]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/spu-tdep.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "frame.h"
32 #include "frame-unwind.h"
33 #include "frame-base.h"
34 #include "trad-frame.h"
35 #include "symtab.h"
36 #include "symfile.h"
37 #include "value.h"
38 #include "inferior.h"
39 #include "dis-asm.h"
40 #include "objfiles.h"
41 #include "language.h"
42 #include "regcache.h"
43 #include "reggroups.h"
44 #include "floatformat.h"
45
46 #include "spu-tdep.h"
47
48 /* SPU-specific vector type. */
49 struct type *spu_builtin_type_vec128;
50
51 /* Registers. */
52
53 static const char *
54 spu_register_name (int reg_nr)
55 {
56 static char *register_names[] =
57 {
58 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
59 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
60 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
61 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
62 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
63 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
64 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
65 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
66 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
67 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
68 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
69 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
70 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
71 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
72 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
73 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
74 "id", "pc", "sp"
75 };
76
77 if (reg_nr < 0)
78 return NULL;
79 if (reg_nr >= sizeof register_names / sizeof *register_names)
80 return NULL;
81
82 return register_names[reg_nr];
83 }
84
85 static struct type *
86 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
87 {
88 if (reg_nr < SPU_NUM_GPRS)
89 return spu_builtin_type_vec128;
90
91 switch (reg_nr)
92 {
93 case SPU_ID_REGNUM:
94 return builtin_type_uint32;
95
96 case SPU_PC_REGNUM:
97 return builtin_type_void_func_ptr;
98
99 case SPU_SP_REGNUM:
100 return builtin_type_void_data_ptr;
101
102 default:
103 internal_error (__FILE__, __LINE__, "invalid regnum");
104 }
105 }
106
107 /* Pseudo registers for preferred slots - stack pointer. */
108
109 static void
110 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
111 int regnum, gdb_byte *buf)
112 {
113 gdb_byte reg[16];
114
115 switch (regnum)
116 {
117 case SPU_SP_REGNUM:
118 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
119 memcpy (buf, reg, 4);
120 break;
121
122 default:
123 internal_error (__FILE__, __LINE__, _("invalid regnum"));
124 }
125 }
126
127 static void
128 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
129 int regnum, const gdb_byte *buf)
130 {
131 gdb_byte reg[16];
132
133 switch (regnum)
134 {
135 case SPU_SP_REGNUM:
136 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
137 memcpy (reg, buf, 4);
138 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
139 break;
140
141 default:
142 internal_error (__FILE__, __LINE__, _("invalid regnum"));
143 }
144 }
145
146 /* Value conversion -- access scalar values at the preferred slot. */
147
148 static struct value *
149 spu_value_from_register (struct type *type, int regnum,
150 struct frame_info *frame)
151 {
152 struct value *value = default_value_from_register (type, regnum, frame);
153 int len = TYPE_LENGTH (type);
154
155 if (regnum < SPU_NUM_GPRS && len < 16)
156 {
157 int preferred_slot = len < 4 ? 4 - len : 0;
158 set_value_offset (value, preferred_slot);
159 }
160
161 return value;
162 }
163
164 /* Register groups. */
165
166 static int
167 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
168 struct reggroup *group)
169 {
170 /* Registers displayed via 'info regs'. */
171 if (group == general_reggroup)
172 return 1;
173
174 /* Registers displayed via 'info float'. */
175 if (group == float_reggroup)
176 return 0;
177
178 /* Registers that need to be saved/restored in order to
179 push or pop frames. */
180 if (group == save_reggroup || group == restore_reggroup)
181 return 1;
182
183 return default_register_reggroup_p (gdbarch, regnum, group);
184 }
185
186
187 /* Decoding SPU instructions. */
188
189 enum
190 {
191 op_lqd = 0x34,
192 op_lqx = 0x3c4,
193 op_lqa = 0x61,
194 op_lqr = 0x67,
195 op_stqd = 0x24,
196 op_stqx = 0x144,
197 op_stqa = 0x41,
198 op_stqr = 0x47,
199
200 op_il = 0x081,
201 op_ila = 0x21,
202 op_a = 0x0c0,
203 op_ai = 0x1c,
204
205 op_selb = 0x4,
206
207 op_br = 0x64,
208 op_bra = 0x60,
209 op_brsl = 0x66,
210 op_brasl = 0x62,
211 op_brnz = 0x42,
212 op_brz = 0x40,
213 op_brhnz = 0x46,
214 op_brhz = 0x44,
215 op_bi = 0x1a8,
216 op_bisl = 0x1a9,
217 op_biz = 0x128,
218 op_binz = 0x129,
219 op_bihz = 0x12a,
220 op_bihnz = 0x12b,
221 };
222
223 static int
224 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
225 {
226 if ((insn >> 21) == op)
227 {
228 *rt = insn & 127;
229 *ra = (insn >> 7) & 127;
230 *rb = (insn >> 14) & 127;
231 return 1;
232 }
233
234 return 0;
235 }
236
237 static int
238 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
239 {
240 if ((insn >> 28) == op)
241 {
242 *rt = (insn >> 21) & 127;
243 *ra = (insn >> 7) & 127;
244 *rb = (insn >> 14) & 127;
245 *rc = insn & 127;
246 return 1;
247 }
248
249 return 0;
250 }
251
252 static int
253 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
254 {
255 if ((insn >> 21) == op)
256 {
257 *rt = insn & 127;
258 *ra = (insn >> 7) & 127;
259 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
260 return 1;
261 }
262
263 return 0;
264 }
265
266 static int
267 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
268 {
269 if ((insn >> 24) == op)
270 {
271 *rt = insn & 127;
272 *ra = (insn >> 7) & 127;
273 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
274 return 1;
275 }
276
277 return 0;
278 }
279
280 static int
281 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
282 {
283 if ((insn >> 23) == op)
284 {
285 *rt = insn & 127;
286 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
287 return 1;
288 }
289
290 return 0;
291 }
292
293 static int
294 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
295 {
296 if ((insn >> 25) == op)
297 {
298 *rt = insn & 127;
299 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
300 return 1;
301 }
302
303 return 0;
304 }
305
306 static int
307 is_branch (unsigned int insn, int *offset, int *reg)
308 {
309 int rt, i7, i16;
310
311 if (is_ri16 (insn, op_br, &rt, &i16)
312 || is_ri16 (insn, op_brsl, &rt, &i16)
313 || is_ri16 (insn, op_brnz, &rt, &i16)
314 || is_ri16 (insn, op_brz, &rt, &i16)
315 || is_ri16 (insn, op_brhnz, &rt, &i16)
316 || is_ri16 (insn, op_brhz, &rt, &i16))
317 {
318 *reg = SPU_PC_REGNUM;
319 *offset = i16 << 2;
320 return 1;
321 }
322
323 if (is_ri16 (insn, op_bra, &rt, &i16)
324 || is_ri16 (insn, op_brasl, &rt, &i16))
325 {
326 *reg = -1;
327 *offset = i16 << 2;
328 return 1;
329 }
330
331 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
332 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
333 || is_ri7 (insn, op_biz, &rt, reg, &i7)
334 || is_ri7 (insn, op_binz, &rt, reg, &i7)
335 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
336 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
337 {
338 *offset = 0;
339 return 1;
340 }
341
342 return 0;
343 }
344
345
346 /* Prolog parsing. */
347
348 struct spu_prologue_data
349 {
350 /* Stack frame size. -1 if analysis was unsuccessful. */
351 int size;
352
353 /* How to find the CFA. The CFA is equal to SP at function entry. */
354 int cfa_reg;
355 int cfa_offset;
356
357 /* Offset relative to CFA where a register is saved. -1 if invalid. */
358 int reg_offset[SPU_NUM_GPRS];
359 };
360
361 static CORE_ADDR
362 spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc,
363 struct spu_prologue_data *data)
364 {
365 int found_sp = 0;
366 int found_fp = 0;
367 int found_lr = 0;
368 int reg_immed[SPU_NUM_GPRS];
369 gdb_byte buf[16];
370 CORE_ADDR prolog_pc = start_pc;
371 CORE_ADDR pc;
372 int i;
373
374
375 /* Initialize DATA to default values. */
376 data->size = -1;
377
378 data->cfa_reg = SPU_RAW_SP_REGNUM;
379 data->cfa_offset = 0;
380
381 for (i = 0; i < SPU_NUM_GPRS; i++)
382 data->reg_offset[i] = -1;
383
384 /* Set up REG_IMMED array. This is non-zero for a register if we know its
385 preferred slot currently holds this immediate value. */
386 for (i = 0; i < SPU_NUM_GPRS; i++)
387 reg_immed[i] = 0;
388
389 /* Scan instructions until the first branch.
390
391 The following instructions are important prolog components:
392
393 - The first instruction to set up the stack pointer.
394 - The first instruction to set up the frame pointer.
395 - The first instruction to save the link register.
396
397 We return the instruction after the latest of these three,
398 or the incoming PC if none is found. The first instruction
399 to set up the stack pointer also defines the frame size.
400
401 Note that instructions saving incoming arguments to their stack
402 slots are not counted as important, because they are hard to
403 identify with certainty. This should not matter much, because
404 arguments are relevant only in code compiled with debug data,
405 and in such code the GDB core will advance until the first source
406 line anyway, using SAL data.
407
408 For purposes of stack unwinding, we analyze the following types
409 of instructions in addition:
410
411 - Any instruction adding to the current frame pointer.
412 - Any instruction loading an immediate constant into a register.
413 - Any instruction storing a register onto the stack.
414
415 These are used to compute the CFA and REG_OFFSET output. */
416
417 for (pc = start_pc; pc < end_pc; pc += 4)
418 {
419 unsigned int insn;
420 int rt, ra, rb, rc, immed;
421
422 if (target_read_memory (pc, buf, 4))
423 break;
424 insn = extract_unsigned_integer (buf, 4);
425
426 /* AI is the typical instruction to set up a stack frame.
427 It is also used to initialize the frame pointer. */
428 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
429 {
430 if (rt == data->cfa_reg && ra == data->cfa_reg)
431 data->cfa_offset -= immed;
432
433 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
434 && !found_sp)
435 {
436 found_sp = 1;
437 prolog_pc = pc + 4;
438
439 data->size = -immed;
440 }
441 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
442 && !found_fp)
443 {
444 found_fp = 1;
445 prolog_pc = pc + 4;
446
447 data->cfa_reg = SPU_FP_REGNUM;
448 data->cfa_offset -= immed;
449 }
450 }
451
452 /* A is used to set up stack frames of size >= 512 bytes.
453 If we have tracked the contents of the addend register,
454 we can handle this as well. */
455 else if (is_rr (insn, op_a, &rt, &ra, &rb))
456 {
457 if (rt == data->cfa_reg && ra == data->cfa_reg)
458 {
459 if (reg_immed[rb] != 0)
460 data->cfa_offset -= reg_immed[rb];
461 else
462 data->cfa_reg = -1; /* We don't know the CFA any more. */
463 }
464
465 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
466 && !found_sp)
467 {
468 found_sp = 1;
469 prolog_pc = pc + 4;
470
471 if (reg_immed[rb] != 0)
472 data->size = -reg_immed[rb];
473 }
474 }
475
476 /* We need to track IL and ILA used to load immediate constants
477 in case they are later used as input to an A instruction. */
478 else if (is_ri16 (insn, op_il, &rt, &immed))
479 {
480 reg_immed[rt] = immed;
481 }
482
483 else if (is_ri18 (insn, op_ila, &rt, &immed))
484 {
485 reg_immed[rt] = immed & 0x3ffff;
486 }
487
488 /* STQD is used to save registers to the stack. */
489 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
490 {
491 if (ra == data->cfa_reg)
492 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
493
494 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
495 && !found_lr)
496 {
497 found_lr = 1;
498 prolog_pc = pc + 4;
499 }
500 }
501
502 /* _start uses SELB to set up the stack pointer. */
503 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
504 {
505 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
506 found_sp = 1;
507 }
508
509 /* We terminate if we find a branch. */
510 else if (is_branch (insn, &immed, &ra))
511 break;
512 }
513
514
515 /* If we successfully parsed until here, and didn't find any instruction
516 modifying SP, we assume we have a frameless function. */
517 if (!found_sp)
518 data->size = 0;
519
520 /* Return cooked instead of raw SP. */
521 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
522 data->cfa_reg = SPU_SP_REGNUM;
523
524 return prolog_pc;
525 }
526
527 /* Return the first instruction after the prologue starting at PC. */
528 static CORE_ADDR
529 spu_skip_prologue (CORE_ADDR pc)
530 {
531 struct spu_prologue_data data;
532 return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
533 }
534
535 /* Return the frame pointer in use at address PC. */
536 static void
537 spu_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
538 {
539 struct spu_prologue_data data;
540 spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
541
542 if (data.size != -1 && data.cfa_reg != -1)
543 {
544 /* The 'frame pointer' address is CFA minus frame size. */
545 *reg = data.cfa_reg;
546 *offset = data.cfa_offset - data.size;
547 }
548 else
549 {
550 /* ??? We don't really know ... */
551 *reg = SPU_SP_REGNUM;
552 *offset = 0;
553 }
554 }
555
556 /* Normal stack frames. */
557
558 struct spu_unwind_cache
559 {
560 CORE_ADDR func;
561 CORE_ADDR frame_base;
562 CORE_ADDR local_base;
563
564 struct trad_frame_saved_reg *saved_regs;
565 };
566
567 static struct spu_unwind_cache *
568 spu_frame_unwind_cache (struct frame_info *next_frame,
569 void **this_prologue_cache)
570 {
571 struct spu_unwind_cache *info;
572 struct spu_prologue_data data;
573
574 if (*this_prologue_cache)
575 return *this_prologue_cache;
576
577 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
578 *this_prologue_cache = info;
579 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
580 info->frame_base = 0;
581 info->local_base = 0;
582
583 /* Find the start of the current function, and analyze its prologue. */
584 info->func = frame_func_unwind (next_frame);
585 if (info->func == 0)
586 {
587 /* Fall back to using the current PC as frame ID. */
588 info->func = frame_pc_unwind (next_frame);
589 data.size = -1;
590 }
591 else
592 spu_analyze_prologue (info->func, frame_pc_unwind (next_frame), &data);
593
594
595 /* If successful, use prologue analysis data. */
596 if (data.size != -1 && data.cfa_reg != -1)
597 {
598 CORE_ADDR cfa;
599 int i;
600 gdb_byte buf[16];
601
602 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
603 frame_unwind_register (next_frame, data.cfa_reg, buf);
604 cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset;
605
606 /* Call-saved register slots. */
607 for (i = 0; i < SPU_NUM_GPRS; i++)
608 if (i == SPU_LR_REGNUM
609 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
610 if (data.reg_offset[i] != -1)
611 info->saved_regs[i].addr = cfa - data.reg_offset[i];
612
613 /* The previous PC comes from the link register. */
614 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
615 info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM];
616 else
617 info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM;
618
619 /* The previous SP is equal to the CFA. */
620 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, cfa);
621
622 /* Frame bases. */
623 info->frame_base = cfa;
624 info->local_base = cfa - data.size;
625 }
626
627 /* Otherwise, fall back to reading the backchain link. */
628 else
629 {
630 CORE_ADDR reg, backchain;
631
632 /* Get the backchain. */
633 reg = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
634 backchain = read_memory_unsigned_integer (reg, 4);
635
636 /* A zero backchain terminates the frame chain. Also, sanity
637 check against the local store size limit. */
638 if (backchain != 0 && backchain < SPU_LS_SIZE)
639 {
640 /* Assume the link register is saved into its slot. */
641 if (backchain + 16 < SPU_LS_SIZE)
642 info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16;
643
644 /* This will also be the previous PC. */
645 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
646 info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM];
647 else
648 info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM;
649
650 /* The previous SP will equal the backchain value. */
651 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, backchain);
652
653 /* Frame bases. */
654 info->frame_base = backchain;
655 info->local_base = reg;
656 }
657 }
658
659 return info;
660 }
661
662 static void
663 spu_frame_this_id (struct frame_info *next_frame,
664 void **this_prologue_cache, struct frame_id *this_id)
665 {
666 struct spu_unwind_cache *info =
667 spu_frame_unwind_cache (next_frame, this_prologue_cache);
668
669 if (info->frame_base == 0)
670 return;
671
672 *this_id = frame_id_build (info->frame_base, info->func);
673 }
674
675 static void
676 spu_frame_prev_register (struct frame_info *next_frame,
677 void **this_prologue_cache,
678 int regnum, int *optimizedp,
679 enum lval_type *lvalp, CORE_ADDR * addrp,
680 int *realnump, gdb_byte *bufferp)
681 {
682 struct spu_unwind_cache *info
683 = spu_frame_unwind_cache (next_frame, this_prologue_cache);
684
685 /* Special-case the stack pointer. */
686 if (regnum == SPU_RAW_SP_REGNUM)
687 regnum = SPU_SP_REGNUM;
688
689 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
690 optimizedp, lvalp, addrp, realnump, bufferp);
691 }
692
693 static const struct frame_unwind spu_frame_unwind = {
694 NORMAL_FRAME,
695 spu_frame_this_id,
696 spu_frame_prev_register
697 };
698
699 const struct frame_unwind *
700 spu_frame_sniffer (struct frame_info *next_frame)
701 {
702 return &spu_frame_unwind;
703 }
704
705 static CORE_ADDR
706 spu_frame_base_address (struct frame_info *next_frame, void **this_cache)
707 {
708 struct spu_unwind_cache *info
709 = spu_frame_unwind_cache (next_frame, this_cache);
710 return info->local_base;
711 }
712
713 static const struct frame_base spu_frame_base = {
714 &spu_frame_unwind,
715 spu_frame_base_address,
716 spu_frame_base_address,
717 spu_frame_base_address
718 };
719
720 static CORE_ADDR
721 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
722 {
723 return frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
724 }
725
726 static CORE_ADDR
727 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
728 {
729 return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
730 }
731
732
733 /* Function calling convention. */
734
735 static int
736 spu_scalar_value_p (struct type *type)
737 {
738 switch (TYPE_CODE (type))
739 {
740 case TYPE_CODE_INT:
741 case TYPE_CODE_ENUM:
742 case TYPE_CODE_RANGE:
743 case TYPE_CODE_CHAR:
744 case TYPE_CODE_BOOL:
745 case TYPE_CODE_PTR:
746 case TYPE_CODE_REF:
747 return TYPE_LENGTH (type) <= 16;
748
749 default:
750 return 0;
751 }
752 }
753
754 static void
755 spu_value_to_regcache (struct regcache *regcache, int regnum,
756 struct type *type, const gdb_byte *in)
757 {
758 int len = TYPE_LENGTH (type);
759
760 if (spu_scalar_value_p (type))
761 {
762 int preferred_slot = len < 4 ? 4 - len : 0;
763 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
764 }
765 else
766 {
767 while (len >= 16)
768 {
769 regcache_cooked_write (regcache, regnum++, in);
770 in += 16;
771 len -= 16;
772 }
773
774 if (len > 0)
775 regcache_cooked_write_part (regcache, regnum, 0, len, in);
776 }
777 }
778
779 static void
780 spu_regcache_to_value (struct regcache *regcache, int regnum,
781 struct type *type, gdb_byte *out)
782 {
783 int len = TYPE_LENGTH (type);
784
785 if (spu_scalar_value_p (type))
786 {
787 int preferred_slot = len < 4 ? 4 - len : 0;
788 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
789 }
790 else
791 {
792 while (len >= 16)
793 {
794 regcache_cooked_read (regcache, regnum++, out);
795 out += 16;
796 len -= 16;
797 }
798
799 if (len > 0)
800 regcache_cooked_read_part (regcache, regnum, 0, len, out);
801 }
802 }
803
804 static CORE_ADDR
805 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
806 struct regcache *regcache, CORE_ADDR bp_addr,
807 int nargs, struct value **args, CORE_ADDR sp,
808 int struct_return, CORE_ADDR struct_addr)
809 {
810 int i;
811 int regnum = SPU_ARG1_REGNUM;
812 int stack_arg = -1;
813 gdb_byte buf[16];
814
815 /* Set the return address. */
816 memset (buf, 0, sizeof buf);
817 store_unsigned_integer (buf, 4, bp_addr);
818 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
819
820 /* If STRUCT_RETURN is true, then the struct return address (in
821 STRUCT_ADDR) will consume the first argument-passing register.
822 Both adjust the register count and store that value. */
823 if (struct_return)
824 {
825 memset (buf, 0, sizeof buf);
826 store_unsigned_integer (buf, 4, struct_addr);
827 regcache_cooked_write (regcache, regnum++, buf);
828 }
829
830 /* Fill in argument registers. */
831 for (i = 0; i < nargs; i++)
832 {
833 struct value *arg = args[i];
834 struct type *type = check_typedef (value_type (arg));
835 const gdb_byte *contents = value_contents (arg);
836 int len = TYPE_LENGTH (type);
837 int n_regs = align_up (len, 16) / 16;
838
839 /* If the argument doesn't wholly fit into registers, it and
840 all subsequent arguments go to the stack. */
841 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
842 {
843 stack_arg = i;
844 break;
845 }
846
847 spu_value_to_regcache (regcache, regnum, type, contents);
848 regnum += n_regs;
849 }
850
851 /* Overflow arguments go to the stack. */
852 if (stack_arg != -1)
853 {
854 CORE_ADDR ap;
855
856 /* Allocate all required stack size. */
857 for (i = stack_arg; i < nargs; i++)
858 {
859 struct type *type = check_typedef (value_type (args[i]));
860 sp -= align_up (TYPE_LENGTH (type), 16);
861 }
862
863 /* Fill in stack arguments. */
864 ap = sp;
865 for (i = stack_arg; i < nargs; i++)
866 {
867 struct value *arg = args[i];
868 struct type *type = check_typedef (value_type (arg));
869 int len = TYPE_LENGTH (type);
870 int preferred_slot;
871
872 if (spu_scalar_value_p (type))
873 preferred_slot = len < 4 ? 4 - len : 0;
874 else
875 preferred_slot = 0;
876
877 target_write_memory (ap + preferred_slot, value_contents (arg), len);
878 ap += align_up (TYPE_LENGTH (type), 16);
879 }
880 }
881
882 /* Allocate stack frame header. */
883 sp -= 32;
884
885 /* Finally, update the SP register. */
886 regcache_cooked_write_unsigned (regcache, SPU_SP_REGNUM, sp);
887
888 return sp;
889 }
890
891 static struct frame_id
892 spu_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
893 {
894 return frame_id_build (spu_unwind_sp (gdbarch, next_frame),
895 spu_unwind_pc (gdbarch, next_frame));
896 }
897
898 /* Function return value access. */
899
900 static enum return_value_convention
901 spu_return_value (struct gdbarch *gdbarch, struct type *type,
902 struct regcache *regcache, gdb_byte *out, const gdb_byte *in)
903 {
904 enum return_value_convention rvc;
905
906 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
907 rvc = RETURN_VALUE_REGISTER_CONVENTION;
908 else
909 rvc = RETURN_VALUE_STRUCT_CONVENTION;
910
911 if (in)
912 {
913 switch (rvc)
914 {
915 case RETURN_VALUE_REGISTER_CONVENTION:
916 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
917 break;
918
919 case RETURN_VALUE_STRUCT_CONVENTION:
920 error ("Cannot set function return value.");
921 break;
922 }
923 }
924 else if (out)
925 {
926 switch (rvc)
927 {
928 case RETURN_VALUE_REGISTER_CONVENTION:
929 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
930 break;
931
932 case RETURN_VALUE_STRUCT_CONVENTION:
933 error ("Function return value unknown.");
934 break;
935 }
936 }
937
938 return rvc;
939 }
940
941
942 /* Breakpoints. */
943
944 static const gdb_byte *
945 spu_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
946 {
947 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
948
949 *lenptr = sizeof breakpoint;
950 return breakpoint;
951 }
952
953
954 /* Software single-stepping support. */
955
956 void
957 spu_software_single_step (enum target_signal signal, int insert_breakpoints_p)
958 {
959 if (insert_breakpoints_p)
960 {
961 CORE_ADDR pc, next_pc;
962 unsigned int insn;
963 int offset, reg;
964 gdb_byte buf[4];
965
966 regcache_cooked_read (current_regcache, SPU_PC_REGNUM, buf);
967 pc = extract_unsigned_integer (buf, 4);
968
969 if (target_read_memory (pc, buf, 4))
970 return;
971 insn = extract_unsigned_integer (buf, 4);
972
973 /* Next sequential instruction is at PC + 4, except if the current
974 instruction is a PPE-assisted call, in which case it is at PC + 8.
975 Wrap around LS limit to be on the safe side. */
976 if ((insn & 0xffffff00) == 0x00002100)
977 next_pc = (pc + 8) & (SPU_LS_SIZE - 1) & -4;
978 else
979 next_pc = (pc + 4) & (SPU_LS_SIZE - 1) & -4;
980
981 insert_single_step_breakpoint (next_pc);
982
983 if (is_branch (insn, &offset, &reg))
984 {
985 CORE_ADDR target = offset;
986
987 if (reg == SPU_PC_REGNUM)
988 target += pc;
989 else if (reg != -1)
990 {
991 regcache_cooked_read_part (current_regcache, reg, 0, 4, buf);
992 target += extract_unsigned_integer (buf, 4);
993 }
994
995 target = target & (SPU_LS_SIZE - 1) & -4;
996 if (target != next_pc)
997 insert_single_step_breakpoint (target);
998 }
999 }
1000 else
1001 remove_single_step_breakpoints ();
1002 }
1003
1004
1005 /* Set up gdbarch struct. */
1006
1007 static struct gdbarch *
1008 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1009 {
1010 struct gdbarch *gdbarch;
1011
1012 /* Find a candidate among the list of pre-declared architectures. */
1013 arches = gdbarch_list_lookup_by_info (arches, &info);
1014 if (arches != NULL)
1015 return arches->gdbarch;
1016
1017 /* Is is for us? */
1018 if (info.bfd_arch_info->mach != bfd_mach_spu)
1019 return NULL;
1020
1021 /* Yes, create a new architecture. */
1022 gdbarch = gdbarch_alloc (&info, NULL);
1023
1024 /* Disassembler. */
1025 set_gdbarch_print_insn (gdbarch, print_insn_spu);
1026
1027 /* Registers. */
1028 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
1029 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
1030 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
1031 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
1032 set_gdbarch_register_name (gdbarch, spu_register_name);
1033 set_gdbarch_register_type (gdbarch, spu_register_type);
1034 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
1035 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
1036 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
1037 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
1038
1039 /* Data types. */
1040 set_gdbarch_char_signed (gdbarch, 0);
1041 set_gdbarch_ptr_bit (gdbarch, 32);
1042 set_gdbarch_addr_bit (gdbarch, 32);
1043 set_gdbarch_short_bit (gdbarch, 16);
1044 set_gdbarch_int_bit (gdbarch, 32);
1045 set_gdbarch_long_bit (gdbarch, 32);
1046 set_gdbarch_long_long_bit (gdbarch, 64);
1047 set_gdbarch_float_bit (gdbarch, 32);
1048 set_gdbarch_double_bit (gdbarch, 64);
1049 set_gdbarch_long_double_bit (gdbarch, 64);
1050 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1051 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
1052 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1053
1054 /* Inferior function calls. */
1055 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
1056 set_gdbarch_unwind_dummy_id (gdbarch, spu_unwind_dummy_id);
1057 set_gdbarch_return_value (gdbarch, spu_return_value);
1058
1059 /* Frame handling. */
1060 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1061 frame_unwind_append_sniffer (gdbarch, spu_frame_sniffer);
1062 frame_base_set_default (gdbarch, &spu_frame_base);
1063 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
1064 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
1065 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
1066 set_gdbarch_frame_args_skip (gdbarch, 0);
1067 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
1068
1069 /* Breakpoints. */
1070 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1071 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
1072 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1073 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
1074
1075 return gdbarch;
1076 }
1077
1078 /* Implement a SPU-specific vector type as replacement
1079 for __gdb_builtin_type_vec128. */
1080 static void
1081 spu_init_vector_type (void)
1082 {
1083 struct type *type;
1084
1085 type = init_composite_type ("__spu_builtin_type_vec128", TYPE_CODE_UNION);
1086 append_composite_type_field (type, "uint128", builtin_type_int128);
1087 append_composite_type_field (type, "v2_int64", builtin_type_v2_int64);
1088 append_composite_type_field (type, "v4_int32", builtin_type_v4_int32);
1089 append_composite_type_field (type, "v8_int16", builtin_type_v8_int16);
1090 append_composite_type_field (type, "v16_int8", builtin_type_v16_int8);
1091 append_composite_type_field (type, "v2_double", builtin_type_v2_double);
1092 append_composite_type_field (type, "v4_float", builtin_type_v4_float);
1093
1094 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1095 TYPE_NAME (type) = "spu_builtin_type_vec128";
1096 spu_builtin_type_vec128 = type;
1097 }
1098
1099 void
1100 _initialize_spu_tdep (void)
1101 {
1102 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
1103
1104 spu_init_vector_type ();
1105 }