]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stabsread.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "gdb_assert.h"
48
49 #include <ctype.h>
50
51 /* Ask stabsread.h to define the vars it normally declares `extern'. */
52 #define EXTERN
53 /**/
54 #include "stabsread.h" /* Our own declarations */
55 #undef EXTERN
56
57 extern void _initialize_stabsread (void);
58
59 /* The routines that read and process a complete stabs for a C struct or
60 C++ class pass lists of data member fields and lists of member function
61 fields in an instance of a field_info structure, as defined below.
62 This is part of some reorganization of low level C++ support and is
63 expected to eventually go away... (FIXME) */
64
65 struct field_info
66 {
67 struct nextfield
68 {
69 struct nextfield *next;
70
71 /* This is the raw visibility from the stab. It is not checked
72 for being one of the visibilities we recognize, so code which
73 examines this field better be able to deal. */
74 int visibility;
75
76 struct field field;
77 }
78 *list;
79 struct next_fnfieldlist
80 {
81 struct next_fnfieldlist *next;
82 struct fn_fieldlist fn_fieldlist;
83 }
84 *fnlist;
85 };
86
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
90
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92
93 static long read_huge_number (char **, int, int *, int);
94
95 static struct type *error_type (char **, struct objfile *);
96
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
100
101 static void fix_common_block (struct symbol *, CORE_ADDR);
102
103 static int read_type_number (char **, int *);
104
105 static struct type *read_type (char **, struct objfile *);
106
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147
148 static void add_undefined_type (struct type *, int[2]);
149
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
153
154 static char *find_name_end (char *name);
155
156 static int process_reference (char **string);
157
158 void stabsread_clear_cache (void);
159
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172 complaint (&symfile_complaints,
173 _("register number %d too large (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210 \f
211
212 /* Look up a dbx type-number pair. Return the address of the slot
213 where the type for that number-pair is stored.
214 The number-pair is in TYPENUMS.
215
216 This can be used for finding the type associated with that pair
217 or for associating a new type with the pair. */
218
219 static struct type **
220 dbx_lookup_type (int typenums[2], struct objfile *objfile)
221 {
222 int filenum = typenums[0];
223 int index = typenums[1];
224 unsigned old_len;
225 int real_filenum;
226 struct header_file *f;
227 int f_orig_length;
228
229 if (filenum == -1) /* -1,-1 is for temporary types. */
230 return 0;
231
232 if (filenum < 0 || filenum >= n_this_object_header_files)
233 {
234 complaint (&symfile_complaints,
235 _("Invalid symbol data: type number "
236 "(%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 gdb_assert (pp); /* Must find a ':' or game's over. */
363 while (pp[1] == ':')
364 {
365 pp += 2;
366 pp = (char *) strchr (pp, ':');
367 }
368 sym = find_symbol_in_list (symbols, name, pp - name);
369 if (!sym)
370 {
371 /* FIXME-maybe: it would be nice if we noticed whether
372 the variable was defined *anywhere*, not just whether
373 it is defined in this compilation unit. But neither
374 xlc or GCC seem to need such a definition, and until
375 we do psymtabs (so that the minimal symbols from all
376 compilation units are available now), I'm not sure
377 how to get the information. */
378
379 /* On xcoff, if a global is defined and never referenced,
380 ld will remove it from the executable. There is then
381 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
382 sym = (struct symbol *)
383 obstack_alloc (&objfile->objfile_obstack,
384 sizeof (struct symbol));
385
386 memset (sym, 0, sizeof (struct symbol));
387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
388 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
389 SYMBOL_SET_LINKAGE_NAME
390 (sym, obsavestring (name, pp - name,
391 &objfile->objfile_obstack));
392 pp += 2;
393 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 {
395 /* I don't think the linker does this with functions,
396 so as far as I know this is never executed.
397 But it doesn't hurt to check. */
398 SYMBOL_TYPE (sym) =
399 lookup_function_type (read_type (&pp, objfile));
400 }
401 else
402 {
403 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 }
405 add_symbol_to_list (sym, &global_symbols);
406 }
407 else
408 {
409 pp += 2;
410 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 {
412 SYMBOL_TYPE (sym) =
413 lookup_function_type (read_type (&pp, objfile));
414 }
415 else
416 {
417 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 }
419 }
420 }
421 }
422 }
423 \f
424
425 /* Read a number by which a type is referred to in dbx data,
426 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427 Just a single number N is equivalent to (0,N).
428 Return the two numbers by storing them in the vector TYPENUMS.
429 TYPENUMS will then be used as an argument to dbx_lookup_type.
430
431 Returns 0 for success, -1 for error. */
432
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436 int nbits;
437
438 if (**pp == '(')
439 {
440 (*pp)++;
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445 if (nbits != 0)
446 return -1;
447 }
448 else
449 {
450 typenums[0] = 0;
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 }
455 return 0;
456 }
457 \f
458
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467 struct ref_map
468 {
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472 };
473
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
478 static struct ref_map *ref_map;
479
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492 ref_count = 0;
493 ref_chunk = 0;
494 }
495
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511
512 ref_map = (struct ref_map *)
513 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
514 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
515 new_chunks * REF_CHUNK_SIZE);
516 ref_chunk += new_chunks;
517 }
518 ref_map[refnum].stabs = stabs;
519 ref_map[refnum].sym = sym;
520 ref_map[refnum].value = value;
521 }
522
523 /* Return defined sym for the reference REFNUM. */
524 struct symbol *
525 ref_search (int refnum)
526 {
527 if (refnum < 0 || refnum > ref_count)
528 return 0;
529 return ref_map[refnum].sym;
530 }
531
532 /* Parse a reference id in STRING and return the resulting
533 reference number. Move STRING beyond the reference id. */
534
535 static int
536 process_reference (char **string)
537 {
538 char *p;
539 int refnum = 0;
540
541 if (**string != '#')
542 return 0;
543
544 /* Advance beyond the initial '#'. */
545 p = *string + 1;
546
547 /* Read number as reference id. */
548 while (*p && isdigit (*p))
549 {
550 refnum = refnum * 10 + *p - '0';
551 p++;
552 }
553 *string = p;
554 return refnum;
555 }
556
557 /* If STRING defines a reference, store away a pointer to the reference
558 definition for later use. Return the reference number. */
559
560 int
561 symbol_reference_defined (char **string)
562 {
563 char *p = *string;
564 int refnum = 0;
565
566 refnum = process_reference (&p);
567
568 /* Defining symbols end in '='. */
569 if (*p == '=')
570 {
571 /* Symbol is being defined here. */
572 *string = p + 1;
573 return refnum;
574 }
575 else
576 {
577 /* Must be a reference. Either the symbol has already been defined,
578 or this is a forward reference to it. */
579 *string = p;
580 return -1;
581 }
582 }
583
584 static int
585 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
586 {
587 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
588
589 if (regno >= gdbarch_num_regs (gdbarch)
590 + gdbarch_num_pseudo_regs (gdbarch))
591 {
592 reg_value_complaint (regno,
593 gdbarch_num_regs (gdbarch)
594 + gdbarch_num_pseudo_regs (gdbarch),
595 SYMBOL_PRINT_NAME (sym));
596
597 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
598 }
599
600 return regno;
601 }
602
603 static const struct symbol_register_ops stab_register_funcs = {
604 stab_reg_to_regnum
605 };
606
607 struct symbol *
608 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
609 struct objfile *objfile)
610 {
611 struct gdbarch *gdbarch = get_objfile_arch (objfile);
612 struct symbol *sym;
613 char *p = (char *) find_name_end (string);
614 int deftype;
615 int synonym = 0;
616 int i;
617 char *new_name = NULL;
618
619 /* We would like to eliminate nameless symbols, but keep their types.
620 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
621 to type 2, but, should not create a symbol to address that type. Since
622 the symbol will be nameless, there is no way any user can refer to it. */
623
624 int nameless;
625
626 /* Ignore syms with empty names. */
627 if (string[0] == 0)
628 return 0;
629
630 /* Ignore old-style symbols from cc -go. */
631 if (p == 0)
632 return 0;
633
634 while (p[1] == ':')
635 {
636 p += 2;
637 p = strchr (p, ':');
638 if (p == NULL)
639 {
640 complaint (&symfile_complaints,
641 _("Bad stabs string '%s'"), string);
642 return NULL;
643 }
644 }
645
646 /* If a nameless stab entry, all we need is the type, not the symbol.
647 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
648 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
649
650 current_symbol = sym = (struct symbol *)
651 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
652 memset (sym, 0, sizeof (struct symbol));
653
654 switch (type & N_TYPE)
655 {
656 case N_TEXT:
657 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
658 break;
659 case N_DATA:
660 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
661 break;
662 case N_BSS:
663 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
664 break;
665 }
666
667 if (processing_gcc_compilation)
668 {
669 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
670 number of bytes occupied by a type or object, which we ignore. */
671 SYMBOL_LINE (sym) = desc;
672 }
673 else
674 {
675 SYMBOL_LINE (sym) = 0; /* unknown */
676 }
677
678 if (is_cplus_marker (string[0]))
679 {
680 /* Special GNU C++ names. */
681 switch (string[1])
682 {
683 case 't':
684 SYMBOL_SET_LINKAGE_NAME (sym, "this");
685 break;
686
687 case 'v': /* $vtbl_ptr_type */
688 goto normal;
689
690 case 'e':
691 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
692 break;
693
694 case '_':
695 /* This was an anonymous type that was never fixed up. */
696 goto normal;
697
698 case 'X':
699 /* SunPRO (3.0 at least) static variable encoding. */
700 if (gdbarch_static_transform_name_p (gdbarch))
701 goto normal;
702 /* ... fall through ... */
703
704 default:
705 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
706 string);
707 goto normal; /* Do *something* with it. */
708 }
709 }
710 else
711 {
712 normal:
713 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
714 if (SYMBOL_LANGUAGE (sym) == language_cplus)
715 {
716 char *name = alloca (p - string + 1);
717
718 memcpy (name, string, p - string);
719 name[p - string] = '\0';
720 new_name = cp_canonicalize_string (name);
721 }
722 if (new_name != NULL)
723 {
724 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
725 xfree (new_name);
726 }
727 else
728 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
729
730 if (SYMBOL_LANGUAGE (sym) == language_cplus)
731 cp_scan_for_anonymous_namespaces (sym, objfile);
732
733 }
734 p++;
735
736 /* Determine the type of name being defined. */
737 #if 0
738 /* Getting GDB to correctly skip the symbol on an undefined symbol
739 descriptor and not ever dump core is a very dodgy proposition if
740 we do things this way. I say the acorn RISC machine can just
741 fix their compiler. */
742 /* The Acorn RISC machine's compiler can put out locals that don't
743 start with "234=" or "(3,4)=", so assume anything other than the
744 deftypes we know how to handle is a local. */
745 if (!strchr ("cfFGpPrStTvVXCR", *p))
746 #else
747 if (isdigit (*p) || *p == '(' || *p == '-')
748 #endif
749 deftype = 'l';
750 else
751 deftype = *p++;
752
753 switch (deftype)
754 {
755 case 'c':
756 /* c is a special case, not followed by a type-number.
757 SYMBOL:c=iVALUE for an integer constant symbol.
758 SYMBOL:c=rVALUE for a floating constant symbol.
759 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
760 e.g. "b:c=e6,0" for "const b = blob1"
761 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
762 if (*p != '=')
763 {
764 SYMBOL_CLASS (sym) = LOC_CONST;
765 SYMBOL_TYPE (sym) = error_type (&p, objfile);
766 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
767 add_symbol_to_list (sym, &file_symbols);
768 return sym;
769 }
770 ++p;
771 switch (*p++)
772 {
773 case 'r':
774 {
775 double d = atof (p);
776 gdb_byte *dbl_valu;
777 struct type *dbl_type;
778
779 /* FIXME-if-picky-about-floating-accuracy: Should be using
780 target arithmetic to get the value. real.c in GCC
781 probably has the necessary code. */
782
783 dbl_type = objfile_type (objfile)->builtin_double;
784 dbl_valu =
785 obstack_alloc (&objfile->objfile_obstack,
786 TYPE_LENGTH (dbl_type));
787 store_typed_floating (dbl_valu, dbl_type, d);
788
789 SYMBOL_TYPE (sym) = dbl_type;
790 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
791 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
792 }
793 break;
794 case 'i':
795 {
796 /* Defining integer constants this way is kind of silly,
797 since 'e' constants allows the compiler to give not
798 only the value, but the type as well. C has at least
799 int, long, unsigned int, and long long as constant
800 types; other languages probably should have at least
801 unsigned as well as signed constants. */
802
803 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
804 SYMBOL_VALUE (sym) = atoi (p);
805 SYMBOL_CLASS (sym) = LOC_CONST;
806 }
807 break;
808
809 case 'c':
810 {
811 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
812 SYMBOL_VALUE (sym) = atoi (p);
813 SYMBOL_CLASS (sym) = LOC_CONST;
814 }
815 break;
816
817 case 's':
818 {
819 struct type *range_type;
820 int ind = 0;
821 char quote = *p++;
822 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
823 gdb_byte *string_value;
824
825 if (quote != '\'' && quote != '"')
826 {
827 SYMBOL_CLASS (sym) = LOC_CONST;
828 SYMBOL_TYPE (sym) = error_type (&p, objfile);
829 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
830 add_symbol_to_list (sym, &file_symbols);
831 return sym;
832 }
833
834 /* Find matching quote, rejecting escaped quotes. */
835 while (*p && *p != quote)
836 {
837 if (*p == '\\' && p[1] == quote)
838 {
839 string_local[ind] = (gdb_byte) quote;
840 ind++;
841 p += 2;
842 }
843 else if (*p)
844 {
845 string_local[ind] = (gdb_byte) (*p);
846 ind++;
847 p++;
848 }
849 }
850 if (*p != quote)
851 {
852 SYMBOL_CLASS (sym) = LOC_CONST;
853 SYMBOL_TYPE (sym) = error_type (&p, objfile);
854 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
855 add_symbol_to_list (sym, &file_symbols);
856 return sym;
857 }
858
859 /* NULL terminate the string. */
860 string_local[ind] = 0;
861 range_type
862 = create_range_type (NULL,
863 objfile_type (objfile)->builtin_int,
864 0, ind);
865 SYMBOL_TYPE (sym) = create_array_type (NULL,
866 objfile_type (objfile)->builtin_char,
867 range_type);
868 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
869 memcpy (string_value, string_local, ind + 1);
870 p++;
871
872 SYMBOL_VALUE_BYTES (sym) = string_value;
873 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
874 }
875 break;
876
877 case 'e':
878 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
879 can be represented as integral.
880 e.g. "b:c=e6,0" for "const b = blob1"
881 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
882 {
883 SYMBOL_CLASS (sym) = LOC_CONST;
884 SYMBOL_TYPE (sym) = read_type (&p, objfile);
885
886 if (*p != ',')
887 {
888 SYMBOL_TYPE (sym) = error_type (&p, objfile);
889 break;
890 }
891 ++p;
892
893 /* If the value is too big to fit in an int (perhaps because
894 it is unsigned), or something like that, we silently get
895 a bogus value. The type and everything else about it is
896 correct. Ideally, we should be using whatever we have
897 available for parsing unsigned and long long values,
898 however. */
899 SYMBOL_VALUE (sym) = atoi (p);
900 }
901 break;
902 default:
903 {
904 SYMBOL_CLASS (sym) = LOC_CONST;
905 SYMBOL_TYPE (sym) = error_type (&p, objfile);
906 }
907 }
908 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
909 add_symbol_to_list (sym, &file_symbols);
910 return sym;
911
912 case 'C':
913 /* The name of a caught exception. */
914 SYMBOL_TYPE (sym) = read_type (&p, objfile);
915 SYMBOL_CLASS (sym) = LOC_LABEL;
916 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
917 SYMBOL_VALUE_ADDRESS (sym) = valu;
918 add_symbol_to_list (sym, &local_symbols);
919 break;
920
921 case 'f':
922 /* A static function definition. */
923 SYMBOL_TYPE (sym) = read_type (&p, objfile);
924 SYMBOL_CLASS (sym) = LOC_BLOCK;
925 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
926 add_symbol_to_list (sym, &file_symbols);
927 /* fall into process_function_types. */
928
929 process_function_types:
930 /* Function result types are described as the result type in stabs.
931 We need to convert this to the function-returning-type-X type
932 in GDB. E.g. "int" is converted to "function returning int". */
933 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
934 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
935
936 /* All functions in C++ have prototypes. Stabs does not offer an
937 explicit way to identify prototyped or unprototyped functions,
938 but both GCC and Sun CC emit stabs for the "call-as" type rather
939 than the "declared-as" type for unprototyped functions, so
940 we treat all functions as if they were prototyped. This is used
941 primarily for promotion when calling the function from GDB. */
942 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
943
944 /* fall into process_prototype_types. */
945
946 process_prototype_types:
947 /* Sun acc puts declared types of arguments here. */
948 if (*p == ';')
949 {
950 struct type *ftype = SYMBOL_TYPE (sym);
951 int nsemi = 0;
952 int nparams = 0;
953 char *p1 = p;
954
955 /* Obtain a worst case guess for the number of arguments
956 by counting the semicolons. */
957 while (*p1)
958 {
959 if (*p1++ == ';')
960 nsemi++;
961 }
962
963 /* Allocate parameter information fields and fill them in. */
964 TYPE_FIELDS (ftype) = (struct field *)
965 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
966 while (*p++ == ';')
967 {
968 struct type *ptype;
969
970 /* A type number of zero indicates the start of varargs.
971 FIXME: GDB currently ignores vararg functions. */
972 if (p[0] == '0' && p[1] == '\0')
973 break;
974 ptype = read_type (&p, objfile);
975
976 /* The Sun compilers mark integer arguments, which should
977 be promoted to the width of the calling conventions, with
978 a type which references itself. This type is turned into
979 a TYPE_CODE_VOID type by read_type, and we have to turn
980 it back into builtin_int here.
981 FIXME: Do we need a new builtin_promoted_int_arg ? */
982 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
983 ptype = objfile_type (objfile)->builtin_int;
984 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
985 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
986 }
987 TYPE_NFIELDS (ftype) = nparams;
988 TYPE_PROTOTYPED (ftype) = 1;
989 }
990 break;
991
992 case 'F':
993 /* A global function definition. */
994 SYMBOL_TYPE (sym) = read_type (&p, objfile);
995 SYMBOL_CLASS (sym) = LOC_BLOCK;
996 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
997 add_symbol_to_list (sym, &global_symbols);
998 goto process_function_types;
999
1000 case 'G':
1001 /* For a class G (global) symbol, it appears that the
1002 value is not correct. It is necessary to search for the
1003 corresponding linker definition to find the value.
1004 These definitions appear at the end of the namelist. */
1005 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1006 SYMBOL_CLASS (sym) = LOC_STATIC;
1007 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1008 /* Don't add symbol references to global_sym_chain.
1009 Symbol references don't have valid names and wont't match up with
1010 minimal symbols when the global_sym_chain is relocated.
1011 We'll fixup symbol references when we fixup the defining symbol. */
1012 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1013 {
1014 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1015 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1016 global_sym_chain[i] = sym;
1017 }
1018 add_symbol_to_list (sym, &global_symbols);
1019 break;
1020
1021 /* This case is faked by a conditional above,
1022 when there is no code letter in the dbx data.
1023 Dbx data never actually contains 'l'. */
1024 case 's':
1025 case 'l':
1026 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1027 SYMBOL_CLASS (sym) = LOC_LOCAL;
1028 SYMBOL_VALUE (sym) = valu;
1029 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1030 add_symbol_to_list (sym, &local_symbols);
1031 break;
1032
1033 case 'p':
1034 if (*p == 'F')
1035 /* pF is a two-letter code that means a function parameter in Fortran.
1036 The type-number specifies the type of the return value.
1037 Translate it into a pointer-to-function type. */
1038 {
1039 p++;
1040 SYMBOL_TYPE (sym)
1041 = lookup_pointer_type
1042 (lookup_function_type (read_type (&p, objfile)));
1043 }
1044 else
1045 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1046
1047 SYMBOL_CLASS (sym) = LOC_ARG;
1048 SYMBOL_VALUE (sym) = valu;
1049 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1050 SYMBOL_IS_ARGUMENT (sym) = 1;
1051 add_symbol_to_list (sym, &local_symbols);
1052
1053 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1054 {
1055 /* On little-endian machines, this crud is never necessary,
1056 and, if the extra bytes contain garbage, is harmful. */
1057 break;
1058 }
1059
1060 /* If it's gcc-compiled, if it says `short', believe it. */
1061 if (processing_gcc_compilation
1062 || gdbarch_believe_pcc_promotion (gdbarch))
1063 break;
1064
1065 if (!gdbarch_believe_pcc_promotion (gdbarch))
1066 {
1067 /* If PCC says a parameter is a short or a char, it is
1068 really an int. */
1069 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1070 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1071 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1072 {
1073 SYMBOL_TYPE (sym) =
1074 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1075 ? objfile_type (objfile)->builtin_unsigned_int
1076 : objfile_type (objfile)->builtin_int;
1077 }
1078 break;
1079 }
1080
1081 case 'P':
1082 /* acc seems to use P to declare the prototypes of functions that
1083 are referenced by this file. gdb is not prepared to deal
1084 with this extra information. FIXME, it ought to. */
1085 if (type == N_FUN)
1086 {
1087 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1088 goto process_prototype_types;
1089 }
1090 /*FALLTHROUGH */
1091
1092 case 'R':
1093 /* Parameter which is in a register. */
1094 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1095 SYMBOL_CLASS (sym) = LOC_REGISTER;
1096 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1097 SYMBOL_IS_ARGUMENT (sym) = 1;
1098 SYMBOL_VALUE (sym) = valu;
1099 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1100 add_symbol_to_list (sym, &local_symbols);
1101 break;
1102
1103 case 'r':
1104 /* Register variable (either global or local). */
1105 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1106 SYMBOL_CLASS (sym) = LOC_REGISTER;
1107 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1108 SYMBOL_VALUE (sym) = valu;
1109 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1110 if (within_function)
1111 {
1112 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1113 the same name to represent an argument passed in a
1114 register. GCC uses 'P' for the same case. So if we find
1115 such a symbol pair we combine it into one 'P' symbol.
1116 For Sun cc we need to do this regardless of
1117 stabs_argument_has_addr, because the compiler puts out
1118 the 'p' symbol even if it never saves the argument onto
1119 the stack.
1120
1121 On most machines, we want to preserve both symbols, so
1122 that we can still get information about what is going on
1123 with the stack (VAX for computing args_printed, using
1124 stack slots instead of saved registers in backtraces,
1125 etc.).
1126
1127 Note that this code illegally combines
1128 main(argc) struct foo argc; { register struct foo argc; }
1129 but this case is considered pathological and causes a warning
1130 from a decent compiler. */
1131
1132 if (local_symbols
1133 && local_symbols->nsyms > 0
1134 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1135 {
1136 struct symbol *prev_sym;
1137
1138 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1139 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1140 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1141 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1142 SYMBOL_LINKAGE_NAME (sym)) == 0)
1143 {
1144 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1145 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1146 /* Use the type from the LOC_REGISTER; that is the type
1147 that is actually in that register. */
1148 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1149 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1150 sym = prev_sym;
1151 break;
1152 }
1153 }
1154 add_symbol_to_list (sym, &local_symbols);
1155 }
1156 else
1157 add_symbol_to_list (sym, &file_symbols);
1158 break;
1159
1160 case 'S':
1161 /* Static symbol at top level of file. */
1162 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1163 SYMBOL_CLASS (sym) = LOC_STATIC;
1164 SYMBOL_VALUE_ADDRESS (sym) = valu;
1165 if (gdbarch_static_transform_name_p (gdbarch)
1166 && gdbarch_static_transform_name (gdbarch,
1167 SYMBOL_LINKAGE_NAME (sym))
1168 != SYMBOL_LINKAGE_NAME (sym))
1169 {
1170 struct minimal_symbol *msym;
1171
1172 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1173 NULL, objfile);
1174 if (msym != NULL)
1175 {
1176 const char *new_name = gdbarch_static_transform_name
1177 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1178
1179 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1180 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1181 }
1182 }
1183 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1184 add_symbol_to_list (sym, &file_symbols);
1185 break;
1186
1187 case 't':
1188 /* In Ada, there is no distinction between typedef and non-typedef;
1189 any type declaration implicitly has the equivalent of a typedef,
1190 and thus 't' is in fact equivalent to 'Tt'.
1191
1192 Therefore, for Ada units, we check the character immediately
1193 before the 't', and if we do not find a 'T', then make sure to
1194 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1195 will be stored in the VAR_DOMAIN). If the symbol was indeed
1196 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1197 elsewhere, so we don't need to take care of that.
1198
1199 This is important to do, because of forward references:
1200 The cleanup of undefined types stored in undef_types only uses
1201 STRUCT_DOMAIN symbols to perform the replacement. */
1202 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1203
1204 /* Typedef */
1205 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1206
1207 /* For a nameless type, we don't want a create a symbol, thus we
1208 did not use `sym'. Return without further processing. */
1209 if (nameless)
1210 return NULL;
1211
1212 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1213 SYMBOL_VALUE (sym) = valu;
1214 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1215 /* C++ vagaries: we may have a type which is derived from
1216 a base type which did not have its name defined when the
1217 derived class was output. We fill in the derived class's
1218 base part member's name here in that case. */
1219 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1220 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1221 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1222 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1223 {
1224 int j;
1225
1226 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1227 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1228 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1229 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1230 }
1231
1232 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1233 {
1234 /* gcc-2.6 or later (when using -fvtable-thunks)
1235 emits a unique named type for a vtable entry.
1236 Some gdb code depends on that specific name. */
1237 extern const char vtbl_ptr_name[];
1238
1239 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1240 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1241 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1242 {
1243 /* If we are giving a name to a type such as "pointer to
1244 foo" or "function returning foo", we better not set
1245 the TYPE_NAME. If the program contains "typedef char
1246 *caddr_t;", we don't want all variables of type char
1247 * to print as caddr_t. This is not just a
1248 consequence of GDB's type management; PCC and GCC (at
1249 least through version 2.4) both output variables of
1250 either type char * or caddr_t with the type number
1251 defined in the 't' symbol for caddr_t. If a future
1252 compiler cleans this up it GDB is not ready for it
1253 yet, but if it becomes ready we somehow need to
1254 disable this check (without breaking the PCC/GCC2.4
1255 case).
1256
1257 Sigh.
1258
1259 Fortunately, this check seems not to be necessary
1260 for anything except pointers or functions. */
1261 /* ezannoni: 2000-10-26. This seems to apply for
1262 versions of gcc older than 2.8. This was the original
1263 problem: with the following code gdb would tell that
1264 the type for name1 is caddr_t, and func is char().
1265
1266 typedef char *caddr_t;
1267 char *name2;
1268 struct x
1269 {
1270 char *name1;
1271 } xx;
1272 char *func()
1273 {
1274 }
1275 main () {}
1276 */
1277
1278 /* Pascal accepts names for pointer types. */
1279 if (current_subfile->language == language_pascal)
1280 {
1281 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1282 }
1283 }
1284 else
1285 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1286 }
1287
1288 add_symbol_to_list (sym, &file_symbols);
1289
1290 if (synonym)
1291 {
1292 /* Create the STRUCT_DOMAIN clone. */
1293 struct symbol *struct_sym = (struct symbol *)
1294 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1295
1296 *struct_sym = *sym;
1297 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1298 SYMBOL_VALUE (struct_sym) = valu;
1299 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1300 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1301 TYPE_NAME (SYMBOL_TYPE (sym))
1302 = obconcat (&objfile->objfile_obstack,
1303 SYMBOL_LINKAGE_NAME (sym),
1304 (char *) NULL);
1305 add_symbol_to_list (struct_sym, &file_symbols);
1306 }
1307
1308 break;
1309
1310 case 'T':
1311 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1312 by 't' which means we are typedef'ing it as well. */
1313 synonym = *p == 't';
1314
1315 if (synonym)
1316 p++;
1317
1318 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1319
1320 /* For a nameless type, we don't want a create a symbol, thus we
1321 did not use `sym'. Return without further processing. */
1322 if (nameless)
1323 return NULL;
1324
1325 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1326 SYMBOL_VALUE (sym) = valu;
1327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1328 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1329 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1330 = obconcat (&objfile->objfile_obstack,
1331 SYMBOL_LINKAGE_NAME (sym),
1332 (char *) NULL);
1333 add_symbol_to_list (sym, &file_symbols);
1334
1335 if (synonym)
1336 {
1337 /* Clone the sym and then modify it. */
1338 struct symbol *typedef_sym = (struct symbol *)
1339 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1340
1341 *typedef_sym = *sym;
1342 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1343 SYMBOL_VALUE (typedef_sym) = valu;
1344 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1349 (char *) NULL);
1350 add_symbol_to_list (typedef_sym, &file_symbols);
1351 }
1352 break;
1353
1354 case 'V':
1355 /* Static symbol of local scope. */
1356 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1357 SYMBOL_CLASS (sym) = LOC_STATIC;
1358 SYMBOL_VALUE_ADDRESS (sym) = valu;
1359 if (gdbarch_static_transform_name_p (gdbarch)
1360 && gdbarch_static_transform_name (gdbarch,
1361 SYMBOL_LINKAGE_NAME (sym))
1362 != SYMBOL_LINKAGE_NAME (sym))
1363 {
1364 struct minimal_symbol *msym;
1365
1366 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1367 NULL, objfile);
1368 if (msym != NULL)
1369 {
1370 const char *new_name = gdbarch_static_transform_name
1371 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1372
1373 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1374 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1375 }
1376 }
1377 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1378 add_symbol_to_list (sym, &local_symbols);
1379 break;
1380
1381 case 'v':
1382 /* Reference parameter */
1383 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1384 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1385 SYMBOL_IS_ARGUMENT (sym) = 1;
1386 SYMBOL_VALUE (sym) = valu;
1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388 add_symbol_to_list (sym, &local_symbols);
1389 break;
1390
1391 case 'a':
1392 /* Reference parameter which is in a register. */
1393 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1394 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1395 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1396 SYMBOL_IS_ARGUMENT (sym) = 1;
1397 SYMBOL_VALUE (sym) = valu;
1398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1399 add_symbol_to_list (sym, &local_symbols);
1400 break;
1401
1402 case 'X':
1403 /* This is used by Sun FORTRAN for "function result value".
1404 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1405 that Pascal uses it too, but when I tried it Pascal used
1406 "x:3" (local symbol) instead. */
1407 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1408 SYMBOL_CLASS (sym) = LOC_LOCAL;
1409 SYMBOL_VALUE (sym) = valu;
1410 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1411 add_symbol_to_list (sym, &local_symbols);
1412 break;
1413
1414 default:
1415 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1416 SYMBOL_CLASS (sym) = LOC_CONST;
1417 SYMBOL_VALUE (sym) = 0;
1418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1419 add_symbol_to_list (sym, &file_symbols);
1420 break;
1421 }
1422
1423 /* Some systems pass variables of certain types by reference instead
1424 of by value, i.e. they will pass the address of a structure (in a
1425 register or on the stack) instead of the structure itself. */
1426
1427 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1428 && SYMBOL_IS_ARGUMENT (sym))
1429 {
1430 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1431 variables passed in a register). */
1432 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1433 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1434 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1435 and subsequent arguments on SPARC, for example). */
1436 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1437 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1438 }
1439
1440 return sym;
1441 }
1442
1443 /* Skip rest of this symbol and return an error type.
1444
1445 General notes on error recovery: error_type always skips to the
1446 end of the symbol (modulo cretinous dbx symbol name continuation).
1447 Thus code like this:
1448
1449 if (*(*pp)++ != ';')
1450 return error_type (pp, objfile);
1451
1452 is wrong because if *pp starts out pointing at '\0' (typically as the
1453 result of an earlier error), it will be incremented to point to the
1454 start of the next symbol, which might produce strange results, at least
1455 if you run off the end of the string table. Instead use
1456
1457 if (**pp != ';')
1458 return error_type (pp, objfile);
1459 ++*pp;
1460
1461 or
1462
1463 if (**pp != ';')
1464 foo = error_type (pp, objfile);
1465 else
1466 ++*pp;
1467
1468 And in case it isn't obvious, the point of all this hair is so the compiler
1469 can define new types and new syntaxes, and old versions of the
1470 debugger will be able to read the new symbol tables. */
1471
1472 static struct type *
1473 error_type (char **pp, struct objfile *objfile)
1474 {
1475 complaint (&symfile_complaints,
1476 _("couldn't parse type; debugger out of date?"));
1477 while (1)
1478 {
1479 /* Skip to end of symbol. */
1480 while (**pp != '\0')
1481 {
1482 (*pp)++;
1483 }
1484
1485 /* Check for and handle cretinous dbx symbol name continuation! */
1486 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1487 {
1488 *pp = next_symbol_text (objfile);
1489 }
1490 else
1491 {
1492 break;
1493 }
1494 }
1495 return objfile_type (objfile)->builtin_error;
1496 }
1497 \f
1498
1499 /* Read type information or a type definition; return the type. Even
1500 though this routine accepts either type information or a type
1501 definition, the distinction is relevant--some parts of stabsread.c
1502 assume that type information starts with a digit, '-', or '(' in
1503 deciding whether to call read_type. */
1504
1505 static struct type *
1506 read_type (char **pp, struct objfile *objfile)
1507 {
1508 struct type *type = 0;
1509 struct type *type1;
1510 int typenums[2];
1511 char type_descriptor;
1512
1513 /* Size in bits of type if specified by a type attribute, or -1 if
1514 there is no size attribute. */
1515 int type_size = -1;
1516
1517 /* Used to distinguish string and bitstring from char-array and set. */
1518 int is_string = 0;
1519
1520 /* Used to distinguish vector from array. */
1521 int is_vector = 0;
1522
1523 /* Read type number if present. The type number may be omitted.
1524 for instance in a two-dimensional array declared with type
1525 "ar1;1;10;ar1;1;10;4". */
1526 if ((**pp >= '0' && **pp <= '9')
1527 || **pp == '('
1528 || **pp == '-')
1529 {
1530 if (read_type_number (pp, typenums) != 0)
1531 return error_type (pp, objfile);
1532
1533 if (**pp != '=')
1534 {
1535 /* Type is not being defined here. Either it already
1536 exists, or this is a forward reference to it.
1537 dbx_alloc_type handles both cases. */
1538 type = dbx_alloc_type (typenums, objfile);
1539
1540 /* If this is a forward reference, arrange to complain if it
1541 doesn't get patched up by the time we're done
1542 reading. */
1543 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1544 add_undefined_type (type, typenums);
1545
1546 return type;
1547 }
1548
1549 /* Type is being defined here. */
1550 /* Skip the '='.
1551 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1552 (*pp) += 2;
1553 }
1554 else
1555 {
1556 /* 'typenums=' not present, type is anonymous. Read and return
1557 the definition, but don't put it in the type vector. */
1558 typenums[0] = typenums[1] = -1;
1559 (*pp)++;
1560 }
1561
1562 again:
1563 type_descriptor = (*pp)[-1];
1564 switch (type_descriptor)
1565 {
1566 case 'x':
1567 {
1568 enum type_code code;
1569
1570 /* Used to index through file_symbols. */
1571 struct pending *ppt;
1572 int i;
1573
1574 /* Name including "struct", etc. */
1575 char *type_name;
1576
1577 {
1578 char *from, *to, *p, *q1, *q2;
1579
1580 /* Set the type code according to the following letter. */
1581 switch ((*pp)[0])
1582 {
1583 case 's':
1584 code = TYPE_CODE_STRUCT;
1585 break;
1586 case 'u':
1587 code = TYPE_CODE_UNION;
1588 break;
1589 case 'e':
1590 code = TYPE_CODE_ENUM;
1591 break;
1592 default:
1593 {
1594 /* Complain and keep going, so compilers can invent new
1595 cross-reference types. */
1596 complaint (&symfile_complaints,
1597 _("Unrecognized cross-reference type `%c'"),
1598 (*pp)[0]);
1599 code = TYPE_CODE_STRUCT;
1600 break;
1601 }
1602 }
1603
1604 q1 = strchr (*pp, '<');
1605 p = strchr (*pp, ':');
1606 if (p == NULL)
1607 return error_type (pp, objfile);
1608 if (q1 && p > q1 && p[1] == ':')
1609 {
1610 int nesting_level = 0;
1611
1612 for (q2 = q1; *q2; q2++)
1613 {
1614 if (*q2 == '<')
1615 nesting_level++;
1616 else if (*q2 == '>')
1617 nesting_level--;
1618 else if (*q2 == ':' && nesting_level == 0)
1619 break;
1620 }
1621 p = q2;
1622 if (*p != ':')
1623 return error_type (pp, objfile);
1624 }
1625 type_name = NULL;
1626 if (current_subfile->language == language_cplus)
1627 {
1628 char *new_name, *name = alloca (p - *pp + 1);
1629
1630 memcpy (name, *pp, p - *pp);
1631 name[p - *pp] = '\0';
1632 new_name = cp_canonicalize_string (name);
1633 if (new_name != NULL)
1634 {
1635 type_name = obsavestring (new_name, strlen (new_name),
1636 &objfile->objfile_obstack);
1637 xfree (new_name);
1638 }
1639 }
1640 if (type_name == NULL)
1641 {
1642 to = type_name = (char *)
1643 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1644
1645 /* Copy the name. */
1646 from = *pp + 1;
1647 while (from < p)
1648 *to++ = *from++;
1649 *to = '\0';
1650 }
1651
1652 /* Set the pointer ahead of the name which we just read, and
1653 the colon. */
1654 *pp = p + 1;
1655 }
1656
1657 /* If this type has already been declared, then reuse the same
1658 type, rather than allocating a new one. This saves some
1659 memory. */
1660
1661 for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 for (i = 0; i < ppt->nsyms; i++)
1663 {
1664 struct symbol *sym = ppt->symbol[i];
1665
1666 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1667 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1668 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1669 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1670 {
1671 obstack_free (&objfile->objfile_obstack, type_name);
1672 type = SYMBOL_TYPE (sym);
1673 if (typenums[0] != -1)
1674 *dbx_lookup_type (typenums, objfile) = type;
1675 return type;
1676 }
1677 }
1678
1679 /* Didn't find the type to which this refers, so we must
1680 be dealing with a forward reference. Allocate a type
1681 structure for it, and keep track of it so we can
1682 fill in the rest of the fields when we get the full
1683 type. */
1684 type = dbx_alloc_type (typenums, objfile);
1685 TYPE_CODE (type) = code;
1686 TYPE_TAG_NAME (type) = type_name;
1687 INIT_CPLUS_SPECIFIC (type);
1688 TYPE_STUB (type) = 1;
1689
1690 add_undefined_type (type, typenums);
1691 return type;
1692 }
1693
1694 case '-': /* RS/6000 built-in type */
1695 case '0':
1696 case '1':
1697 case '2':
1698 case '3':
1699 case '4':
1700 case '5':
1701 case '6':
1702 case '7':
1703 case '8':
1704 case '9':
1705 case '(':
1706 (*pp)--;
1707
1708 /* We deal with something like t(1,2)=(3,4)=... which
1709 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1710
1711 /* Allocate and enter the typedef type first.
1712 This handles recursive types. */
1713 type = dbx_alloc_type (typenums, objfile);
1714 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1715 {
1716 struct type *xtype = read_type (pp, objfile);
1717
1718 if (type == xtype)
1719 {
1720 /* It's being defined as itself. That means it is "void". */
1721 TYPE_CODE (type) = TYPE_CODE_VOID;
1722 TYPE_LENGTH (type) = 1;
1723 }
1724 else if (type_size >= 0 || is_string)
1725 {
1726 /* This is the absolute wrong way to construct types. Every
1727 other debug format has found a way around this problem and
1728 the related problems with unnecessarily stubbed types;
1729 someone motivated should attempt to clean up the issue
1730 here as well. Once a type pointed to has been created it
1731 should not be modified.
1732
1733 Well, it's not *absolutely* wrong. Constructing recursive
1734 types (trees, linked lists) necessarily entails modifying
1735 types after creating them. Constructing any loop structure
1736 entails side effects. The Dwarf 2 reader does handle this
1737 more gracefully (it never constructs more than once
1738 instance of a type object, so it doesn't have to copy type
1739 objects wholesale), but it still mutates type objects after
1740 other folks have references to them.
1741
1742 Keep in mind that this circularity/mutation issue shows up
1743 at the source language level, too: C's "incomplete types",
1744 for example. So the proper cleanup, I think, would be to
1745 limit GDB's type smashing to match exactly those required
1746 by the source language. So GDB could have a
1747 "complete_this_type" function, but never create unnecessary
1748 copies of a type otherwise. */
1749 replace_type (type, xtype);
1750 TYPE_NAME (type) = NULL;
1751 TYPE_TAG_NAME (type) = NULL;
1752 }
1753 else
1754 {
1755 TYPE_TARGET_STUB (type) = 1;
1756 TYPE_TARGET_TYPE (type) = xtype;
1757 }
1758 }
1759 break;
1760
1761 /* In the following types, we must be sure to overwrite any existing
1762 type that the typenums refer to, rather than allocating a new one
1763 and making the typenums point to the new one. This is because there
1764 may already be pointers to the existing type (if it had been
1765 forward-referenced), and we must change it to a pointer, function,
1766 reference, or whatever, *in-place*. */
1767
1768 case '*': /* Pointer to another type */
1769 type1 = read_type (pp, objfile);
1770 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1771 break;
1772
1773 case '&': /* Reference to another type */
1774 type1 = read_type (pp, objfile);
1775 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1776 break;
1777
1778 case 'f': /* Function returning another type */
1779 type1 = read_type (pp, objfile);
1780 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1781 break;
1782
1783 case 'g': /* Prototyped function. (Sun) */
1784 {
1785 /* Unresolved questions:
1786
1787 - According to Sun's ``STABS Interface Manual'', for 'f'
1788 and 'F' symbol descriptors, a `0' in the argument type list
1789 indicates a varargs function. But it doesn't say how 'g'
1790 type descriptors represent that info. Someone with access
1791 to Sun's toolchain should try it out.
1792
1793 - According to the comment in define_symbol (search for
1794 `process_prototype_types:'), Sun emits integer arguments as
1795 types which ref themselves --- like `void' types. Do we
1796 have to deal with that here, too? Again, someone with
1797 access to Sun's toolchain should try it out and let us
1798 know. */
1799
1800 const char *type_start = (*pp) - 1;
1801 struct type *return_type = read_type (pp, objfile);
1802 struct type *func_type
1803 = make_function_type (return_type,
1804 dbx_lookup_type (typenums, objfile));
1805 struct type_list {
1806 struct type *type;
1807 struct type_list *next;
1808 } *arg_types = 0;
1809 int num_args = 0;
1810
1811 while (**pp && **pp != '#')
1812 {
1813 struct type *arg_type = read_type (pp, objfile);
1814 struct type_list *new = alloca (sizeof (*new));
1815 new->type = arg_type;
1816 new->next = arg_types;
1817 arg_types = new;
1818 num_args++;
1819 }
1820 if (**pp == '#')
1821 ++*pp;
1822 else
1823 {
1824 complaint (&symfile_complaints,
1825 _("Prototyped function type didn't "
1826 "end arguments with `#':\n%s"),
1827 type_start);
1828 }
1829
1830 /* If there is just one argument whose type is `void', then
1831 that's just an empty argument list. */
1832 if (arg_types
1833 && ! arg_types->next
1834 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1835 num_args = 0;
1836
1837 TYPE_FIELDS (func_type)
1838 = (struct field *) TYPE_ALLOC (func_type,
1839 num_args * sizeof (struct field));
1840 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1841 {
1842 int i;
1843 struct type_list *t;
1844
1845 /* We stuck each argument type onto the front of the list
1846 when we read it, so the list is reversed. Build the
1847 fields array right-to-left. */
1848 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849 TYPE_FIELD_TYPE (func_type, i) = t->type;
1850 }
1851 TYPE_NFIELDS (func_type) = num_args;
1852 TYPE_PROTOTYPED (func_type) = 1;
1853
1854 type = func_type;
1855 break;
1856 }
1857
1858 case 'k': /* Const qualifier on some type (Sun) */
1859 type = read_type (pp, objfile);
1860 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1861 dbx_lookup_type (typenums, objfile));
1862 break;
1863
1864 case 'B': /* Volatile qual on some type (Sun) */
1865 type = read_type (pp, objfile);
1866 type = make_cv_type (TYPE_CONST (type), 1, type,
1867 dbx_lookup_type (typenums, objfile));
1868 break;
1869
1870 case '@':
1871 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 { /* Member (class & variable) type */
1873 /* FIXME -- we should be doing smash_to_XXX types here. */
1874
1875 struct type *domain = read_type (pp, objfile);
1876 struct type *memtype;
1877
1878 if (**pp != ',')
1879 /* Invalid member type data format. */
1880 return error_type (pp, objfile);
1881 ++*pp;
1882
1883 memtype = read_type (pp, objfile);
1884 type = dbx_alloc_type (typenums, objfile);
1885 smash_to_memberptr_type (type, domain, memtype);
1886 }
1887 else
1888 /* type attribute */
1889 {
1890 char *attr = *pp;
1891
1892 /* Skip to the semicolon. */
1893 while (**pp != ';' && **pp != '\0')
1894 ++(*pp);
1895 if (**pp == '\0')
1896 return error_type (pp, objfile);
1897 else
1898 ++ * pp; /* Skip the semicolon. */
1899
1900 switch (*attr)
1901 {
1902 case 's': /* Size attribute */
1903 type_size = atoi (attr + 1);
1904 if (type_size <= 0)
1905 type_size = -1;
1906 break;
1907
1908 case 'S': /* String attribute */
1909 /* FIXME: check to see if following type is array? */
1910 is_string = 1;
1911 break;
1912
1913 case 'V': /* Vector attribute */
1914 /* FIXME: check to see if following type is array? */
1915 is_vector = 1;
1916 break;
1917
1918 default:
1919 /* Ignore unrecognized type attributes, so future compilers
1920 can invent new ones. */
1921 break;
1922 }
1923 ++*pp;
1924 goto again;
1925 }
1926 break;
1927
1928 case '#': /* Method (class & fn) type */
1929 if ((*pp)[0] == '#')
1930 {
1931 /* We'll get the parameter types from the name. */
1932 struct type *return_type;
1933
1934 (*pp)++;
1935 return_type = read_type (pp, objfile);
1936 if (*(*pp)++ != ';')
1937 complaint (&symfile_complaints,
1938 _("invalid (minimal) member type "
1939 "data format at symtab pos %d."),
1940 symnum);
1941 type = allocate_stub_method (return_type);
1942 if (typenums[0] != -1)
1943 *dbx_lookup_type (typenums, objfile) = type;
1944 }
1945 else
1946 {
1947 struct type *domain = read_type (pp, objfile);
1948 struct type *return_type;
1949 struct field *args;
1950 int nargs, varargs;
1951
1952 if (**pp != ',')
1953 /* Invalid member type data format. */
1954 return error_type (pp, objfile);
1955 else
1956 ++(*pp);
1957
1958 return_type = read_type (pp, objfile);
1959 args = read_args (pp, ';', objfile, &nargs, &varargs);
1960 if (args == NULL)
1961 return error_type (pp, objfile);
1962 type = dbx_alloc_type (typenums, objfile);
1963 smash_to_method_type (type, domain, return_type, args,
1964 nargs, varargs);
1965 }
1966 break;
1967
1968 case 'r': /* Range type */
1969 type = read_range_type (pp, typenums, type_size, objfile);
1970 if (typenums[0] != -1)
1971 *dbx_lookup_type (typenums, objfile) = type;
1972 break;
1973
1974 case 'b':
1975 {
1976 /* Sun ACC builtin int type */
1977 type = read_sun_builtin_type (pp, typenums, objfile);
1978 if (typenums[0] != -1)
1979 *dbx_lookup_type (typenums, objfile) = type;
1980 }
1981 break;
1982
1983 case 'R': /* Sun ACC builtin float type */
1984 type = read_sun_floating_type (pp, typenums, objfile);
1985 if (typenums[0] != -1)
1986 *dbx_lookup_type (typenums, objfile) = type;
1987 break;
1988
1989 case 'e': /* Enumeration type */
1990 type = dbx_alloc_type (typenums, objfile);
1991 type = read_enum_type (pp, type, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1994 break;
1995
1996 case 's': /* Struct type */
1997 case 'u': /* Union type */
1998 {
1999 enum type_code type_code = TYPE_CODE_UNDEF;
2000 type = dbx_alloc_type (typenums, objfile);
2001 switch (type_descriptor)
2002 {
2003 case 's':
2004 type_code = TYPE_CODE_STRUCT;
2005 break;
2006 case 'u':
2007 type_code = TYPE_CODE_UNION;
2008 break;
2009 }
2010 type = read_struct_type (pp, type, type_code, objfile);
2011 break;
2012 }
2013
2014 case 'a': /* Array type */
2015 if (**pp != 'r')
2016 return error_type (pp, objfile);
2017 ++*pp;
2018
2019 type = dbx_alloc_type (typenums, objfile);
2020 type = read_array_type (pp, type, objfile);
2021 if (is_string)
2022 TYPE_CODE (type) = TYPE_CODE_STRING;
2023 if (is_vector)
2024 make_vector_type (type);
2025 break;
2026
2027 case 'S': /* Set type */
2028 type1 = read_type (pp, objfile);
2029 type = create_set_type ((struct type *) NULL, type1);
2030 if (typenums[0] != -1)
2031 *dbx_lookup_type (typenums, objfile) = type;
2032 break;
2033
2034 default:
2035 --*pp; /* Go back to the symbol in error. */
2036 /* Particularly important if it was \0! */
2037 return error_type (pp, objfile);
2038 }
2039
2040 if (type == 0)
2041 {
2042 warning (_("GDB internal error, type is NULL in stabsread.c."));
2043 return error_type (pp, objfile);
2044 }
2045
2046 /* Size specified in a type attribute overrides any other size. */
2047 if (type_size != -1)
2048 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2049
2050 return type;
2051 }
2052 \f
2053 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2054 Return the proper type node for a given builtin type number. */
2055
2056 static const struct objfile_data *rs6000_builtin_type_data;
2057
2058 static struct type *
2059 rs6000_builtin_type (int typenum, struct objfile *objfile)
2060 {
2061 struct type **negative_types = objfile_data (objfile,
2062 rs6000_builtin_type_data);
2063
2064 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2065 #define NUMBER_RECOGNIZED 34
2066 struct type *rettype = NULL;
2067
2068 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2069 {
2070 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2071 return objfile_type (objfile)->builtin_error;
2072 }
2073
2074 if (!negative_types)
2075 {
2076 /* This includes an empty slot for type number -0. */
2077 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2078 NUMBER_RECOGNIZED + 1, struct type *);
2079 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2080 }
2081
2082 if (negative_types[-typenum] != NULL)
2083 return negative_types[-typenum];
2084
2085 #if TARGET_CHAR_BIT != 8
2086 #error This code wrong for TARGET_CHAR_BIT not 8
2087 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2088 that if that ever becomes not true, the correct fix will be to
2089 make the size in the struct type to be in bits, not in units of
2090 TARGET_CHAR_BIT. */
2091 #endif
2092
2093 switch (-typenum)
2094 {
2095 case 1:
2096 /* The size of this and all the other types are fixed, defined
2097 by the debugging format. If there is a type called "int" which
2098 is other than 32 bits, then it should use a new negative type
2099 number (or avoid negative type numbers for that case).
2100 See stabs.texinfo. */
2101 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2102 break;
2103 case 2:
2104 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2105 break;
2106 case 3:
2107 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2108 break;
2109 case 4:
2110 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2111 break;
2112 case 5:
2113 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2114 "unsigned char", objfile);
2115 break;
2116 case 6:
2117 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2118 break;
2119 case 7:
2120 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2121 "unsigned short", objfile);
2122 break;
2123 case 8:
2124 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2125 "unsigned int", objfile);
2126 break;
2127 case 9:
2128 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2129 "unsigned", objfile);
2130 break;
2131 case 10:
2132 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2133 "unsigned long", objfile);
2134 break;
2135 case 11:
2136 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2137 break;
2138 case 12:
2139 /* IEEE single precision (32 bit). */
2140 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2141 break;
2142 case 13:
2143 /* IEEE double precision (64 bit). */
2144 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2145 break;
2146 case 14:
2147 /* This is an IEEE double on the RS/6000, and different machines with
2148 different sizes for "long double" should use different negative
2149 type numbers. See stabs.texinfo. */
2150 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2151 break;
2152 case 15:
2153 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2154 break;
2155 case 16:
2156 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2157 "boolean", objfile);
2158 break;
2159 case 17:
2160 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2161 break;
2162 case 18:
2163 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2164 break;
2165 case 19:
2166 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2167 break;
2168 case 20:
2169 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2170 "character", objfile);
2171 break;
2172 case 21:
2173 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2174 "logical*1", objfile);
2175 break;
2176 case 22:
2177 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2178 "logical*2", objfile);
2179 break;
2180 case 23:
2181 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2182 "logical*4", objfile);
2183 break;
2184 case 24:
2185 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2186 "logical", objfile);
2187 break;
2188 case 25:
2189 /* Complex type consisting of two IEEE single precision values. */
2190 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2191 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2192 objfile);
2193 break;
2194 case 26:
2195 /* Complex type consisting of two IEEE double precision values. */
2196 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2197 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2198 objfile);
2199 break;
2200 case 27:
2201 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2202 break;
2203 case 28:
2204 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2205 break;
2206 case 29:
2207 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2208 break;
2209 case 30:
2210 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2211 break;
2212 case 31:
2213 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2214 break;
2215 case 32:
2216 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2217 "unsigned long long", objfile);
2218 break;
2219 case 33:
2220 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2221 "logical*8", objfile);
2222 break;
2223 case 34:
2224 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2225 break;
2226 }
2227 negative_types[-typenum] = rettype;
2228 return rettype;
2229 }
2230 \f
2231 /* This page contains subroutines of read_type. */
2232
2233 /* Wrapper around method_name_from_physname to flag a complaint
2234 if there is an error. */
2235
2236 static char *
2237 stabs_method_name_from_physname (const char *physname)
2238 {
2239 char *method_name;
2240
2241 method_name = method_name_from_physname (physname);
2242
2243 if (method_name == NULL)
2244 {
2245 complaint (&symfile_complaints,
2246 _("Method has bad physname %s\n"), physname);
2247 return NULL;
2248 }
2249
2250 return method_name;
2251 }
2252
2253 /* Read member function stabs info for C++ classes. The form of each member
2254 function data is:
2255
2256 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2257
2258 An example with two member functions is:
2259
2260 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2261
2262 For the case of overloaded operators, the format is op$::*.funcs, where
2263 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2264 name (such as `+=') and `.' marks the end of the operator name.
2265
2266 Returns 1 for success, 0 for failure. */
2267
2268 static int
2269 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2270 struct objfile *objfile)
2271 {
2272 int nfn_fields = 0;
2273 int length = 0;
2274 int i;
2275 struct next_fnfield
2276 {
2277 struct next_fnfield *next;
2278 struct fn_field fn_field;
2279 }
2280 *sublist;
2281 struct type *look_ahead_type;
2282 struct next_fnfieldlist *new_fnlist;
2283 struct next_fnfield *new_sublist;
2284 char *main_fn_name;
2285 char *p;
2286
2287 /* Process each list until we find something that is not a member function
2288 or find the end of the functions. */
2289
2290 while (**pp != ';')
2291 {
2292 /* We should be positioned at the start of the function name.
2293 Scan forward to find the first ':' and if it is not the
2294 first of a "::" delimiter, then this is not a member function. */
2295 p = *pp;
2296 while (*p != ':')
2297 {
2298 p++;
2299 }
2300 if (p[1] != ':')
2301 {
2302 break;
2303 }
2304
2305 sublist = NULL;
2306 look_ahead_type = NULL;
2307 length = 0;
2308
2309 new_fnlist = (struct next_fnfieldlist *)
2310 xmalloc (sizeof (struct next_fnfieldlist));
2311 make_cleanup (xfree, new_fnlist);
2312 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2313
2314 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2315 {
2316 /* This is a completely wierd case. In order to stuff in the
2317 names that might contain colons (the usual name delimiter),
2318 Mike Tiemann defined a different name format which is
2319 signalled if the identifier is "op$". In that case, the
2320 format is "op$::XXXX." where XXXX is the name. This is
2321 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2322 /* This lets the user type "break operator+".
2323 We could just put in "+" as the name, but that wouldn't
2324 work for "*". */
2325 static char opname[32] = "op$";
2326 char *o = opname + 3;
2327
2328 /* Skip past '::'. */
2329 *pp = p + 2;
2330
2331 STABS_CONTINUE (pp, objfile);
2332 p = *pp;
2333 while (*p != '.')
2334 {
2335 *o++ = *p++;
2336 }
2337 main_fn_name = savestring (opname, o - opname);
2338 /* Skip past '.' */
2339 *pp = p + 1;
2340 }
2341 else
2342 {
2343 main_fn_name = savestring (*pp, p - *pp);
2344 /* Skip past '::'. */
2345 *pp = p + 2;
2346 }
2347 new_fnlist->fn_fieldlist.name = main_fn_name;
2348
2349 do
2350 {
2351 new_sublist =
2352 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2353 make_cleanup (xfree, new_sublist);
2354 memset (new_sublist, 0, sizeof (struct next_fnfield));
2355
2356 /* Check for and handle cretinous dbx symbol name continuation! */
2357 if (look_ahead_type == NULL)
2358 {
2359 /* Normal case. */
2360 STABS_CONTINUE (pp, objfile);
2361
2362 new_sublist->fn_field.type = read_type (pp, objfile);
2363 if (**pp != ':')
2364 {
2365 /* Invalid symtab info for member function. */
2366 return 0;
2367 }
2368 }
2369 else
2370 {
2371 /* g++ version 1 kludge */
2372 new_sublist->fn_field.type = look_ahead_type;
2373 look_ahead_type = NULL;
2374 }
2375
2376 (*pp)++;
2377 p = *pp;
2378 while (*p != ';')
2379 {
2380 p++;
2381 }
2382
2383 /* If this is just a stub, then we don't have the real name here. */
2384
2385 if (TYPE_STUB (new_sublist->fn_field.type))
2386 {
2387 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2388 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2389 new_sublist->fn_field.is_stub = 1;
2390 }
2391 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2392 *pp = p + 1;
2393
2394 /* Set this member function's visibility fields. */
2395 switch (*(*pp)++)
2396 {
2397 case VISIBILITY_PRIVATE:
2398 new_sublist->fn_field.is_private = 1;
2399 break;
2400 case VISIBILITY_PROTECTED:
2401 new_sublist->fn_field.is_protected = 1;
2402 break;
2403 }
2404
2405 STABS_CONTINUE (pp, objfile);
2406 switch (**pp)
2407 {
2408 case 'A': /* Normal functions. */
2409 new_sublist->fn_field.is_const = 0;
2410 new_sublist->fn_field.is_volatile = 0;
2411 (*pp)++;
2412 break;
2413 case 'B': /* `const' member functions. */
2414 new_sublist->fn_field.is_const = 1;
2415 new_sublist->fn_field.is_volatile = 0;
2416 (*pp)++;
2417 break;
2418 case 'C': /* `volatile' member function. */
2419 new_sublist->fn_field.is_const = 0;
2420 new_sublist->fn_field.is_volatile = 1;
2421 (*pp)++;
2422 break;
2423 case 'D': /* `const volatile' member function. */
2424 new_sublist->fn_field.is_const = 1;
2425 new_sublist->fn_field.is_volatile = 1;
2426 (*pp)++;
2427 break;
2428 case '*': /* File compiled with g++ version 1 --
2429 no info. */
2430 case '?':
2431 case '.':
2432 break;
2433 default:
2434 complaint (&symfile_complaints,
2435 _("const/volatile indicator missing, got '%c'"),
2436 **pp);
2437 break;
2438 }
2439
2440 switch (*(*pp)++)
2441 {
2442 case '*':
2443 {
2444 int nbits;
2445 /* virtual member function, followed by index.
2446 The sign bit is set to distinguish pointers-to-methods
2447 from virtual function indicies. Since the array is
2448 in words, the quantity must be shifted left by 1
2449 on 16 bit machine, and by 2 on 32 bit machine, forcing
2450 the sign bit out, and usable as a valid index into
2451 the array. Remove the sign bit here. */
2452 new_sublist->fn_field.voffset =
2453 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2454 if (nbits != 0)
2455 return 0;
2456
2457 STABS_CONTINUE (pp, objfile);
2458 if (**pp == ';' || **pp == '\0')
2459 {
2460 /* Must be g++ version 1. */
2461 new_sublist->fn_field.fcontext = 0;
2462 }
2463 else
2464 {
2465 /* Figure out from whence this virtual function came.
2466 It may belong to virtual function table of
2467 one of its baseclasses. */
2468 look_ahead_type = read_type (pp, objfile);
2469 if (**pp == ':')
2470 {
2471 /* g++ version 1 overloaded methods. */
2472 }
2473 else
2474 {
2475 new_sublist->fn_field.fcontext = look_ahead_type;
2476 if (**pp != ';')
2477 {
2478 return 0;
2479 }
2480 else
2481 {
2482 ++*pp;
2483 }
2484 look_ahead_type = NULL;
2485 }
2486 }
2487 break;
2488 }
2489 case '?':
2490 /* static member function. */
2491 {
2492 int slen = strlen (main_fn_name);
2493
2494 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2495
2496 /* For static member functions, we can't tell if they
2497 are stubbed, as they are put out as functions, and not as
2498 methods.
2499 GCC v2 emits the fully mangled name if
2500 dbxout.c:flag_minimal_debug is not set, so we have to
2501 detect a fully mangled physname here and set is_stub
2502 accordingly. Fully mangled physnames in v2 start with
2503 the member function name, followed by two underscores.
2504 GCC v3 currently always emits stubbed member functions,
2505 but with fully mangled physnames, which start with _Z. */
2506 if (!(strncmp (new_sublist->fn_field.physname,
2507 main_fn_name, slen) == 0
2508 && new_sublist->fn_field.physname[slen] == '_'
2509 && new_sublist->fn_field.physname[slen + 1] == '_'))
2510 {
2511 new_sublist->fn_field.is_stub = 1;
2512 }
2513 break;
2514 }
2515
2516 default:
2517 /* error */
2518 complaint (&symfile_complaints,
2519 _("member function type missing, got '%c'"),
2520 (*pp)[-1]);
2521 /* Fall through into normal member function. */
2522
2523 case '.':
2524 /* normal member function. */
2525 new_sublist->fn_field.voffset = 0;
2526 new_sublist->fn_field.fcontext = 0;
2527 break;
2528 }
2529
2530 new_sublist->next = sublist;
2531 sublist = new_sublist;
2532 length++;
2533 STABS_CONTINUE (pp, objfile);
2534 }
2535 while (**pp != ';' && **pp != '\0');
2536
2537 (*pp)++;
2538 STABS_CONTINUE (pp, objfile);
2539
2540 /* Skip GCC 3.X member functions which are duplicates of the callable
2541 constructor/destructor. */
2542 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2543 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2544 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2545 {
2546 xfree (main_fn_name);
2547 }
2548 else
2549 {
2550 int has_stub = 0;
2551 int has_destructor = 0, has_other = 0;
2552 int is_v3 = 0;
2553 struct next_fnfield *tmp_sublist;
2554
2555 /* Various versions of GCC emit various mostly-useless
2556 strings in the name field for special member functions.
2557
2558 For stub methods, we need to defer correcting the name
2559 until we are ready to unstub the method, because the current
2560 name string is used by gdb_mangle_name. The only stub methods
2561 of concern here are GNU v2 operators; other methods have their
2562 names correct (see caveat below).
2563
2564 For non-stub methods, in GNU v3, we have a complete physname.
2565 Therefore we can safely correct the name now. This primarily
2566 affects constructors and destructors, whose name will be
2567 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2568 operators will also have incorrect names; for instance,
2569 "operator int" will be named "operator i" (i.e. the type is
2570 mangled).
2571
2572 For non-stub methods in GNU v2, we have no easy way to
2573 know if we have a complete physname or not. For most
2574 methods the result depends on the platform (if CPLUS_MARKER
2575 can be `$' or `.', it will use minimal debug information, or
2576 otherwise the full physname will be included).
2577
2578 Rather than dealing with this, we take a different approach.
2579 For v3 mangled names, we can use the full physname; for v2,
2580 we use cplus_demangle_opname (which is actually v2 specific),
2581 because the only interesting names are all operators - once again
2582 barring the caveat below. Skip this process if any method in the
2583 group is a stub, to prevent our fouling up the workings of
2584 gdb_mangle_name.
2585
2586 The caveat: GCC 2.95.x (and earlier?) put constructors and
2587 destructors in the same method group. We need to split this
2588 into two groups, because they should have different names.
2589 So for each method group we check whether it contains both
2590 routines whose physname appears to be a destructor (the physnames
2591 for and destructors are always provided, due to quirks in v2
2592 mangling) and routines whose physname does not appear to be a
2593 destructor. If so then we break up the list into two halves.
2594 Even if the constructors and destructors aren't in the same group
2595 the destructor will still lack the leading tilde, so that also
2596 needs to be fixed.
2597
2598 So, to summarize what we expect and handle here:
2599
2600 Given Given Real Real Action
2601 method name physname physname method name
2602
2603 __opi [none] __opi__3Foo operator int opname
2604 [now or later]
2605 Foo _._3Foo _._3Foo ~Foo separate and
2606 rename
2607 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2608 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2609 */
2610
2611 tmp_sublist = sublist;
2612 while (tmp_sublist != NULL)
2613 {
2614 if (tmp_sublist->fn_field.is_stub)
2615 has_stub = 1;
2616 if (tmp_sublist->fn_field.physname[0] == '_'
2617 && tmp_sublist->fn_field.physname[1] == 'Z')
2618 is_v3 = 1;
2619
2620 if (is_destructor_name (tmp_sublist->fn_field.physname))
2621 has_destructor++;
2622 else
2623 has_other++;
2624
2625 tmp_sublist = tmp_sublist->next;
2626 }
2627
2628 if (has_destructor && has_other)
2629 {
2630 struct next_fnfieldlist *destr_fnlist;
2631 struct next_fnfield *last_sublist;
2632
2633 /* Create a new fn_fieldlist for the destructors. */
2634
2635 destr_fnlist = (struct next_fnfieldlist *)
2636 xmalloc (sizeof (struct next_fnfieldlist));
2637 make_cleanup (xfree, destr_fnlist);
2638 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2639 destr_fnlist->fn_fieldlist.name
2640 = obconcat (&objfile->objfile_obstack, "~",
2641 new_fnlist->fn_fieldlist.name, (char *) NULL);
2642
2643 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2644 obstack_alloc (&objfile->objfile_obstack,
2645 sizeof (struct fn_field) * has_destructor);
2646 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2647 sizeof (struct fn_field) * has_destructor);
2648 tmp_sublist = sublist;
2649 last_sublist = NULL;
2650 i = 0;
2651 while (tmp_sublist != NULL)
2652 {
2653 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2654 {
2655 tmp_sublist = tmp_sublist->next;
2656 continue;
2657 }
2658
2659 destr_fnlist->fn_fieldlist.fn_fields[i++]
2660 = tmp_sublist->fn_field;
2661 if (last_sublist)
2662 last_sublist->next = tmp_sublist->next;
2663 else
2664 sublist = tmp_sublist->next;
2665 last_sublist = tmp_sublist;
2666 tmp_sublist = tmp_sublist->next;
2667 }
2668
2669 destr_fnlist->fn_fieldlist.length = has_destructor;
2670 destr_fnlist->next = fip->fnlist;
2671 fip->fnlist = destr_fnlist;
2672 nfn_fields++;
2673 length -= has_destructor;
2674 }
2675 else if (is_v3)
2676 {
2677 /* v3 mangling prevents the use of abbreviated physnames,
2678 so we can do this here. There are stubbed methods in v3
2679 only:
2680 - in -gstabs instead of -gstabs+
2681 - or for static methods, which are output as a function type
2682 instead of a method type. */
2683 char *new_method_name =
2684 stabs_method_name_from_physname (sublist->fn_field.physname);
2685
2686 if (new_method_name != NULL
2687 && strcmp (new_method_name,
2688 new_fnlist->fn_fieldlist.name) != 0)
2689 {
2690 new_fnlist->fn_fieldlist.name = new_method_name;
2691 xfree (main_fn_name);
2692 }
2693 else
2694 xfree (new_method_name);
2695 }
2696 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2697 {
2698 new_fnlist->fn_fieldlist.name =
2699 obconcat (&objfile->objfile_obstack,
2700 "~", main_fn_name, (char *)NULL);
2701 xfree (main_fn_name);
2702 }
2703 else if (!has_stub)
2704 {
2705 char dem_opname[256];
2706 int ret;
2707
2708 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2709 dem_opname, DMGL_ANSI);
2710 if (!ret)
2711 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2712 dem_opname, 0);
2713 if (ret)
2714 new_fnlist->fn_fieldlist.name
2715 = obsavestring (dem_opname, strlen (dem_opname),
2716 &objfile->objfile_obstack);
2717 xfree (main_fn_name);
2718 }
2719
2720 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2721 obstack_alloc (&objfile->objfile_obstack,
2722 sizeof (struct fn_field) * length);
2723 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2724 sizeof (struct fn_field) * length);
2725 for (i = length; (i--, sublist); sublist = sublist->next)
2726 {
2727 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2728 }
2729
2730 new_fnlist->fn_fieldlist.length = length;
2731 new_fnlist->next = fip->fnlist;
2732 fip->fnlist = new_fnlist;
2733 nfn_fields++;
2734 }
2735 }
2736
2737 if (nfn_fields)
2738 {
2739 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2740 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2741 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2742 memset (TYPE_FN_FIELDLISTS (type), 0,
2743 sizeof (struct fn_fieldlist) * nfn_fields);
2744 TYPE_NFN_FIELDS (type) = nfn_fields;
2745 }
2746
2747 return 1;
2748 }
2749
2750 /* Special GNU C++ name.
2751
2752 Returns 1 for success, 0 for failure. "failure" means that we can't
2753 keep parsing and it's time for error_type(). */
2754
2755 static int
2756 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2757 struct objfile *objfile)
2758 {
2759 char *p;
2760 const char *name;
2761 char cpp_abbrev;
2762 struct type *context;
2763
2764 p = *pp;
2765 if (*++p == 'v')
2766 {
2767 name = NULL;
2768 cpp_abbrev = *++p;
2769
2770 *pp = p + 1;
2771
2772 /* At this point, *pp points to something like "22:23=*22...",
2773 where the type number before the ':' is the "context" and
2774 everything after is a regular type definition. Lookup the
2775 type, find it's name, and construct the field name. */
2776
2777 context = read_type (pp, objfile);
2778
2779 switch (cpp_abbrev)
2780 {
2781 case 'f': /* $vf -- a virtual function table pointer */
2782 name = type_name_no_tag (context);
2783 if (name == NULL)
2784 {
2785 name = "";
2786 }
2787 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2788 vptr_name, name, (char *) NULL);
2789 break;
2790
2791 case 'b': /* $vb -- a virtual bsomethingorother */
2792 name = type_name_no_tag (context);
2793 if (name == NULL)
2794 {
2795 complaint (&symfile_complaints,
2796 _("C++ abbreviated type name "
2797 "unknown at symtab pos %d"),
2798 symnum);
2799 name = "FOO";
2800 }
2801 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2802 name, (char *) NULL);
2803 break;
2804
2805 default:
2806 invalid_cpp_abbrev_complaint (*pp);
2807 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2808 "INVALID_CPLUSPLUS_ABBREV",
2809 (char *) NULL);
2810 break;
2811 }
2812
2813 /* At this point, *pp points to the ':'. Skip it and read the
2814 field type. */
2815
2816 p = ++(*pp);
2817 if (p[-1] != ':')
2818 {
2819 invalid_cpp_abbrev_complaint (*pp);
2820 return 0;
2821 }
2822 fip->list->field.type = read_type (pp, objfile);
2823 if (**pp == ',')
2824 (*pp)++; /* Skip the comma. */
2825 else
2826 return 0;
2827
2828 {
2829 int nbits;
2830
2831 SET_FIELD_BITPOS (fip->list->field,
2832 read_huge_number (pp, ';', &nbits, 0));
2833 if (nbits != 0)
2834 return 0;
2835 }
2836 /* This field is unpacked. */
2837 FIELD_BITSIZE (fip->list->field) = 0;
2838 fip->list->visibility = VISIBILITY_PRIVATE;
2839 }
2840 else
2841 {
2842 invalid_cpp_abbrev_complaint (*pp);
2843 /* We have no idea what syntax an unrecognized abbrev would have, so
2844 better return 0. If we returned 1, we would need to at least advance
2845 *pp to avoid an infinite loop. */
2846 return 0;
2847 }
2848 return 1;
2849 }
2850
2851 static void
2852 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2853 struct type *type, struct objfile *objfile)
2854 {
2855 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2856
2857 fip->list->field.name =
2858 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2859 *pp = p + 1;
2860
2861 /* This means we have a visibility for a field coming. */
2862 if (**pp == '/')
2863 {
2864 (*pp)++;
2865 fip->list->visibility = *(*pp)++;
2866 }
2867 else
2868 {
2869 /* normal dbx-style format, no explicit visibility */
2870 fip->list->visibility = VISIBILITY_PUBLIC;
2871 }
2872
2873 fip->list->field.type = read_type (pp, objfile);
2874 if (**pp == ':')
2875 {
2876 p = ++(*pp);
2877 #if 0
2878 /* Possible future hook for nested types. */
2879 if (**pp == '!')
2880 {
2881 fip->list->field.bitpos = (long) -2; /* nested type */
2882 p = ++(*pp);
2883 }
2884 else
2885 ...;
2886 #endif
2887 while (*p != ';')
2888 {
2889 p++;
2890 }
2891 /* Static class member. */
2892 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2893 *pp = p + 1;
2894 return;
2895 }
2896 else if (**pp != ',')
2897 {
2898 /* Bad structure-type format. */
2899 stabs_general_complaint ("bad structure-type format");
2900 return;
2901 }
2902
2903 (*pp)++; /* Skip the comma. */
2904
2905 {
2906 int nbits;
2907
2908 SET_FIELD_BITPOS (fip->list->field,
2909 read_huge_number (pp, ',', &nbits, 0));
2910 if (nbits != 0)
2911 {
2912 stabs_general_complaint ("bad structure-type format");
2913 return;
2914 }
2915 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2916 if (nbits != 0)
2917 {
2918 stabs_general_complaint ("bad structure-type format");
2919 return;
2920 }
2921 }
2922
2923 if (FIELD_BITPOS (fip->list->field) == 0
2924 && FIELD_BITSIZE (fip->list->field) == 0)
2925 {
2926 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2927 it is a field which has been optimized out. The correct stab for
2928 this case is to use VISIBILITY_IGNORE, but that is a recent
2929 invention. (2) It is a 0-size array. For example
2930 union { int num; char str[0]; } foo. Printing _("<no value>" for
2931 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2932 will continue to work, and a 0-size array as a whole doesn't
2933 have any contents to print.
2934
2935 I suspect this probably could also happen with gcc -gstabs (not
2936 -gstabs+) for static fields, and perhaps other C++ extensions.
2937 Hopefully few people use -gstabs with gdb, since it is intended
2938 for dbx compatibility. */
2939
2940 /* Ignore this field. */
2941 fip->list->visibility = VISIBILITY_IGNORE;
2942 }
2943 else
2944 {
2945 /* Detect an unpacked field and mark it as such.
2946 dbx gives a bit size for all fields.
2947 Note that forward refs cannot be packed,
2948 and treat enums as if they had the width of ints. */
2949
2950 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2951
2952 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2953 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2954 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2955 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2956 {
2957 FIELD_BITSIZE (fip->list->field) = 0;
2958 }
2959 if ((FIELD_BITSIZE (fip->list->field)
2960 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2961 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2962 && FIELD_BITSIZE (fip->list->field)
2963 == gdbarch_int_bit (gdbarch))
2964 )
2965 &&
2966 FIELD_BITPOS (fip->list->field) % 8 == 0)
2967 {
2968 FIELD_BITSIZE (fip->list->field) = 0;
2969 }
2970 }
2971 }
2972
2973
2974 /* Read struct or class data fields. They have the form:
2975
2976 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2977
2978 At the end, we see a semicolon instead of a field.
2979
2980 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2981 a static field.
2982
2983 The optional VISIBILITY is one of:
2984
2985 '/0' (VISIBILITY_PRIVATE)
2986 '/1' (VISIBILITY_PROTECTED)
2987 '/2' (VISIBILITY_PUBLIC)
2988 '/9' (VISIBILITY_IGNORE)
2989
2990 or nothing, for C style fields with public visibility.
2991
2992 Returns 1 for success, 0 for failure. */
2993
2994 static int
2995 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2996 struct objfile *objfile)
2997 {
2998 char *p;
2999 struct nextfield *new;
3000
3001 /* We better set p right now, in case there are no fields at all... */
3002
3003 p = *pp;
3004
3005 /* Read each data member type until we find the terminating ';' at the end of
3006 the data member list, or break for some other reason such as finding the
3007 start of the member function list. */
3008 /* Stab string for structure/union does not end with two ';' in
3009 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3010
3011 while (**pp != ';' && **pp != '\0')
3012 {
3013 STABS_CONTINUE (pp, objfile);
3014 /* Get space to record the next field's data. */
3015 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3016 make_cleanup (xfree, new);
3017 memset (new, 0, sizeof (struct nextfield));
3018 new->next = fip->list;
3019 fip->list = new;
3020
3021 /* Get the field name. */
3022 p = *pp;
3023
3024 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3025 unless the CPLUS_MARKER is followed by an underscore, in
3026 which case it is just the name of an anonymous type, which we
3027 should handle like any other type name. */
3028
3029 if (is_cplus_marker (p[0]) && p[1] != '_')
3030 {
3031 if (!read_cpp_abbrev (fip, pp, type, objfile))
3032 return 0;
3033 continue;
3034 }
3035
3036 /* Look for the ':' that separates the field name from the field
3037 values. Data members are delimited by a single ':', while member
3038 functions are delimited by a pair of ':'s. When we hit the member
3039 functions (if any), terminate scan loop and return. */
3040
3041 while (*p != ':' && *p != '\0')
3042 {
3043 p++;
3044 }
3045 if (*p == '\0')
3046 return 0;
3047
3048 /* Check to see if we have hit the member functions yet. */
3049 if (p[1] == ':')
3050 {
3051 break;
3052 }
3053 read_one_struct_field (fip, pp, p, type, objfile);
3054 }
3055 if (p[0] == ':' && p[1] == ':')
3056 {
3057 /* (the deleted) chill the list of fields: the last entry (at
3058 the head) is a partially constructed entry which we now
3059 scrub. */
3060 fip->list = fip->list->next;
3061 }
3062 return 1;
3063 }
3064 /* *INDENT-OFF* */
3065 /* The stabs for C++ derived classes contain baseclass information which
3066 is marked by a '!' character after the total size. This function is
3067 called when we encounter the baseclass marker, and slurps up all the
3068 baseclass information.
3069
3070 Immediately following the '!' marker is the number of base classes that
3071 the class is derived from, followed by information for each base class.
3072 For each base class, there are two visibility specifiers, a bit offset
3073 to the base class information within the derived class, a reference to
3074 the type for the base class, and a terminating semicolon.
3075
3076 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3077 ^^ ^ ^ ^ ^ ^ ^
3078 Baseclass information marker __________________|| | | | | | |
3079 Number of baseclasses __________________________| | | | | | |
3080 Visibility specifiers (2) ________________________| | | | | |
3081 Offset in bits from start of class _________________| | | | |
3082 Type number for base class ___________________________| | | |
3083 Visibility specifiers (2) _______________________________| | |
3084 Offset in bits from start of class ________________________| |
3085 Type number of base class ____________________________________|
3086
3087 Return 1 for success, 0 for (error-type-inducing) failure. */
3088 /* *INDENT-ON* */
3089
3090
3091
3092 static int
3093 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3094 struct objfile *objfile)
3095 {
3096 int i;
3097 struct nextfield *new;
3098
3099 if (**pp != '!')
3100 {
3101 return 1;
3102 }
3103 else
3104 {
3105 /* Skip the '!' baseclass information marker. */
3106 (*pp)++;
3107 }
3108
3109 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3110 {
3111 int nbits;
3112
3113 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3114 if (nbits != 0)
3115 return 0;
3116 }
3117
3118 #if 0
3119 /* Some stupid compilers have trouble with the following, so break
3120 it up into simpler expressions. */
3121 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3122 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3123 #else
3124 {
3125 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3126 char *pointer;
3127
3128 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3129 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3130 }
3131 #endif /* 0 */
3132
3133 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3134
3135 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3136 {
3137 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3138 make_cleanup (xfree, new);
3139 memset (new, 0, sizeof (struct nextfield));
3140 new->next = fip->list;
3141 fip->list = new;
3142 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3143 field! */
3144
3145 STABS_CONTINUE (pp, objfile);
3146 switch (**pp)
3147 {
3148 case '0':
3149 /* Nothing to do. */
3150 break;
3151 case '1':
3152 SET_TYPE_FIELD_VIRTUAL (type, i);
3153 break;
3154 default:
3155 /* Unknown character. Complain and treat it as non-virtual. */
3156 {
3157 complaint (&symfile_complaints,
3158 _("Unknown virtual character `%c' for baseclass"),
3159 **pp);
3160 }
3161 }
3162 ++(*pp);
3163
3164 new->visibility = *(*pp)++;
3165 switch (new->visibility)
3166 {
3167 case VISIBILITY_PRIVATE:
3168 case VISIBILITY_PROTECTED:
3169 case VISIBILITY_PUBLIC:
3170 break;
3171 default:
3172 /* Bad visibility format. Complain and treat it as
3173 public. */
3174 {
3175 complaint (&symfile_complaints,
3176 _("Unknown visibility `%c' for baseclass"),
3177 new->visibility);
3178 new->visibility = VISIBILITY_PUBLIC;
3179 }
3180 }
3181
3182 {
3183 int nbits;
3184
3185 /* The remaining value is the bit offset of the portion of the object
3186 corresponding to this baseclass. Always zero in the absence of
3187 multiple inheritance. */
3188
3189 SET_FIELD_BITPOS (new->field, read_huge_number (pp, ',', &nbits, 0));
3190 if (nbits != 0)
3191 return 0;
3192 }
3193
3194 /* The last piece of baseclass information is the type of the
3195 base class. Read it, and remember it's type name as this
3196 field's name. */
3197
3198 new->field.type = read_type (pp, objfile);
3199 new->field.name = type_name_no_tag (new->field.type);
3200
3201 /* Skip trailing ';' and bump count of number of fields seen. */
3202 if (**pp == ';')
3203 (*pp)++;
3204 else
3205 return 0;
3206 }
3207 return 1;
3208 }
3209
3210 /* The tail end of stabs for C++ classes that contain a virtual function
3211 pointer contains a tilde, a %, and a type number.
3212 The type number refers to the base class (possibly this class itself) which
3213 contains the vtable pointer for the current class.
3214
3215 This function is called when we have parsed all the method declarations,
3216 so we can look for the vptr base class info. */
3217
3218 static int
3219 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3220 struct objfile *objfile)
3221 {
3222 char *p;
3223
3224 STABS_CONTINUE (pp, objfile);
3225
3226 /* If we are positioned at a ';', then skip it. */
3227 if (**pp == ';')
3228 {
3229 (*pp)++;
3230 }
3231
3232 if (**pp == '~')
3233 {
3234 (*pp)++;
3235
3236 if (**pp == '=' || **pp == '+' || **pp == '-')
3237 {
3238 /* Obsolete flags that used to indicate the presence
3239 of constructors and/or destructors. */
3240 (*pp)++;
3241 }
3242
3243 /* Read either a '%' or the final ';'. */
3244 if (*(*pp)++ == '%')
3245 {
3246 /* The next number is the type number of the base class
3247 (possibly our own class) which supplies the vtable for
3248 this class. Parse it out, and search that class to find
3249 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3250 and TYPE_VPTR_FIELDNO. */
3251
3252 struct type *t;
3253 int i;
3254
3255 t = read_type (pp, objfile);
3256 p = (*pp)++;
3257 while (*p != '\0' && *p != ';')
3258 {
3259 p++;
3260 }
3261 if (*p == '\0')
3262 {
3263 /* Premature end of symbol. */
3264 return 0;
3265 }
3266
3267 TYPE_VPTR_BASETYPE (type) = t;
3268 if (type == t) /* Our own class provides vtbl ptr. */
3269 {
3270 for (i = TYPE_NFIELDS (t) - 1;
3271 i >= TYPE_N_BASECLASSES (t);
3272 --i)
3273 {
3274 const char *name = TYPE_FIELD_NAME (t, i);
3275
3276 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3277 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3278 {
3279 TYPE_VPTR_FIELDNO (type) = i;
3280 goto gotit;
3281 }
3282 }
3283 /* Virtual function table field not found. */
3284 complaint (&symfile_complaints,
3285 _("virtual function table pointer "
3286 "not found when defining class `%s'"),
3287 TYPE_NAME (type));
3288 return 0;
3289 }
3290 else
3291 {
3292 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3293 }
3294
3295 gotit:
3296 *pp = p + 1;
3297 }
3298 }
3299 return 1;
3300 }
3301
3302 static int
3303 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3304 {
3305 int n;
3306
3307 for (n = TYPE_NFN_FIELDS (type);
3308 fip->fnlist != NULL;
3309 fip->fnlist = fip->fnlist->next)
3310 {
3311 --n; /* Circumvent Sun3 compiler bug. */
3312 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3313 }
3314 return 1;
3315 }
3316
3317 /* Create the vector of fields, and record how big it is.
3318 We need this info to record proper virtual function table information
3319 for this class's virtual functions. */
3320
3321 static int
3322 attach_fields_to_type (struct field_info *fip, struct type *type,
3323 struct objfile *objfile)
3324 {
3325 int nfields = 0;
3326 int non_public_fields = 0;
3327 struct nextfield *scan;
3328
3329 /* Count up the number of fields that we have, as well as taking note of
3330 whether or not there are any non-public fields, which requires us to
3331 allocate and build the private_field_bits and protected_field_bits
3332 bitfields. */
3333
3334 for (scan = fip->list; scan != NULL; scan = scan->next)
3335 {
3336 nfields++;
3337 if (scan->visibility != VISIBILITY_PUBLIC)
3338 {
3339 non_public_fields++;
3340 }
3341 }
3342
3343 /* Now we know how many fields there are, and whether or not there are any
3344 non-public fields. Record the field count, allocate space for the
3345 array of fields, and create blank visibility bitfields if necessary. */
3346
3347 TYPE_NFIELDS (type) = nfields;
3348 TYPE_FIELDS (type) = (struct field *)
3349 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3350 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3351
3352 if (non_public_fields)
3353 {
3354 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3355
3356 TYPE_FIELD_PRIVATE_BITS (type) =
3357 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3358 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3359
3360 TYPE_FIELD_PROTECTED_BITS (type) =
3361 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3362 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3363
3364 TYPE_FIELD_IGNORE_BITS (type) =
3365 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3366 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3367 }
3368
3369 /* Copy the saved-up fields into the field vector. Start from the
3370 head of the list, adding to the tail of the field array, so that
3371 they end up in the same order in the array in which they were
3372 added to the list. */
3373
3374 while (nfields-- > 0)
3375 {
3376 TYPE_FIELD (type, nfields) = fip->list->field;
3377 switch (fip->list->visibility)
3378 {
3379 case VISIBILITY_PRIVATE:
3380 SET_TYPE_FIELD_PRIVATE (type, nfields);
3381 break;
3382
3383 case VISIBILITY_PROTECTED:
3384 SET_TYPE_FIELD_PROTECTED (type, nfields);
3385 break;
3386
3387 case VISIBILITY_IGNORE:
3388 SET_TYPE_FIELD_IGNORE (type, nfields);
3389 break;
3390
3391 case VISIBILITY_PUBLIC:
3392 break;
3393
3394 default:
3395 /* Unknown visibility. Complain and treat it as public. */
3396 {
3397 complaint (&symfile_complaints,
3398 _("Unknown visibility `%c' for field"),
3399 fip->list->visibility);
3400 }
3401 break;
3402 }
3403 fip->list = fip->list->next;
3404 }
3405 return 1;
3406 }
3407
3408
3409 /* Complain that the compiler has emitted more than one definition for the
3410 structure type TYPE. */
3411 static void
3412 complain_about_struct_wipeout (struct type *type)
3413 {
3414 const char *name = "";
3415 const char *kind = "";
3416
3417 if (TYPE_TAG_NAME (type))
3418 {
3419 name = TYPE_TAG_NAME (type);
3420 switch (TYPE_CODE (type))
3421 {
3422 case TYPE_CODE_STRUCT: kind = "struct "; break;
3423 case TYPE_CODE_UNION: kind = "union "; break;
3424 case TYPE_CODE_ENUM: kind = "enum "; break;
3425 default: kind = "";
3426 }
3427 }
3428 else if (TYPE_NAME (type))
3429 {
3430 name = TYPE_NAME (type);
3431 kind = "";
3432 }
3433 else
3434 {
3435 name = "<unknown>";
3436 kind = "";
3437 }
3438
3439 complaint (&symfile_complaints,
3440 _("struct/union type gets multiply defined: %s%s"), kind, name);
3441 }
3442
3443 /* Set the length for all variants of a same main_type, which are
3444 connected in the closed chain.
3445
3446 This is something that needs to be done when a type is defined *after*
3447 some cross references to this type have already been read. Consider
3448 for instance the following scenario where we have the following two
3449 stabs entries:
3450
3451 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3452 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3453
3454 A stubbed version of type dummy is created while processing the first
3455 stabs entry. The length of that type is initially set to zero, since
3456 it is unknown at this point. Also, a "constant" variation of type
3457 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3458 the stabs line).
3459
3460 The second stabs entry allows us to replace the stubbed definition
3461 with the real definition. However, we still need to adjust the length
3462 of the "constant" variation of that type, as its length was left
3463 untouched during the main type replacement... */
3464
3465 static void
3466 set_length_in_type_chain (struct type *type)
3467 {
3468 struct type *ntype = TYPE_CHAIN (type);
3469
3470 while (ntype != type)
3471 {
3472 if (TYPE_LENGTH(ntype) == 0)
3473 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3474 else
3475 complain_about_struct_wipeout (ntype);
3476 ntype = TYPE_CHAIN (ntype);
3477 }
3478 }
3479
3480 /* Read the description of a structure (or union type) and return an object
3481 describing the type.
3482
3483 PP points to a character pointer that points to the next unconsumed token
3484 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3485 *PP will point to "4a:1,0,32;;".
3486
3487 TYPE points to an incomplete type that needs to be filled in.
3488
3489 OBJFILE points to the current objfile from which the stabs information is
3490 being read. (Note that it is redundant in that TYPE also contains a pointer
3491 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3492 */
3493
3494 static struct type *
3495 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3496 struct objfile *objfile)
3497 {
3498 struct cleanup *back_to;
3499 struct field_info fi;
3500
3501 fi.list = NULL;
3502 fi.fnlist = NULL;
3503
3504 /* When describing struct/union/class types in stabs, G++ always drops
3505 all qualifications from the name. So if you've got:
3506 struct A { ... struct B { ... }; ... };
3507 then G++ will emit stabs for `struct A::B' that call it simply
3508 `struct B'. Obviously, if you've got a real top-level definition for
3509 `struct B', or other nested definitions, this is going to cause
3510 problems.
3511
3512 Obviously, GDB can't fix this by itself, but it can at least avoid
3513 scribbling on existing structure type objects when new definitions
3514 appear. */
3515 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3516 || TYPE_STUB (type)))
3517 {
3518 complain_about_struct_wipeout (type);
3519
3520 /* It's probably best to return the type unchanged. */
3521 return type;
3522 }
3523
3524 back_to = make_cleanup (null_cleanup, 0);
3525
3526 INIT_CPLUS_SPECIFIC (type);
3527 TYPE_CODE (type) = type_code;
3528 TYPE_STUB (type) = 0;
3529
3530 /* First comes the total size in bytes. */
3531
3532 {
3533 int nbits;
3534
3535 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3536 if (nbits != 0)
3537 return error_type (pp, objfile);
3538 set_length_in_type_chain (type);
3539 }
3540
3541 /* Now read the baseclasses, if any, read the regular C struct or C++
3542 class member fields, attach the fields to the type, read the C++
3543 member functions, attach them to the type, and then read any tilde
3544 field (baseclass specifier for the class holding the main vtable). */
3545
3546 if (!read_baseclasses (&fi, pp, type, objfile)
3547 || !read_struct_fields (&fi, pp, type, objfile)
3548 || !attach_fields_to_type (&fi, type, objfile)
3549 || !read_member_functions (&fi, pp, type, objfile)
3550 || !attach_fn_fields_to_type (&fi, type)
3551 || !read_tilde_fields (&fi, pp, type, objfile))
3552 {
3553 type = error_type (pp, objfile);
3554 }
3555
3556 do_cleanups (back_to);
3557 return (type);
3558 }
3559
3560 /* Read a definition of an array type,
3561 and create and return a suitable type object.
3562 Also creates a range type which represents the bounds of that
3563 array. */
3564
3565 static struct type *
3566 read_array_type (char **pp, struct type *type,
3567 struct objfile *objfile)
3568 {
3569 struct type *index_type, *element_type, *range_type;
3570 int lower, upper;
3571 int adjustable = 0;
3572 int nbits;
3573
3574 /* Format of an array type:
3575 "ar<index type>;lower;upper;<array_contents_type>".
3576 OS9000: "arlower,upper;<array_contents_type>".
3577
3578 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3579 for these, produce a type like float[][]. */
3580
3581 {
3582 index_type = read_type (pp, objfile);
3583 if (**pp != ';')
3584 /* Improper format of array type decl. */
3585 return error_type (pp, objfile);
3586 ++*pp;
3587 }
3588
3589 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3590 {
3591 (*pp)++;
3592 adjustable = 1;
3593 }
3594 lower = read_huge_number (pp, ';', &nbits, 0);
3595
3596 if (nbits != 0)
3597 return error_type (pp, objfile);
3598
3599 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3600 {
3601 (*pp)++;
3602 adjustable = 1;
3603 }
3604 upper = read_huge_number (pp, ';', &nbits, 0);
3605 if (nbits != 0)
3606 return error_type (pp, objfile);
3607
3608 element_type = read_type (pp, objfile);
3609
3610 if (adjustable)
3611 {
3612 lower = 0;
3613 upper = -1;
3614 }
3615
3616 range_type =
3617 create_range_type ((struct type *) NULL, index_type, lower, upper);
3618 type = create_array_type (type, element_type, range_type);
3619
3620 return type;
3621 }
3622
3623
3624 /* Read a definition of an enumeration type,
3625 and create and return a suitable type object.
3626 Also defines the symbols that represent the values of the type. */
3627
3628 static struct type *
3629 read_enum_type (char **pp, struct type *type,
3630 struct objfile *objfile)
3631 {
3632 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3633 char *p;
3634 char *name;
3635 long n;
3636 struct symbol *sym;
3637 int nsyms = 0;
3638 struct pending **symlist;
3639 struct pending *osyms, *syms;
3640 int o_nsyms;
3641 int nbits;
3642 int unsigned_enum = 1;
3643
3644 #if 0
3645 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3646 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3647 to do? For now, force all enum values to file scope. */
3648 if (within_function)
3649 symlist = &local_symbols;
3650 else
3651 #endif
3652 symlist = &file_symbols;
3653 osyms = *symlist;
3654 o_nsyms = osyms ? osyms->nsyms : 0;
3655
3656 /* The aix4 compiler emits an extra field before the enum members;
3657 my guess is it's a type of some sort. Just ignore it. */
3658 if (**pp == '-')
3659 {
3660 /* Skip over the type. */
3661 while (**pp != ':')
3662 (*pp)++;
3663
3664 /* Skip over the colon. */
3665 (*pp)++;
3666 }
3667
3668 /* Read the value-names and their values.
3669 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3670 A semicolon or comma instead of a NAME means the end. */
3671 while (**pp && **pp != ';' && **pp != ',')
3672 {
3673 STABS_CONTINUE (pp, objfile);
3674 p = *pp;
3675 while (*p != ':')
3676 p++;
3677 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3678 *pp = p + 1;
3679 n = read_huge_number (pp, ',', &nbits, 0);
3680 if (nbits != 0)
3681 return error_type (pp, objfile);
3682
3683 sym = (struct symbol *)
3684 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3685 memset (sym, 0, sizeof (struct symbol));
3686 SYMBOL_SET_LINKAGE_NAME (sym, name);
3687 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
3688 SYMBOL_CLASS (sym) = LOC_CONST;
3689 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3690 SYMBOL_VALUE (sym) = n;
3691 if (n < 0)
3692 unsigned_enum = 0;
3693 add_symbol_to_list (sym, symlist);
3694 nsyms++;
3695 }
3696
3697 if (**pp == ';')
3698 (*pp)++; /* Skip the semicolon. */
3699
3700 /* Now fill in the fields of the type-structure. */
3701
3702 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3703 set_length_in_type_chain (type);
3704 TYPE_CODE (type) = TYPE_CODE_ENUM;
3705 TYPE_STUB (type) = 0;
3706 if (unsigned_enum)
3707 TYPE_UNSIGNED (type) = 1;
3708 TYPE_NFIELDS (type) = nsyms;
3709 TYPE_FIELDS (type) = (struct field *)
3710 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3711 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3712
3713 /* Find the symbols for the values and put them into the type.
3714 The symbols can be found in the symlist that we put them on
3715 to cause them to be defined. osyms contains the old value
3716 of that symlist; everything up to there was defined by us. */
3717 /* Note that we preserve the order of the enum constants, so
3718 that in something like "enum {FOO, LAST_THING=FOO}" we print
3719 FOO, not LAST_THING. */
3720
3721 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3722 {
3723 int last = syms == osyms ? o_nsyms : 0;
3724 int j = syms->nsyms;
3725
3726 for (; --j >= last; --n)
3727 {
3728 struct symbol *xsym = syms->symbol[j];
3729
3730 SYMBOL_TYPE (xsym) = type;
3731 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3732 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3733 TYPE_FIELD_BITSIZE (type, n) = 0;
3734 }
3735 if (syms == osyms)
3736 break;
3737 }
3738
3739 return type;
3740 }
3741
3742 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3743 typedefs in every file (for int, long, etc):
3744
3745 type = b <signed> <width> <format type>; <offset>; <nbits>
3746 signed = u or s.
3747 optional format type = c or b for char or boolean.
3748 offset = offset from high order bit to start bit of type.
3749 width is # bytes in object of this type, nbits is # bits in type.
3750
3751 The width/offset stuff appears to be for small objects stored in
3752 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3753 FIXME. */
3754
3755 static struct type *
3756 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3757 {
3758 int type_bits;
3759 int nbits;
3760 int signed_type;
3761 enum type_code code = TYPE_CODE_INT;
3762
3763 switch (**pp)
3764 {
3765 case 's':
3766 signed_type = 1;
3767 break;
3768 case 'u':
3769 signed_type = 0;
3770 break;
3771 default:
3772 return error_type (pp, objfile);
3773 }
3774 (*pp)++;
3775
3776 /* For some odd reason, all forms of char put a c here. This is strange
3777 because no other type has this honor. We can safely ignore this because
3778 we actually determine 'char'acterness by the number of bits specified in
3779 the descriptor.
3780 Boolean forms, e.g Fortran logical*X, put a b here. */
3781
3782 if (**pp == 'c')
3783 (*pp)++;
3784 else if (**pp == 'b')
3785 {
3786 code = TYPE_CODE_BOOL;
3787 (*pp)++;
3788 }
3789
3790 /* The first number appears to be the number of bytes occupied
3791 by this type, except that unsigned short is 4 instead of 2.
3792 Since this information is redundant with the third number,
3793 we will ignore it. */
3794 read_huge_number (pp, ';', &nbits, 0);
3795 if (nbits != 0)
3796 return error_type (pp, objfile);
3797
3798 /* The second number is always 0, so ignore it too. */
3799 read_huge_number (pp, ';', &nbits, 0);
3800 if (nbits != 0)
3801 return error_type (pp, objfile);
3802
3803 /* The third number is the number of bits for this type. */
3804 type_bits = read_huge_number (pp, 0, &nbits, 0);
3805 if (nbits != 0)
3806 return error_type (pp, objfile);
3807 /* The type *should* end with a semicolon. If it are embedded
3808 in a larger type the semicolon may be the only way to know where
3809 the type ends. If this type is at the end of the stabstring we
3810 can deal with the omitted semicolon (but we don't have to like
3811 it). Don't bother to complain(), Sun's compiler omits the semicolon
3812 for "void". */
3813 if (**pp == ';')
3814 ++(*pp);
3815
3816 if (type_bits == 0)
3817 return init_type (TYPE_CODE_VOID, 1,
3818 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3819 objfile);
3820 else
3821 return init_type (code,
3822 type_bits / TARGET_CHAR_BIT,
3823 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3824 objfile);
3825 }
3826
3827 static struct type *
3828 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3829 {
3830 int nbits;
3831 int details;
3832 int nbytes;
3833 struct type *rettype;
3834
3835 /* The first number has more details about the type, for example
3836 FN_COMPLEX. */
3837 details = read_huge_number (pp, ';', &nbits, 0);
3838 if (nbits != 0)
3839 return error_type (pp, objfile);
3840
3841 /* The second number is the number of bytes occupied by this type. */
3842 nbytes = read_huge_number (pp, ';', &nbits, 0);
3843 if (nbits != 0)
3844 return error_type (pp, objfile);
3845
3846 if (details == NF_COMPLEX || details == NF_COMPLEX16
3847 || details == NF_COMPLEX32)
3848 {
3849 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3850 TYPE_TARGET_TYPE (rettype)
3851 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3852 return rettype;
3853 }
3854
3855 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3856 }
3857
3858 /* Read a number from the string pointed to by *PP.
3859 The value of *PP is advanced over the number.
3860 If END is nonzero, the character that ends the
3861 number must match END, or an error happens;
3862 and that character is skipped if it does match.
3863 If END is zero, *PP is left pointing to that character.
3864
3865 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3866 the number is represented in an octal representation, assume that
3867 it is represented in a 2's complement representation with a size of
3868 TWOS_COMPLEMENT_BITS.
3869
3870 If the number fits in a long, set *BITS to 0 and return the value.
3871 If not, set *BITS to be the number of bits in the number and return 0.
3872
3873 If encounter garbage, set *BITS to -1 and return 0. */
3874
3875 static long
3876 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3877 {
3878 char *p = *pp;
3879 int sign = 1;
3880 int sign_bit = 0;
3881 long n = 0;
3882 int radix = 10;
3883 char overflow = 0;
3884 int nbits = 0;
3885 int c;
3886 long upper_limit;
3887 int twos_complement_representation = 0;
3888
3889 if (*p == '-')
3890 {
3891 sign = -1;
3892 p++;
3893 }
3894
3895 /* Leading zero means octal. GCC uses this to output values larger
3896 than an int (because that would be hard in decimal). */
3897 if (*p == '0')
3898 {
3899 radix = 8;
3900 p++;
3901 }
3902
3903 /* Skip extra zeros. */
3904 while (*p == '0')
3905 p++;
3906
3907 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3908 {
3909 /* Octal, possibly signed. Check if we have enough chars for a
3910 negative number. */
3911
3912 size_t len;
3913 char *p1 = p;
3914
3915 while ((c = *p1) >= '0' && c < '8')
3916 p1++;
3917
3918 len = p1 - p;
3919 if (len > twos_complement_bits / 3
3920 || (twos_complement_bits % 3 == 0
3921 && len == twos_complement_bits / 3))
3922 {
3923 /* Ok, we have enough characters for a signed value, check
3924 for signness by testing if the sign bit is set. */
3925 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3926 c = *p - '0';
3927 if (c & (1 << sign_bit))
3928 {
3929 /* Definitely signed. */
3930 twos_complement_representation = 1;
3931 sign = -1;
3932 }
3933 }
3934 }
3935
3936 upper_limit = LONG_MAX / radix;
3937
3938 while ((c = *p++) >= '0' && c < ('0' + radix))
3939 {
3940 if (n <= upper_limit)
3941 {
3942 if (twos_complement_representation)
3943 {
3944 /* Octal, signed, twos complement representation. In
3945 this case, n is the corresponding absolute value. */
3946 if (n == 0)
3947 {
3948 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3949
3950 n = -sn;
3951 }
3952 else
3953 {
3954 n *= radix;
3955 n -= c - '0';
3956 }
3957 }
3958 else
3959 {
3960 /* unsigned representation */
3961 n *= radix;
3962 n += c - '0'; /* FIXME this overflows anyway. */
3963 }
3964 }
3965 else
3966 overflow = 1;
3967
3968 /* This depends on large values being output in octal, which is
3969 what GCC does. */
3970 if (radix == 8)
3971 {
3972 if (nbits == 0)
3973 {
3974 if (c == '0')
3975 /* Ignore leading zeroes. */
3976 ;
3977 else if (c == '1')
3978 nbits = 1;
3979 else if (c == '2' || c == '3')
3980 nbits = 2;
3981 else
3982 nbits = 3;
3983 }
3984 else
3985 nbits += 3;
3986 }
3987 }
3988 if (end)
3989 {
3990 if (c && c != end)
3991 {
3992 if (bits != NULL)
3993 *bits = -1;
3994 return 0;
3995 }
3996 }
3997 else
3998 --p;
3999
4000 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4001 {
4002 /* We were supposed to parse a number with maximum
4003 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4004 if (bits != NULL)
4005 *bits = -1;
4006 return 0;
4007 }
4008
4009 *pp = p;
4010 if (overflow)
4011 {
4012 if (nbits == 0)
4013 {
4014 /* Large decimal constants are an error (because it is hard to
4015 count how many bits are in them). */
4016 if (bits != NULL)
4017 *bits = -1;
4018 return 0;
4019 }
4020
4021 /* -0x7f is the same as 0x80. So deal with it by adding one to
4022 the number of bits. Two's complement represention octals
4023 can't have a '-' in front. */
4024 if (sign == -1 && !twos_complement_representation)
4025 ++nbits;
4026 if (bits)
4027 *bits = nbits;
4028 }
4029 else
4030 {
4031 if (bits)
4032 *bits = 0;
4033 return n * sign;
4034 }
4035 /* It's *BITS which has the interesting information. */
4036 return 0;
4037 }
4038
4039 static struct type *
4040 read_range_type (char **pp, int typenums[2], int type_size,
4041 struct objfile *objfile)
4042 {
4043 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4044 char *orig_pp = *pp;
4045 int rangenums[2];
4046 long n2, n3;
4047 int n2bits, n3bits;
4048 int self_subrange;
4049 struct type *result_type;
4050 struct type *index_type = NULL;
4051
4052 /* First comes a type we are a subrange of.
4053 In C it is usually 0, 1 or the type being defined. */
4054 if (read_type_number (pp, rangenums) != 0)
4055 return error_type (pp, objfile);
4056 self_subrange = (rangenums[0] == typenums[0] &&
4057 rangenums[1] == typenums[1]);
4058
4059 if (**pp == '=')
4060 {
4061 *pp = orig_pp;
4062 index_type = read_type (pp, objfile);
4063 }
4064
4065 /* A semicolon should now follow; skip it. */
4066 if (**pp == ';')
4067 (*pp)++;
4068
4069 /* The remaining two operands are usually lower and upper bounds
4070 of the range. But in some special cases they mean something else. */
4071 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4072 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4073
4074 if (n2bits == -1 || n3bits == -1)
4075 return error_type (pp, objfile);
4076
4077 if (index_type)
4078 goto handle_true_range;
4079
4080 /* If limits are huge, must be large integral type. */
4081 if (n2bits != 0 || n3bits != 0)
4082 {
4083 char got_signed = 0;
4084 char got_unsigned = 0;
4085 /* Number of bits in the type. */
4086 int nbits = 0;
4087
4088 /* If a type size attribute has been specified, the bounds of
4089 the range should fit in this size. If the lower bounds needs
4090 more bits than the upper bound, then the type is signed. */
4091 if (n2bits <= type_size && n3bits <= type_size)
4092 {
4093 if (n2bits == type_size && n2bits > n3bits)
4094 got_signed = 1;
4095 else
4096 got_unsigned = 1;
4097 nbits = type_size;
4098 }
4099 /* Range from 0 to <large number> is an unsigned large integral type. */
4100 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4101 {
4102 got_unsigned = 1;
4103 nbits = n3bits;
4104 }
4105 /* Range from <large number> to <large number>-1 is a large signed
4106 integral type. Take care of the case where <large number> doesn't
4107 fit in a long but <large number>-1 does. */
4108 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4109 || (n2bits != 0 && n3bits == 0
4110 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4111 && n3 == LONG_MAX))
4112 {
4113 got_signed = 1;
4114 nbits = n2bits;
4115 }
4116
4117 if (got_signed || got_unsigned)
4118 {
4119 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4120 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4121 objfile);
4122 }
4123 else
4124 return error_type (pp, objfile);
4125 }
4126
4127 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4128 if (self_subrange && n2 == 0 && n3 == 0)
4129 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4130
4131 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4132 is the width in bytes.
4133
4134 Fortran programs appear to use this for complex types also. To
4135 distinguish between floats and complex, g77 (and others?) seem
4136 to use self-subranges for the complexes, and subranges of int for
4137 the floats.
4138
4139 Also note that for complexes, g77 sets n2 to the size of one of
4140 the member floats, not the whole complex beast. My guess is that
4141 this was to work well with pre-COMPLEX versions of gdb. */
4142
4143 if (n3 == 0 && n2 > 0)
4144 {
4145 struct type *float_type
4146 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4147
4148 if (self_subrange)
4149 {
4150 struct type *complex_type =
4151 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4152
4153 TYPE_TARGET_TYPE (complex_type) = float_type;
4154 return complex_type;
4155 }
4156 else
4157 return float_type;
4158 }
4159
4160 /* If the upper bound is -1, it must really be an unsigned integral. */
4161
4162 else if (n2 == 0 && n3 == -1)
4163 {
4164 int bits = type_size;
4165
4166 if (bits <= 0)
4167 {
4168 /* We don't know its size. It is unsigned int or unsigned
4169 long. GCC 2.3.3 uses this for long long too, but that is
4170 just a GDB 3.5 compatibility hack. */
4171 bits = gdbarch_int_bit (gdbarch);
4172 }
4173
4174 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4175 TYPE_FLAG_UNSIGNED, NULL, objfile);
4176 }
4177
4178 /* Special case: char is defined (Who knows why) as a subrange of
4179 itself with range 0-127. */
4180 else if (self_subrange && n2 == 0 && n3 == 127)
4181 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4182
4183 /* We used to do this only for subrange of self or subrange of int. */
4184 else if (n2 == 0)
4185 {
4186 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4187 "unsigned long", and we already checked for that,
4188 so don't need to test for it here. */
4189
4190 if (n3 < 0)
4191 /* n3 actually gives the size. */
4192 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4193 NULL, objfile);
4194
4195 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4196 unsigned n-byte integer. But do require n to be a power of
4197 two; we don't want 3- and 5-byte integers flying around. */
4198 {
4199 int bytes;
4200 unsigned long bits;
4201
4202 bits = n3;
4203 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4204 bits >>= 8;
4205 if (bits == 0
4206 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4207 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4208 objfile);
4209 }
4210 }
4211 /* I think this is for Convex "long long". Since I don't know whether
4212 Convex sets self_subrange, I also accept that particular size regardless
4213 of self_subrange. */
4214 else if (n3 == 0 && n2 < 0
4215 && (self_subrange
4216 || n2 == -gdbarch_long_long_bit
4217 (gdbarch) / TARGET_CHAR_BIT))
4218 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4219 else if (n2 == -n3 - 1)
4220 {
4221 if (n3 == 0x7f)
4222 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4223 if (n3 == 0x7fff)
4224 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4225 if (n3 == 0x7fffffff)
4226 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4227 }
4228
4229 /* We have a real range type on our hands. Allocate space and
4230 return a real pointer. */
4231 handle_true_range:
4232
4233 if (self_subrange)
4234 index_type = objfile_type (objfile)->builtin_int;
4235 else
4236 index_type = *dbx_lookup_type (rangenums, objfile);
4237 if (index_type == NULL)
4238 {
4239 /* Does this actually ever happen? Is that why we are worrying
4240 about dealing with it rather than just calling error_type? */
4241
4242 complaint (&symfile_complaints,
4243 _("base type %d of range type is not defined"), rangenums[1]);
4244
4245 index_type = objfile_type (objfile)->builtin_int;
4246 }
4247
4248 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4249 return (result_type);
4250 }
4251
4252 /* Read in an argument list. This is a list of types, separated by commas
4253 and terminated with END. Return the list of types read in, or NULL
4254 if there is an error. */
4255
4256 static struct field *
4257 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4258 int *varargsp)
4259 {
4260 /* FIXME! Remove this arbitrary limit! */
4261 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4262 int n = 0, i;
4263 struct field *rval;
4264
4265 while (**pp != end)
4266 {
4267 if (**pp != ',')
4268 /* Invalid argument list: no ','. */
4269 return NULL;
4270 (*pp)++;
4271 STABS_CONTINUE (pp, objfile);
4272 types[n++] = read_type (pp, objfile);
4273 }
4274 (*pp)++; /* get past `end' (the ':' character). */
4275
4276 if (n == 0)
4277 {
4278 /* We should read at least the THIS parameter here. Some broken stabs
4279 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4280 have been present ";-16,(0,43)" reference instead. This way the
4281 excessive ";" marker prematurely stops the parameters parsing. */
4282
4283 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4284 *varargsp = 0;
4285 }
4286 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4287 *varargsp = 1;
4288 else
4289 {
4290 n--;
4291 *varargsp = 0;
4292 }
4293
4294 rval = (struct field *) xmalloc (n * sizeof (struct field));
4295 memset (rval, 0, n * sizeof (struct field));
4296 for (i = 0; i < n; i++)
4297 rval[i].type = types[i];
4298 *nargsp = n;
4299 return rval;
4300 }
4301 \f
4302 /* Common block handling. */
4303
4304 /* List of symbols declared since the last BCOMM. This list is a tail
4305 of local_symbols. When ECOMM is seen, the symbols on the list
4306 are noted so their proper addresses can be filled in later,
4307 using the common block base address gotten from the assembler
4308 stabs. */
4309
4310 static struct pending *common_block;
4311 static int common_block_i;
4312
4313 /* Name of the current common block. We get it from the BCOMM instead of the
4314 ECOMM to match IBM documentation (even though IBM puts the name both places
4315 like everyone else). */
4316 static char *common_block_name;
4317
4318 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4319 to remain after this function returns. */
4320
4321 void
4322 common_block_start (char *name, struct objfile *objfile)
4323 {
4324 if (common_block_name != NULL)
4325 {
4326 complaint (&symfile_complaints,
4327 _("Invalid symbol data: common block within common block"));
4328 }
4329 common_block = local_symbols;
4330 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4331 common_block_name = obsavestring (name, strlen (name),
4332 &objfile->objfile_obstack);
4333 }
4334
4335 /* Process a N_ECOMM symbol. */
4336
4337 void
4338 common_block_end (struct objfile *objfile)
4339 {
4340 /* Symbols declared since the BCOMM are to have the common block
4341 start address added in when we know it. common_block and
4342 common_block_i point to the first symbol after the BCOMM in
4343 the local_symbols list; copy the list and hang it off the
4344 symbol for the common block name for later fixup. */
4345 int i;
4346 struct symbol *sym;
4347 struct pending *new = 0;
4348 struct pending *next;
4349 int j;
4350
4351 if (common_block_name == NULL)
4352 {
4353 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4354 return;
4355 }
4356
4357 sym = (struct symbol *)
4358 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4359 memset (sym, 0, sizeof (struct symbol));
4360 /* Note: common_block_name already saved on objfile_obstack. */
4361 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4362 SYMBOL_CLASS (sym) = LOC_BLOCK;
4363
4364 /* Now we copy all the symbols which have been defined since the BCOMM. */
4365
4366 /* Copy all the struct pendings before common_block. */
4367 for (next = local_symbols;
4368 next != NULL && next != common_block;
4369 next = next->next)
4370 {
4371 for (j = 0; j < next->nsyms; j++)
4372 add_symbol_to_list (next->symbol[j], &new);
4373 }
4374
4375 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4376 NULL, it means copy all the local symbols (which we already did
4377 above). */
4378
4379 if (common_block != NULL)
4380 for (j = common_block_i; j < common_block->nsyms; j++)
4381 add_symbol_to_list (common_block->symbol[j], &new);
4382
4383 SYMBOL_TYPE (sym) = (struct type *) new;
4384
4385 /* Should we be putting local_symbols back to what it was?
4386 Does it matter? */
4387
4388 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4389 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4390 global_sym_chain[i] = sym;
4391 common_block_name = NULL;
4392 }
4393
4394 /* Add a common block's start address to the offset of each symbol
4395 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4396 the common block name). */
4397
4398 static void
4399 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4400 {
4401 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4402
4403 for (; next; next = next->next)
4404 {
4405 int j;
4406
4407 for (j = next->nsyms - 1; j >= 0; j--)
4408 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4409 }
4410 }
4411 \f
4412
4413
4414 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4415 See add_undefined_type for more details. */
4416
4417 static void
4418 add_undefined_type_noname (struct type *type, int typenums[2])
4419 {
4420 struct nat nat;
4421
4422 nat.typenums[0] = typenums [0];
4423 nat.typenums[1] = typenums [1];
4424 nat.type = type;
4425
4426 if (noname_undefs_length == noname_undefs_allocated)
4427 {
4428 noname_undefs_allocated *= 2;
4429 noname_undefs = (struct nat *)
4430 xrealloc ((char *) noname_undefs,
4431 noname_undefs_allocated * sizeof (struct nat));
4432 }
4433 noname_undefs[noname_undefs_length++] = nat;
4434 }
4435
4436 /* Add TYPE to the UNDEF_TYPES vector.
4437 See add_undefined_type for more details. */
4438
4439 static void
4440 add_undefined_type_1 (struct type *type)
4441 {
4442 if (undef_types_length == undef_types_allocated)
4443 {
4444 undef_types_allocated *= 2;
4445 undef_types = (struct type **)
4446 xrealloc ((char *) undef_types,
4447 undef_types_allocated * sizeof (struct type *));
4448 }
4449 undef_types[undef_types_length++] = type;
4450 }
4451
4452 /* What about types defined as forward references inside of a small lexical
4453 scope? */
4454 /* Add a type to the list of undefined types to be checked through
4455 once this file has been read in.
4456
4457 In practice, we actually maintain two such lists: The first list
4458 (UNDEF_TYPES) is used for types whose name has been provided, and
4459 concerns forward references (eg 'xs' or 'xu' forward references);
4460 the second list (NONAME_UNDEFS) is used for types whose name is
4461 unknown at creation time, because they were referenced through
4462 their type number before the actual type was declared.
4463 This function actually adds the given type to the proper list. */
4464
4465 static void
4466 add_undefined_type (struct type *type, int typenums[2])
4467 {
4468 if (TYPE_TAG_NAME (type) == NULL)
4469 add_undefined_type_noname (type, typenums);
4470 else
4471 add_undefined_type_1 (type);
4472 }
4473
4474 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4475
4476 static void
4477 cleanup_undefined_types_noname (struct objfile *objfile)
4478 {
4479 int i;
4480
4481 for (i = 0; i < noname_undefs_length; i++)
4482 {
4483 struct nat nat = noname_undefs[i];
4484 struct type **type;
4485
4486 type = dbx_lookup_type (nat.typenums, objfile);
4487 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4488 {
4489 /* The instance flags of the undefined type are still unset,
4490 and needs to be copied over from the reference type.
4491 Since replace_type expects them to be identical, we need
4492 to set these flags manually before hand. */
4493 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4494 replace_type (nat.type, *type);
4495 }
4496 }
4497
4498 noname_undefs_length = 0;
4499 }
4500
4501 /* Go through each undefined type, see if it's still undefined, and fix it
4502 up if possible. We have two kinds of undefined types:
4503
4504 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4505 Fix: update array length using the element bounds
4506 and the target type's length.
4507 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4508 yet defined at the time a pointer to it was made.
4509 Fix: Do a full lookup on the struct/union tag. */
4510
4511 static void
4512 cleanup_undefined_types_1 (void)
4513 {
4514 struct type **type;
4515
4516 /* Iterate over every undefined type, and look for a symbol whose type
4517 matches our undefined type. The symbol matches if:
4518 1. It is a typedef in the STRUCT domain;
4519 2. It has the same name, and same type code;
4520 3. The instance flags are identical.
4521
4522 It is important to check the instance flags, because we have seen
4523 examples where the debug info contained definitions such as:
4524
4525 "foo_t:t30=B31=xefoo_t:"
4526
4527 In this case, we have created an undefined type named "foo_t" whose
4528 instance flags is null (when processing "xefoo_t"), and then created
4529 another type with the same name, but with different instance flags
4530 ('B' means volatile). I think that the definition above is wrong,
4531 since the same type cannot be volatile and non-volatile at the same
4532 time, but we need to be able to cope with it when it happens. The
4533 approach taken here is to treat these two types as different. */
4534
4535 for (type = undef_types; type < undef_types + undef_types_length; type++)
4536 {
4537 switch (TYPE_CODE (*type))
4538 {
4539
4540 case TYPE_CODE_STRUCT:
4541 case TYPE_CODE_UNION:
4542 case TYPE_CODE_ENUM:
4543 {
4544 /* Check if it has been defined since. Need to do this here
4545 as well as in check_typedef to deal with the (legitimate in
4546 C though not C++) case of several types with the same name
4547 in different source files. */
4548 if (TYPE_STUB (*type))
4549 {
4550 struct pending *ppt;
4551 int i;
4552 /* Name of the type, without "struct" or "union". */
4553 const char *typename = TYPE_TAG_NAME (*type);
4554
4555 if (typename == NULL)
4556 {
4557 complaint (&symfile_complaints, _("need a type name"));
4558 break;
4559 }
4560 for (ppt = file_symbols; ppt; ppt = ppt->next)
4561 {
4562 for (i = 0; i < ppt->nsyms; i++)
4563 {
4564 struct symbol *sym = ppt->symbol[i];
4565
4566 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4567 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4568 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4569 TYPE_CODE (*type))
4570 && (TYPE_INSTANCE_FLAGS (*type) ==
4571 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4572 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4573 typename) == 0)
4574 replace_type (*type, SYMBOL_TYPE (sym));
4575 }
4576 }
4577 }
4578 }
4579 break;
4580
4581 default:
4582 {
4583 complaint (&symfile_complaints,
4584 _("forward-referenced types left unresolved, "
4585 "type code %d."),
4586 TYPE_CODE (*type));
4587 }
4588 break;
4589 }
4590 }
4591
4592 undef_types_length = 0;
4593 }
4594
4595 /* Try to fix all the undefined types we ecountered while processing
4596 this unit. */
4597
4598 void
4599 cleanup_undefined_stabs_types (struct objfile *objfile)
4600 {
4601 cleanup_undefined_types_1 ();
4602 cleanup_undefined_types_noname (objfile);
4603 }
4604
4605 /* Scan through all of the global symbols defined in the object file,
4606 assigning values to the debugging symbols that need to be assigned
4607 to. Get these symbols from the minimal symbol table. */
4608
4609 void
4610 scan_file_globals (struct objfile *objfile)
4611 {
4612 int hash;
4613 struct minimal_symbol *msymbol;
4614 struct symbol *sym, *prev;
4615 struct objfile *resolve_objfile;
4616
4617 /* SVR4 based linkers copy referenced global symbols from shared
4618 libraries to the main executable.
4619 If we are scanning the symbols for a shared library, try to resolve
4620 them from the minimal symbols of the main executable first. */
4621
4622 if (symfile_objfile && objfile != symfile_objfile)
4623 resolve_objfile = symfile_objfile;
4624 else
4625 resolve_objfile = objfile;
4626
4627 while (1)
4628 {
4629 /* Avoid expensive loop through all minimal symbols if there are
4630 no unresolved symbols. */
4631 for (hash = 0; hash < HASHSIZE; hash++)
4632 {
4633 if (global_sym_chain[hash])
4634 break;
4635 }
4636 if (hash >= HASHSIZE)
4637 return;
4638
4639 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4640 {
4641 QUIT;
4642
4643 /* Skip static symbols. */
4644 switch (MSYMBOL_TYPE (msymbol))
4645 {
4646 case mst_file_text:
4647 case mst_file_data:
4648 case mst_file_bss:
4649 continue;
4650 default:
4651 break;
4652 }
4653
4654 prev = NULL;
4655
4656 /* Get the hash index and check all the symbols
4657 under that hash index. */
4658
4659 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4660
4661 for (sym = global_sym_chain[hash]; sym;)
4662 {
4663 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4664 SYMBOL_LINKAGE_NAME (sym)) == 0)
4665 {
4666 /* Splice this symbol out of the hash chain and
4667 assign the value we have to it. */
4668 if (prev)
4669 {
4670 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4671 }
4672 else
4673 {
4674 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4675 }
4676
4677 /* Check to see whether we need to fix up a common block. */
4678 /* Note: this code might be executed several times for
4679 the same symbol if there are multiple references. */
4680 if (sym)
4681 {
4682 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4683 {
4684 fix_common_block (sym,
4685 SYMBOL_VALUE_ADDRESS (msymbol));
4686 }
4687 else
4688 {
4689 SYMBOL_VALUE_ADDRESS (sym)
4690 = SYMBOL_VALUE_ADDRESS (msymbol);
4691 }
4692 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4693 }
4694
4695 if (prev)
4696 {
4697 sym = SYMBOL_VALUE_CHAIN (prev);
4698 }
4699 else
4700 {
4701 sym = global_sym_chain[hash];
4702 }
4703 }
4704 else
4705 {
4706 prev = sym;
4707 sym = SYMBOL_VALUE_CHAIN (sym);
4708 }
4709 }
4710 }
4711 if (resolve_objfile == objfile)
4712 break;
4713 resolve_objfile = objfile;
4714 }
4715
4716 /* Change the storage class of any remaining unresolved globals to
4717 LOC_UNRESOLVED and remove them from the chain. */
4718 for (hash = 0; hash < HASHSIZE; hash++)
4719 {
4720 sym = global_sym_chain[hash];
4721 while (sym)
4722 {
4723 prev = sym;
4724 sym = SYMBOL_VALUE_CHAIN (sym);
4725
4726 /* Change the symbol address from the misleading chain value
4727 to address zero. */
4728 SYMBOL_VALUE_ADDRESS (prev) = 0;
4729
4730 /* Complain about unresolved common block symbols. */
4731 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4732 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4733 else
4734 complaint (&symfile_complaints,
4735 _("%s: common block `%s' from "
4736 "global_sym_chain unresolved"),
4737 objfile->name, SYMBOL_PRINT_NAME (prev));
4738 }
4739 }
4740 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4741 }
4742
4743 /* Initialize anything that needs initializing when starting to read
4744 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4745 to a psymtab. */
4746
4747 void
4748 stabsread_init (void)
4749 {
4750 }
4751
4752 /* Initialize anything that needs initializing when a completely new
4753 symbol file is specified (not just adding some symbols from another
4754 file, e.g. a shared library). */
4755
4756 void
4757 stabsread_new_init (void)
4758 {
4759 /* Empty the hash table of global syms looking for values. */
4760 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4761 }
4762
4763 /* Initialize anything that needs initializing at the same time as
4764 start_symtab() is called. */
4765
4766 void
4767 start_stabs (void)
4768 {
4769 global_stabs = NULL; /* AIX COFF */
4770 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4771 n_this_object_header_files = 1;
4772 type_vector_length = 0;
4773 type_vector = (struct type **) 0;
4774
4775 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4776 common_block_name = NULL;
4777 }
4778
4779 /* Call after end_symtab(). */
4780
4781 void
4782 end_stabs (void)
4783 {
4784 if (type_vector)
4785 {
4786 xfree (type_vector);
4787 }
4788 type_vector = 0;
4789 type_vector_length = 0;
4790 previous_stab_code = 0;
4791 }
4792
4793 void
4794 finish_global_stabs (struct objfile *objfile)
4795 {
4796 if (global_stabs)
4797 {
4798 patch_block_stabs (global_symbols, global_stabs, objfile);
4799 xfree (global_stabs);
4800 global_stabs = NULL;
4801 }
4802 }
4803
4804 /* Find the end of the name, delimited by a ':', but don't match
4805 ObjC symbols which look like -[Foo bar::]:bla. */
4806 static char *
4807 find_name_end (char *name)
4808 {
4809 char *s = name;
4810
4811 if (s[0] == '-' || *s == '+')
4812 {
4813 /* Must be an ObjC method symbol. */
4814 if (s[1] != '[')
4815 {
4816 error (_("invalid symbol name \"%s\""), name);
4817 }
4818 s = strchr (s, ']');
4819 if (s == NULL)
4820 {
4821 error (_("invalid symbol name \"%s\""), name);
4822 }
4823 return strchr (s, ':');
4824 }
4825 else
4826 {
4827 return strchr (s, ':');
4828 }
4829 }
4830
4831 /* Initializer for this module. */
4832
4833 void
4834 _initialize_stabsread (void)
4835 {
4836 rs6000_builtin_type_data = register_objfile_data ();
4837
4838 undef_types_allocated = 20;
4839 undef_types_length = 0;
4840 undef_types = (struct type **)
4841 xmalloc (undef_types_allocated * sizeof (struct type *));
4842
4843 noname_undefs_allocated = 20;
4844 noname_undefs_length = 0;
4845 noname_undefs = (struct nat *)
4846 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4847 }