new_objfile (spu_overlay_new_objfile);
2798 spu_overlay_data = register_objfile_data ();
2799
2800 /* Install spu stop-on-load handler. */
2801 observer_attach_new_objfile (spu_catch_start);
2802
2803 /* Add ourselves to normal_stop event chain. */
2804 observer_attach_normal_stop (spu_attach_normal_stop);
2805
2806 /* Add root prefix command for all "set spu"/"show spu" commands. */
2807 add_prefix_cmd ("spu", no_class, set_spu_command,
2808 _("Various SPU specific commands."),
2809 &setspucmdlist, "set spu ", 0, &setlist);
2810 add_prefix_cmd ("spu", no_class, show_spu_command,
2811 _("Various SPU specific commands."),
2812 &showspucmdlist, "show spu ", 0, &showlist);
2813
2814 /* Toggle whether or not to add a temporary breakpoint at the "main"
2815 function of new SPE contexts. */
2816 add_setshow_boolean_cmd ("stop-on-load", class_support,
2817 &spu_stop_on_load_p, _("\
2818 Set whether to stop for new SPE threads."),
2819 _("\
2820 Show whether to stop for new SPE threads."),
2821 _("\
2822 Use \"on\" to give control to the user when a new SPE thread\n\
2823 enters its \"main\" function.\n\
2824 Use \"off\" to disable stopping for new SPE threads."),
2825 NULL,
2826 show_spu_stop_on_load,
2827 &setspucmdlist, &showspucmdlist);
2828
2829 /* Toggle whether or not to automatically flush the software-managed
2830 cache whenever SPE execution stops. */
2831 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2832 &spu_auto_flush_cache_p, _("\
2833 Set whether to automatically flush the software-managed cache."),
2834 _("\
2835 Show whether to automatically flush the software-managed cache."),
2836 _("\
2837 Use \"on\" to automatically flush the software-managed cache\n\
2838 whenever SPE execution stops.\n\
2839 Use \"off\" to never automatically flush the software-managed cache."),
2840 NULL,
2841 show_spu_auto_flush_cache,
2842 &setspucmdlist, &showspucmdlist);
2843
2844 /* Add root prefix command for all "info spu" commands. */
2845 add_prefix_cmd ("spu", class_info, info_spu_command,
2846 _("Various SPU specific commands."),
2847 &infospucmdlist, "info spu ", 0, &infolist);
2848
2849 /* Add various "info spu" commands. */
2850 add_cmd ("event", class_info, info_spu_event_command,
2851 _("Display SPU event facility status.\n"),
2852 &infospucmdlist);
2853 add_cmd ("signal", class_info, info_spu_signal_command,
2854 _("Display SPU signal notification facility status.\n"),
2855 &infospucmdlist);
2856 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2857 _("Display SPU mailbox facility status.\n"),
2858 &infospucmdlist);
2859 add_cmd ("dma", class_info, info_spu_dma_command,
2860 _("Display MFC DMA status.\n"),
2861 &infospucmdlist);
2862 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2863 _("Display MFC Proxy-DMA status.\n"),
2864 &infospucmdlist);
2865 }