]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stabsread.c
2005-02-10 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
5 Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Support routines for reading and decoding debugging information in
25 the "stabs" format. This format is used with many systems that use
26 the a.out object file format, as well as some systems that use
27 COFF or ELF where the stabs data is placed in a special section.
28 Avoid placing any object file format specific code in this file. */
29
30 #include "defs.h"
31 #include "gdb_string.h"
32 #include "bfd.h"
33 #include "gdb_obstack.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "expression.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
40 #include "libaout.h"
41 #include "aout/aout64.h"
42 #include "gdb-stabs.h"
43 #include "buildsym.h"
44 #include "complaints.h"
45 #include "demangle.h"
46 #include "language.h"
47 #include "doublest.h"
48 #include "cp-abi.h"
49 #include "cp-support.h"
50
51 #include <ctype.h>
52
53 /* Ask stabsread.h to define the vars it normally declares `extern'. */
54 #define EXTERN
55 /**/
56 #include "stabsread.h" /* Our own declarations */
57 #undef EXTERN
58
59 extern void _initialize_stabsread (void);
60
61 /* The routines that read and process a complete stabs for a C struct or
62 C++ class pass lists of data member fields and lists of member function
63 fields in an instance of a field_info structure, as defined below.
64 This is part of some reorganization of low level C++ support and is
65 expected to eventually go away... (FIXME) */
66
67 struct field_info
68 {
69 struct nextfield
70 {
71 struct nextfield *next;
72
73 /* This is the raw visibility from the stab. It is not checked
74 for being one of the visibilities we recognize, so code which
75 examines this field better be able to deal. */
76 int visibility;
77
78 struct field field;
79 }
80 *list;
81 struct next_fnfieldlist
82 {
83 struct next_fnfieldlist *next;
84 struct fn_fieldlist fn_fieldlist;
85 }
86 *fnlist;
87 };
88
89 static void
90 read_one_struct_field (struct field_info *, char **, char *,
91 struct type *, struct objfile *);
92
93 static struct type *dbx_alloc_type (int[2], struct objfile *);
94
95 static long read_huge_number (char **, int, int *, int);
96
97 static struct type *error_type (char **, struct objfile *);
98
99 static void
100 patch_block_stabs (struct pending *, struct pending_stabs *,
101 struct objfile *);
102
103 static void fix_common_block (struct symbol *, int);
104
105 static int read_type_number (char **, int *);
106
107 static struct type *read_type (char **, struct objfile *);
108
109 static struct type *read_range_type (char **, int[2], int, struct objfile *);
110
111 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112
113 static struct type *read_sun_floating_type (char **, int[2],
114 struct objfile *);
115
116 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117
118 static struct type *rs6000_builtin_type (int);
119
120 static int
121 read_member_functions (struct field_info *, char **, struct type *,
122 struct objfile *);
123
124 static int
125 read_struct_fields (struct field_info *, char **, struct type *,
126 struct objfile *);
127
128 static int
129 read_baseclasses (struct field_info *, char **, struct type *,
130 struct objfile *);
131
132 static int
133 read_tilde_fields (struct field_info *, char **, struct type *,
134 struct objfile *);
135
136 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137
138 static int attach_fields_to_type (struct field_info *, struct type *,
139 struct objfile *);
140
141 static struct type *read_struct_type (char **, struct type *,
142 enum type_code,
143 struct objfile *);
144
145 static struct type *read_array_type (char **, struct type *,
146 struct objfile *);
147
148 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149
150 static void add_undefined_type (struct type *);
151
152 static int
153 read_cpp_abbrev (struct field_info *, char **, struct type *,
154 struct objfile *);
155
156 static char *find_name_end (char *name);
157
158 static int process_reference (char **string);
159
160 void stabsread_clear_cache (void);
161
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164
165 /* Define this as 1 if a pcc declaration of a char or short argument
166 gives the correct address. Otherwise assume pcc gives the
167 address of the corresponding int, which is not the same on a
168 big-endian machine. */
169
170 #if !defined (BELIEVE_PCC_PROMOTION)
171 #define BELIEVE_PCC_PROMOTION 0
172 #endif
173
174 static void
175 invalid_cpp_abbrev_complaint (const char *arg1)
176 {
177 complaint (&symfile_complaints, "invalid C++ abbreviation `%s'", arg1);
178 }
179
180 static void
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
182 {
183 complaint (&symfile_complaints,
184 "register number %d too large (max %d) in symbol %s",
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint (&symfile_complaints, "%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp,objfile) \
203 do { \
204 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205 *(pp) = next_symbol_text (objfile); \
206 } while (0)
207 \f
208
209 /* Look up a dbx type-number pair. Return the address of the slot
210 where the type for that number-pair is stored.
211 The number-pair is in TYPENUMS.
212
213 This can be used for finding the type associated with that pair
214 or for associating a new type with the pair. */
215
216 static struct type **
217 dbx_lookup_type (int typenums[2])
218 {
219 int filenum = typenums[0];
220 int index = typenums[1];
221 unsigned old_len;
222 int real_filenum;
223 struct header_file *f;
224 int f_orig_length;
225
226 if (filenum == -1) /* -1,-1 is for temporary types. */
227 return 0;
228
229 if (filenum < 0 || filenum >= n_this_object_header_files)
230 {
231 complaint (&symfile_complaints,
232 "Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
233 filenum, index, symnum);
234 goto error_return;
235 }
236
237 if (filenum == 0)
238 {
239 if (index < 0)
240 {
241 /* Caller wants address of address of type. We think
242 that negative (rs6k builtin) types will never appear as
243 "lvalues", (nor should they), so we stuff the real type
244 pointer into a temp, and return its address. If referenced,
245 this will do the right thing. */
246 static struct type *temp_type;
247
248 temp_type = rs6000_builtin_type (index);
249 return &temp_type;
250 }
251
252 /* Type is defined outside of header files.
253 Find it in this object file's type vector. */
254 if (index >= type_vector_length)
255 {
256 old_len = type_vector_length;
257 if (old_len == 0)
258 {
259 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
260 type_vector = (struct type **)
261 xmalloc (type_vector_length * sizeof (struct type *));
262 }
263 while (index >= type_vector_length)
264 {
265 type_vector_length *= 2;
266 }
267 type_vector = (struct type **)
268 xrealloc ((char *) type_vector,
269 (type_vector_length * sizeof (struct type *)));
270 memset (&type_vector[old_len], 0,
271 (type_vector_length - old_len) * sizeof (struct type *));
272 }
273 return (&type_vector[index]);
274 }
275 else
276 {
277 real_filenum = this_object_header_files[filenum];
278
279 if (real_filenum >= N_HEADER_FILES (current_objfile))
280 {
281 struct type *temp_type;
282 struct type **temp_type_p;
283
284 warning (_("GDB internal error: bad real_filenum"));
285
286 error_return:
287 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
288 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
289 *temp_type_p = temp_type;
290 return temp_type_p;
291 }
292
293 f = HEADER_FILES (current_objfile) + real_filenum;
294
295 f_orig_length = f->length;
296 if (index >= f_orig_length)
297 {
298 while (index >= f->length)
299 {
300 f->length *= 2;
301 }
302 f->vector = (struct type **)
303 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
304 memset (&f->vector[f_orig_length], 0,
305 (f->length - f_orig_length) * sizeof (struct type *));
306 }
307 return (&f->vector[index]);
308 }
309 }
310
311 /* Make sure there is a type allocated for type numbers TYPENUMS
312 and return the type object.
313 This can create an empty (zeroed) type object.
314 TYPENUMS may be (-1, -1) to return a new type object that is not
315 put into the type vector, and so may not be referred to by number. */
316
317 static struct type *
318 dbx_alloc_type (int typenums[2], struct objfile *objfile)
319 {
320 struct type **type_addr;
321
322 if (typenums[0] == -1)
323 {
324 return (alloc_type (objfile));
325 }
326
327 type_addr = dbx_lookup_type (typenums);
328
329 /* If we are referring to a type not known at all yet,
330 allocate an empty type for it.
331 We will fill it in later if we find out how. */
332 if (*type_addr == 0)
333 {
334 *type_addr = alloc_type (objfile);
335 }
336
337 return (*type_addr);
338 }
339
340 /* for all the stabs in a given stab vector, build appropriate types
341 and fix their symbols in given symbol vector. */
342
343 static void
344 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
345 struct objfile *objfile)
346 {
347 int ii;
348 char *name;
349 char *pp;
350 struct symbol *sym;
351
352 if (stabs)
353 {
354
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 while (pp[1] == ':')
363 {
364 pp += 2;
365 pp = (char *) strchr (pp, ':');
366 }
367 sym = find_symbol_in_list (symbols, name, pp - name);
368 if (!sym)
369 {
370 /* FIXME-maybe: it would be nice if we noticed whether
371 the variable was defined *anywhere*, not just whether
372 it is defined in this compilation unit. But neither
373 xlc or GCC seem to need such a definition, and until
374 we do psymtabs (so that the minimal symbols from all
375 compilation units are available now), I'm not sure
376 how to get the information. */
377
378 /* On xcoff, if a global is defined and never referenced,
379 ld will remove it from the executable. There is then
380 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
381 sym = (struct symbol *)
382 obstack_alloc (&objfile->objfile_obstack,
383 sizeof (struct symbol));
384
385 memset (sym, 0, sizeof (struct symbol));
386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
387 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
388 DEPRECATED_SYMBOL_NAME (sym) =
389 obsavestring (name, pp - name, &objfile->objfile_obstack);
390 pp += 2;
391 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
392 {
393 /* I don't think the linker does this with functions,
394 so as far as I know this is never executed.
395 But it doesn't hurt to check. */
396 SYMBOL_TYPE (sym) =
397 lookup_function_type (read_type (&pp, objfile));
398 }
399 else
400 {
401 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
402 }
403 add_symbol_to_list (sym, &global_symbols);
404 }
405 else
406 {
407 pp += 2;
408 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
409 {
410 SYMBOL_TYPE (sym) =
411 lookup_function_type (read_type (&pp, objfile));
412 }
413 else
414 {
415 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 }
417 }
418 }
419 }
420 }
421 \f
422
423 /* Read a number by which a type is referred to in dbx data,
424 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
425 Just a single number N is equivalent to (0,N).
426 Return the two numbers by storing them in the vector TYPENUMS.
427 TYPENUMS will then be used as an argument to dbx_lookup_type.
428
429 Returns 0 for success, -1 for error. */
430
431 static int
432 read_type_number (char **pp, int *typenums)
433 {
434 int nbits;
435 if (**pp == '(')
436 {
437 (*pp)++;
438 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
439 if (nbits != 0)
440 return -1;
441 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 }
445 else
446 {
447 typenums[0] = 0;
448 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
449 if (nbits != 0)
450 return -1;
451 }
452 return 0;
453 }
454 \f
455
456 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
457 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
458 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
459 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
460
461 /* Structure for storing pointers to reference definitions for fast lookup
462 during "process_later". */
463
464 struct ref_map
465 {
466 char *stabs;
467 CORE_ADDR value;
468 struct symbol *sym;
469 };
470
471 #define MAX_CHUNK_REFS 100
472 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
473 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
474
475 static struct ref_map *ref_map;
476
477 /* Ptr to free cell in chunk's linked list. */
478 static int ref_count = 0;
479
480 /* Number of chunks malloced. */
481 static int ref_chunk = 0;
482
483 /* This file maintains a cache of stabs aliases found in the symbol
484 table. If the symbol table changes, this cache must be cleared
485 or we are left holding onto data in invalid obstacks. */
486 void
487 stabsread_clear_cache (void)
488 {
489 ref_count = 0;
490 ref_chunk = 0;
491 }
492
493 /* Create array of pointers mapping refids to symbols and stab strings.
494 Add pointers to reference definition symbols and/or their values as we
495 find them, using their reference numbers as our index.
496 These will be used later when we resolve references. */
497 void
498 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
499 {
500 if (ref_count == 0)
501 ref_chunk = 0;
502 if (refnum >= ref_count)
503 ref_count = refnum + 1;
504 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
505 {
506 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
507 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
508 ref_map = (struct ref_map *)
509 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
510 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
511 ref_chunk += new_chunks;
512 }
513 ref_map[refnum].stabs = stabs;
514 ref_map[refnum].sym = sym;
515 ref_map[refnum].value = value;
516 }
517
518 /* Return defined sym for the reference REFNUM. */
519 struct symbol *
520 ref_search (int refnum)
521 {
522 if (refnum < 0 || refnum > ref_count)
523 return 0;
524 return ref_map[refnum].sym;
525 }
526
527 /* Parse a reference id in STRING and return the resulting
528 reference number. Move STRING beyond the reference id. */
529
530 static int
531 process_reference (char **string)
532 {
533 char *p;
534 int refnum = 0;
535
536 if (**string != '#')
537 return 0;
538
539 /* Advance beyond the initial '#'. */
540 p = *string + 1;
541
542 /* Read number as reference id. */
543 while (*p && isdigit (*p))
544 {
545 refnum = refnum * 10 + *p - '0';
546 p++;
547 }
548 *string = p;
549 return refnum;
550 }
551
552 /* If STRING defines a reference, store away a pointer to the reference
553 definition for later use. Return the reference number. */
554
555 int
556 symbol_reference_defined (char **string)
557 {
558 char *p = *string;
559 int refnum = 0;
560
561 refnum = process_reference (&p);
562
563 /* Defining symbols end in '=' */
564 if (*p == '=')
565 {
566 /* Symbol is being defined here. */
567 *string = p + 1;
568 return refnum;
569 }
570 else
571 {
572 /* Must be a reference. Either the symbol has already been defined,
573 or this is a forward reference to it. */
574 *string = p;
575 return -1;
576 }
577 }
578
579 struct symbol *
580 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
581 struct objfile *objfile)
582 {
583 struct symbol *sym;
584 char *p = (char *) find_name_end (string);
585 int deftype;
586 int synonym = 0;
587 int i;
588
589 /* We would like to eliminate nameless symbols, but keep their types.
590 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
591 to type 2, but, should not create a symbol to address that type. Since
592 the symbol will be nameless, there is no way any user can refer to it. */
593
594 int nameless;
595
596 /* Ignore syms with empty names. */
597 if (string[0] == 0)
598 return 0;
599
600 /* Ignore old-style symbols from cc -go */
601 if (p == 0)
602 return 0;
603
604 while (p[1] == ':')
605 {
606 p += 2;
607 p = strchr (p, ':');
608 }
609
610 /* If a nameless stab entry, all we need is the type, not the symbol.
611 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
612 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
613
614 current_symbol = sym = (struct symbol *)
615 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
616 memset (sym, 0, sizeof (struct symbol));
617
618 switch (type & N_TYPE)
619 {
620 case N_TEXT:
621 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
622 break;
623 case N_DATA:
624 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
625 break;
626 case N_BSS:
627 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
628 break;
629 }
630
631 if (processing_gcc_compilation)
632 {
633 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
634 number of bytes occupied by a type or object, which we ignore. */
635 SYMBOL_LINE (sym) = desc;
636 }
637 else
638 {
639 SYMBOL_LINE (sym) = 0; /* unknown */
640 }
641
642 if (is_cplus_marker (string[0]))
643 {
644 /* Special GNU C++ names. */
645 switch (string[1])
646 {
647 case 't':
648 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
649 &objfile->objfile_obstack);
650 break;
651
652 case 'v': /* $vtbl_ptr_type */
653 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
654 goto normal;
655
656 case 'e':
657 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
658 &objfile->objfile_obstack);
659 break;
660
661 case '_':
662 /* This was an anonymous type that was never fixed up. */
663 goto normal;
664
665 #ifdef STATIC_TRANSFORM_NAME
666 case 'X':
667 /* SunPRO (3.0 at least) static variable encoding. */
668 goto normal;
669 #endif
670
671 default:
672 complaint (&symfile_complaints, "Unknown C++ symbol name `%s'",
673 string);
674 goto normal; /* Do *something* with it */
675 }
676 }
677 else
678 {
679 normal:
680 SYMBOL_LANGUAGE (sym) = current_subfile->language;
681 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
682 }
683 p++;
684
685 /* Determine the type of name being defined. */
686 #if 0
687 /* Getting GDB to correctly skip the symbol on an undefined symbol
688 descriptor and not ever dump core is a very dodgy proposition if
689 we do things this way. I say the acorn RISC machine can just
690 fix their compiler. */
691 /* The Acorn RISC machine's compiler can put out locals that don't
692 start with "234=" or "(3,4)=", so assume anything other than the
693 deftypes we know how to handle is a local. */
694 if (!strchr ("cfFGpPrStTvVXCR", *p))
695 #else
696 if (isdigit (*p) || *p == '(' || *p == '-')
697 #endif
698 deftype = 'l';
699 else
700 deftype = *p++;
701
702 switch (deftype)
703 {
704 case 'c':
705 /* c is a special case, not followed by a type-number.
706 SYMBOL:c=iVALUE for an integer constant symbol.
707 SYMBOL:c=rVALUE for a floating constant symbol.
708 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
709 e.g. "b:c=e6,0" for "const b = blob1"
710 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
711 if (*p != '=')
712 {
713 SYMBOL_CLASS (sym) = LOC_CONST;
714 SYMBOL_TYPE (sym) = error_type (&p, objfile);
715 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
716 add_symbol_to_list (sym, &file_symbols);
717 return sym;
718 }
719 ++p;
720 switch (*p++)
721 {
722 case 'r':
723 {
724 double d = atof (p);
725 char *dbl_valu;
726
727 /* FIXME-if-picky-about-floating-accuracy: Should be using
728 target arithmetic to get the value. real.c in GCC
729 probably has the necessary code. */
730
731 /* FIXME: lookup_fundamental_type is a hack. We should be
732 creating a type especially for the type of float constants.
733 Problem is, what type should it be?
734
735 Also, what should the name of this type be? Should we
736 be using 'S' constants (see stabs.texinfo) instead? */
737
738 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
739 FT_DBL_PREC_FLOAT);
740 dbl_valu = (char *)
741 obstack_alloc (&objfile->objfile_obstack,
742 TYPE_LENGTH (SYMBOL_TYPE (sym)));
743 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
744 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
745 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
746 }
747 break;
748 case 'i':
749 {
750 /* Defining integer constants this way is kind of silly,
751 since 'e' constants allows the compiler to give not
752 only the value, but the type as well. C has at least
753 int, long, unsigned int, and long long as constant
754 types; other languages probably should have at least
755 unsigned as well as signed constants. */
756
757 /* We just need one int constant type for all objfiles.
758 It doesn't depend on languages or anything (arguably its
759 name should be a language-specific name for a type of
760 that size, but I'm inclined to say that if the compiler
761 wants a nice name for the type, it can use 'e'). */
762 static struct type *int_const_type;
763
764 /* Yes, this is as long as a *host* int. That is because we
765 use atoi. */
766 if (int_const_type == NULL)
767 int_const_type =
768 init_type (TYPE_CODE_INT,
769 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
770 "integer constant",
771 (struct objfile *) NULL);
772 SYMBOL_TYPE (sym) = int_const_type;
773 SYMBOL_VALUE (sym) = atoi (p);
774 SYMBOL_CLASS (sym) = LOC_CONST;
775 }
776 break;
777 case 'e':
778 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
779 can be represented as integral.
780 e.g. "b:c=e6,0" for "const b = blob1"
781 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
782 {
783 SYMBOL_CLASS (sym) = LOC_CONST;
784 SYMBOL_TYPE (sym) = read_type (&p, objfile);
785
786 if (*p != ',')
787 {
788 SYMBOL_TYPE (sym) = error_type (&p, objfile);
789 break;
790 }
791 ++p;
792
793 /* If the value is too big to fit in an int (perhaps because
794 it is unsigned), or something like that, we silently get
795 a bogus value. The type and everything else about it is
796 correct. Ideally, we should be using whatever we have
797 available for parsing unsigned and long long values,
798 however. */
799 SYMBOL_VALUE (sym) = atoi (p);
800 }
801 break;
802 default:
803 {
804 SYMBOL_CLASS (sym) = LOC_CONST;
805 SYMBOL_TYPE (sym) = error_type (&p, objfile);
806 }
807 }
808 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
809 add_symbol_to_list (sym, &file_symbols);
810 return sym;
811
812 case 'C':
813 /* The name of a caught exception. */
814 SYMBOL_TYPE (sym) = read_type (&p, objfile);
815 SYMBOL_CLASS (sym) = LOC_LABEL;
816 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
817 SYMBOL_VALUE_ADDRESS (sym) = valu;
818 add_symbol_to_list (sym, &local_symbols);
819 break;
820
821 case 'f':
822 /* A static function definition. */
823 SYMBOL_TYPE (sym) = read_type (&p, objfile);
824 SYMBOL_CLASS (sym) = LOC_BLOCK;
825 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
826 add_symbol_to_list (sym, &file_symbols);
827 /* fall into process_function_types. */
828
829 process_function_types:
830 /* Function result types are described as the result type in stabs.
831 We need to convert this to the function-returning-type-X type
832 in GDB. E.g. "int" is converted to "function returning int". */
833 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
834 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
835
836 /* All functions in C++ have prototypes. Stabs does not offer an
837 explicit way to identify prototyped or unprototyped functions,
838 but both GCC and Sun CC emit stabs for the "call-as" type rather
839 than the "declared-as" type for unprototyped functions, so
840 we treat all functions as if they were prototyped. This is used
841 primarily for promotion when calling the function from GDB. */
842 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
843
844 /* fall into process_prototype_types */
845
846 process_prototype_types:
847 /* Sun acc puts declared types of arguments here. */
848 if (*p == ';')
849 {
850 struct type *ftype = SYMBOL_TYPE (sym);
851 int nsemi = 0;
852 int nparams = 0;
853 char *p1 = p;
854
855 /* Obtain a worst case guess for the number of arguments
856 by counting the semicolons. */
857 while (*p1)
858 {
859 if (*p1++ == ';')
860 nsemi++;
861 }
862
863 /* Allocate parameter information fields and fill them in. */
864 TYPE_FIELDS (ftype) = (struct field *)
865 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
866 while (*p++ == ';')
867 {
868 struct type *ptype;
869
870 /* A type number of zero indicates the start of varargs.
871 FIXME: GDB currently ignores vararg functions. */
872 if (p[0] == '0' && p[1] == '\0')
873 break;
874 ptype = read_type (&p, objfile);
875
876 /* The Sun compilers mark integer arguments, which should
877 be promoted to the width of the calling conventions, with
878 a type which references itself. This type is turned into
879 a TYPE_CODE_VOID type by read_type, and we have to turn
880 it back into builtin_type_int here.
881 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
882 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
883 ptype = builtin_type_int;
884 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
885 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
886 }
887 TYPE_NFIELDS (ftype) = nparams;
888 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
889 }
890 break;
891
892 case 'F':
893 /* A global function definition. */
894 SYMBOL_TYPE (sym) = read_type (&p, objfile);
895 SYMBOL_CLASS (sym) = LOC_BLOCK;
896 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
897 add_symbol_to_list (sym, &global_symbols);
898 goto process_function_types;
899
900 case 'G':
901 /* For a class G (global) symbol, it appears that the
902 value is not correct. It is necessary to search for the
903 corresponding linker definition to find the value.
904 These definitions appear at the end of the namelist. */
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906 SYMBOL_CLASS (sym) = LOC_STATIC;
907 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
908 /* Don't add symbol references to global_sym_chain.
909 Symbol references don't have valid names and wont't match up with
910 minimal symbols when the global_sym_chain is relocated.
911 We'll fixup symbol references when we fixup the defining symbol. */
912 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
913 {
914 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
915 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
916 global_sym_chain[i] = sym;
917 }
918 add_symbol_to_list (sym, &global_symbols);
919 break;
920
921 /* This case is faked by a conditional above,
922 when there is no code letter in the dbx data.
923 Dbx data never actually contains 'l'. */
924 case 's':
925 case 'l':
926 SYMBOL_TYPE (sym) = read_type (&p, objfile);
927 SYMBOL_CLASS (sym) = LOC_LOCAL;
928 SYMBOL_VALUE (sym) = valu;
929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
930 add_symbol_to_list (sym, &local_symbols);
931 break;
932
933 case 'p':
934 if (*p == 'F')
935 /* pF is a two-letter code that means a function parameter in Fortran.
936 The type-number specifies the type of the return value.
937 Translate it into a pointer-to-function type. */
938 {
939 p++;
940 SYMBOL_TYPE (sym)
941 = lookup_pointer_type
942 (lookup_function_type (read_type (&p, objfile)));
943 }
944 else
945 SYMBOL_TYPE (sym) = read_type (&p, objfile);
946
947 SYMBOL_CLASS (sym) = LOC_ARG;
948 SYMBOL_VALUE (sym) = valu;
949 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
950 add_symbol_to_list (sym, &local_symbols);
951
952 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
953 {
954 /* On little-endian machines, this crud is never necessary,
955 and, if the extra bytes contain garbage, is harmful. */
956 break;
957 }
958
959 /* If it's gcc-compiled, if it says `short', believe it. */
960 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
961 break;
962
963 if (!BELIEVE_PCC_PROMOTION)
964 {
965 /* This is the signed type which arguments get promoted to. */
966 static struct type *pcc_promotion_type;
967 /* This is the unsigned type which arguments get promoted to. */
968 static struct type *pcc_unsigned_promotion_type;
969
970 /* Call it "int" because this is mainly C lossage. */
971 if (pcc_promotion_type == NULL)
972 pcc_promotion_type =
973 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
974 0, "int", NULL);
975
976 if (pcc_unsigned_promotion_type == NULL)
977 pcc_unsigned_promotion_type =
978 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
979 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
980
981 /* If PCC says a parameter is a short or a char, it is
982 really an int. */
983 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
984 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
985 {
986 SYMBOL_TYPE (sym) =
987 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
988 ? pcc_unsigned_promotion_type
989 : pcc_promotion_type;
990 }
991 break;
992 }
993
994 case 'P':
995 /* acc seems to use P to declare the prototypes of functions that
996 are referenced by this file. gdb is not prepared to deal
997 with this extra information. FIXME, it ought to. */
998 if (type == N_FUN)
999 {
1000 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1001 goto process_prototype_types;
1002 }
1003 /*FALLTHROUGH */
1004
1005 case 'R':
1006 /* Parameter which is in a register. */
1007 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1008 SYMBOL_CLASS (sym) = LOC_REGPARM;
1009 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1010 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1011 {
1012 reg_value_complaint (SYMBOL_VALUE (sym),
1013 NUM_REGS + NUM_PSEUDO_REGS,
1014 SYMBOL_PRINT_NAME (sym));
1015 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1016 }
1017 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1018 add_symbol_to_list (sym, &local_symbols);
1019 break;
1020
1021 case 'r':
1022 /* Register variable (either global or local). */
1023 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1024 SYMBOL_CLASS (sym) = LOC_REGISTER;
1025 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1026 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1027 {
1028 reg_value_complaint (SYMBOL_VALUE (sym),
1029 NUM_REGS + NUM_PSEUDO_REGS,
1030 SYMBOL_PRINT_NAME (sym));
1031 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1032 }
1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1034 if (within_function)
1035 {
1036 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1037 the same name to represent an argument passed in a
1038 register. GCC uses 'P' for the same case. So if we find
1039 such a symbol pair we combine it into one 'P' symbol.
1040 For Sun cc we need to do this regardless of
1041 stabs_argument_has_addr, because the compiler puts out
1042 the 'p' symbol even if it never saves the argument onto
1043 the stack.
1044
1045 On most machines, we want to preserve both symbols, so
1046 that we can still get information about what is going on
1047 with the stack (VAX for computing args_printed, using
1048 stack slots instead of saved registers in backtraces,
1049 etc.).
1050
1051 Note that this code illegally combines
1052 main(argc) struct foo argc; { register struct foo argc; }
1053 but this case is considered pathological and causes a warning
1054 from a decent compiler. */
1055
1056 if (local_symbols
1057 && local_symbols->nsyms > 0
1058 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1059 SYMBOL_TYPE (sym)))
1060 {
1061 struct symbol *prev_sym;
1062 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1063 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1064 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1065 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1066 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1067 {
1068 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1069 /* Use the type from the LOC_REGISTER; that is the type
1070 that is actually in that register. */
1071 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1072 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1073 sym = prev_sym;
1074 break;
1075 }
1076 }
1077 add_symbol_to_list (sym, &local_symbols);
1078 }
1079 else
1080 add_symbol_to_list (sym, &file_symbols);
1081 break;
1082
1083 case 'S':
1084 /* Static symbol at top level of file */
1085 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1086 SYMBOL_CLASS (sym) = LOC_STATIC;
1087 SYMBOL_VALUE_ADDRESS (sym) = valu;
1088 #ifdef STATIC_TRANSFORM_NAME
1089 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1090 {
1091 struct minimal_symbol *msym;
1092 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1093 if (msym != NULL)
1094 {
1095 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1096 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1097 }
1098 }
1099 #endif
1100 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1101 add_symbol_to_list (sym, &file_symbols);
1102 break;
1103
1104 case 't':
1105 /* Typedef */
1106 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1107
1108 /* For a nameless type, we don't want a create a symbol, thus we
1109 did not use `sym'. Return without further processing. */
1110 if (nameless)
1111 return NULL;
1112
1113 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1114 SYMBOL_VALUE (sym) = valu;
1115 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1116 /* C++ vagaries: we may have a type which is derived from
1117 a base type which did not have its name defined when the
1118 derived class was output. We fill in the derived class's
1119 base part member's name here in that case. */
1120 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1121 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1122 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1123 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1124 {
1125 int j;
1126 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1127 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1128 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1129 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1130 }
1131
1132 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1133 {
1134 /* gcc-2.6 or later (when using -fvtable-thunks)
1135 emits a unique named type for a vtable entry.
1136 Some gdb code depends on that specific name. */
1137 extern const char vtbl_ptr_name[];
1138
1139 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1140 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1141 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1142 {
1143 /* If we are giving a name to a type such as "pointer to
1144 foo" or "function returning foo", we better not set
1145 the TYPE_NAME. If the program contains "typedef char
1146 *caddr_t;", we don't want all variables of type char
1147 * to print as caddr_t. This is not just a
1148 consequence of GDB's type management; PCC and GCC (at
1149 least through version 2.4) both output variables of
1150 either type char * or caddr_t with the type number
1151 defined in the 't' symbol for caddr_t. If a future
1152 compiler cleans this up it GDB is not ready for it
1153 yet, but if it becomes ready we somehow need to
1154 disable this check (without breaking the PCC/GCC2.4
1155 case).
1156
1157 Sigh.
1158
1159 Fortunately, this check seems not to be necessary
1160 for anything except pointers or functions. */
1161 /* ezannoni: 2000-10-26. This seems to apply for
1162 versions of gcc older than 2.8. This was the original
1163 problem: with the following code gdb would tell that
1164 the type for name1 is caddr_t, and func is char()
1165 typedef char *caddr_t;
1166 char *name2;
1167 struct x
1168 {
1169 char *name1;
1170 } xx;
1171 char *func()
1172 {
1173 }
1174 main () {}
1175 */
1176
1177 /* Pascal accepts names for pointer types. */
1178 if (current_subfile->language == language_pascal)
1179 {
1180 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1181 }
1182 }
1183 else
1184 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1185 }
1186
1187 add_symbol_to_list (sym, &file_symbols);
1188 break;
1189
1190 case 'T':
1191 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1192 by 't' which means we are typedef'ing it as well. */
1193 synonym = *p == 't';
1194
1195 if (synonym)
1196 p++;
1197
1198 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1199
1200 /* For a nameless type, we don't want a create a symbol, thus we
1201 did not use `sym'. Return without further processing. */
1202 if (nameless)
1203 return NULL;
1204
1205 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1206 SYMBOL_VALUE (sym) = valu;
1207 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1208 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1209 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1210 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1211 add_symbol_to_list (sym, &file_symbols);
1212
1213 if (synonym)
1214 {
1215 /* Clone the sym and then modify it. */
1216 struct symbol *typedef_sym = (struct symbol *)
1217 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1218 *typedef_sym = *sym;
1219 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1220 SYMBOL_VALUE (typedef_sym) = valu;
1221 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1222 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1223 TYPE_NAME (SYMBOL_TYPE (sym))
1224 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1225 add_symbol_to_list (typedef_sym, &file_symbols);
1226 }
1227 break;
1228
1229 case 'V':
1230 /* Static symbol of local scope */
1231 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1232 SYMBOL_CLASS (sym) = LOC_STATIC;
1233 SYMBOL_VALUE_ADDRESS (sym) = valu;
1234 #ifdef STATIC_TRANSFORM_NAME
1235 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1236 {
1237 struct minimal_symbol *msym;
1238 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1239 if (msym != NULL)
1240 {
1241 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1242 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1243 }
1244 }
1245 #endif
1246 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1247 add_symbol_to_list (sym, &local_symbols);
1248 break;
1249
1250 case 'v':
1251 /* Reference parameter */
1252 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1253 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1254 SYMBOL_VALUE (sym) = valu;
1255 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1256 add_symbol_to_list (sym, &local_symbols);
1257 break;
1258
1259 case 'a':
1260 /* Reference parameter which is in a register. */
1261 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1262 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1263 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1264 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1265 {
1266 reg_value_complaint (SYMBOL_VALUE (sym),
1267 NUM_REGS + NUM_PSEUDO_REGS,
1268 SYMBOL_PRINT_NAME (sym));
1269 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1270 }
1271 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1272 add_symbol_to_list (sym, &local_symbols);
1273 break;
1274
1275 case 'X':
1276 /* This is used by Sun FORTRAN for "function result value".
1277 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1278 that Pascal uses it too, but when I tried it Pascal used
1279 "x:3" (local symbol) instead. */
1280 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1281 SYMBOL_CLASS (sym) = LOC_LOCAL;
1282 SYMBOL_VALUE (sym) = valu;
1283 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1284 add_symbol_to_list (sym, &local_symbols);
1285 break;
1286
1287 default:
1288 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1289 SYMBOL_CLASS (sym) = LOC_CONST;
1290 SYMBOL_VALUE (sym) = 0;
1291 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1292 add_symbol_to_list (sym, &file_symbols);
1293 break;
1294 }
1295
1296 /* Some systems pass variables of certain types by reference instead
1297 of by value, i.e. they will pass the address of a structure (in a
1298 register or on the stack) instead of the structure itself. */
1299
1300 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1301 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1302 {
1303 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1304 variables passed in a register). */
1305 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1306 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1307 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1308 and subsequent arguments on SPARC, for example). */
1309 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1310 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1311 }
1312
1313 return sym;
1314 }
1315
1316 /* Skip rest of this symbol and return an error type.
1317
1318 General notes on error recovery: error_type always skips to the
1319 end of the symbol (modulo cretinous dbx symbol name continuation).
1320 Thus code like this:
1321
1322 if (*(*pp)++ != ';')
1323 return error_type (pp, objfile);
1324
1325 is wrong because if *pp starts out pointing at '\0' (typically as the
1326 result of an earlier error), it will be incremented to point to the
1327 start of the next symbol, which might produce strange results, at least
1328 if you run off the end of the string table. Instead use
1329
1330 if (**pp != ';')
1331 return error_type (pp, objfile);
1332 ++*pp;
1333
1334 or
1335
1336 if (**pp != ';')
1337 foo = error_type (pp, objfile);
1338 else
1339 ++*pp;
1340
1341 And in case it isn't obvious, the point of all this hair is so the compiler
1342 can define new types and new syntaxes, and old versions of the
1343 debugger will be able to read the new symbol tables. */
1344
1345 static struct type *
1346 error_type (char **pp, struct objfile *objfile)
1347 {
1348 complaint (&symfile_complaints, "couldn't parse type; debugger out of date?");
1349 while (1)
1350 {
1351 /* Skip to end of symbol. */
1352 while (**pp != '\0')
1353 {
1354 (*pp)++;
1355 }
1356
1357 /* Check for and handle cretinous dbx symbol name continuation! */
1358 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1359 {
1360 *pp = next_symbol_text (objfile);
1361 }
1362 else
1363 {
1364 break;
1365 }
1366 }
1367 return (builtin_type_error);
1368 }
1369 \f
1370
1371 /* Read type information or a type definition; return the type. Even
1372 though this routine accepts either type information or a type
1373 definition, the distinction is relevant--some parts of stabsread.c
1374 assume that type information starts with a digit, '-', or '(' in
1375 deciding whether to call read_type. */
1376
1377 static struct type *
1378 read_type (char **pp, struct objfile *objfile)
1379 {
1380 struct type *type = 0;
1381 struct type *type1;
1382 int typenums[2];
1383 char type_descriptor;
1384
1385 /* Size in bits of type if specified by a type attribute, or -1 if
1386 there is no size attribute. */
1387 int type_size = -1;
1388
1389 /* Used to distinguish string and bitstring from char-array and set. */
1390 int is_string = 0;
1391
1392 /* Used to distinguish vector from array. */
1393 int is_vector = 0;
1394
1395 /* Read type number if present. The type number may be omitted.
1396 for instance in a two-dimensional array declared with type
1397 "ar1;1;10;ar1;1;10;4". */
1398 if ((**pp >= '0' && **pp <= '9')
1399 || **pp == '('
1400 || **pp == '-')
1401 {
1402 if (read_type_number (pp, typenums) != 0)
1403 return error_type (pp, objfile);
1404
1405 if (**pp != '=')
1406 {
1407 /* Type is not being defined here. Either it already
1408 exists, or this is a forward reference to it.
1409 dbx_alloc_type handles both cases. */
1410 type = dbx_alloc_type (typenums, objfile);
1411
1412 /* If this is a forward reference, arrange to complain if it
1413 doesn't get patched up by the time we're done
1414 reading. */
1415 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1416 add_undefined_type (type);
1417
1418 return type;
1419 }
1420
1421 /* Type is being defined here. */
1422 /* Skip the '='.
1423 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1424 (*pp) += 2;
1425 }
1426 else
1427 {
1428 /* 'typenums=' not present, type is anonymous. Read and return
1429 the definition, but don't put it in the type vector. */
1430 typenums[0] = typenums[1] = -1;
1431 (*pp)++;
1432 }
1433
1434 again:
1435 type_descriptor = (*pp)[-1];
1436 switch (type_descriptor)
1437 {
1438 case 'x':
1439 {
1440 enum type_code code;
1441
1442 /* Used to index through file_symbols. */
1443 struct pending *ppt;
1444 int i;
1445
1446 /* Name including "struct", etc. */
1447 char *type_name;
1448
1449 {
1450 char *from, *to, *p, *q1, *q2;
1451
1452 /* Set the type code according to the following letter. */
1453 switch ((*pp)[0])
1454 {
1455 case 's':
1456 code = TYPE_CODE_STRUCT;
1457 break;
1458 case 'u':
1459 code = TYPE_CODE_UNION;
1460 break;
1461 case 'e':
1462 code = TYPE_CODE_ENUM;
1463 break;
1464 default:
1465 {
1466 /* Complain and keep going, so compilers can invent new
1467 cross-reference types. */
1468 complaint (&symfile_complaints,
1469 "Unrecognized cross-reference type `%c'", (*pp)[0]);
1470 code = TYPE_CODE_STRUCT;
1471 break;
1472 }
1473 }
1474
1475 q1 = strchr (*pp, '<');
1476 p = strchr (*pp, ':');
1477 if (p == NULL)
1478 return error_type (pp, objfile);
1479 if (q1 && p > q1 && p[1] == ':')
1480 {
1481 int nesting_level = 0;
1482 for (q2 = q1; *q2; q2++)
1483 {
1484 if (*q2 == '<')
1485 nesting_level++;
1486 else if (*q2 == '>')
1487 nesting_level--;
1488 else if (*q2 == ':' && nesting_level == 0)
1489 break;
1490 }
1491 p = q2;
1492 if (*p != ':')
1493 return error_type (pp, objfile);
1494 }
1495 to = type_name =
1496 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1497
1498 /* Copy the name. */
1499 from = *pp + 1;
1500 while (from < p)
1501 *to++ = *from++;
1502 *to = '\0';
1503
1504 /* Set the pointer ahead of the name which we just read, and
1505 the colon. */
1506 *pp = from + 1;
1507 }
1508
1509 /* If this type has already been declared, then reuse the same
1510 type, rather than allocating a new one. This saves some
1511 memory. */
1512
1513 for (ppt = file_symbols; ppt; ppt = ppt->next)
1514 for (i = 0; i < ppt->nsyms; i++)
1515 {
1516 struct symbol *sym = ppt->symbol[i];
1517
1518 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1519 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1520 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1521 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1522 {
1523 obstack_free (&objfile->objfile_obstack, type_name);
1524 type = SYMBOL_TYPE (sym);
1525 if (typenums[0] != -1)
1526 *dbx_lookup_type (typenums) = type;
1527 return type;
1528 }
1529 }
1530
1531 /* Didn't find the type to which this refers, so we must
1532 be dealing with a forward reference. Allocate a type
1533 structure for it, and keep track of it so we can
1534 fill in the rest of the fields when we get the full
1535 type. */
1536 type = dbx_alloc_type (typenums, objfile);
1537 TYPE_CODE (type) = code;
1538 TYPE_TAG_NAME (type) = type_name;
1539 INIT_CPLUS_SPECIFIC (type);
1540 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1541
1542 add_undefined_type (type);
1543 return type;
1544 }
1545
1546 case '-': /* RS/6000 built-in type */
1547 case '0':
1548 case '1':
1549 case '2':
1550 case '3':
1551 case '4':
1552 case '5':
1553 case '6':
1554 case '7':
1555 case '8':
1556 case '9':
1557 case '(':
1558 (*pp)--;
1559
1560 /* We deal with something like t(1,2)=(3,4)=... which
1561 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1562
1563 /* Allocate and enter the typedef type first.
1564 This handles recursive types. */
1565 type = dbx_alloc_type (typenums, objfile);
1566 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1567 {
1568 struct type *xtype = read_type (pp, objfile);
1569 if (type == xtype)
1570 {
1571 /* It's being defined as itself. That means it is "void". */
1572 TYPE_CODE (type) = TYPE_CODE_VOID;
1573 TYPE_LENGTH (type) = 1;
1574 }
1575 else if (type_size >= 0 || is_string)
1576 {
1577 /* This is the absolute wrong way to construct types. Every
1578 other debug format has found a way around this problem and
1579 the related problems with unnecessarily stubbed types;
1580 someone motivated should attempt to clean up the issue
1581 here as well. Once a type pointed to has been created it
1582 should not be modified.
1583
1584 Well, it's not *absolutely* wrong. Constructing recursive
1585 types (trees, linked lists) necessarily entails modifying
1586 types after creating them. Constructing any loop structure
1587 entails side effects. The Dwarf 2 reader does handle this
1588 more gracefully (it never constructs more than once
1589 instance of a type object, so it doesn't have to copy type
1590 objects wholesale), but it still mutates type objects after
1591 other folks have references to them.
1592
1593 Keep in mind that this circularity/mutation issue shows up
1594 at the source language level, too: C's "incomplete types",
1595 for example. So the proper cleanup, I think, would be to
1596 limit GDB's type smashing to match exactly those required
1597 by the source language. So GDB could have a
1598 "complete_this_type" function, but never create unnecessary
1599 copies of a type otherwise. */
1600 replace_type (type, xtype);
1601 TYPE_NAME (type) = NULL;
1602 TYPE_TAG_NAME (type) = NULL;
1603 }
1604 else
1605 {
1606 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1607 TYPE_TARGET_TYPE (type) = xtype;
1608 }
1609 }
1610 break;
1611
1612 /* In the following types, we must be sure to overwrite any existing
1613 type that the typenums refer to, rather than allocating a new one
1614 and making the typenums point to the new one. This is because there
1615 may already be pointers to the existing type (if it had been
1616 forward-referenced), and we must change it to a pointer, function,
1617 reference, or whatever, *in-place*. */
1618
1619 case '*': /* Pointer to another type */
1620 type1 = read_type (pp, objfile);
1621 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1622 break;
1623
1624 case '&': /* Reference to another type */
1625 type1 = read_type (pp, objfile);
1626 type = make_reference_type (type1, dbx_lookup_type (typenums));
1627 break;
1628
1629 case 'f': /* Function returning another type */
1630 type1 = read_type (pp, objfile);
1631 type = make_function_type (type1, dbx_lookup_type (typenums));
1632 break;
1633
1634 case 'g': /* Prototyped function. (Sun) */
1635 {
1636 /* Unresolved questions:
1637
1638 - According to Sun's ``STABS Interface Manual'', for 'f'
1639 and 'F' symbol descriptors, a `0' in the argument type list
1640 indicates a varargs function. But it doesn't say how 'g'
1641 type descriptors represent that info. Someone with access
1642 to Sun's toolchain should try it out.
1643
1644 - According to the comment in define_symbol (search for
1645 `process_prototype_types:'), Sun emits integer arguments as
1646 types which ref themselves --- like `void' types. Do we
1647 have to deal with that here, too? Again, someone with
1648 access to Sun's toolchain should try it out and let us
1649 know. */
1650
1651 const char *type_start = (*pp) - 1;
1652 struct type *return_type = read_type (pp, objfile);
1653 struct type *func_type
1654 = make_function_type (return_type, dbx_lookup_type (typenums));
1655 struct type_list {
1656 struct type *type;
1657 struct type_list *next;
1658 } *arg_types = 0;
1659 int num_args = 0;
1660
1661 while (**pp && **pp != '#')
1662 {
1663 struct type *arg_type = read_type (pp, objfile);
1664 struct type_list *new = alloca (sizeof (*new));
1665 new->type = arg_type;
1666 new->next = arg_types;
1667 arg_types = new;
1668 num_args++;
1669 }
1670 if (**pp == '#')
1671 ++*pp;
1672 else
1673 {
1674 complaint (&symfile_complaints,
1675 "Prototyped function type didn't end arguments with `#':\n%s",
1676 type_start);
1677 }
1678
1679 /* If there is just one argument whose type is `void', then
1680 that's just an empty argument list. */
1681 if (arg_types
1682 && ! arg_types->next
1683 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1684 num_args = 0;
1685
1686 TYPE_FIELDS (func_type)
1687 = (struct field *) TYPE_ALLOC (func_type,
1688 num_args * sizeof (struct field));
1689 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1690 {
1691 int i;
1692 struct type_list *t;
1693
1694 /* We stuck each argument type onto the front of the list
1695 when we read it, so the list is reversed. Build the
1696 fields array right-to-left. */
1697 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1698 TYPE_FIELD_TYPE (func_type, i) = t->type;
1699 }
1700 TYPE_NFIELDS (func_type) = num_args;
1701 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1702
1703 type = func_type;
1704 break;
1705 }
1706
1707 case 'k': /* Const qualifier on some type (Sun) */
1708 type = read_type (pp, objfile);
1709 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1710 dbx_lookup_type (typenums));
1711 break;
1712
1713 case 'B': /* Volatile qual on some type (Sun) */
1714 type = read_type (pp, objfile);
1715 type = make_cv_type (TYPE_CONST (type), 1, type,
1716 dbx_lookup_type (typenums));
1717 break;
1718
1719 case '@':
1720 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1721 { /* Member (class & variable) type */
1722 /* FIXME -- we should be doing smash_to_XXX types here. */
1723
1724 struct type *domain = read_type (pp, objfile);
1725 struct type *memtype;
1726
1727 if (**pp != ',')
1728 /* Invalid member type data format. */
1729 return error_type (pp, objfile);
1730 ++*pp;
1731
1732 memtype = read_type (pp, objfile);
1733 type = dbx_alloc_type (typenums, objfile);
1734 smash_to_member_type (type, domain, memtype);
1735 }
1736 else
1737 /* type attribute */
1738 {
1739 char *attr = *pp;
1740 /* Skip to the semicolon. */
1741 while (**pp != ';' && **pp != '\0')
1742 ++(*pp);
1743 if (**pp == '\0')
1744 return error_type (pp, objfile);
1745 else
1746 ++ * pp; /* Skip the semicolon. */
1747
1748 switch (*attr)
1749 {
1750 case 's': /* Size attribute */
1751 type_size = atoi (attr + 1);
1752 if (type_size <= 0)
1753 type_size = -1;
1754 break;
1755
1756 case 'S': /* String attribute */
1757 /* FIXME: check to see if following type is array? */
1758 is_string = 1;
1759 break;
1760
1761 case 'V': /* Vector attribute */
1762 /* FIXME: check to see if following type is array? */
1763 is_vector = 1;
1764 break;
1765
1766 default:
1767 /* Ignore unrecognized type attributes, so future compilers
1768 can invent new ones. */
1769 break;
1770 }
1771 ++*pp;
1772 goto again;
1773 }
1774 break;
1775
1776 case '#': /* Method (class & fn) type */
1777 if ((*pp)[0] == '#')
1778 {
1779 /* We'll get the parameter types from the name. */
1780 struct type *return_type;
1781
1782 (*pp)++;
1783 return_type = read_type (pp, objfile);
1784 if (*(*pp)++ != ';')
1785 complaint (&symfile_complaints,
1786 "invalid (minimal) member type data format at symtab pos %d.",
1787 symnum);
1788 type = allocate_stub_method (return_type);
1789 if (typenums[0] != -1)
1790 *dbx_lookup_type (typenums) = type;
1791 }
1792 else
1793 {
1794 struct type *domain = read_type (pp, objfile);
1795 struct type *return_type;
1796 struct field *args;
1797 int nargs, varargs;
1798
1799 if (**pp != ',')
1800 /* Invalid member type data format. */
1801 return error_type (pp, objfile);
1802 else
1803 ++(*pp);
1804
1805 return_type = read_type (pp, objfile);
1806 args = read_args (pp, ';', objfile, &nargs, &varargs);
1807 type = dbx_alloc_type (typenums, objfile);
1808 smash_to_method_type (type, domain, return_type, args,
1809 nargs, varargs);
1810 }
1811 break;
1812
1813 case 'r': /* Range type */
1814 type = read_range_type (pp, typenums, type_size, objfile);
1815 if (typenums[0] != -1)
1816 *dbx_lookup_type (typenums) = type;
1817 break;
1818
1819 case 'b':
1820 {
1821 /* Sun ACC builtin int type */
1822 type = read_sun_builtin_type (pp, typenums, objfile);
1823 if (typenums[0] != -1)
1824 *dbx_lookup_type (typenums) = type;
1825 }
1826 break;
1827
1828 case 'R': /* Sun ACC builtin float type */
1829 type = read_sun_floating_type (pp, typenums, objfile);
1830 if (typenums[0] != -1)
1831 *dbx_lookup_type (typenums) = type;
1832 break;
1833
1834 case 'e': /* Enumeration type */
1835 type = dbx_alloc_type (typenums, objfile);
1836 type = read_enum_type (pp, type, objfile);
1837 if (typenums[0] != -1)
1838 *dbx_lookup_type (typenums) = type;
1839 break;
1840
1841 case 's': /* Struct type */
1842 case 'u': /* Union type */
1843 {
1844 enum type_code type_code = TYPE_CODE_UNDEF;
1845 type = dbx_alloc_type (typenums, objfile);
1846 switch (type_descriptor)
1847 {
1848 case 's':
1849 type_code = TYPE_CODE_STRUCT;
1850 break;
1851 case 'u':
1852 type_code = TYPE_CODE_UNION;
1853 break;
1854 }
1855 type = read_struct_type (pp, type, type_code, objfile);
1856 break;
1857 }
1858
1859 case 'a': /* Array type */
1860 if (**pp != 'r')
1861 return error_type (pp, objfile);
1862 ++*pp;
1863
1864 type = dbx_alloc_type (typenums, objfile);
1865 type = read_array_type (pp, type, objfile);
1866 if (is_string)
1867 TYPE_CODE (type) = TYPE_CODE_STRING;
1868 if (is_vector)
1869 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1870 break;
1871
1872 case 'S': /* Set or bitstring type */
1873 type1 = read_type (pp, objfile);
1874 type = create_set_type ((struct type *) NULL, type1);
1875 if (is_string)
1876 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1877 if (typenums[0] != -1)
1878 *dbx_lookup_type (typenums) = type;
1879 break;
1880
1881 default:
1882 --*pp; /* Go back to the symbol in error */
1883 /* Particularly important if it was \0! */
1884 return error_type (pp, objfile);
1885 }
1886
1887 if (type == 0)
1888 {
1889 warning (_("GDB internal error, type is NULL in stabsread.c."));
1890 return error_type (pp, objfile);
1891 }
1892
1893 /* Size specified in a type attribute overrides any other size. */
1894 if (type_size != -1)
1895 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1896
1897 return type;
1898 }
1899 \f
1900 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1901 Return the proper type node for a given builtin type number. */
1902
1903 static struct type *
1904 rs6000_builtin_type (int typenum)
1905 {
1906 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1907 #define NUMBER_RECOGNIZED 34
1908 /* This includes an empty slot for type number -0. */
1909 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1910 struct type *rettype = NULL;
1911
1912 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1913 {
1914 complaint (&symfile_complaints, "Unknown builtin type %d", typenum);
1915 return builtin_type_error;
1916 }
1917 if (negative_types[-typenum] != NULL)
1918 return negative_types[-typenum];
1919
1920 #if TARGET_CHAR_BIT != 8
1921 #error This code wrong for TARGET_CHAR_BIT not 8
1922 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1923 that if that ever becomes not true, the correct fix will be to
1924 make the size in the struct type to be in bits, not in units of
1925 TARGET_CHAR_BIT. */
1926 #endif
1927
1928 switch (-typenum)
1929 {
1930 case 1:
1931 /* The size of this and all the other types are fixed, defined
1932 by the debugging format. If there is a type called "int" which
1933 is other than 32 bits, then it should use a new negative type
1934 number (or avoid negative type numbers for that case).
1935 See stabs.texinfo. */
1936 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1937 break;
1938 case 2:
1939 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1940 break;
1941 case 3:
1942 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1943 break;
1944 case 4:
1945 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1946 break;
1947 case 5:
1948 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1949 "unsigned char", NULL);
1950 break;
1951 case 6:
1952 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1953 break;
1954 case 7:
1955 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1956 "unsigned short", NULL);
1957 break;
1958 case 8:
1959 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1960 "unsigned int", NULL);
1961 break;
1962 case 9:
1963 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1964 "unsigned", NULL);
1965 case 10:
1966 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1967 "unsigned long", NULL);
1968 break;
1969 case 11:
1970 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1971 break;
1972 case 12:
1973 /* IEEE single precision (32 bit). */
1974 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1975 break;
1976 case 13:
1977 /* IEEE double precision (64 bit). */
1978 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1979 break;
1980 case 14:
1981 /* This is an IEEE double on the RS/6000, and different machines with
1982 different sizes for "long double" should use different negative
1983 type numbers. See stabs.texinfo. */
1984 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1985 break;
1986 case 15:
1987 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1988 break;
1989 case 16:
1990 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1991 "boolean", NULL);
1992 break;
1993 case 17:
1994 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1995 break;
1996 case 18:
1997 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1998 break;
1999 case 19:
2000 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2001 break;
2002 case 20:
2003 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2004 "character", NULL);
2005 break;
2006 case 21:
2007 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2008 "logical*1", NULL);
2009 break;
2010 case 22:
2011 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2012 "logical*2", NULL);
2013 break;
2014 case 23:
2015 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2016 "logical*4", NULL);
2017 break;
2018 case 24:
2019 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2020 "logical", NULL);
2021 break;
2022 case 25:
2023 /* Complex type consisting of two IEEE single precision values. */
2024 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2025 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2026 NULL);
2027 break;
2028 case 26:
2029 /* Complex type consisting of two IEEE double precision values. */
2030 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2031 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2032 NULL);
2033 break;
2034 case 27:
2035 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2036 break;
2037 case 28:
2038 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2039 break;
2040 case 29:
2041 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2042 break;
2043 case 30:
2044 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2045 break;
2046 case 31:
2047 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2048 break;
2049 case 32:
2050 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2051 "unsigned long long", NULL);
2052 break;
2053 case 33:
2054 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2055 "logical*8", NULL);
2056 break;
2057 case 34:
2058 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2059 break;
2060 }
2061 negative_types[-typenum] = rettype;
2062 return rettype;
2063 }
2064 \f
2065 /* This page contains subroutines of read_type. */
2066
2067 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2068
2069 static void
2070 update_method_name_from_physname (char **old_name, char *physname)
2071 {
2072 char *method_name;
2073
2074 method_name = method_name_from_physname (physname);
2075
2076 if (method_name == NULL)
2077 {
2078 complaint (&symfile_complaints,
2079 "Method has bad physname %s\n", physname);
2080 return;
2081 }
2082
2083 if (strcmp (*old_name, method_name) != 0)
2084 {
2085 xfree (*old_name);
2086 *old_name = method_name;
2087 }
2088 else
2089 xfree (method_name);
2090 }
2091
2092 /* Read member function stabs info for C++ classes. The form of each member
2093 function data is:
2094
2095 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2096
2097 An example with two member functions is:
2098
2099 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2100
2101 For the case of overloaded operators, the format is op$::*.funcs, where
2102 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2103 name (such as `+=') and `.' marks the end of the operator name.
2104
2105 Returns 1 for success, 0 for failure. */
2106
2107 static int
2108 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2109 struct objfile *objfile)
2110 {
2111 int nfn_fields = 0;
2112 int length = 0;
2113 /* Total number of member functions defined in this class. If the class
2114 defines two `f' functions, and one `g' function, then this will have
2115 the value 3. */
2116 int total_length = 0;
2117 int i;
2118 struct next_fnfield
2119 {
2120 struct next_fnfield *next;
2121 struct fn_field fn_field;
2122 }
2123 *sublist;
2124 struct type *look_ahead_type;
2125 struct next_fnfieldlist *new_fnlist;
2126 struct next_fnfield *new_sublist;
2127 char *main_fn_name;
2128 char *p;
2129
2130 /* Process each list until we find something that is not a member function
2131 or find the end of the functions. */
2132
2133 while (**pp != ';')
2134 {
2135 /* We should be positioned at the start of the function name.
2136 Scan forward to find the first ':' and if it is not the
2137 first of a "::" delimiter, then this is not a member function. */
2138 p = *pp;
2139 while (*p != ':')
2140 {
2141 p++;
2142 }
2143 if (p[1] != ':')
2144 {
2145 break;
2146 }
2147
2148 sublist = NULL;
2149 look_ahead_type = NULL;
2150 length = 0;
2151
2152 new_fnlist = (struct next_fnfieldlist *)
2153 xmalloc (sizeof (struct next_fnfieldlist));
2154 make_cleanup (xfree, new_fnlist);
2155 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2156
2157 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2158 {
2159 /* This is a completely wierd case. In order to stuff in the
2160 names that might contain colons (the usual name delimiter),
2161 Mike Tiemann defined a different name format which is
2162 signalled if the identifier is "op$". In that case, the
2163 format is "op$::XXXX." where XXXX is the name. This is
2164 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2165 /* This lets the user type "break operator+".
2166 We could just put in "+" as the name, but that wouldn't
2167 work for "*". */
2168 static char opname[32] = "op$";
2169 char *o = opname + 3;
2170
2171 /* Skip past '::'. */
2172 *pp = p + 2;
2173
2174 STABS_CONTINUE (pp, objfile);
2175 p = *pp;
2176 while (*p != '.')
2177 {
2178 *o++ = *p++;
2179 }
2180 main_fn_name = savestring (opname, o - opname);
2181 /* Skip past '.' */
2182 *pp = p + 1;
2183 }
2184 else
2185 {
2186 main_fn_name = savestring (*pp, p - *pp);
2187 /* Skip past '::'. */
2188 *pp = p + 2;
2189 }
2190 new_fnlist->fn_fieldlist.name = main_fn_name;
2191
2192 do
2193 {
2194 new_sublist =
2195 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2196 make_cleanup (xfree, new_sublist);
2197 memset (new_sublist, 0, sizeof (struct next_fnfield));
2198
2199 /* Check for and handle cretinous dbx symbol name continuation! */
2200 if (look_ahead_type == NULL)
2201 {
2202 /* Normal case. */
2203 STABS_CONTINUE (pp, objfile);
2204
2205 new_sublist->fn_field.type = read_type (pp, objfile);
2206 if (**pp != ':')
2207 {
2208 /* Invalid symtab info for member function. */
2209 return 0;
2210 }
2211 }
2212 else
2213 {
2214 /* g++ version 1 kludge */
2215 new_sublist->fn_field.type = look_ahead_type;
2216 look_ahead_type = NULL;
2217 }
2218
2219 (*pp)++;
2220 p = *pp;
2221 while (*p != ';')
2222 {
2223 p++;
2224 }
2225
2226 /* If this is just a stub, then we don't have the real name here. */
2227
2228 if (TYPE_STUB (new_sublist->fn_field.type))
2229 {
2230 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2231 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2232 new_sublist->fn_field.is_stub = 1;
2233 }
2234 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2235 *pp = p + 1;
2236
2237 /* Set this member function's visibility fields. */
2238 switch (*(*pp)++)
2239 {
2240 case VISIBILITY_PRIVATE:
2241 new_sublist->fn_field.is_private = 1;
2242 break;
2243 case VISIBILITY_PROTECTED:
2244 new_sublist->fn_field.is_protected = 1;
2245 break;
2246 }
2247
2248 STABS_CONTINUE (pp, objfile);
2249 switch (**pp)
2250 {
2251 case 'A': /* Normal functions. */
2252 new_sublist->fn_field.is_const = 0;
2253 new_sublist->fn_field.is_volatile = 0;
2254 (*pp)++;
2255 break;
2256 case 'B': /* `const' member functions. */
2257 new_sublist->fn_field.is_const = 1;
2258 new_sublist->fn_field.is_volatile = 0;
2259 (*pp)++;
2260 break;
2261 case 'C': /* `volatile' member function. */
2262 new_sublist->fn_field.is_const = 0;
2263 new_sublist->fn_field.is_volatile = 1;
2264 (*pp)++;
2265 break;
2266 case 'D': /* `const volatile' member function. */
2267 new_sublist->fn_field.is_const = 1;
2268 new_sublist->fn_field.is_volatile = 1;
2269 (*pp)++;
2270 break;
2271 case '*': /* File compiled with g++ version 1 -- no info */
2272 case '?':
2273 case '.':
2274 break;
2275 default:
2276 complaint (&symfile_complaints,
2277 "const/volatile indicator missing, got '%c'", **pp);
2278 break;
2279 }
2280
2281 switch (*(*pp)++)
2282 {
2283 case '*':
2284 {
2285 int nbits;
2286 /* virtual member function, followed by index.
2287 The sign bit is set to distinguish pointers-to-methods
2288 from virtual function indicies. Since the array is
2289 in words, the quantity must be shifted left by 1
2290 on 16 bit machine, and by 2 on 32 bit machine, forcing
2291 the sign bit out, and usable as a valid index into
2292 the array. Remove the sign bit here. */
2293 new_sublist->fn_field.voffset =
2294 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2295 if (nbits != 0)
2296 return 0;
2297
2298 STABS_CONTINUE (pp, objfile);
2299 if (**pp == ';' || **pp == '\0')
2300 {
2301 /* Must be g++ version 1. */
2302 new_sublist->fn_field.fcontext = 0;
2303 }
2304 else
2305 {
2306 /* Figure out from whence this virtual function came.
2307 It may belong to virtual function table of
2308 one of its baseclasses. */
2309 look_ahead_type = read_type (pp, objfile);
2310 if (**pp == ':')
2311 {
2312 /* g++ version 1 overloaded methods. */
2313 }
2314 else
2315 {
2316 new_sublist->fn_field.fcontext = look_ahead_type;
2317 if (**pp != ';')
2318 {
2319 return 0;
2320 }
2321 else
2322 {
2323 ++*pp;
2324 }
2325 look_ahead_type = NULL;
2326 }
2327 }
2328 break;
2329 }
2330 case '?':
2331 /* static member function. */
2332 {
2333 int slen = strlen (main_fn_name);
2334
2335 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2336
2337 /* For static member functions, we can't tell if they
2338 are stubbed, as they are put out as functions, and not as
2339 methods.
2340 GCC v2 emits the fully mangled name if
2341 dbxout.c:flag_minimal_debug is not set, so we have to
2342 detect a fully mangled physname here and set is_stub
2343 accordingly. Fully mangled physnames in v2 start with
2344 the member function name, followed by two underscores.
2345 GCC v3 currently always emits stubbed member functions,
2346 but with fully mangled physnames, which start with _Z. */
2347 if (!(strncmp (new_sublist->fn_field.physname,
2348 main_fn_name, slen) == 0
2349 && new_sublist->fn_field.physname[slen] == '_'
2350 && new_sublist->fn_field.physname[slen + 1] == '_'))
2351 {
2352 new_sublist->fn_field.is_stub = 1;
2353 }
2354 break;
2355 }
2356
2357 default:
2358 /* error */
2359 complaint (&symfile_complaints,
2360 "member function type missing, got '%c'", (*pp)[-1]);
2361 /* Fall through into normal member function. */
2362
2363 case '.':
2364 /* normal member function. */
2365 new_sublist->fn_field.voffset = 0;
2366 new_sublist->fn_field.fcontext = 0;
2367 break;
2368 }
2369
2370 new_sublist->next = sublist;
2371 sublist = new_sublist;
2372 length++;
2373 STABS_CONTINUE (pp, objfile);
2374 }
2375 while (**pp != ';' && **pp != '\0');
2376
2377 (*pp)++;
2378 STABS_CONTINUE (pp, objfile);
2379
2380 /* Skip GCC 3.X member functions which are duplicates of the callable
2381 constructor/destructor. */
2382 if (strcmp (main_fn_name, "__base_ctor") == 0
2383 || strcmp (main_fn_name, "__base_dtor") == 0
2384 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2385 {
2386 xfree (main_fn_name);
2387 }
2388 else
2389 {
2390 int has_stub = 0;
2391 int has_destructor = 0, has_other = 0;
2392 int is_v3 = 0;
2393 struct next_fnfield *tmp_sublist;
2394
2395 /* Various versions of GCC emit various mostly-useless
2396 strings in the name field for special member functions.
2397
2398 For stub methods, we need to defer correcting the name
2399 until we are ready to unstub the method, because the current
2400 name string is used by gdb_mangle_name. The only stub methods
2401 of concern here are GNU v2 operators; other methods have their
2402 names correct (see caveat below).
2403
2404 For non-stub methods, in GNU v3, we have a complete physname.
2405 Therefore we can safely correct the name now. This primarily
2406 affects constructors and destructors, whose name will be
2407 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2408 operators will also have incorrect names; for instance,
2409 "operator int" will be named "operator i" (i.e. the type is
2410 mangled).
2411
2412 For non-stub methods in GNU v2, we have no easy way to
2413 know if we have a complete physname or not. For most
2414 methods the result depends on the platform (if CPLUS_MARKER
2415 can be `$' or `.', it will use minimal debug information, or
2416 otherwise the full physname will be included).
2417
2418 Rather than dealing with this, we take a different approach.
2419 For v3 mangled names, we can use the full physname; for v2,
2420 we use cplus_demangle_opname (which is actually v2 specific),
2421 because the only interesting names are all operators - once again
2422 barring the caveat below. Skip this process if any method in the
2423 group is a stub, to prevent our fouling up the workings of
2424 gdb_mangle_name.
2425
2426 The caveat: GCC 2.95.x (and earlier?) put constructors and
2427 destructors in the same method group. We need to split this
2428 into two groups, because they should have different names.
2429 So for each method group we check whether it contains both
2430 routines whose physname appears to be a destructor (the physnames
2431 for and destructors are always provided, due to quirks in v2
2432 mangling) and routines whose physname does not appear to be a
2433 destructor. If so then we break up the list into two halves.
2434 Even if the constructors and destructors aren't in the same group
2435 the destructor will still lack the leading tilde, so that also
2436 needs to be fixed.
2437
2438 So, to summarize what we expect and handle here:
2439
2440 Given Given Real Real Action
2441 method name physname physname method name
2442
2443 __opi [none] __opi__3Foo operator int opname
2444 [now or later]
2445 Foo _._3Foo _._3Foo ~Foo separate and
2446 rename
2447 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2448 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2449 */
2450
2451 tmp_sublist = sublist;
2452 while (tmp_sublist != NULL)
2453 {
2454 if (tmp_sublist->fn_field.is_stub)
2455 has_stub = 1;
2456 if (tmp_sublist->fn_field.physname[0] == '_'
2457 && tmp_sublist->fn_field.physname[1] == 'Z')
2458 is_v3 = 1;
2459
2460 if (is_destructor_name (tmp_sublist->fn_field.physname))
2461 has_destructor++;
2462 else
2463 has_other++;
2464
2465 tmp_sublist = tmp_sublist->next;
2466 }
2467
2468 if (has_destructor && has_other)
2469 {
2470 struct next_fnfieldlist *destr_fnlist;
2471 struct next_fnfield *last_sublist;
2472
2473 /* Create a new fn_fieldlist for the destructors. */
2474
2475 destr_fnlist = (struct next_fnfieldlist *)
2476 xmalloc (sizeof (struct next_fnfieldlist));
2477 make_cleanup (xfree, destr_fnlist);
2478 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2479 destr_fnlist->fn_fieldlist.name
2480 = obconcat (&objfile->objfile_obstack, "", "~",
2481 new_fnlist->fn_fieldlist.name);
2482
2483 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2484 obstack_alloc (&objfile->objfile_obstack,
2485 sizeof (struct fn_field) * has_destructor);
2486 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2487 sizeof (struct fn_field) * has_destructor);
2488 tmp_sublist = sublist;
2489 last_sublist = NULL;
2490 i = 0;
2491 while (tmp_sublist != NULL)
2492 {
2493 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2494 {
2495 tmp_sublist = tmp_sublist->next;
2496 continue;
2497 }
2498
2499 destr_fnlist->fn_fieldlist.fn_fields[i++]
2500 = tmp_sublist->fn_field;
2501 if (last_sublist)
2502 last_sublist->next = tmp_sublist->next;
2503 else
2504 sublist = tmp_sublist->next;
2505 last_sublist = tmp_sublist;
2506 tmp_sublist = tmp_sublist->next;
2507 }
2508
2509 destr_fnlist->fn_fieldlist.length = has_destructor;
2510 destr_fnlist->next = fip->fnlist;
2511 fip->fnlist = destr_fnlist;
2512 nfn_fields++;
2513 total_length += has_destructor;
2514 length -= has_destructor;
2515 }
2516 else if (is_v3)
2517 {
2518 /* v3 mangling prevents the use of abbreviated physnames,
2519 so we can do this here. There are stubbed methods in v3
2520 only:
2521 - in -gstabs instead of -gstabs+
2522 - or for static methods, which are output as a function type
2523 instead of a method type. */
2524
2525 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2526 sublist->fn_field.physname);
2527 }
2528 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2529 {
2530 new_fnlist->fn_fieldlist.name = concat ("~", main_fn_name, NULL);
2531 xfree (main_fn_name);
2532 }
2533 else if (!has_stub)
2534 {
2535 char dem_opname[256];
2536 int ret;
2537 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2538 dem_opname, DMGL_ANSI);
2539 if (!ret)
2540 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2541 dem_opname, 0);
2542 if (ret)
2543 new_fnlist->fn_fieldlist.name
2544 = obsavestring (dem_opname, strlen (dem_opname),
2545 &objfile->objfile_obstack);
2546 }
2547
2548 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2549 obstack_alloc (&objfile->objfile_obstack,
2550 sizeof (struct fn_field) * length);
2551 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2552 sizeof (struct fn_field) * length);
2553 for (i = length; (i--, sublist); sublist = sublist->next)
2554 {
2555 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2556 }
2557
2558 new_fnlist->fn_fieldlist.length = length;
2559 new_fnlist->next = fip->fnlist;
2560 fip->fnlist = new_fnlist;
2561 nfn_fields++;
2562 total_length += length;
2563 }
2564 }
2565
2566 if (nfn_fields)
2567 {
2568 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2569 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2570 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2571 memset (TYPE_FN_FIELDLISTS (type), 0,
2572 sizeof (struct fn_fieldlist) * nfn_fields);
2573 TYPE_NFN_FIELDS (type) = nfn_fields;
2574 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2575 }
2576
2577 return 1;
2578 }
2579
2580 /* Special GNU C++ name.
2581
2582 Returns 1 for success, 0 for failure. "failure" means that we can't
2583 keep parsing and it's time for error_type(). */
2584
2585 static int
2586 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2587 struct objfile *objfile)
2588 {
2589 char *p;
2590 char *name;
2591 char cpp_abbrev;
2592 struct type *context;
2593
2594 p = *pp;
2595 if (*++p == 'v')
2596 {
2597 name = NULL;
2598 cpp_abbrev = *++p;
2599
2600 *pp = p + 1;
2601
2602 /* At this point, *pp points to something like "22:23=*22...",
2603 where the type number before the ':' is the "context" and
2604 everything after is a regular type definition. Lookup the
2605 type, find it's name, and construct the field name. */
2606
2607 context = read_type (pp, objfile);
2608
2609 switch (cpp_abbrev)
2610 {
2611 case 'f': /* $vf -- a virtual function table pointer */
2612 name = type_name_no_tag (context);
2613 if (name == NULL)
2614 {
2615 name = "";
2616 }
2617 fip->list->field.name =
2618 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2619 break;
2620
2621 case 'b': /* $vb -- a virtual bsomethingorother */
2622 name = type_name_no_tag (context);
2623 if (name == NULL)
2624 {
2625 complaint (&symfile_complaints,
2626 "C++ abbreviated type name unknown at symtab pos %d",
2627 symnum);
2628 name = "FOO";
2629 }
2630 fip->list->field.name =
2631 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2632 break;
2633
2634 default:
2635 invalid_cpp_abbrev_complaint (*pp);
2636 fip->list->field.name =
2637 obconcat (&objfile->objfile_obstack,
2638 "INVALID_CPLUSPLUS_ABBREV", "", "");
2639 break;
2640 }
2641
2642 /* At this point, *pp points to the ':'. Skip it and read the
2643 field type. */
2644
2645 p = ++(*pp);
2646 if (p[-1] != ':')
2647 {
2648 invalid_cpp_abbrev_complaint (*pp);
2649 return 0;
2650 }
2651 fip->list->field.type = read_type (pp, objfile);
2652 if (**pp == ',')
2653 (*pp)++; /* Skip the comma. */
2654 else
2655 return 0;
2656
2657 {
2658 int nbits;
2659 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2660 0);
2661 if (nbits != 0)
2662 return 0;
2663 }
2664 /* This field is unpacked. */
2665 FIELD_BITSIZE (fip->list->field) = 0;
2666 fip->list->visibility = VISIBILITY_PRIVATE;
2667 }
2668 else
2669 {
2670 invalid_cpp_abbrev_complaint (*pp);
2671 /* We have no idea what syntax an unrecognized abbrev would have, so
2672 better return 0. If we returned 1, we would need to at least advance
2673 *pp to avoid an infinite loop. */
2674 return 0;
2675 }
2676 return 1;
2677 }
2678
2679 static void
2680 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2681 struct type *type, struct objfile *objfile)
2682 {
2683 fip->list->field.name =
2684 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2685 *pp = p + 1;
2686
2687 /* This means we have a visibility for a field coming. */
2688 if (**pp == '/')
2689 {
2690 (*pp)++;
2691 fip->list->visibility = *(*pp)++;
2692 }
2693 else
2694 {
2695 /* normal dbx-style format, no explicit visibility */
2696 fip->list->visibility = VISIBILITY_PUBLIC;
2697 }
2698
2699 fip->list->field.type = read_type (pp, objfile);
2700 if (**pp == ':')
2701 {
2702 p = ++(*pp);
2703 #if 0
2704 /* Possible future hook for nested types. */
2705 if (**pp == '!')
2706 {
2707 fip->list->field.bitpos = (long) -2; /* nested type */
2708 p = ++(*pp);
2709 }
2710 else
2711 ...;
2712 #endif
2713 while (*p != ';')
2714 {
2715 p++;
2716 }
2717 /* Static class member. */
2718 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2719 *pp = p + 1;
2720 return;
2721 }
2722 else if (**pp != ',')
2723 {
2724 /* Bad structure-type format. */
2725 stabs_general_complaint ("bad structure-type format");
2726 return;
2727 }
2728
2729 (*pp)++; /* Skip the comma. */
2730
2731 {
2732 int nbits;
2733 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2734 if (nbits != 0)
2735 {
2736 stabs_general_complaint ("bad structure-type format");
2737 return;
2738 }
2739 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2740 if (nbits != 0)
2741 {
2742 stabs_general_complaint ("bad structure-type format");
2743 return;
2744 }
2745 }
2746
2747 if (FIELD_BITPOS (fip->list->field) == 0
2748 && FIELD_BITSIZE (fip->list->field) == 0)
2749 {
2750 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2751 it is a field which has been optimized out. The correct stab for
2752 this case is to use VISIBILITY_IGNORE, but that is a recent
2753 invention. (2) It is a 0-size array. For example
2754 union { int num; char str[0]; } foo. Printing "<no value>" for
2755 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2756 will continue to work, and a 0-size array as a whole doesn't
2757 have any contents to print.
2758
2759 I suspect this probably could also happen with gcc -gstabs (not
2760 -gstabs+) for static fields, and perhaps other C++ extensions.
2761 Hopefully few people use -gstabs with gdb, since it is intended
2762 for dbx compatibility. */
2763
2764 /* Ignore this field. */
2765 fip->list->visibility = VISIBILITY_IGNORE;
2766 }
2767 else
2768 {
2769 /* Detect an unpacked field and mark it as such.
2770 dbx gives a bit size for all fields.
2771 Note that forward refs cannot be packed,
2772 and treat enums as if they had the width of ints. */
2773
2774 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2775
2776 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2777 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2778 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2779 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2780 {
2781 FIELD_BITSIZE (fip->list->field) = 0;
2782 }
2783 if ((FIELD_BITSIZE (fip->list->field)
2784 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2785 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2786 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
2787 )
2788 &&
2789 FIELD_BITPOS (fip->list->field) % 8 == 0)
2790 {
2791 FIELD_BITSIZE (fip->list->field) = 0;
2792 }
2793 }
2794 }
2795
2796
2797 /* Read struct or class data fields. They have the form:
2798
2799 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2800
2801 At the end, we see a semicolon instead of a field.
2802
2803 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2804 a static field.
2805
2806 The optional VISIBILITY is one of:
2807
2808 '/0' (VISIBILITY_PRIVATE)
2809 '/1' (VISIBILITY_PROTECTED)
2810 '/2' (VISIBILITY_PUBLIC)
2811 '/9' (VISIBILITY_IGNORE)
2812
2813 or nothing, for C style fields with public visibility.
2814
2815 Returns 1 for success, 0 for failure. */
2816
2817 static int
2818 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2819 struct objfile *objfile)
2820 {
2821 char *p;
2822 struct nextfield *new;
2823
2824 /* We better set p right now, in case there are no fields at all... */
2825
2826 p = *pp;
2827
2828 /* Read each data member type until we find the terminating ';' at the end of
2829 the data member list, or break for some other reason such as finding the
2830 start of the member function list. */
2831 /* Stab string for structure/union does not end with two ';' in
2832 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2833
2834 while (**pp != ';' && **pp != '\0')
2835 {
2836 STABS_CONTINUE (pp, objfile);
2837 /* Get space to record the next field's data. */
2838 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2839 make_cleanup (xfree, new);
2840 memset (new, 0, sizeof (struct nextfield));
2841 new->next = fip->list;
2842 fip->list = new;
2843
2844 /* Get the field name. */
2845 p = *pp;
2846
2847 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2848 unless the CPLUS_MARKER is followed by an underscore, in
2849 which case it is just the name of an anonymous type, which we
2850 should handle like any other type name. */
2851
2852 if (is_cplus_marker (p[0]) && p[1] != '_')
2853 {
2854 if (!read_cpp_abbrev (fip, pp, type, objfile))
2855 return 0;
2856 continue;
2857 }
2858
2859 /* Look for the ':' that separates the field name from the field
2860 values. Data members are delimited by a single ':', while member
2861 functions are delimited by a pair of ':'s. When we hit the member
2862 functions (if any), terminate scan loop and return. */
2863
2864 while (*p != ':' && *p != '\0')
2865 {
2866 p++;
2867 }
2868 if (*p == '\0')
2869 return 0;
2870
2871 /* Check to see if we have hit the member functions yet. */
2872 if (p[1] == ':')
2873 {
2874 break;
2875 }
2876 read_one_struct_field (fip, pp, p, type, objfile);
2877 }
2878 if (p[0] == ':' && p[1] == ':')
2879 {
2880 /* (the deleted) chill the list of fields: the last entry (at
2881 the head) is a partially constructed entry which we now
2882 scrub. */
2883 fip->list = fip->list->next;
2884 }
2885 return 1;
2886 }
2887 /* *INDENT-OFF* */
2888 /* The stabs for C++ derived classes contain baseclass information which
2889 is marked by a '!' character after the total size. This function is
2890 called when we encounter the baseclass marker, and slurps up all the
2891 baseclass information.
2892
2893 Immediately following the '!' marker is the number of base classes that
2894 the class is derived from, followed by information for each base class.
2895 For each base class, there are two visibility specifiers, a bit offset
2896 to the base class information within the derived class, a reference to
2897 the type for the base class, and a terminating semicolon.
2898
2899 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2900 ^^ ^ ^ ^ ^ ^ ^
2901 Baseclass information marker __________________|| | | | | | |
2902 Number of baseclasses __________________________| | | | | | |
2903 Visibility specifiers (2) ________________________| | | | | |
2904 Offset in bits from start of class _________________| | | | |
2905 Type number for base class ___________________________| | | |
2906 Visibility specifiers (2) _______________________________| | |
2907 Offset in bits from start of class ________________________| |
2908 Type number of base class ____________________________________|
2909
2910 Return 1 for success, 0 for (error-type-inducing) failure. */
2911 /* *INDENT-ON* */
2912
2913
2914
2915 static int
2916 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2917 struct objfile *objfile)
2918 {
2919 int i;
2920 struct nextfield *new;
2921
2922 if (**pp != '!')
2923 {
2924 return 1;
2925 }
2926 else
2927 {
2928 /* Skip the '!' baseclass information marker. */
2929 (*pp)++;
2930 }
2931
2932 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2933 {
2934 int nbits;
2935 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2936 if (nbits != 0)
2937 return 0;
2938 }
2939
2940 #if 0
2941 /* Some stupid compilers have trouble with the following, so break
2942 it up into simpler expressions. */
2943 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2944 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2945 #else
2946 {
2947 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2948 char *pointer;
2949
2950 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2951 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2952 }
2953 #endif /* 0 */
2954
2955 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2956
2957 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2958 {
2959 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2960 make_cleanup (xfree, new);
2961 memset (new, 0, sizeof (struct nextfield));
2962 new->next = fip->list;
2963 fip->list = new;
2964 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
2965
2966 STABS_CONTINUE (pp, objfile);
2967 switch (**pp)
2968 {
2969 case '0':
2970 /* Nothing to do. */
2971 break;
2972 case '1':
2973 SET_TYPE_FIELD_VIRTUAL (type, i);
2974 break;
2975 default:
2976 /* Unknown character. Complain and treat it as non-virtual. */
2977 {
2978 complaint (&symfile_complaints,
2979 "Unknown virtual character `%c' for baseclass", **pp);
2980 }
2981 }
2982 ++(*pp);
2983
2984 new->visibility = *(*pp)++;
2985 switch (new->visibility)
2986 {
2987 case VISIBILITY_PRIVATE:
2988 case VISIBILITY_PROTECTED:
2989 case VISIBILITY_PUBLIC:
2990 break;
2991 default:
2992 /* Bad visibility format. Complain and treat it as
2993 public. */
2994 {
2995 complaint (&symfile_complaints,
2996 "Unknown visibility `%c' for baseclass",
2997 new->visibility);
2998 new->visibility = VISIBILITY_PUBLIC;
2999 }
3000 }
3001
3002 {
3003 int nbits;
3004
3005 /* The remaining value is the bit offset of the portion of the object
3006 corresponding to this baseclass. Always zero in the absence of
3007 multiple inheritance. */
3008
3009 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3010 if (nbits != 0)
3011 return 0;
3012 }
3013
3014 /* The last piece of baseclass information is the type of the
3015 base class. Read it, and remember it's type name as this
3016 field's name. */
3017
3018 new->field.type = read_type (pp, objfile);
3019 new->field.name = type_name_no_tag (new->field.type);
3020
3021 /* skip trailing ';' and bump count of number of fields seen */
3022 if (**pp == ';')
3023 (*pp)++;
3024 else
3025 return 0;
3026 }
3027 return 1;
3028 }
3029
3030 /* The tail end of stabs for C++ classes that contain a virtual function
3031 pointer contains a tilde, a %, and a type number.
3032 The type number refers to the base class (possibly this class itself) which
3033 contains the vtable pointer for the current class.
3034
3035 This function is called when we have parsed all the method declarations,
3036 so we can look for the vptr base class info. */
3037
3038 static int
3039 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3040 struct objfile *objfile)
3041 {
3042 char *p;
3043
3044 STABS_CONTINUE (pp, objfile);
3045
3046 /* If we are positioned at a ';', then skip it. */
3047 if (**pp == ';')
3048 {
3049 (*pp)++;
3050 }
3051
3052 if (**pp == '~')
3053 {
3054 (*pp)++;
3055
3056 if (**pp == '=' || **pp == '+' || **pp == '-')
3057 {
3058 /* Obsolete flags that used to indicate the presence
3059 of constructors and/or destructors. */
3060 (*pp)++;
3061 }
3062
3063 /* Read either a '%' or the final ';'. */
3064 if (*(*pp)++ == '%')
3065 {
3066 /* The next number is the type number of the base class
3067 (possibly our own class) which supplies the vtable for
3068 this class. Parse it out, and search that class to find
3069 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3070 and TYPE_VPTR_FIELDNO. */
3071
3072 struct type *t;
3073 int i;
3074
3075 t = read_type (pp, objfile);
3076 p = (*pp)++;
3077 while (*p != '\0' && *p != ';')
3078 {
3079 p++;
3080 }
3081 if (*p == '\0')
3082 {
3083 /* Premature end of symbol. */
3084 return 0;
3085 }
3086
3087 TYPE_VPTR_BASETYPE (type) = t;
3088 if (type == t) /* Our own class provides vtbl ptr */
3089 {
3090 for (i = TYPE_NFIELDS (t) - 1;
3091 i >= TYPE_N_BASECLASSES (t);
3092 --i)
3093 {
3094 char *name = TYPE_FIELD_NAME (t, i);
3095 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3096 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3097 {
3098 TYPE_VPTR_FIELDNO (type) = i;
3099 goto gotit;
3100 }
3101 }
3102 /* Virtual function table field not found. */
3103 complaint (&symfile_complaints,
3104 "virtual function table pointer not found when defining class `%s'",
3105 TYPE_NAME (type));
3106 return 0;
3107 }
3108 else
3109 {
3110 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3111 }
3112
3113 gotit:
3114 *pp = p + 1;
3115 }
3116 }
3117 return 1;
3118 }
3119
3120 static int
3121 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3122 {
3123 int n;
3124
3125 for (n = TYPE_NFN_FIELDS (type);
3126 fip->fnlist != NULL;
3127 fip->fnlist = fip->fnlist->next)
3128 {
3129 --n; /* Circumvent Sun3 compiler bug */
3130 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3131 }
3132 return 1;
3133 }
3134
3135 /* Create the vector of fields, and record how big it is.
3136 We need this info to record proper virtual function table information
3137 for this class's virtual functions. */
3138
3139 static int
3140 attach_fields_to_type (struct field_info *fip, struct type *type,
3141 struct objfile *objfile)
3142 {
3143 int nfields = 0;
3144 int non_public_fields = 0;
3145 struct nextfield *scan;
3146
3147 /* Count up the number of fields that we have, as well as taking note of
3148 whether or not there are any non-public fields, which requires us to
3149 allocate and build the private_field_bits and protected_field_bits
3150 bitfields. */
3151
3152 for (scan = fip->list; scan != NULL; scan = scan->next)
3153 {
3154 nfields++;
3155 if (scan->visibility != VISIBILITY_PUBLIC)
3156 {
3157 non_public_fields++;
3158 }
3159 }
3160
3161 /* Now we know how many fields there are, and whether or not there are any
3162 non-public fields. Record the field count, allocate space for the
3163 array of fields, and create blank visibility bitfields if necessary. */
3164
3165 TYPE_NFIELDS (type) = nfields;
3166 TYPE_FIELDS (type) = (struct field *)
3167 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3168 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3169
3170 if (non_public_fields)
3171 {
3172 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3173
3174 TYPE_FIELD_PRIVATE_BITS (type) =
3175 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3176 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3177
3178 TYPE_FIELD_PROTECTED_BITS (type) =
3179 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3180 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3181
3182 TYPE_FIELD_IGNORE_BITS (type) =
3183 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3184 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3185 }
3186
3187 /* Copy the saved-up fields into the field vector. Start from the head
3188 of the list, adding to the tail of the field array, so that they end
3189 up in the same order in the array in which they were added to the list. */
3190
3191 while (nfields-- > 0)
3192 {
3193 TYPE_FIELD (type, nfields) = fip->list->field;
3194 switch (fip->list->visibility)
3195 {
3196 case VISIBILITY_PRIVATE:
3197 SET_TYPE_FIELD_PRIVATE (type, nfields);
3198 break;
3199
3200 case VISIBILITY_PROTECTED:
3201 SET_TYPE_FIELD_PROTECTED (type, nfields);
3202 break;
3203
3204 case VISIBILITY_IGNORE:
3205 SET_TYPE_FIELD_IGNORE (type, nfields);
3206 break;
3207
3208 case VISIBILITY_PUBLIC:
3209 break;
3210
3211 default:
3212 /* Unknown visibility. Complain and treat it as public. */
3213 {
3214 complaint (&symfile_complaints, "Unknown visibility `%c' for field",
3215 fip->list->visibility);
3216 }
3217 break;
3218 }
3219 fip->list = fip->list->next;
3220 }
3221 return 1;
3222 }
3223
3224
3225 /* Complain that the compiler has emitted more than one definition for the
3226 structure type TYPE. */
3227 static void
3228 complain_about_struct_wipeout (struct type *type)
3229 {
3230 char *name = "";
3231 char *kind = "";
3232
3233 if (TYPE_TAG_NAME (type))
3234 {
3235 name = TYPE_TAG_NAME (type);
3236 switch (TYPE_CODE (type))
3237 {
3238 case TYPE_CODE_STRUCT: kind = "struct "; break;
3239 case TYPE_CODE_UNION: kind = "union "; break;
3240 case TYPE_CODE_ENUM: kind = "enum "; break;
3241 default: kind = "";
3242 }
3243 }
3244 else if (TYPE_NAME (type))
3245 {
3246 name = TYPE_NAME (type);
3247 kind = "";
3248 }
3249 else
3250 {
3251 name = "<unknown>";
3252 kind = "";
3253 }
3254
3255 complaint (&symfile_complaints,
3256 "struct/union type gets multiply defined: %s%s", kind, name);
3257 }
3258
3259
3260 /* Read the description of a structure (or union type) and return an object
3261 describing the type.
3262
3263 PP points to a character pointer that points to the next unconsumed token
3264 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3265 *PP will point to "4a:1,0,32;;".
3266
3267 TYPE points to an incomplete type that needs to be filled in.
3268
3269 OBJFILE points to the current objfile from which the stabs information is
3270 being read. (Note that it is redundant in that TYPE also contains a pointer
3271 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3272 */
3273
3274 static struct type *
3275 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3276 struct objfile *objfile)
3277 {
3278 struct cleanup *back_to;
3279 struct field_info fi;
3280
3281 fi.list = NULL;
3282 fi.fnlist = NULL;
3283
3284 /* When describing struct/union/class types in stabs, G++ always drops
3285 all qualifications from the name. So if you've got:
3286 struct A { ... struct B { ... }; ... };
3287 then G++ will emit stabs for `struct A::B' that call it simply
3288 `struct B'. Obviously, if you've got a real top-level definition for
3289 `struct B', or other nested definitions, this is going to cause
3290 problems.
3291
3292 Obviously, GDB can't fix this by itself, but it can at least avoid
3293 scribbling on existing structure type objects when new definitions
3294 appear. */
3295 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3296 || TYPE_STUB (type)))
3297 {
3298 complain_about_struct_wipeout (type);
3299
3300 /* It's probably best to return the type unchanged. */
3301 return type;
3302 }
3303
3304 back_to = make_cleanup (null_cleanup, 0);
3305
3306 INIT_CPLUS_SPECIFIC (type);
3307 TYPE_CODE (type) = type_code;
3308 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3309
3310 /* First comes the total size in bytes. */
3311
3312 {
3313 int nbits;
3314 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3315 if (nbits != 0)
3316 return error_type (pp, objfile);
3317 }
3318
3319 /* Now read the baseclasses, if any, read the regular C struct or C++
3320 class member fields, attach the fields to the type, read the C++
3321 member functions, attach them to the type, and then read any tilde
3322 field (baseclass specifier for the class holding the main vtable). */
3323
3324 if (!read_baseclasses (&fi, pp, type, objfile)
3325 || !read_struct_fields (&fi, pp, type, objfile)
3326 || !attach_fields_to_type (&fi, type, objfile)
3327 || !read_member_functions (&fi, pp, type, objfile)
3328 || !attach_fn_fields_to_type (&fi, type)
3329 || !read_tilde_fields (&fi, pp, type, objfile))
3330 {
3331 type = error_type (pp, objfile);
3332 }
3333
3334 do_cleanups (back_to);
3335 return (type);
3336 }
3337
3338 /* Read a definition of an array type,
3339 and create and return a suitable type object.
3340 Also creates a range type which represents the bounds of that
3341 array. */
3342
3343 static struct type *
3344 read_array_type (char **pp, struct type *type,
3345 struct objfile *objfile)
3346 {
3347 struct type *index_type, *element_type, *range_type;
3348 int lower, upper;
3349 int adjustable = 0;
3350 int nbits;
3351
3352 /* Format of an array type:
3353 "ar<index type>;lower;upper;<array_contents_type>".
3354 OS9000: "arlower,upper;<array_contents_type>".
3355
3356 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3357 for these, produce a type like float[][]. */
3358
3359 {
3360 index_type = read_type (pp, objfile);
3361 if (**pp != ';')
3362 /* Improper format of array type decl. */
3363 return error_type (pp, objfile);
3364 ++*pp;
3365 }
3366
3367 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3368 {
3369 (*pp)++;
3370 adjustable = 1;
3371 }
3372 lower = read_huge_number (pp, ';', &nbits, 0);
3373
3374 if (nbits != 0)
3375 return error_type (pp, objfile);
3376
3377 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3378 {
3379 (*pp)++;
3380 adjustable = 1;
3381 }
3382 upper = read_huge_number (pp, ';', &nbits, 0);
3383 if (nbits != 0)
3384 return error_type (pp, objfile);
3385
3386 element_type = read_type (pp, objfile);
3387
3388 if (adjustable)
3389 {
3390 lower = 0;
3391 upper = -1;
3392 }
3393
3394 range_type =
3395 create_range_type ((struct type *) NULL, index_type, lower, upper);
3396 type = create_array_type (type, element_type, range_type);
3397
3398 return type;
3399 }
3400
3401
3402 /* Read a definition of an enumeration type,
3403 and create and return a suitable type object.
3404 Also defines the symbols that represent the values of the type. */
3405
3406 static struct type *
3407 read_enum_type (char **pp, struct type *type,
3408 struct objfile *objfile)
3409 {
3410 char *p;
3411 char *name;
3412 long n;
3413 struct symbol *sym;
3414 int nsyms = 0;
3415 struct pending **symlist;
3416 struct pending *osyms, *syms;
3417 int o_nsyms;
3418 int nbits;
3419 int unsigned_enum = 1;
3420
3421 #if 0
3422 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3423 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3424 to do? For now, force all enum values to file scope. */
3425 if (within_function)
3426 symlist = &local_symbols;
3427 else
3428 #endif
3429 symlist = &file_symbols;
3430 osyms = *symlist;
3431 o_nsyms = osyms ? osyms->nsyms : 0;
3432
3433 /* The aix4 compiler emits an extra field before the enum members;
3434 my guess is it's a type of some sort. Just ignore it. */
3435 if (**pp == '-')
3436 {
3437 /* Skip over the type. */
3438 while (**pp != ':')
3439 (*pp)++;
3440
3441 /* Skip over the colon. */
3442 (*pp)++;
3443 }
3444
3445 /* Read the value-names and their values.
3446 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3447 A semicolon or comma instead of a NAME means the end. */
3448 while (**pp && **pp != ';' && **pp != ',')
3449 {
3450 STABS_CONTINUE (pp, objfile);
3451 p = *pp;
3452 while (*p != ':')
3453 p++;
3454 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3455 *pp = p + 1;
3456 n = read_huge_number (pp, ',', &nbits, 0);
3457 if (nbits != 0)
3458 return error_type (pp, objfile);
3459
3460 sym = (struct symbol *)
3461 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3462 memset (sym, 0, sizeof (struct symbol));
3463 DEPRECATED_SYMBOL_NAME (sym) = name;
3464 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3465 SYMBOL_CLASS (sym) = LOC_CONST;
3466 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3467 SYMBOL_VALUE (sym) = n;
3468 if (n < 0)
3469 unsigned_enum = 0;
3470 add_symbol_to_list (sym, symlist);
3471 nsyms++;
3472 }
3473
3474 if (**pp == ';')
3475 (*pp)++; /* Skip the semicolon. */
3476
3477 /* Now fill in the fields of the type-structure. */
3478
3479 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3480 TYPE_CODE (type) = TYPE_CODE_ENUM;
3481 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3482 if (unsigned_enum)
3483 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3484 TYPE_NFIELDS (type) = nsyms;
3485 TYPE_FIELDS (type) = (struct field *)
3486 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3487 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3488
3489 /* Find the symbols for the values and put them into the type.
3490 The symbols can be found in the symlist that we put them on
3491 to cause them to be defined. osyms contains the old value
3492 of that symlist; everything up to there was defined by us. */
3493 /* Note that we preserve the order of the enum constants, so
3494 that in something like "enum {FOO, LAST_THING=FOO}" we print
3495 FOO, not LAST_THING. */
3496
3497 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3498 {
3499 int last = syms == osyms ? o_nsyms : 0;
3500 int j = syms->nsyms;
3501 for (; --j >= last; --n)
3502 {
3503 struct symbol *xsym = syms->symbol[j];
3504 SYMBOL_TYPE (xsym) = type;
3505 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3506 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3507 TYPE_FIELD_BITSIZE (type, n) = 0;
3508 }
3509 if (syms == osyms)
3510 break;
3511 }
3512
3513 return type;
3514 }
3515
3516 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3517 typedefs in every file (for int, long, etc):
3518
3519 type = b <signed> <width> <format type>; <offset>; <nbits>
3520 signed = u or s.
3521 optional format type = c or b for char or boolean.
3522 offset = offset from high order bit to start bit of type.
3523 width is # bytes in object of this type, nbits is # bits in type.
3524
3525 The width/offset stuff appears to be for small objects stored in
3526 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3527 FIXME. */
3528
3529 static struct type *
3530 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3531 {
3532 int type_bits;
3533 int nbits;
3534 int signed_type;
3535 enum type_code code = TYPE_CODE_INT;
3536
3537 switch (**pp)
3538 {
3539 case 's':
3540 signed_type = 1;
3541 break;
3542 case 'u':
3543 signed_type = 0;
3544 break;
3545 default:
3546 return error_type (pp, objfile);
3547 }
3548 (*pp)++;
3549
3550 /* For some odd reason, all forms of char put a c here. This is strange
3551 because no other type has this honor. We can safely ignore this because
3552 we actually determine 'char'acterness by the number of bits specified in
3553 the descriptor.
3554 Boolean forms, e.g Fortran logical*X, put a b here. */
3555
3556 if (**pp == 'c')
3557 (*pp)++;
3558 else if (**pp == 'b')
3559 {
3560 code = TYPE_CODE_BOOL;
3561 (*pp)++;
3562 }
3563
3564 /* The first number appears to be the number of bytes occupied
3565 by this type, except that unsigned short is 4 instead of 2.
3566 Since this information is redundant with the third number,
3567 we will ignore it. */
3568 read_huge_number (pp, ';', &nbits, 0);
3569 if (nbits != 0)
3570 return error_type (pp, objfile);
3571
3572 /* The second number is always 0, so ignore it too. */
3573 read_huge_number (pp, ';', &nbits, 0);
3574 if (nbits != 0)
3575 return error_type (pp, objfile);
3576
3577 /* The third number is the number of bits for this type. */
3578 type_bits = read_huge_number (pp, 0, &nbits, 0);
3579 if (nbits != 0)
3580 return error_type (pp, objfile);
3581 /* The type *should* end with a semicolon. If it are embedded
3582 in a larger type the semicolon may be the only way to know where
3583 the type ends. If this type is at the end of the stabstring we
3584 can deal with the omitted semicolon (but we don't have to like
3585 it). Don't bother to complain(), Sun's compiler omits the semicolon
3586 for "void". */
3587 if (**pp == ';')
3588 ++(*pp);
3589
3590 if (type_bits == 0)
3591 return init_type (TYPE_CODE_VOID, 1,
3592 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3593 objfile);
3594 else
3595 return init_type (code,
3596 type_bits / TARGET_CHAR_BIT,
3597 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3598 objfile);
3599 }
3600
3601 static struct type *
3602 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3603 {
3604 int nbits;
3605 int details;
3606 int nbytes;
3607 struct type *rettype;
3608
3609 /* The first number has more details about the type, for example
3610 FN_COMPLEX. */
3611 details = read_huge_number (pp, ';', &nbits, 0);
3612 if (nbits != 0)
3613 return error_type (pp, objfile);
3614
3615 /* The second number is the number of bytes occupied by this type */
3616 nbytes = read_huge_number (pp, ';', &nbits, 0);
3617 if (nbits != 0)
3618 return error_type (pp, objfile);
3619
3620 if (details == NF_COMPLEX || details == NF_COMPLEX16
3621 || details == NF_COMPLEX32)
3622 {
3623 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3624 TYPE_TARGET_TYPE (rettype)
3625 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3626 return rettype;
3627 }
3628
3629 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3630 }
3631
3632 /* Read a number from the string pointed to by *PP.
3633 The value of *PP is advanced over the number.
3634 If END is nonzero, the character that ends the
3635 number must match END, or an error happens;
3636 and that character is skipped if it does match.
3637 If END is zero, *PP is left pointing to that character.
3638
3639 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3640 the number is represented in an octal representation, assume that
3641 it is represented in a 2's complement representation with a size of
3642 TWOS_COMPLEMENT_BITS.
3643
3644 If the number fits in a long, set *BITS to 0 and return the value.
3645 If not, set *BITS to be the number of bits in the number and return 0.
3646
3647 If encounter garbage, set *BITS to -1 and return 0. */
3648
3649 static long
3650 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3651 {
3652 char *p = *pp;
3653 int sign = 1;
3654 int sign_bit;
3655 long n = 0;
3656 long sn = 0;
3657 int radix = 10;
3658 char overflow = 0;
3659 int nbits = 0;
3660 int c;
3661 long upper_limit;
3662 int twos_complement_representation = radix == 8 && twos_complement_bits > 0;
3663
3664 if (*p == '-')
3665 {
3666 sign = -1;
3667 p++;
3668 }
3669
3670 /* Leading zero means octal. GCC uses this to output values larger
3671 than an int (because that would be hard in decimal). */
3672 if (*p == '0')
3673 {
3674 radix = 8;
3675 p++;
3676 }
3677
3678 upper_limit = LONG_MAX / radix;
3679
3680 while ((c = *p++) >= '0' && c < ('0' + radix))
3681 {
3682 if (n <= upper_limit)
3683 {
3684 if (twos_complement_representation)
3685 {
3686 /* Octal, signed, twos complement representation. In this case,
3687 sn is the signed value, n is the corresponding absolute
3688 value. signed_bit is the position of the sign bit in the
3689 first three bits. */
3690 if (sn == 0)
3691 {
3692 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3693 sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3694 }
3695 else
3696 {
3697 sn *= radix;
3698 sn += c - '0';
3699 }
3700
3701 if (sn < 0)
3702 n = -sn;
3703 }
3704 else
3705 {
3706 /* unsigned representation */
3707 n *= radix;
3708 n += c - '0'; /* FIXME this overflows anyway */
3709 }
3710 }
3711 else
3712 overflow = 1;
3713
3714 /* This depends on large values being output in octal, which is
3715 what GCC does. */
3716 if (radix == 8)
3717 {
3718 if (nbits == 0)
3719 {
3720 if (c == '0')
3721 /* Ignore leading zeroes. */
3722 ;
3723 else if (c == '1')
3724 nbits = 1;
3725 else if (c == '2' || c == '3')
3726 nbits = 2;
3727 else
3728 nbits = 3;
3729 }
3730 else
3731 nbits += 3;
3732 }
3733 }
3734 if (end)
3735 {
3736 if (c && c != end)
3737 {
3738 if (bits != NULL)
3739 *bits = -1;
3740 return 0;
3741 }
3742 }
3743 else
3744 --p;
3745
3746 *pp = p;
3747 if (overflow)
3748 {
3749 if (nbits == 0)
3750 {
3751 /* Large decimal constants are an error (because it is hard to
3752 count how many bits are in them). */
3753 if (bits != NULL)
3754 *bits = -1;
3755 return 0;
3756 }
3757
3758 /* -0x7f is the same as 0x80. So deal with it by adding one to
3759 the number of bits. */
3760 if (sign == -1)
3761 ++nbits;
3762 if (bits)
3763 *bits = nbits;
3764 }
3765 else
3766 {
3767 if (bits)
3768 *bits = 0;
3769 if (twos_complement_representation)
3770 return sn;
3771 else
3772 return n * sign;
3773 }
3774 /* It's *BITS which has the interesting information. */
3775 return 0;
3776 }
3777
3778 static struct type *
3779 read_range_type (char **pp, int typenums[2], int type_size,
3780 struct objfile *objfile)
3781 {
3782 char *orig_pp = *pp;
3783 int rangenums[2];
3784 long n2, n3;
3785 int n2bits, n3bits;
3786 int self_subrange;
3787 struct type *result_type;
3788 struct type *index_type = NULL;
3789
3790 /* First comes a type we are a subrange of.
3791 In C it is usually 0, 1 or the type being defined. */
3792 if (read_type_number (pp, rangenums) != 0)
3793 return error_type (pp, objfile);
3794 self_subrange = (rangenums[0] == typenums[0] &&
3795 rangenums[1] == typenums[1]);
3796
3797 if (**pp == '=')
3798 {
3799 *pp = orig_pp;
3800 index_type = read_type (pp, objfile);
3801 }
3802
3803 /* A semicolon should now follow; skip it. */
3804 if (**pp == ';')
3805 (*pp)++;
3806
3807 /* The remaining two operands are usually lower and upper bounds
3808 of the range. But in some special cases they mean something else. */
3809 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3810 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3811
3812 if (n2bits == -1 || n3bits == -1)
3813 return error_type (pp, objfile);
3814
3815 if (index_type)
3816 goto handle_true_range;
3817
3818 /* If limits are huge, must be large integral type. */
3819 if (n2bits != 0 || n3bits != 0)
3820 {
3821 char got_signed = 0;
3822 char got_unsigned = 0;
3823 /* Number of bits in the type. */
3824 int nbits = 0;
3825
3826 /* If a type size attribute has been specified, the bounds of
3827 the range should fit in this size. If the lower bounds needs
3828 more bits than the upper bound, then the type is signed. */
3829 if (n2bits <= type_size && n3bits <= type_size)
3830 {
3831 if (n2bits == type_size && n2bits > n3bits)
3832 got_signed = 1;
3833 else
3834 got_unsigned = 1;
3835 nbits = type_size;
3836 }
3837 /* Range from 0 to <large number> is an unsigned large integral type. */
3838 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3839 {
3840 got_unsigned = 1;
3841 nbits = n3bits;
3842 }
3843 /* Range from <large number> to <large number>-1 is a large signed
3844 integral type. Take care of the case where <large number> doesn't
3845 fit in a long but <large number>-1 does. */
3846 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3847 || (n2bits != 0 && n3bits == 0
3848 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3849 && n3 == LONG_MAX))
3850 {
3851 got_signed = 1;
3852 nbits = n2bits;
3853 }
3854
3855 if (got_signed || got_unsigned)
3856 {
3857 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3858 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3859 objfile);
3860 }
3861 else
3862 return error_type (pp, objfile);
3863 }
3864
3865 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3866 if (self_subrange && n2 == 0 && n3 == 0)
3867 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3868
3869 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3870 is the width in bytes.
3871
3872 Fortran programs appear to use this for complex types also. To
3873 distinguish between floats and complex, g77 (and others?) seem
3874 to use self-subranges for the complexes, and subranges of int for
3875 the floats.
3876
3877 Also note that for complexes, g77 sets n2 to the size of one of
3878 the member floats, not the whole complex beast. My guess is that
3879 this was to work well with pre-COMPLEX versions of gdb. */
3880
3881 if (n3 == 0 && n2 > 0)
3882 {
3883 struct type *float_type
3884 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3885
3886 if (self_subrange)
3887 {
3888 struct type *complex_type =
3889 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3890 TYPE_TARGET_TYPE (complex_type) = float_type;
3891 return complex_type;
3892 }
3893 else
3894 return float_type;
3895 }
3896
3897 /* If the upper bound is -1, it must really be an unsigned int. */
3898
3899 else if (n2 == 0 && n3 == -1)
3900 {
3901 /* It is unsigned int or unsigned long. */
3902 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3903 compatibility hack. */
3904 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3905 TYPE_FLAG_UNSIGNED, NULL, objfile);
3906 }
3907
3908 /* Special case: char is defined (Who knows why) as a subrange of
3909 itself with range 0-127. */
3910 else if (self_subrange && n2 == 0 && n3 == 127)
3911 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3912
3913 /* We used to do this only for subrange of self or subrange of int. */
3914 else if (n2 == 0)
3915 {
3916 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3917 "unsigned long", and we already checked for that,
3918 so don't need to test for it here. */
3919
3920 if (n3 < 0)
3921 /* n3 actually gives the size. */
3922 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3923 NULL, objfile);
3924
3925 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3926 unsigned n-byte integer. But do require n to be a power of
3927 two; we don't want 3- and 5-byte integers flying around. */
3928 {
3929 int bytes;
3930 unsigned long bits;
3931
3932 bits = n3;
3933 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3934 bits >>= 8;
3935 if (bits == 0
3936 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3937 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3938 objfile);
3939 }
3940 }
3941 /* I think this is for Convex "long long". Since I don't know whether
3942 Convex sets self_subrange, I also accept that particular size regardless
3943 of self_subrange. */
3944 else if (n3 == 0 && n2 < 0
3945 && (self_subrange
3946 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3947 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
3948 else if (n2 == -n3 - 1)
3949 {
3950 if (n3 == 0x7f)
3951 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3952 if (n3 == 0x7fff)
3953 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3954 if (n3 == 0x7fffffff)
3955 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3956 }
3957
3958 /* We have a real range type on our hands. Allocate space and
3959 return a real pointer. */
3960 handle_true_range:
3961
3962 if (self_subrange)
3963 index_type = builtin_type_int;
3964 else
3965 index_type = *dbx_lookup_type (rangenums);
3966 if (index_type == NULL)
3967 {
3968 /* Does this actually ever happen? Is that why we are worrying
3969 about dealing with it rather than just calling error_type? */
3970
3971 static struct type *range_type_index;
3972
3973 complaint (&symfile_complaints,
3974 "base type %d of range type is not defined", rangenums[1]);
3975 if (range_type_index == NULL)
3976 range_type_index =
3977 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3978 0, "range type index type", NULL);
3979 index_type = range_type_index;
3980 }
3981
3982 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3983 return (result_type);
3984 }
3985
3986 /* Read in an argument list. This is a list of types, separated by commas
3987 and terminated with END. Return the list of types read in, or (struct type
3988 **)-1 if there is an error. */
3989
3990 static struct field *
3991 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
3992 int *varargsp)
3993 {
3994 /* FIXME! Remove this arbitrary limit! */
3995 struct type *types[1024]; /* allow for fns of 1023 parameters */
3996 int n = 0, i;
3997 struct field *rval;
3998
3999 while (**pp != end)
4000 {
4001 if (**pp != ',')
4002 /* Invalid argument list: no ','. */
4003 return (struct field *) -1;
4004 (*pp)++;
4005 STABS_CONTINUE (pp, objfile);
4006 types[n++] = read_type (pp, objfile);
4007 }
4008 (*pp)++; /* get past `end' (the ':' character) */
4009
4010 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4011 *varargsp = 1;
4012 else
4013 {
4014 n--;
4015 *varargsp = 0;
4016 }
4017
4018 rval = (struct field *) xmalloc (n * sizeof (struct field));
4019 memset (rval, 0, n * sizeof (struct field));
4020 for (i = 0; i < n; i++)
4021 rval[i].type = types[i];
4022 *nargsp = n;
4023 return rval;
4024 }
4025 \f
4026 /* Common block handling. */
4027
4028 /* List of symbols declared since the last BCOMM. This list is a tail
4029 of local_symbols. When ECOMM is seen, the symbols on the list
4030 are noted so their proper addresses can be filled in later,
4031 using the common block base address gotten from the assembler
4032 stabs. */
4033
4034 static struct pending *common_block;
4035 static int common_block_i;
4036
4037 /* Name of the current common block. We get it from the BCOMM instead of the
4038 ECOMM to match IBM documentation (even though IBM puts the name both places
4039 like everyone else). */
4040 static char *common_block_name;
4041
4042 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4043 to remain after this function returns. */
4044
4045 void
4046 common_block_start (char *name, struct objfile *objfile)
4047 {
4048 if (common_block_name != NULL)
4049 {
4050 complaint (&symfile_complaints,
4051 "Invalid symbol data: common block within common block");
4052 }
4053 common_block = local_symbols;
4054 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4055 common_block_name = obsavestring (name, strlen (name),
4056 &objfile->objfile_obstack);
4057 }
4058
4059 /* Process a N_ECOMM symbol. */
4060
4061 void
4062 common_block_end (struct objfile *objfile)
4063 {
4064 /* Symbols declared since the BCOMM are to have the common block
4065 start address added in when we know it. common_block and
4066 common_block_i point to the first symbol after the BCOMM in
4067 the local_symbols list; copy the list and hang it off the
4068 symbol for the common block name for later fixup. */
4069 int i;
4070 struct symbol *sym;
4071 struct pending *new = 0;
4072 struct pending *next;
4073 int j;
4074
4075 if (common_block_name == NULL)
4076 {
4077 complaint (&symfile_complaints, "ECOMM symbol unmatched by BCOMM");
4078 return;
4079 }
4080
4081 sym = (struct symbol *)
4082 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4083 memset (sym, 0, sizeof (struct symbol));
4084 /* Note: common_block_name already saved on objfile_obstack */
4085 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4086 SYMBOL_CLASS (sym) = LOC_BLOCK;
4087
4088 /* Now we copy all the symbols which have been defined since the BCOMM. */
4089
4090 /* Copy all the struct pendings before common_block. */
4091 for (next = local_symbols;
4092 next != NULL && next != common_block;
4093 next = next->next)
4094 {
4095 for (j = 0; j < next->nsyms; j++)
4096 add_symbol_to_list (next->symbol[j], &new);
4097 }
4098
4099 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4100 NULL, it means copy all the local symbols (which we already did
4101 above). */
4102
4103 if (common_block != NULL)
4104 for (j = common_block_i; j < common_block->nsyms; j++)
4105 add_symbol_to_list (common_block->symbol[j], &new);
4106
4107 SYMBOL_TYPE (sym) = (struct type *) new;
4108
4109 /* Should we be putting local_symbols back to what it was?
4110 Does it matter? */
4111
4112 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4113 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4114 global_sym_chain[i] = sym;
4115 common_block_name = NULL;
4116 }
4117
4118 /* Add a common block's start address to the offset of each symbol
4119 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4120 the common block name). */
4121
4122 static void
4123 fix_common_block (struct symbol *sym, int valu)
4124 {
4125 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4126 for (; next; next = next->next)
4127 {
4128 int j;
4129 for (j = next->nsyms - 1; j >= 0; j--)
4130 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4131 }
4132 }
4133 \f
4134
4135
4136 /* What about types defined as forward references inside of a small lexical
4137 scope? */
4138 /* Add a type to the list of undefined types to be checked through
4139 once this file has been read in. */
4140
4141 static void
4142 add_undefined_type (struct type *type)
4143 {
4144 if (undef_types_length == undef_types_allocated)
4145 {
4146 undef_types_allocated *= 2;
4147 undef_types = (struct type **)
4148 xrealloc ((char *) undef_types,
4149 undef_types_allocated * sizeof (struct type *));
4150 }
4151 undef_types[undef_types_length++] = type;
4152 }
4153
4154 /* Go through each undefined type, see if it's still undefined, and fix it
4155 up if possible. We have two kinds of undefined types:
4156
4157 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4158 Fix: update array length using the element bounds
4159 and the target type's length.
4160 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4161 yet defined at the time a pointer to it was made.
4162 Fix: Do a full lookup on the struct/union tag. */
4163 void
4164 cleanup_undefined_types (void)
4165 {
4166 struct type **type;
4167
4168 for (type = undef_types; type < undef_types + undef_types_length; type++)
4169 {
4170 switch (TYPE_CODE (*type))
4171 {
4172
4173 case TYPE_CODE_STRUCT:
4174 case TYPE_CODE_UNION:
4175 case TYPE_CODE_ENUM:
4176 {
4177 /* Check if it has been defined since. Need to do this here
4178 as well as in check_typedef to deal with the (legitimate in
4179 C though not C++) case of several types with the same name
4180 in different source files. */
4181 if (TYPE_STUB (*type))
4182 {
4183 struct pending *ppt;
4184 int i;
4185 /* Name of the type, without "struct" or "union" */
4186 char *typename = TYPE_TAG_NAME (*type);
4187
4188 if (typename == NULL)
4189 {
4190 complaint (&symfile_complaints, "need a type name");
4191 break;
4192 }
4193 for (ppt = file_symbols; ppt; ppt = ppt->next)
4194 {
4195 for (i = 0; i < ppt->nsyms; i++)
4196 {
4197 struct symbol *sym = ppt->symbol[i];
4198
4199 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4200 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4201 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4202 TYPE_CODE (*type))
4203 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4204 replace_type (*type, SYMBOL_TYPE (sym));
4205 }
4206 }
4207 }
4208 }
4209 break;
4210
4211 default:
4212 {
4213 complaint (&symfile_complaints,
4214 "forward-referenced types left unresolved, "
4215 "type code %d.",
4216 TYPE_CODE (*type));
4217 }
4218 break;
4219 }
4220 }
4221
4222 undef_types_length = 0;
4223 }
4224
4225 /* Scan through all of the global symbols defined in the object file,
4226 assigning values to the debugging symbols that need to be assigned
4227 to. Get these symbols from the minimal symbol table. */
4228
4229 void
4230 scan_file_globals (struct objfile *objfile)
4231 {
4232 int hash;
4233 struct minimal_symbol *msymbol;
4234 struct symbol *sym, *prev;
4235 struct objfile *resolve_objfile;
4236
4237 /* SVR4 based linkers copy referenced global symbols from shared
4238 libraries to the main executable.
4239 If we are scanning the symbols for a shared library, try to resolve
4240 them from the minimal symbols of the main executable first. */
4241
4242 if (symfile_objfile && objfile != symfile_objfile)
4243 resolve_objfile = symfile_objfile;
4244 else
4245 resolve_objfile = objfile;
4246
4247 while (1)
4248 {
4249 /* Avoid expensive loop through all minimal symbols if there are
4250 no unresolved symbols. */
4251 for (hash = 0; hash < HASHSIZE; hash++)
4252 {
4253 if (global_sym_chain[hash])
4254 break;
4255 }
4256 if (hash >= HASHSIZE)
4257 return;
4258
4259 for (msymbol = resolve_objfile->msymbols;
4260 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4261 msymbol++)
4262 {
4263 QUIT;
4264
4265 /* Skip static symbols. */
4266 switch (MSYMBOL_TYPE (msymbol))
4267 {
4268 case mst_file_text:
4269 case mst_file_data:
4270 case mst_file_bss:
4271 continue;
4272 default:
4273 break;
4274 }
4275
4276 prev = NULL;
4277
4278 /* Get the hash index and check all the symbols
4279 under that hash index. */
4280
4281 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4282
4283 for (sym = global_sym_chain[hash]; sym;)
4284 {
4285 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4286 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4287 {
4288 /* Splice this symbol out of the hash chain and
4289 assign the value we have to it. */
4290 if (prev)
4291 {
4292 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4293 }
4294 else
4295 {
4296 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4297 }
4298
4299 /* Check to see whether we need to fix up a common block. */
4300 /* Note: this code might be executed several times for
4301 the same symbol if there are multiple references. */
4302 if (sym)
4303 {
4304 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4305 {
4306 fix_common_block (sym,
4307 SYMBOL_VALUE_ADDRESS (msymbol));
4308 }
4309 else
4310 {
4311 SYMBOL_VALUE_ADDRESS (sym)
4312 = SYMBOL_VALUE_ADDRESS (msymbol);
4313 }
4314 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4315 }
4316
4317 if (prev)
4318 {
4319 sym = SYMBOL_VALUE_CHAIN (prev);
4320 }
4321 else
4322 {
4323 sym = global_sym_chain[hash];
4324 }
4325 }
4326 else
4327 {
4328 prev = sym;
4329 sym = SYMBOL_VALUE_CHAIN (sym);
4330 }
4331 }
4332 }
4333 if (resolve_objfile == objfile)
4334 break;
4335 resolve_objfile = objfile;
4336 }
4337
4338 /* Change the storage class of any remaining unresolved globals to
4339 LOC_UNRESOLVED and remove them from the chain. */
4340 for (hash = 0; hash < HASHSIZE; hash++)
4341 {
4342 sym = global_sym_chain[hash];
4343 while (sym)
4344 {
4345 prev = sym;
4346 sym = SYMBOL_VALUE_CHAIN (sym);
4347
4348 /* Change the symbol address from the misleading chain value
4349 to address zero. */
4350 SYMBOL_VALUE_ADDRESS (prev) = 0;
4351
4352 /* Complain about unresolved common block symbols. */
4353 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4354 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4355 else
4356 complaint (&symfile_complaints,
4357 "%s: common block `%s' from global_sym_chain unresolved",
4358 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4359 }
4360 }
4361 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4362 }
4363
4364 /* Initialize anything that needs initializing when starting to read
4365 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4366 to a psymtab. */
4367
4368 void
4369 stabsread_init (void)
4370 {
4371 }
4372
4373 /* Initialize anything that needs initializing when a completely new
4374 symbol file is specified (not just adding some symbols from another
4375 file, e.g. a shared library). */
4376
4377 void
4378 stabsread_new_init (void)
4379 {
4380 /* Empty the hash table of global syms looking for values. */
4381 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4382 }
4383
4384 /* Initialize anything that needs initializing at the same time as
4385 start_symtab() is called. */
4386
4387 void
4388 start_stabs (void)
4389 {
4390 global_stabs = NULL; /* AIX COFF */
4391 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4392 n_this_object_header_files = 1;
4393 type_vector_length = 0;
4394 type_vector = (struct type **) 0;
4395
4396 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4397 common_block_name = NULL;
4398 }
4399
4400 /* Call after end_symtab() */
4401
4402 void
4403 end_stabs (void)
4404 {
4405 if (type_vector)
4406 {
4407 xfree (type_vector);
4408 }
4409 type_vector = 0;
4410 type_vector_length = 0;
4411 previous_stab_code = 0;
4412 }
4413
4414 void
4415 finish_global_stabs (struct objfile *objfile)
4416 {
4417 if (global_stabs)
4418 {
4419 patch_block_stabs (global_symbols, global_stabs, objfile);
4420 xfree (global_stabs);
4421 global_stabs = NULL;
4422 }
4423 }
4424
4425 /* Find the end of the name, delimited by a ':', but don't match
4426 ObjC symbols which look like -[Foo bar::]:bla. */
4427 static char *
4428 find_name_end (char *name)
4429 {
4430 char *s = name;
4431 if (s[0] == '-' || *s == '+')
4432 {
4433 /* Must be an ObjC method symbol. */
4434 if (s[1] != '[')
4435 {
4436 error (_("invalid symbol name \"%s\""), name);
4437 }
4438 s = strchr (s, ']');
4439 if (s == NULL)
4440 {
4441 error (_("invalid symbol name \"%s\""), name);
4442 }
4443 return strchr (s, ':');
4444 }
4445 else
4446 {
4447 return strchr (s, ':');
4448 }
4449 }
4450
4451 /* Initializer for this module */
4452
4453 void
4454 _initialize_stabsread (void)
4455 {
4456 undef_types_allocated = 20;
4457 undef_types_length = 0;
4458 undef_types = (struct type **)
4459 xmalloc (undef_types_allocated * sizeof (struct type *));
4460 }