]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/spu-tdep.c
GDB copyright headers update after running GDB's copyright.py script.
[thirdparty/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "objfiles.h"
37 #include "language.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "floatformat.h"
41 #include "block.h"
42 #include "observer.h"
43 #include "infcall.h"
44 #include "dwarf2.h"
45 #include "dwarf2-frame.h"
46 #include "ax.h"
47 #include "spu-tdep.h"
48 #include "location.h"
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static enum register_status
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 enum register_status status;
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
194 ULONGEST ul;
195
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
198 return status;
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (&current_target, TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
206 return REG_VALID;
207 }
208
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212 {
213 gdb_byte reg[16];
214 char annex[32];
215 ULONGEST id;
216 enum register_status status;
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
224 memcpy (buf, reg, 4);
225 return status;
226
227 case SPU_FPSCR_REGNUM:
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
233 return status;
234
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
237
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
240
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
243
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
246
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250 }
251
252 static void
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255 {
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
258 char reg[32];
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
267 (gdb_byte *) reg, 0, strlen (reg));
268 }
269
270 static void
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273 {
274 gdb_byte reg[16];
275 char annex[32];
276 ULONGEST id;
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311 }
312
313 static int
314 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316 {
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333 }
334
335 static int
336 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338 {
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355 }
356
357
358 /* Value conversion -- access scalar values at the preferred slot. */
359
360 static struct value *
361 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
363 {
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
366 int len = TYPE_LENGTH (type);
367
368 if (regnum < SPU_NUM_GPRS && len < 16)
369 {
370 int preferred_slot = len < 4 ? 4 - len : 0;
371 set_value_offset (value, preferred_slot);
372 }
373
374 return value;
375 }
376
377 /* Register groups. */
378
379 static int
380 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382 {
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397 }
398
399 /* DWARF-2 register numbers. */
400
401 static int
402 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403 {
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406 }
407
408
409 /* Address handling. */
410
411 static int
412 spu_gdbarch_id (struct gdbarch *gdbarch)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
418 provide an SPU ID. Retrieve it from the objfile's relocated
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427 }
428
429 static int
430 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431 {
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436 }
437
438 static const char *
439 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440 {
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445 }
446
447 static int
448 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450 {
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458 }
459
460 static void
461 spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463 {
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467 }
468
469 static CORE_ADDR
470 spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
472 {
473 int id = spu_gdbarch_id (gdbarch);
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
477
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
482 return addr? SPUADDR (id, addr) : 0;
483 }
484
485 static CORE_ADDR
486 spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488 {
489 int id = spu_gdbarch_id (gdbarch);
490 ULONGEST addr = unpack_long (type, buf);
491
492 return SPUADDR (id, addr);
493 }
494
495
496 /* Decoding SPU instructions. */
497
498 enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
514 op_selb = 0x8,
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532 static int
533 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534 {
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 static int
547 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548 {
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559 }
560
561 static int
562 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563 {
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573 }
574
575 static int
576 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577 {
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587 }
588
589 static int
590 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591 {
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600 }
601
602 static int
603 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604 {
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613 }
614
615 static int
616 is_branch (unsigned int insn, int *offset, int *reg)
617 {
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652 }
653
654
655 /* Prolog parsing. */
656
657 struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670 static CORE_ADDR
671 spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
673 struct spu_prologue_data *data)
674 {
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
679 int found_bc = 0;
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
708 - The first instruction to save the backchain.
709
710 We return the instruction after the latest of these four,
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
737 insn = extract_unsigned_integer (buf, 4, byte_order);
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852 }
853
854 /* Return the first instruction after the prologue starting at PC. */
855 static CORE_ADDR
856 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
857 {
858 struct spu_prologue_data data;
859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
860 }
861
862 /* Return the frame pointer in use at address PC. */
863 static void
864 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
866 {
867 struct spu_prologue_data data;
868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
878 /* ??? We don't really know ... */
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882 }
883
884 /* Implement the stack_frame_destroyed_p gdbarch method.
885
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
889 an epilogue, return.
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
892 an epilogue.
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
899
900 static int
901 spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
902 {
903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
905 bfd_byte buf[4];
906 unsigned int insn;
907 int rt, ra, rb, immed;
908
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
911
912 const int spu_max_epilogue_size = 64 * 4;
913
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
915 return 0;
916
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
919 else
920 epilogue_start = pc - spu_max_epilogue_size;
921
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
924 else
925 epilogue_end = pc + spu_max_epilogue_size;
926
927 /* Scan forward until next 'bi $0'. */
928
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
930 {
931 if (target_read_memory (scan_pc, buf, 4))
932 return 0;
933 insn = extract_unsigned_integer (buf, 4, byte_order);
934
935 if (is_branch (insn, &immed, &ra))
936 {
937 if (immed == 0 && ra == SPU_LR_REGNUM)
938 break;
939
940 return 0;
941 }
942
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
946 {
947 if (rt == SPU_RAW_SP_REGNUM)
948 return 0;
949 }
950 }
951
952 if (scan_pc >= epilogue_end)
953 return 0;
954
955 /* Scan backward until adjustment to stack pointer (R1). */
956
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
958 {
959 if (target_read_memory (scan_pc, buf, 4))
960 return 0;
961 insn = extract_unsigned_integer (buf, 4, byte_order);
962
963 if (is_branch (insn, &immed, &ra))
964 return 0;
965
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
969 {
970 if (rt == SPU_RAW_SP_REGNUM)
971 return 1;
972 }
973 }
974
975 return 0;
976 }
977
978
979 /* Normal stack frames. */
980
981 struct spu_unwind_cache
982 {
983 CORE_ADDR func;
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
986
987 struct trad_frame_saved_reg *saved_regs;
988 };
989
990 static struct spu_unwind_cache *
991 spu_frame_unwind_cache (struct frame_info *this_frame,
992 void **this_prologue_cache)
993 {
994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
999 CORE_ADDR id = tdep->id;
1000 gdb_byte buf[16];
1001
1002 if (*this_prologue_cache)
1003 return (struct spu_unwind_cache *) *this_prologue_cache;
1004
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1008 info->frame_base = 0;
1009 info->local_base = 0;
1010
1011 /* Find the start of the current function, and analyze its prologue. */
1012 info->func = get_frame_func (this_frame);
1013 if (info->func == 0)
1014 {
1015 /* Fall back to using the current PC as frame ID. */
1016 info->func = get_frame_pc (this_frame);
1017 data.size = -1;
1018 }
1019 else
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1021 &data);
1022
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1025 {
1026 CORE_ADDR cfa;
1027 int i;
1028
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1030 get_frame_register (this_frame, data.cfa_reg, buf);
1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1032 cfa = SPUADDR (id, cfa);
1033
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1040
1041 /* Frame bases. */
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1044 }
1045
1046 /* Otherwise, fall back to reading the backchain link. */
1047 else
1048 {
1049 CORE_ADDR reg;
1050 LONGEST backchain;
1051 ULONGEST lslr;
1052 int status;
1053
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1056 if (!lslr)
1057 lslr = (ULONGEST) -1;
1058
1059 /* Get the backchain. */
1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1062 &backchain);
1063
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
1066 if (status && backchain > 0 && backchain <= lslr)
1067 {
1068 /* Assume the link register is saved into its slot. */
1069 if (backchain + 16 <= lslr)
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1071 backchain + 16);
1072
1073 /* Frame bases. */
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
1076 }
1077 }
1078
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1081 return info;
1082
1083 /* The previous SP is equal to the CFA. */
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
1086
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1091 else
1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1093
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1102 extract_unsigned_integer (buf + 8, 4, byte_order));
1103 else
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1105 extract_unsigned_integer (buf, 4, byte_order));
1106
1107 return info;
1108 }
1109
1110 static void
1111 spu_frame_this_id (struct frame_info *this_frame,
1112 void **this_prologue_cache, struct frame_id *this_id)
1113 {
1114 struct spu_unwind_cache *info =
1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1116
1117 if (info->frame_base == 0)
1118 return;
1119
1120 *this_id = frame_id_build (info->frame_base, info->func);
1121 }
1122
1123 static struct value *
1124 spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
1126 {
1127 struct spu_unwind_cache *info
1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1129
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1133
1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1135 }
1136
1137 static const struct frame_unwind spu_frame_unwind = {
1138 NORMAL_FRAME,
1139 default_frame_unwind_stop_reason,
1140 spu_frame_this_id,
1141 spu_frame_prev_register,
1142 NULL,
1143 default_frame_sniffer
1144 };
1145
1146 static CORE_ADDR
1147 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1148 {
1149 struct spu_unwind_cache *info
1150 = spu_frame_unwind_cache (this_frame, this_cache);
1151 return info->local_base;
1152 }
1153
1154 static const struct frame_base spu_frame_base = {
1155 &spu_frame_unwind,
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1159 };
1160
1161 static CORE_ADDR
1162 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1163 {
1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
1167 return SPUADDR (tdep->id, pc & -4);
1168 }
1169
1170 static CORE_ADDR
1171 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1172 {
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
1176 }
1177
1178 static CORE_ADDR
1179 spu_read_pc (struct regcache *regcache)
1180 {
1181 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1182 ULONGEST pc;
1183 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1184 /* Mask off interrupt enable bit. */
1185 return SPUADDR (tdep->id, pc & -4);
1186 }
1187
1188 static void
1189 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1190 {
1191 /* Keep interrupt enabled state unchanged. */
1192 ULONGEST old_pc;
1193
1194 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1195 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1196 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1197 }
1198
1199
1200 /* Cell/B.E. cross-architecture unwinder support. */
1201
1202 struct spu2ppu_cache
1203 {
1204 struct frame_id frame_id;
1205 struct regcache *regcache;
1206 };
1207
1208 static struct gdbarch *
1209 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1210 {
1211 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1212 return get_regcache_arch (cache->regcache);
1213 }
1214
1215 static void
1216 spu2ppu_this_id (struct frame_info *this_frame,
1217 void **this_cache, struct frame_id *this_id)
1218 {
1219 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1220 *this_id = cache->frame_id;
1221 }
1222
1223 static struct value *
1224 spu2ppu_prev_register (struct frame_info *this_frame,
1225 void **this_cache, int regnum)
1226 {
1227 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1228 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1229 gdb_byte *buf;
1230
1231 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1232 regcache_cooked_read (cache->regcache, regnum, buf);
1233 return frame_unwind_got_bytes (this_frame, regnum, buf);
1234 }
1235
1236 static int
1237 spu2ppu_sniffer (const struct frame_unwind *self,
1238 struct frame_info *this_frame, void **this_prologue_cache)
1239 {
1240 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1242 CORE_ADDR base, func, backchain;
1243 gdb_byte buf[4];
1244
1245 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1246 return 0;
1247
1248 base = get_frame_sp (this_frame);
1249 func = get_frame_pc (this_frame);
1250 if (target_read_memory (base, buf, 4))
1251 return 0;
1252 backchain = extract_unsigned_integer (buf, 4, byte_order);
1253
1254 if (!backchain)
1255 {
1256 struct frame_info *fi;
1257
1258 struct spu2ppu_cache *cache
1259 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1260
1261 cache->frame_id = frame_id_build (base + 16, func);
1262
1263 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1264 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1265 break;
1266
1267 if (fi)
1268 {
1269 cache->regcache = frame_save_as_regcache (fi);
1270 *this_prologue_cache = cache;
1271 return 1;
1272 }
1273 else
1274 {
1275 struct regcache *regcache;
1276 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1277 cache->regcache = regcache_dup (regcache);
1278 *this_prologue_cache = cache;
1279 return 1;
1280 }
1281 }
1282
1283 return 0;
1284 }
1285
1286 static void
1287 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1288 {
1289 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
1290 regcache_xfree (cache->regcache);
1291 }
1292
1293 static const struct frame_unwind spu2ppu_unwind = {
1294 ARCH_FRAME,
1295 default_frame_unwind_stop_reason,
1296 spu2ppu_this_id,
1297 spu2ppu_prev_register,
1298 NULL,
1299 spu2ppu_sniffer,
1300 spu2ppu_dealloc_cache,
1301 spu2ppu_prev_arch,
1302 };
1303
1304
1305 /* Function calling convention. */
1306
1307 static CORE_ADDR
1308 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1309 {
1310 return sp & ~15;
1311 }
1312
1313 static CORE_ADDR
1314 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1315 struct value **args, int nargs, struct type *value_type,
1316 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1317 struct regcache *regcache)
1318 {
1319 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1320 sp = (sp - 4) & ~15;
1321 /* Store the address of that breakpoint */
1322 *bp_addr = sp;
1323 /* The call starts at the callee's entry point. */
1324 *real_pc = funaddr;
1325
1326 return sp;
1327 }
1328
1329 static int
1330 spu_scalar_value_p (struct type *type)
1331 {
1332 switch (TYPE_CODE (type))
1333 {
1334 case TYPE_CODE_INT:
1335 case TYPE_CODE_ENUM:
1336 case TYPE_CODE_RANGE:
1337 case TYPE_CODE_CHAR:
1338 case TYPE_CODE_BOOL:
1339 case TYPE_CODE_PTR:
1340 case TYPE_CODE_REF:
1341 return TYPE_LENGTH (type) <= 16;
1342
1343 default:
1344 return 0;
1345 }
1346 }
1347
1348 static void
1349 spu_value_to_regcache (struct regcache *regcache, int regnum,
1350 struct type *type, const gdb_byte *in)
1351 {
1352 int len = TYPE_LENGTH (type);
1353
1354 if (spu_scalar_value_p (type))
1355 {
1356 int preferred_slot = len < 4 ? 4 - len : 0;
1357 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1358 }
1359 else
1360 {
1361 while (len >= 16)
1362 {
1363 regcache_cooked_write (regcache, regnum++, in);
1364 in += 16;
1365 len -= 16;
1366 }
1367
1368 if (len > 0)
1369 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1370 }
1371 }
1372
1373 static void
1374 spu_regcache_to_value (struct regcache *regcache, int regnum,
1375 struct type *type, gdb_byte *out)
1376 {
1377 int len = TYPE_LENGTH (type);
1378
1379 if (spu_scalar_value_p (type))
1380 {
1381 int preferred_slot = len < 4 ? 4 - len : 0;
1382 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1383 }
1384 else
1385 {
1386 while (len >= 16)
1387 {
1388 regcache_cooked_read (regcache, regnum++, out);
1389 out += 16;
1390 len -= 16;
1391 }
1392
1393 if (len > 0)
1394 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1395 }
1396 }
1397
1398 static CORE_ADDR
1399 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1400 struct regcache *regcache, CORE_ADDR bp_addr,
1401 int nargs, struct value **args, CORE_ADDR sp,
1402 int struct_return, CORE_ADDR struct_addr)
1403 {
1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1405 CORE_ADDR sp_delta;
1406 int i;
1407 int regnum = SPU_ARG1_REGNUM;
1408 int stack_arg = -1;
1409 gdb_byte buf[16];
1410
1411 /* Set the return address. */
1412 memset (buf, 0, sizeof buf);
1413 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1414 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1415
1416 /* If STRUCT_RETURN is true, then the struct return address (in
1417 STRUCT_ADDR) will consume the first argument-passing register.
1418 Both adjust the register count and store that value. */
1419 if (struct_return)
1420 {
1421 memset (buf, 0, sizeof buf);
1422 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1423 regcache_cooked_write (regcache, regnum++, buf);
1424 }
1425
1426 /* Fill in argument registers. */
1427 for (i = 0; i < nargs; i++)
1428 {
1429 struct value *arg = args[i];
1430 struct type *type = check_typedef (value_type (arg));
1431 const gdb_byte *contents = value_contents (arg);
1432 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1433
1434 /* If the argument doesn't wholly fit into registers, it and
1435 all subsequent arguments go to the stack. */
1436 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1437 {
1438 stack_arg = i;
1439 break;
1440 }
1441
1442 spu_value_to_regcache (regcache, regnum, type, contents);
1443 regnum += n_regs;
1444 }
1445
1446 /* Overflow arguments go to the stack. */
1447 if (stack_arg != -1)
1448 {
1449 CORE_ADDR ap;
1450
1451 /* Allocate all required stack size. */
1452 for (i = stack_arg; i < nargs; i++)
1453 {
1454 struct type *type = check_typedef (value_type (args[i]));
1455 sp -= align_up (TYPE_LENGTH (type), 16);
1456 }
1457
1458 /* Fill in stack arguments. */
1459 ap = sp;
1460 for (i = stack_arg; i < nargs; i++)
1461 {
1462 struct value *arg = args[i];
1463 struct type *type = check_typedef (value_type (arg));
1464 int len = TYPE_LENGTH (type);
1465 int preferred_slot;
1466
1467 if (spu_scalar_value_p (type))
1468 preferred_slot = len < 4 ? 4 - len : 0;
1469 else
1470 preferred_slot = 0;
1471
1472 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1473 ap += align_up (TYPE_LENGTH (type), 16);
1474 }
1475 }
1476
1477 /* Allocate stack frame header. */
1478 sp -= 32;
1479
1480 /* Store stack back chain. */
1481 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1482 target_write_memory (sp, buf, 16);
1483
1484 /* Finally, update all slots of the SP register. */
1485 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1486 for (i = 0; i < 4; i++)
1487 {
1488 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1489 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1490 }
1491 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1492
1493 return sp;
1494 }
1495
1496 static struct frame_id
1497 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1498 {
1499 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1500 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1501 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1502 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1503 }
1504
1505 /* Function return value access. */
1506
1507 static enum return_value_convention
1508 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1509 struct type *type, struct regcache *regcache,
1510 gdb_byte *out, const gdb_byte *in)
1511 {
1512 struct type *func_type = function ? value_type (function) : NULL;
1513 enum return_value_convention rvc;
1514 int opencl_vector = 0;
1515
1516 if (func_type)
1517 {
1518 func_type = check_typedef (func_type);
1519
1520 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1521 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1522
1523 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1524 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1525 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1526 && TYPE_VECTOR (type))
1527 opencl_vector = 1;
1528 }
1529
1530 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1531 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1532 else
1533 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1534
1535 if (in)
1536 {
1537 switch (rvc)
1538 {
1539 case RETURN_VALUE_REGISTER_CONVENTION:
1540 if (opencl_vector && TYPE_LENGTH (type) == 2)
1541 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1542 else
1543 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1544 break;
1545
1546 case RETURN_VALUE_STRUCT_CONVENTION:
1547 error (_("Cannot set function return value."));
1548 break;
1549 }
1550 }
1551 else if (out)
1552 {
1553 switch (rvc)
1554 {
1555 case RETURN_VALUE_REGISTER_CONVENTION:
1556 if (opencl_vector && TYPE_LENGTH (type) == 2)
1557 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1558 else
1559 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1560 break;
1561
1562 case RETURN_VALUE_STRUCT_CONVENTION:
1563 error (_("Function return value unknown."));
1564 break;
1565 }
1566 }
1567
1568 return rvc;
1569 }
1570
1571
1572 /* Breakpoints. */
1573
1574 static const gdb_byte *
1575 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1576 CORE_ADDR * pcptr, int *lenptr)
1577 {
1578 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1579
1580 *lenptr = sizeof breakpoint;
1581 return breakpoint;
1582 }
1583
1584 static int
1585 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1586 struct bp_target_info *bp_tgt)
1587 {
1588 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1589 that in a combined application, we have some breakpoints inserted in SPU
1590 code, and now the application forks (on the PPU side). GDB common code
1591 will assume that the fork system call copied all breakpoints into the new
1592 process' address space, and that all those copies now need to be removed
1593 (see breakpoint.c:detach_breakpoints).
1594
1595 While this is certainly true for PPU side breakpoints, it is not true
1596 for SPU side breakpoints. fork will clone the SPU context file
1597 descriptors, so that all the existing SPU contexts are in accessible
1598 in the new process. However, the contents of the SPU contexts themselves
1599 are *not* cloned. Therefore the effect of detach_breakpoints is to
1600 remove SPU breakpoints from the *original* SPU context's local store
1601 -- this is not the correct behaviour.
1602
1603 The workaround is to check whether the PID we are asked to remove this
1604 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1605 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1606 true in the context of detach_breakpoints. If so, we simply do nothing.
1607 [ Note that for the fork child process, it does not matter if breakpoints
1608 remain inserted, because those SPU contexts are not runnable anyway --
1609 the Linux kernel allows only the original process to invoke spu_run. */
1610
1611 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1612 return 0;
1613
1614 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1615 }
1616
1617
1618 /* Software single-stepping support. */
1619
1620 static int
1621 spu_software_single_step (struct frame_info *frame)
1622 {
1623 struct gdbarch *gdbarch = get_frame_arch (frame);
1624 struct address_space *aspace = get_frame_address_space (frame);
1625 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1626 CORE_ADDR pc, next_pc;
1627 unsigned int insn;
1628 int offset, reg;
1629 gdb_byte buf[4];
1630 ULONGEST lslr;
1631
1632 pc = get_frame_pc (frame);
1633
1634 if (target_read_memory (pc, buf, 4))
1635 return 1;
1636 insn = extract_unsigned_integer (buf, 4, byte_order);
1637
1638 /* Get local store limit. */
1639 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1640 if (!lslr)
1641 lslr = (ULONGEST) -1;
1642
1643 /* Next sequential instruction is at PC + 4, except if the current
1644 instruction is a PPE-assisted call, in which case it is at PC + 8.
1645 Wrap around LS limit to be on the safe side. */
1646 if ((insn & 0xffffff00) == 0x00002100)
1647 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1648 else
1649 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1650
1651 insert_single_step_breakpoint (gdbarch,
1652 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1653
1654 if (is_branch (insn, &offset, &reg))
1655 {
1656 CORE_ADDR target = offset;
1657
1658 if (reg == SPU_PC_REGNUM)
1659 target += SPUADDR_ADDR (pc);
1660 else if (reg != -1)
1661 {
1662 int optim, unavail;
1663
1664 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1665 &optim, &unavail))
1666 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1667 else
1668 {
1669 if (optim)
1670 throw_error (OPTIMIZED_OUT_ERROR,
1671 _("Could not determine address of "
1672 "single-step breakpoint."));
1673 if (unavail)
1674 throw_error (NOT_AVAILABLE_ERROR,
1675 _("Could not determine address of "
1676 "single-step breakpoint."));
1677 }
1678 }
1679
1680 target = target & lslr;
1681 if (target != next_pc)
1682 insert_single_step_breakpoint (gdbarch, aspace,
1683 SPUADDR (SPUADDR_SPU (pc), target));
1684 }
1685
1686 return 1;
1687 }
1688
1689
1690 /* Longjmp support. */
1691
1692 static int
1693 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1694 {
1695 struct gdbarch *gdbarch = get_frame_arch (frame);
1696 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1697 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1698 gdb_byte buf[4];
1699 CORE_ADDR jb_addr;
1700 int optim, unavail;
1701
1702 /* Jump buffer is pointed to by the argument register $r3. */
1703 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1704 &optim, &unavail))
1705 return 0;
1706
1707 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1708 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1709 return 0;
1710
1711 *pc = extract_unsigned_integer (buf, 4, byte_order);
1712 *pc = SPUADDR (tdep->id, *pc);
1713 return 1;
1714 }
1715
1716
1717 /* Disassembler. */
1718
1719 struct spu_dis_asm_data
1720 {
1721 struct gdbarch *gdbarch;
1722 int id;
1723 };
1724
1725 static void
1726 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1727 {
1728 struct spu_dis_asm_data *data
1729 = (struct spu_dis_asm_data *) info->application_data;
1730 print_address (data->gdbarch, SPUADDR (data->id, addr),
1731 (struct ui_file *) info->stream);
1732 }
1733
1734 static int
1735 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1736 {
1737 /* The opcodes disassembler does 18-bit address arithmetic. Make
1738 sure the SPU ID encoded in the high bits is added back when we
1739 call print_address. */
1740 struct disassemble_info spu_info = *info;
1741 struct spu_dis_asm_data data;
1742 data.gdbarch = (struct gdbarch *) info->application_data;
1743 data.id = SPUADDR_SPU (memaddr);
1744
1745 spu_info.application_data = &data;
1746 spu_info.print_address_func = spu_dis_asm_print_address;
1747 return print_insn_spu (memaddr, &spu_info);
1748 }
1749
1750
1751 /* Target overlays for the SPU overlay manager.
1752
1753 See the documentation of simple_overlay_update for how the
1754 interface is supposed to work.
1755
1756 Data structures used by the overlay manager:
1757
1758 struct ovly_table
1759 {
1760 u32 vma;
1761 u32 size;
1762 u32 pos;
1763 u32 buf;
1764 } _ovly_table[]; -- one entry per overlay section
1765
1766 struct ovly_buf_table
1767 {
1768 u32 mapped;
1769 } _ovly_buf_table[]; -- one entry per overlay buffer
1770
1771 _ovly_table should never change.
1772
1773 Both tables are aligned to a 16-byte boundary, the symbols
1774 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1775 size set to the size of the respective array. buf in _ovly_table is
1776 an index into _ovly_buf_table.
1777
1778 mapped is an index into _ovly_table. Both the mapped and buf indices start
1779 from one to reference the first entry in their respective tables. */
1780
1781 /* Using the per-objfile private data mechanism, we store for each
1782 objfile an array of "struct spu_overlay_table" structures, one
1783 for each obj_section of the objfile. This structure holds two
1784 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1785 is *not* an overlay section. If it is non-zero, it represents
1786 a target address. The overlay section is mapped iff the target
1787 integer at this location equals MAPPED_VAL. */
1788
1789 static const struct objfile_data *spu_overlay_data;
1790
1791 struct spu_overlay_table
1792 {
1793 CORE_ADDR mapped_ptr;
1794 CORE_ADDR mapped_val;
1795 };
1796
1797 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1798 the _ovly_table data structure from the target and initialize the
1799 spu_overlay_table data structure from it. */
1800 static struct spu_overlay_table *
1801 spu_get_overlay_table (struct objfile *objfile)
1802 {
1803 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1804 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1805 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1806 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1807 unsigned ovly_table_size, ovly_buf_table_size;
1808 struct spu_overlay_table *tbl;
1809 struct obj_section *osect;
1810 gdb_byte *ovly_table;
1811 int i;
1812
1813 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
1814 if (tbl)
1815 return tbl;
1816
1817 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1818 if (!ovly_table_msym.minsym)
1819 return NULL;
1820
1821 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1822 NULL, objfile);
1823 if (!ovly_buf_table_msym.minsym)
1824 return NULL;
1825
1826 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1827 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1828
1829 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1830 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1831
1832 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
1833 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1834
1835 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1836 objfile->sections_end - objfile->sections,
1837 struct spu_overlay_table);
1838
1839 for (i = 0; i < ovly_table_size / 16; i++)
1840 {
1841 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1842 4, byte_order);
1843 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1844 4, byte_order);
1845 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1846 4, byte_order);
1847 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1848 4, byte_order);
1849
1850 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1851 continue;
1852
1853 ALL_OBJFILE_OSECTIONS (objfile, osect)
1854 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1855 && pos == osect->the_bfd_section->filepos)
1856 {
1857 int ndx = osect - objfile->sections;
1858 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1859 tbl[ndx].mapped_val = i + 1;
1860 break;
1861 }
1862 }
1863
1864 xfree (ovly_table);
1865 set_objfile_data (objfile, spu_overlay_data, tbl);
1866 return tbl;
1867 }
1868
1869 /* Read _ovly_buf_table entry from the target to dermine whether
1870 OSECT is currently mapped, and update the mapped state. */
1871 static void
1872 spu_overlay_update_osect (struct obj_section *osect)
1873 {
1874 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1875 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1876 struct spu_overlay_table *ovly_table;
1877 CORE_ADDR id, val;
1878
1879 ovly_table = spu_get_overlay_table (osect->objfile);
1880 if (!ovly_table)
1881 return;
1882
1883 ovly_table += osect - osect->objfile->sections;
1884 if (ovly_table->mapped_ptr == 0)
1885 return;
1886
1887 id = SPUADDR_SPU (obj_section_addr (osect));
1888 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1889 4, byte_order);
1890 osect->ovly_mapped = (val == ovly_table->mapped_val);
1891 }
1892
1893 /* If OSECT is NULL, then update all sections' mapped state.
1894 If OSECT is non-NULL, then update only OSECT's mapped state. */
1895 static void
1896 spu_overlay_update (struct obj_section *osect)
1897 {
1898 /* Just one section. */
1899 if (osect)
1900 spu_overlay_update_osect (osect);
1901
1902 /* All sections. */
1903 else
1904 {
1905 struct objfile *objfile;
1906
1907 ALL_OBJSECTIONS (objfile, osect)
1908 if (section_is_overlay (osect))
1909 spu_overlay_update_osect (osect);
1910 }
1911 }
1912
1913 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1914 If there is one, go through all sections and make sure for non-
1915 overlay sections LMA equals VMA, while for overlay sections LMA
1916 is larger than SPU_OVERLAY_LMA. */
1917 static void
1918 spu_overlay_new_objfile (struct objfile *objfile)
1919 {
1920 struct spu_overlay_table *ovly_table;
1921 struct obj_section *osect;
1922
1923 /* If we've already touched this file, do nothing. */
1924 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1925 return;
1926
1927 /* Consider only SPU objfiles. */
1928 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1929 return;
1930
1931 /* Check if this objfile has overlays. */
1932 ovly_table = spu_get_overlay_table (objfile);
1933 if (!ovly_table)
1934 return;
1935
1936 /* Now go and fiddle with all the LMAs. */
1937 ALL_OBJFILE_OSECTIONS (objfile, osect)
1938 {
1939 bfd *obfd = objfile->obfd;
1940 asection *bsect = osect->the_bfd_section;
1941 int ndx = osect - objfile->sections;
1942
1943 if (ovly_table[ndx].mapped_ptr == 0)
1944 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1945 else
1946 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1947 }
1948 }
1949
1950
1951 /* Insert temporary breakpoint on "main" function of newly loaded
1952 SPE context OBJFILE. */
1953 static void
1954 spu_catch_start (struct objfile *objfile)
1955 {
1956 struct bound_minimal_symbol minsym;
1957 struct compunit_symtab *cust;
1958 CORE_ADDR pc;
1959 struct event_location *location;
1960 struct cleanup *back_to;
1961
1962 /* Do this only if requested by "set spu stop-on-load on". */
1963 if (!spu_stop_on_load_p)
1964 return;
1965
1966 /* Consider only SPU objfiles. */
1967 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1968 return;
1969
1970 /* The main objfile is handled differently. */
1971 if (objfile == symfile_objfile)
1972 return;
1973
1974 /* There can be multiple symbols named "main". Search for the
1975 "main" in *this* objfile. */
1976 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1977 if (!minsym.minsym)
1978 return;
1979
1980 /* If we have debugging information, try to use it -- this
1981 will allow us to properly skip the prologue. */
1982 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1983 cust
1984 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1985 minsym.minsym));
1986 if (cust != NULL)
1987 {
1988 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1989 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1990 struct symbol *sym;
1991 struct symtab_and_line sal;
1992
1993 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
1994 if (sym)
1995 {
1996 fixup_symbol_section (sym, objfile);
1997 sal = find_function_start_sal (sym, 1);
1998 pc = sal.pc;
1999 }
2000 }
2001
2002 /* Use a numerical address for the set_breakpoint command to avoid having
2003 the breakpoint re-set incorrectly. */
2004 location = new_address_location (pc);
2005 back_to = make_cleanup_delete_event_location (location);
2006 create_breakpoint (get_objfile_arch (objfile), location,
2007 NULL /* cond_string */, -1 /* thread */,
2008 NULL /* extra_string */,
2009 0 /* parse_condition_and_thread */, 1 /* tempflag */,
2010 bp_breakpoint /* type_wanted */,
2011 0 /* ignore_count */,
2012 AUTO_BOOLEAN_FALSE /* pending_break_support */,
2013 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
2014 1 /* enabled */, 0 /* internal */, 0);
2015 do_cleanups (back_to);
2016 }
2017
2018
2019 /* Look up OBJFILE loaded into FRAME's SPU context. */
2020 static struct objfile *
2021 spu_objfile_from_frame (struct frame_info *frame)
2022 {
2023 struct gdbarch *gdbarch = get_frame_arch (frame);
2024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2025 struct objfile *obj;
2026
2027 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2028 return NULL;
2029
2030 ALL_OBJFILES (obj)
2031 {
2032 if (obj->sections != obj->sections_end
2033 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2034 return obj;
2035 }
2036
2037 return NULL;
2038 }
2039
2040 /* Flush cache for ea pointer access if available. */
2041 static void
2042 flush_ea_cache (void)
2043 {
2044 struct bound_minimal_symbol msymbol;
2045 struct objfile *obj;
2046
2047 if (!has_stack_frames ())
2048 return;
2049
2050 obj = spu_objfile_from_frame (get_current_frame ());
2051 if (obj == NULL)
2052 return;
2053
2054 /* Lookup inferior function __cache_flush. */
2055 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2056 if (msymbol.minsym != NULL)
2057 {
2058 struct type *type;
2059 CORE_ADDR addr;
2060
2061 type = objfile_type (obj)->builtin_void;
2062 type = lookup_function_type (type);
2063 type = lookup_pointer_type (type);
2064 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2065
2066 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2067 }
2068 }
2069
2070 /* This handler is called when the inferior has stopped. If it is stopped in
2071 SPU architecture then flush the ea cache if used. */
2072 static void
2073 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2074 {
2075 if (!spu_auto_flush_cache_p)
2076 return;
2077
2078 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2079 re-entering this function when __cache_flush stops. */
2080 spu_auto_flush_cache_p = 0;
2081 flush_ea_cache ();
2082 spu_auto_flush_cache_p = 1;
2083 }
2084
2085
2086 /* "info spu" commands. */
2087
2088 static void
2089 info_spu_event_command (char *args, int from_tty)
2090 {
2091 struct frame_info *frame = get_selected_frame (NULL);
2092 ULONGEST event_status = 0;
2093 ULONGEST event_mask = 0;
2094 struct cleanup *chain;
2095 gdb_byte buf[100];
2096 char annex[32];
2097 LONGEST len;
2098 int id;
2099
2100 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2101 error (_("\"info spu\" is only supported on the SPU architecture."));
2102
2103 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2104
2105 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2106 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2107 buf, 0, (sizeof (buf) - 1));
2108 if (len <= 0)
2109 error (_("Could not read event_status."));
2110 buf[len] = '\0';
2111 event_status = strtoulst ((char *) buf, NULL, 16);
2112
2113 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2114 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2115 buf, 0, (sizeof (buf) - 1));
2116 if (len <= 0)
2117 error (_("Could not read event_mask."));
2118 buf[len] = '\0';
2119 event_mask = strtoulst ((char *) buf, NULL, 16);
2120
2121 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2122
2123 if (ui_out_is_mi_like_p (current_uiout))
2124 {
2125 ui_out_field_fmt (current_uiout, "event_status",
2126 "0x%s", phex_nz (event_status, 4));
2127 ui_out_field_fmt (current_uiout, "event_mask",
2128 "0x%s", phex_nz (event_mask, 4));
2129 }
2130 else
2131 {
2132 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2133 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2134 }
2135
2136 do_cleanups (chain);
2137 }
2138
2139 static void
2140 info_spu_signal_command (char *args, int from_tty)
2141 {
2142 struct frame_info *frame = get_selected_frame (NULL);
2143 struct gdbarch *gdbarch = get_frame_arch (frame);
2144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2145 ULONGEST signal1 = 0;
2146 ULONGEST signal1_type = 0;
2147 int signal1_pending = 0;
2148 ULONGEST signal2 = 0;
2149 ULONGEST signal2_type = 0;
2150 int signal2_pending = 0;
2151 struct cleanup *chain;
2152 char annex[32];
2153 gdb_byte buf[100];
2154 LONGEST len;
2155 int id;
2156
2157 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2158 error (_("\"info spu\" is only supported on the SPU architecture."));
2159
2160 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2161
2162 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2163 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2164 if (len < 0)
2165 error (_("Could not read signal1."));
2166 else if (len == 4)
2167 {
2168 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2169 signal1_pending = 1;
2170 }
2171
2172 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2173 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2174 buf, 0, (sizeof (buf) - 1));
2175 if (len <= 0)
2176 error (_("Could not read signal1_type."));
2177 buf[len] = '\0';
2178 signal1_type = strtoulst ((char *) buf, NULL, 16);
2179
2180 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2181 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2182 if (len < 0)
2183 error (_("Could not read signal2."));
2184 else if (len == 4)
2185 {
2186 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2187 signal2_pending = 1;
2188 }
2189
2190 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2191 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2192 buf, 0, (sizeof (buf) - 1));
2193 if (len <= 0)
2194 error (_("Could not read signal2_type."));
2195 buf[len] = '\0';
2196 signal2_type = strtoulst ((char *) buf, NULL, 16);
2197
2198 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2199
2200 if (ui_out_is_mi_like_p (current_uiout))
2201 {
2202 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2203 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2204 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2205 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2206 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2207 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2208 }
2209 else
2210 {
2211 if (signal1_pending)
2212 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2213 else
2214 printf_filtered (_("Signal 1 not pending "));
2215
2216 if (signal1_type)
2217 printf_filtered (_("(Type Or)\n"));
2218 else
2219 printf_filtered (_("(Type Overwrite)\n"));
2220
2221 if (signal2_pending)
2222 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2223 else
2224 printf_filtered (_("Signal 2 not pending "));
2225
2226 if (signal2_type)
2227 printf_filtered (_("(Type Or)\n"));
2228 else
2229 printf_filtered (_("(Type Overwrite)\n"));
2230 }
2231
2232 do_cleanups (chain);
2233 }
2234
2235 static void
2236 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2237 const char *field, const char *msg)
2238 {
2239 struct cleanup *chain;
2240 int i;
2241
2242 if (nr <= 0)
2243 return;
2244
2245 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2246
2247 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2248 ui_out_table_body (current_uiout);
2249
2250 for (i = 0; i < nr; i++)
2251 {
2252 struct cleanup *val_chain;
2253 ULONGEST val;
2254 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2255 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2256 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2257 do_cleanups (val_chain);
2258
2259 if (!ui_out_is_mi_like_p (current_uiout))
2260 printf_filtered ("\n");
2261 }
2262
2263 do_cleanups (chain);
2264 }
2265
2266 static void
2267 info_spu_mailbox_command (char *args, int from_tty)
2268 {
2269 struct frame_info *frame = get_selected_frame (NULL);
2270 struct gdbarch *gdbarch = get_frame_arch (frame);
2271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2272 struct cleanup *chain;
2273 char annex[32];
2274 gdb_byte buf[1024];
2275 LONGEST len;
2276 int id;
2277
2278 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2279 error (_("\"info spu\" is only supported on the SPU architecture."));
2280
2281 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2282
2283 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2284
2285 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2286 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2287 buf, 0, sizeof buf);
2288 if (len < 0)
2289 error (_("Could not read mbox_info."));
2290
2291 info_spu_mailbox_list (buf, len / 4, byte_order,
2292 "mbox", "SPU Outbound Mailbox");
2293
2294 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2295 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2296 buf, 0, sizeof buf);
2297 if (len < 0)
2298 error (_("Could not read ibox_info."));
2299
2300 info_spu_mailbox_list (buf, len / 4, byte_order,
2301 "ibox", "SPU Outbound Interrupt Mailbox");
2302
2303 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2304 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2305 buf, 0, sizeof buf);
2306 if (len < 0)
2307 error (_("Could not read wbox_info."));
2308
2309 info_spu_mailbox_list (buf, len / 4, byte_order,
2310 "wbox", "SPU Inbound Mailbox");
2311
2312 do_cleanups (chain);
2313 }
2314
2315 static ULONGEST
2316 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2317 {
2318 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2319 return (word >> (63 - last)) & mask;
2320 }
2321
2322 static void
2323 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2324 {
2325 static char *spu_mfc_opcode[256] =
2326 {
2327 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2328 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2329 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2330 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2331 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2332 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2333 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2334 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2336 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2337 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2338 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2339 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2340 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2341 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2342 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2343 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2344 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2345 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2346 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2347 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2348 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2349 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2350 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2352 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2353 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2354 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2355 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2356 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2357 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2358 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2359 };
2360
2361 int *seq = XALLOCAVEC (int, nr);
2362 int done = 0;
2363 struct cleanup *chain;
2364 int i, j;
2365
2366
2367 /* Determine sequence in which to display (valid) entries. */
2368 for (i = 0; i < nr; i++)
2369 {
2370 /* Search for the first valid entry all of whose
2371 dependencies are met. */
2372 for (j = 0; j < nr; j++)
2373 {
2374 ULONGEST mfc_cq_dw3;
2375 ULONGEST dependencies;
2376
2377 if (done & (1 << (nr - 1 - j)))
2378 continue;
2379
2380 mfc_cq_dw3
2381 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2382 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2383 continue;
2384
2385 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2386 if ((dependencies & done) != dependencies)
2387 continue;
2388
2389 seq[i] = j;
2390 done |= 1 << (nr - 1 - j);
2391 break;
2392 }
2393
2394 if (j == nr)
2395 break;
2396 }
2397
2398 nr = i;
2399
2400
2401 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2402 "dma_cmd");
2403
2404 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2405 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2406 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2407 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2408 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2409 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2410 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2411 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2412 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2413 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2414
2415 ui_out_table_body (current_uiout);
2416
2417 for (i = 0; i < nr; i++)
2418 {
2419 struct cleanup *cmd_chain;
2420 ULONGEST mfc_cq_dw0;
2421 ULONGEST mfc_cq_dw1;
2422 ULONGEST mfc_cq_dw2;
2423 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2424 int list_lsa, list_size, mfc_lsa, mfc_size;
2425 ULONGEST mfc_ea;
2426 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2427
2428 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2429 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2430
2431 mfc_cq_dw0
2432 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2433 mfc_cq_dw1
2434 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2435 mfc_cq_dw2
2436 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2437
2438 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2439 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2440 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2441 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2442 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2443 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2444 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2445
2446 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2447 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2448
2449 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2450 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2451 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2452 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2453 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2454 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2455
2456 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2457
2458 if (spu_mfc_opcode[mfc_cmd_opcode])
2459 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2460 else
2461 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2462
2463 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2464 ui_out_field_int (current_uiout, "tid", tclass_id);
2465 ui_out_field_int (current_uiout, "rid", rclass_id);
2466
2467 if (ea_valid_p)
2468 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2469 else
2470 ui_out_field_skip (current_uiout, "ea");
2471
2472 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2473 if (qw_valid_p)
2474 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2475 else
2476 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2477
2478 if (list_valid_p)
2479 {
2480 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2481 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2482 }
2483 else
2484 {
2485 ui_out_field_skip (current_uiout, "lstaddr");
2486 ui_out_field_skip (current_uiout, "lstsize");
2487 }
2488
2489 if (cmd_error_p)
2490 ui_out_field_string (current_uiout, "error_p", "*");
2491 else
2492 ui_out_field_skip (current_uiout, "error_p");
2493
2494 do_cleanups (cmd_chain);
2495
2496 if (!ui_out_is_mi_like_p (current_uiout))
2497 printf_filtered ("\n");
2498 }
2499
2500 do_cleanups (chain);
2501 }
2502
2503 static void
2504 info_spu_dma_command (char *args, int from_tty)
2505 {
2506 struct frame_info *frame = get_selected_frame (NULL);
2507 struct gdbarch *gdbarch = get_frame_arch (frame);
2508 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2509 ULONGEST dma_info_type;
2510 ULONGEST dma_info_mask;
2511 ULONGEST dma_info_status;
2512 ULONGEST dma_info_stall_and_notify;
2513 ULONGEST dma_info_atomic_command_status;
2514 struct cleanup *chain;
2515 char annex[32];
2516 gdb_byte buf[1024];
2517 LONGEST len;
2518 int id;
2519
2520 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2521 error (_("\"info spu\" is only supported on the SPU architecture."));
2522
2523 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2524
2525 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2526 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2527 buf, 0, 40 + 16 * 32);
2528 if (len <= 0)
2529 error (_("Could not read dma_info."));
2530
2531 dma_info_type
2532 = extract_unsigned_integer (buf, 8, byte_order);
2533 dma_info_mask
2534 = extract_unsigned_integer (buf + 8, 8, byte_order);
2535 dma_info_status
2536 = extract_unsigned_integer (buf + 16, 8, byte_order);
2537 dma_info_stall_and_notify
2538 = extract_unsigned_integer (buf + 24, 8, byte_order);
2539 dma_info_atomic_command_status
2540 = extract_unsigned_integer (buf + 32, 8, byte_order);
2541
2542 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2543
2544 if (ui_out_is_mi_like_p (current_uiout))
2545 {
2546 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2547 phex_nz (dma_info_type, 4));
2548 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2549 phex_nz (dma_info_mask, 4));
2550 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2551 phex_nz (dma_info_status, 4));
2552 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2553 phex_nz (dma_info_stall_and_notify, 4));
2554 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2555 phex_nz (dma_info_atomic_command_status, 4));
2556 }
2557 else
2558 {
2559 const char *query_msg = _("no query pending");
2560
2561 if (dma_info_type & 4)
2562 switch (dma_info_type & 3)
2563 {
2564 case 1: query_msg = _("'any' query pending"); break;
2565 case 2: query_msg = _("'all' query pending"); break;
2566 default: query_msg = _("undefined query type"); break;
2567 }
2568
2569 printf_filtered (_("Tag-Group Status 0x%s\n"),
2570 phex (dma_info_status, 4));
2571 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2572 phex (dma_info_mask, 4), query_msg);
2573 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2574 phex (dma_info_stall_and_notify, 4));
2575 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2576 phex (dma_info_atomic_command_status, 4));
2577 printf_filtered ("\n");
2578 }
2579
2580 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2581 do_cleanups (chain);
2582 }
2583
2584 static void
2585 info_spu_proxydma_command (char *args, int from_tty)
2586 {
2587 struct frame_info *frame = get_selected_frame (NULL);
2588 struct gdbarch *gdbarch = get_frame_arch (frame);
2589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2590 ULONGEST dma_info_type;
2591 ULONGEST dma_info_mask;
2592 ULONGEST dma_info_status;
2593 struct cleanup *chain;
2594 char annex[32];
2595 gdb_byte buf[1024];
2596 LONGEST len;
2597 int id;
2598
2599 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2600 error (_("\"info spu\" is only supported on the SPU architecture."));
2601
2602 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2603
2604 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2605 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2606 buf, 0, 24 + 8 * 32);
2607 if (len <= 0)
2608 error (_("Could not read proxydma_info."));
2609
2610 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2611 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2612 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2613
2614 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2615 "SPUInfoProxyDMA");
2616
2617 if (ui_out_is_mi_like_p (current_uiout))
2618 {
2619 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2620 phex_nz (dma_info_type, 4));
2621 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2622 phex_nz (dma_info_mask, 4));
2623 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2624 phex_nz (dma_info_status, 4));
2625 }
2626 else
2627 {
2628 const char *query_msg;
2629
2630 switch (dma_info_type & 3)
2631 {
2632 case 0: query_msg = _("no query pending"); break;
2633 case 1: query_msg = _("'any' query pending"); break;
2634 case 2: query_msg = _("'all' query pending"); break;
2635 default: query_msg = _("undefined query type"); break;
2636 }
2637
2638 printf_filtered (_("Tag-Group Status 0x%s\n"),
2639 phex (dma_info_status, 4));
2640 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2641 phex (dma_info_mask, 4), query_msg);
2642 printf_filtered ("\n");
2643 }
2644
2645 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2646 do_cleanups (chain);
2647 }
2648
2649 static void
2650 info_spu_command (char *args, int from_tty)
2651 {
2652 printf_unfiltered (_("\"info spu\" must be followed by "
2653 "the name of an SPU facility.\n"));
2654 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2655 }
2656
2657
2658 /* Root of all "set spu "/"show spu " commands. */
2659
2660 static void
2661 show_spu_command (char *args, int from_tty)
2662 {
2663 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2664 }
2665
2666 static void
2667 set_spu_command (char *args, int from_tty)
2668 {
2669 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2670 }
2671
2672 static void
2673 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2674 struct cmd_list_element *c, const char *value)
2675 {
2676 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2677 value);
2678 }
2679
2680 static void
2681 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2682 struct cmd_list_element *c, const char *value)
2683 {
2684 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2685 value);
2686 }
2687
2688
2689 /* Set up gdbarch struct. */
2690
2691 static struct gdbarch *
2692 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2693 {
2694 struct gdbarch *gdbarch;
2695 struct gdbarch_tdep *tdep;
2696 int id = -1;
2697
2698 /* Which spufs ID was requested as address space? */
2699 if (info.tdep_info)
2700 id = *(int *)info.tdep_info;
2701 /* For objfile architectures of SPU solibs, decode the ID from the name.
2702 This assumes the filename convention employed by solib-spu.c. */
2703 else if (info.abfd)
2704 {
2705 const char *name = strrchr (info.abfd->filename, '@');
2706 if (name)
2707 sscanf (name, "@0x%*x <%d>", &id);
2708 }
2709
2710 /* Find a candidate among extant architectures. */
2711 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2712 arches != NULL;
2713 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2714 {
2715 tdep = gdbarch_tdep (arches->gdbarch);
2716 if (tdep && tdep->id == id)
2717 return arches->gdbarch;
2718 }
2719
2720 /* None found, so create a new architecture. */
2721 tdep = XCNEW (struct gdbarch_tdep);
2722 tdep->id = id;
2723 gdbarch = gdbarch_alloc (&info, tdep);
2724
2725 /* Disassembler. */
2726 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2727
2728 /* Registers. */
2729 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2730 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2731 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2732 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2733 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2734 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2735 set_gdbarch_register_name (gdbarch, spu_register_name);
2736 set_gdbarch_register_type (gdbarch, spu_register_type);
2737 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2738 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2739 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2740 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2741 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2742 set_gdbarch_ax_pseudo_register_collect
2743 (gdbarch, spu_ax_pseudo_register_collect);
2744 set_gdbarch_ax_pseudo_register_push_stack
2745 (gdbarch, spu_ax_pseudo_register_push_stack);
2746
2747 /* Data types. */
2748 set_gdbarch_char_signed (gdbarch, 0);
2749 set_gdbarch_ptr_bit (gdbarch, 32);
2750 set_gdbarch_addr_bit (gdbarch, 32);
2751 set_gdbarch_short_bit (gdbarch, 16);
2752 set_gdbarch_int_bit (gdbarch, 32);
2753 set_gdbarch_long_bit (gdbarch, 32);
2754 set_gdbarch_long_long_bit (gdbarch, 64);
2755 set_gdbarch_float_bit (gdbarch, 32);
2756 set_gdbarch_double_bit (gdbarch, 64);
2757 set_gdbarch_long_double_bit (gdbarch, 64);
2758 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2759 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2760 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2761
2762 /* Address handling. */
2763 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2764 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2765 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2766 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2767 set_gdbarch_address_class_type_flags_to_name
2768 (gdbarch, spu_address_class_type_flags_to_name);
2769 set_gdbarch_address_class_name_to_type_flags
2770 (gdbarch, spu_address_class_name_to_type_flags);
2771
2772
2773 /* Inferior function calls. */
2774 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2775 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2776 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2777 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2778 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2779 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2780 set_gdbarch_return_value (gdbarch, spu_return_value);
2781
2782 /* Frame handling. */
2783 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2784 dwarf2_append_unwinders (gdbarch);
2785 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2786 frame_base_set_default (gdbarch, &spu_frame_base);
2787 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2788 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2789 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2790 set_gdbarch_frame_args_skip (gdbarch, 0);
2791 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2792 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
2793
2794 /* Cell/B.E. cross-architecture unwinder support. */
2795 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2796
2797 /* Breakpoints. */
2798 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2799 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2800 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2801 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2802 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2803
2804 /* Overlays. */
2805 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2806
2807 return gdbarch;
2808 }
2809
2810 /* Provide a prototype to silence -Wmissing-prototypes. */
2811 extern initialize_file_ftype _initialize_spu_tdep;
2812
2813 void
2814 _initialize_spu_tdep (void)
2815 {
2816 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2817
2818 /* Add ourselves to objfile event chain. */
2819 observer_attach_new_objfile (spu_overlay_new_objfile);
2820 spu_overlay_data = register_objfile_data ();
2821
2822 /* Install spu stop-on-load handler. */
2823 observer_attach_new_objfile (spu_catch_start);
2824
2825 /* Add ourselves to normal_stop event chain. */
2826 observer_attach_normal_stop (spu_attach_normal_stop);
2827
2828 /* Add root prefix command for all "set spu"/"show spu" commands. */
2829 add_prefix_cmd ("spu", no_class, set_spu_command,
2830 _("Various SPU specific commands."),
2831 &setspucmdlist, "set spu ", 0, &setlist);
2832 add_prefix_cmd ("spu", no_class, show_spu_command,
2833 _("Various SPU specific commands."),
2834 &showspucmdlist, "show spu ", 0, &showlist);
2835
2836 /* Toggle whether or not to add a temporary breakpoint at the "main"
2837 function of new SPE contexts. */
2838 add_setshow_boolean_cmd ("stop-on-load", class_support,
2839 &spu_stop_on_load_p, _("\
2840 Set whether to stop for new SPE threads."),
2841 _("\
2842 Show whether to stop for new SPE threads."),
2843 _("\
2844 Use \"on\" to give control to the user when a new SPE thread\n\
2845 enters its \"main\" function.\n\
2846 Use \"off\" to disable stopping for new SPE threads."),
2847 NULL,
2848 show_spu_stop_on_load,
2849 &setspucmdlist, &showspucmdlist);
2850
2851 /* Toggle whether or not to automatically flush the software-managed
2852 cache whenever SPE execution stops. */
2853 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2854 &spu_auto_flush_cache_p, _("\
2855 Set whether to automatically flush the software-managed cache."),
2856 _("\
2857 Show whether to automatically flush the software-managed cache."),
2858 _("\
2859 Use \"on\" to automatically flush the software-managed cache\n\
2860 whenever SPE execution stops.\n\
2861 Use \"off\" to never automatically flush the software-managed cache."),
2862 NULL,
2863 show_spu_auto_flush_cache,
2864 &setspucmdlist, &showspucmdlist);
2865
2866 /* Add root prefix command for all "info spu" commands. */
2867 add_prefix_cmd ("spu", class_info, info_spu_command,
2868 _("Various SPU specific commands."),
2869 &infospucmdlist, "info spu ", 0, &infolist);
2870
2871 /* Add various "info spu" commands. */
2872 add_cmd ("event", class_info, info_spu_event_command,
2873 _("Display SPU event facility status.\n"),
2874 &infospucmdlist);
2875 add_cmd ("signal", class_info, info_spu_signal_command,
2876 _("Display SPU signal notification facility status.\n"),
2877 &infospucmdlist);
2878 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2879 _("Display SPU mailbox facility status.\n"),
2880 &infospucmdlist);
2881 add_cmd ("dma", class_info, info_spu_dma_command,
2882 _("Display MFC DMA status.\n"),
2883 &infospucmdlist);
2884 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2885 _("Display MFC Proxy-DMA status.\n"),
2886 &infospucmdlist);
2887 }