]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stabsread.c
db80a0d2553fdcbde680e8c06f9402fc054ae030
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42
43 #include <ctype.h>
44
45 /* Ask stabsread.h to define the vars it normally declares `extern'. */
46 #define EXTERN /**/
47 #include "stabsread.h" /* Our own declarations */
48 #undef EXTERN
49
50 /* The routines that read and process a complete stabs for a C struct or
51 C++ class pass lists of data member fields and lists of member function
52 fields in an instance of a field_info structure, as defined below.
53 This is part of some reorganization of low level C++ support and is
54 expected to eventually go away... (FIXME) */
55
56 struct field_info
57 {
58 struct nextfield
59 {
60 struct nextfield *next;
61
62 /* This is the raw visibility from the stab. It is not checked
63 for being one of the visibilities we recognize, so code which
64 examines this field better be able to deal. */
65 int visibility;
66
67 struct field field;
68 } *list;
69 struct next_fnfieldlist
70 {
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
73 } *fnlist;
74 };
75
76 static struct type *
77 dbx_alloc_type PARAMS ((int [2], struct objfile *));
78
79 static long read_huge_number PARAMS ((char **, int, int *));
80
81 static struct type *error_type PARAMS ((char **));
82
83 static void
84 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
85 struct objfile *));
86
87 static void
88 fix_common_block PARAMS ((struct symbol *, int));
89
90 static int
91 read_type_number PARAMS ((char **, int *));
92
93 static struct type *
94 read_range_type PARAMS ((char **, int [2], struct objfile *));
95
96 static struct type *
97 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
98
99 static struct type *
100 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
101
102 static struct type *
103 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
104
105 static struct type *
106 rs6000_builtin_type PARAMS ((int));
107
108 static int
109 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
110 struct objfile *));
111
112 static int
113 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
114 struct objfile *));
115
116 static int
117 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
118 struct objfile *));
119
120 static int
121 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
122 struct objfile *));
123
124 static int
125 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
126
127 static int
128 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
129 struct objfile *));
130
131 static struct type *
132 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
133
134 static struct type *
135 read_array_type PARAMS ((char **, struct type *, struct objfile *));
136
137 static struct type **
138 read_args PARAMS ((char **, int, struct objfile *));
139
140 static int
141 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
142 struct objfile *));
143
144 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
145 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
146
147 /* Define this as 1 if a pcc declaration of a char or short argument
148 gives the correct address. Otherwise assume pcc gives the
149 address of the corresponding int, which is not the same on a
150 big-endian machine. */
151
152 #ifndef BELIEVE_PCC_PROMOTION
153 #define BELIEVE_PCC_PROMOTION 0
154 #endif
155
156 struct complaint invalid_cpp_abbrev_complaint =
157 {"invalid C++ abbreviation `%s'", 0, 0};
158
159 struct complaint invalid_cpp_type_complaint =
160 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
161
162 struct complaint member_fn_complaint =
163 {"member function type missing, got '%c'", 0, 0};
164
165 struct complaint const_vol_complaint =
166 {"const/volatile indicator missing, got '%c'", 0, 0};
167
168 struct complaint error_type_complaint =
169 {"debug info mismatch between compiler and debugger", 0, 0};
170
171 struct complaint invalid_member_complaint =
172 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
173
174 struct complaint range_type_base_complaint =
175 {"base type %d of range type is not defined", 0, 0};
176
177 struct complaint reg_value_complaint =
178 {"register number too large in symbol %s", 0, 0};
179
180 struct complaint vtbl_notfound_complaint =
181 {"virtual function table pointer not found when defining class `%s'", 0, 0};
182
183 struct complaint unrecognized_cplus_name_complaint =
184 {"Unknown C++ symbol name `%s'", 0, 0};
185
186 struct complaint rs6000_builtin_complaint =
187 {"Unknown builtin type %d", 0, 0};
188
189 struct complaint unresolved_sym_chain_complaint =
190 {"%s: `%s' from global_sym_chain unresolved", 0, 0};
191
192 struct complaint stabs_general_complaint =
193 {"%s", 0, 0};
194
195 /* Make a list of forward references which haven't been defined. */
196
197 static struct type **undef_types;
198 static int undef_types_allocated;
199 static int undef_types_length;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp) \
203 do { \
204 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205 *(pp) = next_symbol_text (); \
206 } while (0)
207 \f
208 /* FIXME: These probably should be our own types (like rs6000_builtin_type
209 has its own types) rather than builtin_type_*. */
210 static struct type **os9k_type_vector[] = {
211 0,
212 &builtin_type_int,
213 &builtin_type_char,
214 &builtin_type_long,
215 &builtin_type_short,
216 &builtin_type_unsigned_char,
217 &builtin_type_unsigned_short,
218 &builtin_type_unsigned_long,
219 &builtin_type_unsigned_int,
220 &builtin_type_float,
221 &builtin_type_double,
222 &builtin_type_void,
223 &builtin_type_long_double
224 };
225
226 static void os9k_init_type_vector PARAMS ((struct type **));
227
228 static void
229 os9k_init_type_vector(tv)
230 struct type **tv;
231 {
232 int i;
233 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
234 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
235 }
236
237 /* Look up a dbx type-number pair. Return the address of the slot
238 where the type for that number-pair is stored.
239 The number-pair is in TYPENUMS.
240
241 This can be used for finding the type associated with that pair
242 or for associating a new type with the pair. */
243
244 struct type **
245 dbx_lookup_type (typenums)
246 int typenums[2];
247 {
248 register int filenum = typenums[0];
249 register int index = typenums[1];
250 unsigned old_len;
251 register int real_filenum;
252 register struct header_file *f;
253 int f_orig_length;
254
255 if (filenum == -1) /* -1,-1 is for temporary types. */
256 return 0;
257
258 if (filenum < 0 || filenum >= n_this_object_header_files)
259 {
260 static struct complaint msg = {"\
261 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
262 0, 0};
263 complain (&msg, filenum, index, symnum);
264 goto error_return;
265 }
266
267 if (filenum == 0)
268 {
269 if (index < 0)
270 {
271 /* Caller wants address of address of type. We think
272 that negative (rs6k builtin) types will never appear as
273 "lvalues", (nor should they), so we stuff the real type
274 pointer into a temp, and return its address. If referenced,
275 this will do the right thing. */
276 static struct type *temp_type;
277
278 temp_type = rs6000_builtin_type(index);
279 return &temp_type;
280 }
281
282 /* Type is defined outside of header files.
283 Find it in this object file's type vector. */
284 if (index >= type_vector_length)
285 {
286 old_len = type_vector_length;
287 if (old_len == 0)
288 {
289 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
290 type_vector = (struct type **)
291 malloc (type_vector_length * sizeof (struct type *));
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
302
303 if (os9k_stabs)
304 /* Deal with OS9000 fundamental types. */
305 os9k_init_type_vector (type_vector);
306 }
307 return (&type_vector[index]);
308 }
309 else
310 {
311 real_filenum = this_object_header_files[filenum];
312
313 if (real_filenum >= n_header_files)
314 {
315 struct type *temp_type;
316 struct type **temp_type_p;
317
318 warning ("GDB internal error: bad real_filenum");
319
320 error_return:
321 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
322 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
323 *temp_type_p = temp_type;
324 return temp_type_p;
325 }
326
327 f = &header_files[real_filenum];
328
329 f_orig_length = f->length;
330 if (index >= f_orig_length)
331 {
332 while (index >= f->length)
333 {
334 f->length *= 2;
335 }
336 f->vector = (struct type **)
337 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
338 memset (&f->vector[f_orig_length], 0,
339 (f->length - f_orig_length) * sizeof (struct type *));
340 }
341 return (&f->vector[index]);
342 }
343 }
344
345 /* Make sure there is a type allocated for type numbers TYPENUMS
346 and return the type object.
347 This can create an empty (zeroed) type object.
348 TYPENUMS may be (-1, -1) to return a new type object that is not
349 put into the type vector, and so may not be referred to by number. */
350
351 static struct type *
352 dbx_alloc_type (typenums, objfile)
353 int typenums[2];
354 struct objfile *objfile;
355 {
356 register struct type **type_addr;
357
358 if (typenums[0] == -1)
359 {
360 return (alloc_type (objfile));
361 }
362
363 type_addr = dbx_lookup_type (typenums);
364
365 /* If we are referring to a type not known at all yet,
366 allocate an empty type for it.
367 We will fill it in later if we find out how. */
368 if (*type_addr == 0)
369 {
370 *type_addr = alloc_type (objfile);
371 }
372
373 return (*type_addr);
374 }
375
376 /* for all the stabs in a given stab vector, build appropriate types
377 and fix their symbols in given symbol vector. */
378
379 static void
380 patch_block_stabs (symbols, stabs, objfile)
381 struct pending *symbols;
382 struct pending_stabs *stabs;
383 struct objfile *objfile;
384 {
385 int ii;
386 char *name;
387 char *pp;
388 struct symbol *sym;
389
390 if (stabs)
391 {
392
393 /* for all the stab entries, find their corresponding symbols and
394 patch their types! */
395
396 for (ii = 0; ii < stabs->count; ++ii)
397 {
398 name = stabs->stab[ii];
399 pp = (char*) strchr (name, ':');
400 while (pp[1] == ':')
401 {
402 pp += 2;
403 pp = (char *)strchr(pp, ':');
404 }
405 sym = find_symbol_in_list (symbols, name, pp-name);
406 if (!sym)
407 {
408 /* FIXME-maybe: it would be nice if we noticed whether
409 the variable was defined *anywhere*, not just whether
410 it is defined in this compilation unit. But neither
411 xlc or GCC seem to need such a definition, and until
412 we do psymtabs (so that the minimal symbols from all
413 compilation units are available now), I'm not sure
414 how to get the information. */
415
416 /* On xcoff, if a global is defined and never referenced,
417 ld will remove it from the executable. There is then
418 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
419 sym = (struct symbol *)
420 obstack_alloc (&objfile->symbol_obstack,
421 sizeof (struct symbol));
422
423 memset (sym, 0, sizeof (struct symbol));
424 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
425 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
426 SYMBOL_NAME (sym) =
427 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
428 pp += 2;
429 if (*(pp-1) == 'F' || *(pp-1) == 'f')
430 {
431 /* I don't think the linker does this with functions,
432 so as far as I know this is never executed.
433 But it doesn't hurt to check. */
434 SYMBOL_TYPE (sym) =
435 lookup_function_type (read_type (&pp, objfile));
436 }
437 else
438 {
439 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
440 }
441 add_symbol_to_list (sym, &global_symbols);
442 }
443 else
444 {
445 pp += 2;
446 if (*(pp-1) == 'F' || *(pp-1) == 'f')
447 {
448 SYMBOL_TYPE (sym) =
449 lookup_function_type (read_type (&pp, objfile));
450 }
451 else
452 {
453 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
454 }
455 }
456 }
457 }
458 }
459
460 \f
461 /* Read a number by which a type is referred to in dbx data,
462 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
463 Just a single number N is equivalent to (0,N).
464 Return the two numbers by storing them in the vector TYPENUMS.
465 TYPENUMS will then be used as an argument to dbx_lookup_type.
466
467 Returns 0 for success, -1 for error. */
468
469 static int
470 read_type_number (pp, typenums)
471 register char **pp;
472 register int *typenums;
473 {
474 int nbits;
475 if (**pp == '(')
476 {
477 (*pp)++;
478 typenums[0] = read_huge_number (pp, ',', &nbits);
479 if (nbits != 0) return -1;
480 typenums[1] = read_huge_number (pp, ')', &nbits);
481 if (nbits != 0) return -1;
482 }
483 else
484 {
485 typenums[0] = 0;
486 typenums[1] = read_huge_number (pp, 0, &nbits);
487 if (nbits != 0) return -1;
488 }
489 return 0;
490 }
491
492 \f
493 /* To handle GNU C++ typename abbreviation, we need to be able to
494 fill in a type's name as soon as space for that type is allocated.
495 `type_synonym_name' is the name of the type being allocated.
496 It is cleared as soon as it is used (lest all allocated types
497 get this name). */
498
499 static char *type_synonym_name;
500
501 #if !defined (REG_STRUCT_HAS_ADDR)
502 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
503 #endif
504
505 /* ARGSUSED */
506 struct symbol *
507 define_symbol (valu, string, desc, type, objfile)
508 CORE_ADDR valu;
509 char *string;
510 int desc;
511 int type;
512 struct objfile *objfile;
513 {
514 register struct symbol *sym;
515 char *p = (char *) strchr (string, ':');
516 int deftype;
517 int synonym = 0;
518 register int i;
519
520 /* We would like to eliminate nameless symbols, but keep their types.
521 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
522 to type 2, but, should not create a symbol to address that type. Since
523 the symbol will be nameless, there is no way any user can refer to it. */
524
525 int nameless;
526
527 /* Ignore syms with empty names. */
528 if (string[0] == 0)
529 return 0;
530
531 /* Ignore old-style symbols from cc -go */
532 if (p == 0)
533 return 0;
534
535 while (p[1] == ':')
536 {
537 p += 2;
538 p = strchr(p, ':');
539 }
540
541 /* If a nameless stab entry, all we need is the type, not the symbol.
542 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
543 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
544
545 sym = (struct symbol *)
546 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
547 memset (sym, 0, sizeof (struct symbol));
548
549 switch (type & N_TYPE)
550 {
551 case N_TEXT:
552 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
553 break;
554 case N_DATA:
555 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
556 break;
557 case N_BSS:
558 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
559 break;
560 }
561
562 if (processing_gcc_compilation)
563 {
564 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
565 number of bytes occupied by a type or object, which we ignore. */
566 SYMBOL_LINE(sym) = desc;
567 }
568 else
569 {
570 SYMBOL_LINE(sym) = 0; /* unknown */
571 }
572
573 if (string[0] == CPLUS_MARKER)
574 {
575 /* Special GNU C++ names. */
576 switch (string[1])
577 {
578 case 't':
579 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
580 &objfile -> symbol_obstack);
581 break;
582
583 case 'v': /* $vtbl_ptr_type */
584 /* Was: SYMBOL_NAME (sym) = "vptr"; */
585 goto normal;
586
587 case 'e':
588 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
589 &objfile -> symbol_obstack);
590 break;
591
592 case '_':
593 /* This was an anonymous type that was never fixed up. */
594 goto normal;
595
596 #ifdef STATIC_TRANSFORM_NAME
597 case 'X':
598 /* SunPRO (3.0 at least) static variable encoding. */
599 goto normal;
600 #endif
601
602 default:
603 complain (&unrecognized_cplus_name_complaint, string);
604 goto normal; /* Do *something* with it */
605 }
606 }
607 else
608 {
609 normal:
610 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
611 SYMBOL_NAME (sym) = (char *)
612 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
613 /* Open-coded memcpy--saves function call time. */
614 /* FIXME: Does it really? Try replacing with simple strcpy and
615 try it on an executable with a large symbol table. */
616 /* FIXME: considering that gcc can open code memcpy anyway, I
617 doubt it. xoxorich. */
618 {
619 register char *p1 = string;
620 register char *p2 = SYMBOL_NAME (sym);
621 while (p1 != p)
622 {
623 *p2++ = *p1++;
624 }
625 *p2++ = '\0';
626 }
627
628 /* If this symbol is from a C++ compilation, then attempt to cache the
629 demangled form for future reference. This is a typical time versus
630 space tradeoff, that was decided in favor of time because it sped up
631 C++ symbol lookups by a factor of about 20. */
632
633 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
634 }
635 p++;
636
637 /* Determine the type of name being defined. */
638 #if 0
639 /* Getting GDB to correctly skip the symbol on an undefined symbol
640 descriptor and not ever dump core is a very dodgy proposition if
641 we do things this way. I say the acorn RISC machine can just
642 fix their compiler. */
643 /* The Acorn RISC machine's compiler can put out locals that don't
644 start with "234=" or "(3,4)=", so assume anything other than the
645 deftypes we know how to handle is a local. */
646 if (!strchr ("cfFGpPrStTvVXCR", *p))
647 #else
648 if (isdigit (*p) || *p == '(' || *p == '-')
649 #endif
650 deftype = 'l';
651 else
652 deftype = *p++;
653
654 switch (deftype)
655 {
656 case 'c':
657 /* c is a special case, not followed by a type-number.
658 SYMBOL:c=iVALUE for an integer constant symbol.
659 SYMBOL:c=rVALUE for a floating constant symbol.
660 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
661 e.g. "b:c=e6,0" for "const b = blob1"
662 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
663 if (*p != '=')
664 {
665 SYMBOL_CLASS (sym) = LOC_CONST;
666 SYMBOL_TYPE (sym) = error_type (&p);
667 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
668 add_symbol_to_list (sym, &file_symbols);
669 return sym;
670 }
671 ++p;
672 switch (*p++)
673 {
674 case 'r':
675 {
676 double d = atof (p);
677 char *dbl_valu;
678
679 /* FIXME-if-picky-about-floating-accuracy: Should be using
680 target arithmetic to get the value. real.c in GCC
681 probably has the necessary code. */
682
683 /* FIXME: lookup_fundamental_type is a hack. We should be
684 creating a type especially for the type of float constants.
685 Problem is, what type should it be?
686
687 Also, what should the name of this type be? Should we
688 be using 'S' constants (see stabs.texinfo) instead? */
689
690 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
691 FT_DBL_PREC_FLOAT);
692 dbl_valu = (char *)
693 obstack_alloc (&objfile -> symbol_obstack,
694 TYPE_LENGTH (SYMBOL_TYPE (sym)));
695 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
696 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
697 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
698 }
699 break;
700 case 'i':
701 {
702 /* Defining integer constants this way is kind of silly,
703 since 'e' constants allows the compiler to give not
704 only the value, but the type as well. C has at least
705 int, long, unsigned int, and long long as constant
706 types; other languages probably should have at least
707 unsigned as well as signed constants. */
708
709 /* We just need one int constant type for all objfiles.
710 It doesn't depend on languages or anything (arguably its
711 name should be a language-specific name for a type of
712 that size, but I'm inclined to say that if the compiler
713 wants a nice name for the type, it can use 'e'). */
714 static struct type *int_const_type;
715
716 /* Yes, this is as long as a *host* int. That is because we
717 use atoi. */
718 if (int_const_type == NULL)
719 int_const_type =
720 init_type (TYPE_CODE_INT,
721 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
722 "integer constant",
723 (struct objfile *)NULL);
724 SYMBOL_TYPE (sym) = int_const_type;
725 SYMBOL_VALUE (sym) = atoi (p);
726 SYMBOL_CLASS (sym) = LOC_CONST;
727 }
728 break;
729 case 'e':
730 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
731 can be represented as integral.
732 e.g. "b:c=e6,0" for "const b = blob1"
733 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
734 {
735 SYMBOL_CLASS (sym) = LOC_CONST;
736 SYMBOL_TYPE (sym) = read_type (&p, objfile);
737
738 if (*p != ',')
739 {
740 SYMBOL_TYPE (sym) = error_type (&p);
741 break;
742 }
743 ++p;
744
745 /* If the value is too big to fit in an int (perhaps because
746 it is unsigned), or something like that, we silently get
747 a bogus value. The type and everything else about it is
748 correct. Ideally, we should be using whatever we have
749 available for parsing unsigned and long long values,
750 however. */
751 SYMBOL_VALUE (sym) = atoi (p);
752 }
753 break;
754 default:
755 {
756 SYMBOL_CLASS (sym) = LOC_CONST;
757 SYMBOL_TYPE (sym) = error_type (&p);
758 }
759 }
760 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
761 add_symbol_to_list (sym, &file_symbols);
762 return sym;
763
764 case 'C':
765 /* The name of a caught exception. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 SYMBOL_CLASS (sym) = LOC_LABEL;
768 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
769 SYMBOL_VALUE_ADDRESS (sym) = valu;
770 add_symbol_to_list (sym, &local_symbols);
771 break;
772
773 case 'f':
774 /* A static function definition. */
775 SYMBOL_TYPE (sym) = read_type (&p, objfile);
776 SYMBOL_CLASS (sym) = LOC_BLOCK;
777 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
778 add_symbol_to_list (sym, &file_symbols);
779 /* fall into process_function_types. */
780
781 process_function_types:
782 /* Function result types are described as the result type in stabs.
783 We need to convert this to the function-returning-type-X type
784 in GDB. E.g. "int" is converted to "function returning int". */
785 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
786 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
787 /* fall into process_prototype_types */
788
789 process_prototype_types:
790 /* Sun acc puts declared types of arguments here. We don't care
791 about their actual types (FIXME -- we should remember the whole
792 function prototype), but the list may define some new types
793 that we have to remember, so we must scan it now. */
794 while (*p == ';') {
795 p++;
796 read_type (&p, objfile);
797 }
798 break;
799
800 case 'F':
801 /* A global function definition. */
802 SYMBOL_TYPE (sym) = read_type (&p, objfile);
803 SYMBOL_CLASS (sym) = LOC_BLOCK;
804 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
805 add_symbol_to_list (sym, &global_symbols);
806 goto process_function_types;
807
808 case 'G':
809 /* For a class G (global) symbol, it appears that the
810 value is not correct. It is necessary to search for the
811 corresponding linker definition to find the value.
812 These definitions appear at the end of the namelist. */
813 SYMBOL_TYPE (sym) = read_type (&p, objfile);
814 i = hashname (SYMBOL_NAME (sym));
815 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
816 global_sym_chain[i] = sym;
817 SYMBOL_CLASS (sym) = LOC_STATIC;
818 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
819 add_symbol_to_list (sym, &global_symbols);
820 break;
821
822 /* This case is faked by a conditional above,
823 when there is no code letter in the dbx data.
824 Dbx data never actually contains 'l'. */
825 case 's':
826 case 'l':
827 SYMBOL_TYPE (sym) = read_type (&p, objfile);
828 SYMBOL_CLASS (sym) = LOC_LOCAL;
829 SYMBOL_VALUE (sym) = valu;
830 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
831 add_symbol_to_list (sym, &local_symbols);
832 break;
833
834 case 'p':
835 if (*p == 'F')
836 /* pF is a two-letter code that means a function parameter in Fortran.
837 The type-number specifies the type of the return value.
838 Translate it into a pointer-to-function type. */
839 {
840 p++;
841 SYMBOL_TYPE (sym)
842 = lookup_pointer_type
843 (lookup_function_type (read_type (&p, objfile)));
844 }
845 else
846 SYMBOL_TYPE (sym) = read_type (&p, objfile);
847
848 /* Normally this is a parameter, a LOC_ARG. On the i960, it
849 can also be a LOC_LOCAL_ARG depending on symbol type. */
850 #ifndef DBX_PARM_SYMBOL_CLASS
851 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
852 #endif
853
854 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
855 SYMBOL_VALUE (sym) = valu;
856 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
857 add_symbol_to_list (sym, &local_symbols);
858
859 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
860 {
861 /* On little-endian machines, this crud is never necessary,
862 and, if the extra bytes contain garbage, is harmful. */
863 break;
864 }
865
866 /* If it's gcc-compiled, if it says `short', believe it. */
867 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
868 break;
869
870 #if !BELIEVE_PCC_PROMOTION
871 {
872 /* This is the signed type which arguments get promoted to. */
873 static struct type *pcc_promotion_type;
874 /* This is the unsigned type which arguments get promoted to. */
875 static struct type *pcc_unsigned_promotion_type;
876
877 /* Call it "int" because this is mainly C lossage. */
878 if (pcc_promotion_type == NULL)
879 pcc_promotion_type =
880 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
881 0, "int", NULL);
882
883 if (pcc_unsigned_promotion_type == NULL)
884 pcc_unsigned_promotion_type =
885 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
886 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
887
888 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
889 /* This macro is defined on machines (e.g. sparc) where
890 we should believe the type of a PCC 'short' argument,
891 but shouldn't believe the address (the address is
892 the address of the corresponding int).
893
894 My guess is that this correction, as opposed to changing
895 the parameter to an 'int' (as done below, for PCC
896 on most machines), is the right thing to do
897 on all machines, but I don't want to risk breaking
898 something that already works. On most PCC machines,
899 the sparc problem doesn't come up because the calling
900 function has to zero the top bytes (not knowing whether
901 the called function wants an int or a short), so there
902 is little practical difference between an int and a short
903 (except perhaps what happens when the GDB user types
904 "print short_arg = 0x10000;").
905
906 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
907 actually produces the correct address (we don't need to fix it
908 up). I made this code adapt so that it will offset the symbol
909 if it was pointing at an int-aligned location and not
910 otherwise. This way you can use the same gdb for 4.0.x and
911 4.1 systems.
912
913 If the parameter is shorter than an int, and is integral
914 (e.g. char, short, or unsigned equivalent), and is claimed to
915 be passed on an integer boundary, don't believe it! Offset the
916 parameter's address to the tail-end of that integer. */
917
918 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
919 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
920 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
921 {
922 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
923 - TYPE_LENGTH (SYMBOL_TYPE (sym));
924 }
925 break;
926
927 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
928
929 /* If PCC says a parameter is a short or a char,
930 it is really an int. */
931 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
932 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
933 {
934 SYMBOL_TYPE (sym) =
935 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
936 ? pcc_unsigned_promotion_type
937 : pcc_promotion_type;
938 }
939 break;
940
941 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
942 }
943 #endif /* !BELIEVE_PCC_PROMOTION. */
944
945 case 'P':
946 /* acc seems to use P to delare the prototypes of functions that
947 are referenced by this file. gdb is not prepared to deal
948 with this extra information. FIXME, it ought to. */
949 if (type == N_FUN)
950 {
951 read_type (&p, objfile);
952 goto process_prototype_types;
953 }
954 /*FALLTHROUGH*/
955
956 case 'R':
957 /* Parameter which is in a register. */
958 SYMBOL_TYPE (sym) = read_type (&p, objfile);
959 SYMBOL_CLASS (sym) = LOC_REGPARM;
960 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
961 if (SYMBOL_VALUE (sym) >= NUM_REGS)
962 {
963 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
964 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
965 }
966 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
967 add_symbol_to_list (sym, &local_symbols);
968 break;
969
970 case 'r':
971 /* Register variable (either global or local). */
972 SYMBOL_TYPE (sym) = read_type (&p, objfile);
973 SYMBOL_CLASS (sym) = LOC_REGISTER;
974 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
975 if (SYMBOL_VALUE (sym) >= NUM_REGS)
976 {
977 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
978 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
979 }
980 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
981 if (within_function)
982 {
983 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
984 name to represent an argument passed in a register.
985 GCC uses 'P' for the same case. So if we find such a symbol pair
986 we combine it into one 'P' symbol. For Sun cc we need to do this
987 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
988 the 'p' symbol even if it never saves the argument onto the stack.
989
990 On most machines, we want to preserve both symbols, so that
991 we can still get information about what is going on with the
992 stack (VAX for computing args_printed, using stack slots instead
993 of saved registers in backtraces, etc.).
994
995 Note that this code illegally combines
996 main(argc) struct foo argc; { register struct foo argc; }
997 but this case is considered pathological and causes a warning
998 from a decent compiler. */
999
1000 if (local_symbols
1001 && local_symbols->nsyms > 0
1002 #ifndef USE_REGISTER_NOT_ARG
1003 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1004 SYMBOL_TYPE (sym))
1005 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1006 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1007 #endif
1008 )
1009 {
1010 struct symbol *prev_sym;
1011 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1012 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1013 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1014 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1015 {
1016 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1017 /* Use the type from the LOC_REGISTER; that is the type
1018 that is actually in that register. */
1019 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1020 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1021 sym = prev_sym;
1022 break;
1023 }
1024 }
1025 add_symbol_to_list (sym, &local_symbols);
1026 }
1027 else
1028 add_symbol_to_list (sym, &file_symbols);
1029 break;
1030
1031 case 'S':
1032 /* Static symbol at top level of file */
1033 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1034 SYMBOL_CLASS (sym) = LOC_STATIC;
1035 SYMBOL_VALUE_ADDRESS (sym) = valu;
1036 #ifdef STATIC_TRANSFORM_NAME
1037 if (SYMBOL_NAME (sym)[0] == '$')
1038 {
1039 struct minimal_symbol *msym;
1040 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1041 if (msym != NULL)
1042 {
1043 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1044 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1045 }
1046 }
1047 #endif
1048 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1049 add_symbol_to_list (sym, &file_symbols);
1050 break;
1051
1052 case 't':
1053 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1054
1055 /* For a nameless type, we don't want a create a symbol, thus we
1056 did not use `sym'. Return without further processing. */
1057 if (nameless) return NULL;
1058
1059 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1060 SYMBOL_VALUE (sym) = valu;
1061 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1062 /* C++ vagaries: we may have a type which is derived from
1063 a base type which did not have its name defined when the
1064 derived class was output. We fill in the derived class's
1065 base part member's name here in that case. */
1066 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1067 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1068 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1069 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1070 {
1071 int j;
1072 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1073 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1074 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1075 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1076 }
1077
1078 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1079 {
1080 /* gcc-2.6 or later (when using -fvtable-thunks)
1081 emits a unique named type for a vtable entry.
1082 Some gdb code depends on that specific name. */
1083 extern const char vtbl_ptr_name[];
1084
1085 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1086 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1087 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1088 {
1089 /* If we are giving a name to a type such as "pointer to
1090 foo" or "function returning foo", we better not set
1091 the TYPE_NAME. If the program contains "typedef char
1092 *caddr_t;", we don't want all variables of type char
1093 * to print as caddr_t. This is not just a
1094 consequence of GDB's type management; PCC and GCC (at
1095 least through version 2.4) both output variables of
1096 either type char * or caddr_t with the type number
1097 defined in the 't' symbol for caddr_t. If a future
1098 compiler cleans this up it GDB is not ready for it
1099 yet, but if it becomes ready we somehow need to
1100 disable this check (without breaking the PCC/GCC2.4
1101 case).
1102
1103 Sigh.
1104
1105 Fortunately, this check seems not to be necessary
1106 for anything except pointers or functions. */
1107 }
1108 else
1109 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1110 }
1111
1112 add_symbol_to_list (sym, &file_symbols);
1113 break;
1114
1115 case 'T':
1116 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1117 by 't' which means we are typedef'ing it as well. */
1118 synonym = *p == 't';
1119
1120 if (synonym)
1121 {
1122 p++;
1123 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1124 strlen (SYMBOL_NAME (sym)),
1125 &objfile -> symbol_obstack);
1126 }
1127 /* The semantics of C++ state that "struct foo { ... }" also defines
1128 a typedef for "foo". Unfortunately, cfront never makes the typedef
1129 when translating C++ into C. We make the typedef here so that
1130 "ptype foo" works as expected for cfront translated code. */
1131 else if (current_subfile->language == language_cplus)
1132 {
1133 synonym = 1;
1134 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1135 strlen (SYMBOL_NAME (sym)),
1136 &objfile -> symbol_obstack);
1137 }
1138
1139 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1140
1141 /* For a nameless type, we don't want a create a symbol, thus we
1142 did not use `sym'. Return without further processing. */
1143 if (nameless) return NULL;
1144
1145 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1146 SYMBOL_VALUE (sym) = valu;
1147 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1148 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1149 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1150 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1151 add_symbol_to_list (sym, &file_symbols);
1152
1153 if (synonym)
1154 {
1155 /* Clone the sym and then modify it. */
1156 register struct symbol *typedef_sym = (struct symbol *)
1157 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1158 *typedef_sym = *sym;
1159 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1160 SYMBOL_VALUE (typedef_sym) = valu;
1161 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1162 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1163 TYPE_NAME (SYMBOL_TYPE (sym))
1164 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1165 add_symbol_to_list (typedef_sym, &file_symbols);
1166 }
1167 break;
1168
1169 case 'V':
1170 /* Static symbol of local scope */
1171 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1172 SYMBOL_CLASS (sym) = LOC_STATIC;
1173 SYMBOL_VALUE_ADDRESS (sym) = valu;
1174 #ifdef STATIC_TRANSFORM_NAME
1175 if (SYMBOL_NAME (sym)[0] == '$')
1176 {
1177 struct minimal_symbol *msym;
1178 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1179 if (msym != NULL)
1180 {
1181 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1182 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1183 }
1184 }
1185 #endif
1186 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1187 if (os9k_stabs)
1188 add_symbol_to_list (sym, &global_symbols);
1189 else
1190 add_symbol_to_list (sym, &local_symbols);
1191 break;
1192
1193 case 'v':
1194 /* Reference parameter */
1195 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1196 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1197 SYMBOL_VALUE (sym) = valu;
1198 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1199 add_symbol_to_list (sym, &local_symbols);
1200 break;
1201
1202 case 'a':
1203 /* Reference parameter which is in a register. */
1204 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1205 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1206 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1207 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1208 {
1209 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
1210 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1211 }
1212 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1213 add_symbol_to_list (sym, &local_symbols);
1214 break;
1215
1216 case 'X':
1217 /* This is used by Sun FORTRAN for "function result value".
1218 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1219 that Pascal uses it too, but when I tried it Pascal used
1220 "x:3" (local symbol) instead. */
1221 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1222 SYMBOL_CLASS (sym) = LOC_LOCAL;
1223 SYMBOL_VALUE (sym) = valu;
1224 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1225 add_symbol_to_list (sym, &local_symbols);
1226 break;
1227
1228 default:
1229 SYMBOL_TYPE (sym) = error_type (&p);
1230 SYMBOL_CLASS (sym) = LOC_CONST;
1231 SYMBOL_VALUE (sym) = 0;
1232 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1233 add_symbol_to_list (sym, &file_symbols);
1234 break;
1235 }
1236
1237 /* When passing structures to a function, some systems sometimes pass
1238 the address in a register, not the structure itself.
1239
1240 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1241 to LOC_REGPARM_ADDR for structures and unions. */
1242
1243 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1244 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1245 SYMBOL_TYPE (sym))
1246 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1247 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1248 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1249
1250 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1251 subsequent arguments on the sparc, for example). */
1252 if (SYMBOL_CLASS (sym) == LOC_ARG
1253 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1254 SYMBOL_TYPE (sym))
1255 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1256 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1257 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1258
1259 return sym;
1260 }
1261
1262 \f
1263 /* Skip rest of this symbol and return an error type.
1264
1265 General notes on error recovery: error_type always skips to the
1266 end of the symbol (modulo cretinous dbx symbol name continuation).
1267 Thus code like this:
1268
1269 if (*(*pp)++ != ';')
1270 return error_type (pp);
1271
1272 is wrong because if *pp starts out pointing at '\0' (typically as the
1273 result of an earlier error), it will be incremented to point to the
1274 start of the next symbol, which might produce strange results, at least
1275 if you run off the end of the string table. Instead use
1276
1277 if (**pp != ';')
1278 return error_type (pp);
1279 ++*pp;
1280
1281 or
1282
1283 if (**pp != ';')
1284 foo = error_type (pp);
1285 else
1286 ++*pp;
1287
1288 And in case it isn't obvious, the point of all this hair is so the compiler
1289 can define new types and new syntaxes, and old versions of the
1290 debugger will be able to read the new symbol tables. */
1291
1292 static struct type *
1293 error_type (pp)
1294 char **pp;
1295 {
1296 complain (&error_type_complaint);
1297 while (1)
1298 {
1299 /* Skip to end of symbol. */
1300 while (**pp != '\0')
1301 {
1302 (*pp)++;
1303 }
1304
1305 /* Check for and handle cretinous dbx symbol name continuation! */
1306 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1307 {
1308 *pp = next_symbol_text ();
1309 }
1310 else
1311 {
1312 break;
1313 }
1314 }
1315 return (builtin_type_error);
1316 }
1317
1318 \f
1319 /* Read type information or a type definition; return the type. Even
1320 though this routine accepts either type information or a type
1321 definition, the distinction is relevant--some parts of stabsread.c
1322 assume that type information starts with a digit, '-', or '(' in
1323 deciding whether to call read_type. */
1324
1325 struct type *
1326 read_type (pp, objfile)
1327 register char **pp;
1328 struct objfile *objfile;
1329 {
1330 register struct type *type = 0;
1331 struct type *type1;
1332 int typenums[2];
1333 int xtypenums[2];
1334 char type_descriptor;
1335
1336 /* Size in bits of type if specified by a type attribute, or -1 if
1337 there is no size attribute. */
1338 int type_size = -1;
1339
1340 /* Used to distinguish string and bitstring from char-array and set. */
1341 int is_string = 0;
1342
1343 /* Read type number if present. The type number may be omitted.
1344 for instance in a two-dimensional array declared with type
1345 "ar1;1;10;ar1;1;10;4". */
1346 if ((**pp >= '0' && **pp <= '9')
1347 || **pp == '('
1348 || **pp == '-')
1349 {
1350 if (read_type_number (pp, typenums) != 0)
1351 return error_type (pp);
1352
1353 /* Type is not being defined here. Either it already exists,
1354 or this is a forward reference to it. dbx_alloc_type handles
1355 both cases. */
1356 if (**pp != '=')
1357 return dbx_alloc_type (typenums, objfile);
1358
1359 /* Type is being defined here. */
1360 /* Skip the '='. */
1361 ++(*pp);
1362
1363 while (**pp == '@')
1364 {
1365 char *p = *pp + 1;
1366 /* It might be a type attribute or a member type. */
1367 if (isdigit (*p) || *p == '(' || *p == '-')
1368 /* Member type. */
1369 break;
1370 else
1371 {
1372 /* Type attributes. */
1373 char *attr = p;
1374
1375 /* Skip to the semicolon. */
1376 while (*p != ';' && *p != '\0')
1377 ++p;
1378 *pp = p;
1379 if (*p == '\0')
1380 return error_type (pp);
1381 else
1382 /* Skip the semicolon. */
1383 ++*pp;
1384
1385 switch (*attr)
1386 {
1387 case 's':
1388 type_size = atoi (attr + 1);
1389 if (type_size <= 0)
1390 type_size = -1;
1391 break;
1392
1393 case 'S':
1394 is_string = 1;
1395 break;
1396
1397 default:
1398 /* Ignore unrecognized type attributes, so future compilers
1399 can invent new ones. */
1400 break;
1401 }
1402 }
1403 }
1404 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1405 ++(*pp);
1406 }
1407 else
1408 {
1409 /* 'typenums=' not present, type is anonymous. Read and return
1410 the definition, but don't put it in the type vector. */
1411 typenums[0] = typenums[1] = -1;
1412 (*pp)++;
1413 }
1414
1415 type_descriptor = (*pp)[-1];
1416 switch (type_descriptor)
1417 {
1418 case 'x':
1419 {
1420 enum type_code code;
1421
1422 /* Used to index through file_symbols. */
1423 struct pending *ppt;
1424 int i;
1425
1426 /* Name including "struct", etc. */
1427 char *type_name;
1428
1429 {
1430 char *from, *to, *p, *q1, *q2;
1431
1432 /* Set the type code according to the following letter. */
1433 switch ((*pp)[0])
1434 {
1435 case 's':
1436 code = TYPE_CODE_STRUCT;
1437 break;
1438 case 'u':
1439 code = TYPE_CODE_UNION;
1440 break;
1441 case 'e':
1442 code = TYPE_CODE_ENUM;
1443 break;
1444 default:
1445 {
1446 /* Complain and keep going, so compilers can invent new
1447 cross-reference types. */
1448 static struct complaint msg =
1449 {"Unrecognized cross-reference type `%c'", 0, 0};
1450 complain (&msg, (*pp)[0]);
1451 code = TYPE_CODE_STRUCT;
1452 break;
1453 }
1454 }
1455
1456 q1 = strchr(*pp, '<');
1457 p = strchr(*pp, ':');
1458 if (p == NULL)
1459 return error_type (pp);
1460 while (q1 && p > q1 && p[1] == ':')
1461 {
1462 q2 = strchr(q1, '>');
1463 if (!q2 || q2 < p)
1464 break;
1465 p += 2;
1466 p = strchr(p, ':');
1467 if (p == NULL)
1468 return error_type (pp);
1469 }
1470 to = type_name =
1471 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1472
1473 /* Copy the name. */
1474 from = *pp + 1;
1475 while (from < p)
1476 *to++ = *from++;
1477 *to = '\0';
1478
1479 /* Set the pointer ahead of the name which we just read, and
1480 the colon. */
1481 *pp = from + 1;
1482 }
1483
1484 /* Now check to see whether the type has already been
1485 declared. This was written for arrays of cross-referenced
1486 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1487 sure it is not necessary anymore. But it might be a good
1488 idea, to save a little memory. */
1489
1490 for (ppt = file_symbols; ppt; ppt = ppt->next)
1491 for (i = 0; i < ppt->nsyms; i++)
1492 {
1493 struct symbol *sym = ppt->symbol[i];
1494
1495 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1496 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1497 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1498 && STREQ (SYMBOL_NAME (sym), type_name))
1499 {
1500 obstack_free (&objfile -> type_obstack, type_name);
1501 type = SYMBOL_TYPE (sym);
1502 return type;
1503 }
1504 }
1505
1506 /* Didn't find the type to which this refers, so we must
1507 be dealing with a forward reference. Allocate a type
1508 structure for it, and keep track of it so we can
1509 fill in the rest of the fields when we get the full
1510 type. */
1511 type = dbx_alloc_type (typenums, objfile);
1512 TYPE_CODE (type) = code;
1513 TYPE_TAG_NAME (type) = type_name;
1514 INIT_CPLUS_SPECIFIC(type);
1515 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1516
1517 add_undefined_type (type);
1518 return type;
1519 }
1520
1521 case '-': /* RS/6000 built-in type */
1522 case '0':
1523 case '1':
1524 case '2':
1525 case '3':
1526 case '4':
1527 case '5':
1528 case '6':
1529 case '7':
1530 case '8':
1531 case '9':
1532 case '(':
1533
1534 {
1535 char *pp_saved;
1536
1537 (*pp)--;
1538 pp_saved = *pp;
1539
1540 /* Peek ahead at the number to detect void. */
1541 if (read_type_number (pp, xtypenums) != 0)
1542 return error_type (pp);
1543
1544 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1545 /* It's being defined as itself. That means it is "void". */
1546 type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
1547 else
1548 {
1549 struct type *xtype;
1550
1551 /* Go back to the number and have read_type get it. This means
1552 that we can deal with something like t(1,2)=(3,4)=... which
1553 the Lucid compiler uses. */
1554 *pp = pp_saved;
1555 xtype = read_type (pp, objfile);
1556
1557 /* The type is being defined to another type. So we copy the type.
1558 This loses if we copy a C++ class and so we lose track of how
1559 the names are mangled (but g++ doesn't output stabs like this
1560 now anyway). */
1561
1562 type = alloc_type (objfile);
1563 memcpy (type, xtype, sizeof (struct type));
1564
1565 /* The idea behind clearing the names is that the only purpose
1566 for defining a type to another type is so that the name of
1567 one can be different. So we probably don't need to worry much
1568 about the case where the compiler doesn't give a name to the
1569 new type. */
1570 TYPE_NAME (type) = NULL;
1571 TYPE_TAG_NAME (type) = NULL;
1572 }
1573 if (typenums[0] != -1)
1574 *dbx_lookup_type (typenums) = type;
1575 break;
1576 }
1577
1578 /* In the following types, we must be sure to overwrite any existing
1579 type that the typenums refer to, rather than allocating a new one
1580 and making the typenums point to the new one. This is because there
1581 may already be pointers to the existing type (if it had been
1582 forward-referenced), and we must change it to a pointer, function,
1583 reference, or whatever, *in-place*. */
1584
1585 case '*':
1586 type1 = read_type (pp, objfile);
1587 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1588 break;
1589
1590 case '&': /* Reference to another type */
1591 type1 = read_type (pp, objfile);
1592 type = make_reference_type (type1, dbx_lookup_type (typenums));
1593 break;
1594
1595 case 'f': /* Function returning another type */
1596 if (os9k_stabs && **pp == '(')
1597 {
1598 /* Function prototype; parse it.
1599 We must conditionalize this on os9k_stabs because otherwise
1600 it could be confused with a Sun-style (1,3) typenumber
1601 (I think). */
1602 struct type *t;
1603 ++*pp;
1604 while (**pp != ')')
1605 {
1606 t = read_type(pp, objfile);
1607 if (**pp == ',') ++*pp;
1608 }
1609 }
1610 type1 = read_type (pp, objfile);
1611 type = make_function_type (type1, dbx_lookup_type (typenums));
1612 break;
1613
1614 case 'k': /* Const qualifier on some type (Sun) */
1615 case 'c': /* Const qualifier on some type (OS9000) */
1616 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1617 only accept 'c' in the os9k_stabs case. */
1618 if (type_descriptor == 'c' && !os9k_stabs)
1619 return error_type (pp);
1620 type = read_type (pp, objfile);
1621 /* FIXME! For now, we ignore const and volatile qualifiers. */
1622 break;
1623
1624 case 'B': /* Volatile qual on some type (Sun) */
1625 case 'i': /* Volatile qual on some type (OS9000) */
1626 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1627 only accept 'i' in the os9k_stabs case. */
1628 if (type_descriptor == 'i' && !os9k_stabs)
1629 return error_type (pp);
1630 type = read_type (pp, objfile);
1631 /* FIXME! For now, we ignore const and volatile qualifiers. */
1632 break;
1633
1634 /* FIXME -- we should be doing smash_to_XXX types here. */
1635 case '@': /* Member (class & variable) type */
1636 {
1637 struct type *domain = read_type (pp, objfile);
1638 struct type *memtype;
1639
1640 if (**pp != ',')
1641 /* Invalid member type data format. */
1642 return error_type (pp);
1643 ++*pp;
1644
1645 memtype = read_type (pp, objfile);
1646 type = dbx_alloc_type (typenums, objfile);
1647 smash_to_member_type (type, domain, memtype);
1648 }
1649 break;
1650
1651 case '#': /* Method (class & fn) type */
1652 if ((*pp)[0] == '#')
1653 {
1654 /* We'll get the parameter types from the name. */
1655 struct type *return_type;
1656
1657 (*pp)++;
1658 return_type = read_type (pp, objfile);
1659 if (*(*pp)++ != ';')
1660 complain (&invalid_member_complaint, symnum);
1661 type = allocate_stub_method (return_type);
1662 if (typenums[0] != -1)
1663 *dbx_lookup_type (typenums) = type;
1664 }
1665 else
1666 {
1667 struct type *domain = read_type (pp, objfile);
1668 struct type *return_type;
1669 struct type **args;
1670
1671 if (**pp != ',')
1672 /* Invalid member type data format. */
1673 return error_type (pp);
1674 else
1675 ++(*pp);
1676
1677 return_type = read_type (pp, objfile);
1678 args = read_args (pp, ';', objfile);
1679 type = dbx_alloc_type (typenums, objfile);
1680 smash_to_method_type (type, domain, return_type, args);
1681 }
1682 break;
1683
1684 case 'r': /* Range type */
1685 type = read_range_type (pp, typenums, objfile);
1686 if (typenums[0] != -1)
1687 *dbx_lookup_type (typenums) = type;
1688 break;
1689
1690 case 'b':
1691 if (os9k_stabs)
1692 /* Const and volatile qualified type. */
1693 type = read_type (pp, objfile);
1694 else
1695 {
1696 /* Sun ACC builtin int type */
1697 type = read_sun_builtin_type (pp, typenums, objfile);
1698 if (typenums[0] != -1)
1699 *dbx_lookup_type (typenums) = type;
1700 }
1701 break;
1702
1703 case 'R': /* Sun ACC builtin float type */
1704 type = read_sun_floating_type (pp, typenums, objfile);
1705 if (typenums[0] != -1)
1706 *dbx_lookup_type (typenums) = type;
1707 break;
1708
1709 case 'e': /* Enumeration type */
1710 type = dbx_alloc_type (typenums, objfile);
1711 type = read_enum_type (pp, type, objfile);
1712 if (typenums[0] != -1)
1713 *dbx_lookup_type (typenums) = type;
1714 break;
1715
1716 case 's': /* Struct type */
1717 case 'u': /* Union type */
1718 type = dbx_alloc_type (typenums, objfile);
1719 if (!TYPE_NAME (type))
1720 {
1721 TYPE_NAME (type) = type_synonym_name;
1722 }
1723 type_synonym_name = NULL;
1724 switch (type_descriptor)
1725 {
1726 case 's':
1727 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1728 break;
1729 case 'u':
1730 TYPE_CODE (type) = TYPE_CODE_UNION;
1731 break;
1732 }
1733 type = read_struct_type (pp, type, objfile);
1734 break;
1735
1736 case 'a': /* Array type */
1737 if (**pp != 'r')
1738 return error_type (pp);
1739 ++*pp;
1740
1741 type = dbx_alloc_type (typenums, objfile);
1742 type = read_array_type (pp, type, objfile);
1743 if (is_string)
1744 TYPE_CODE (type) = TYPE_CODE_STRING;
1745 break;
1746
1747 case 'S':
1748 type1 = read_type (pp, objfile);
1749 type = create_set_type ((struct type*) NULL, type1);
1750 if (is_string)
1751 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1752 if (typenums[0] != -1)
1753 *dbx_lookup_type (typenums) = type;
1754 break;
1755
1756 default:
1757 --*pp; /* Go back to the symbol in error */
1758 /* Particularly important if it was \0! */
1759 return error_type (pp);
1760 }
1761
1762 if (type == 0)
1763 {
1764 warning ("GDB internal error, type is NULL in stabsread.c\n");
1765 return error_type (pp);
1766 }
1767
1768 /* Size specified in a type attribute overrides any other size. */
1769 if (type_size != -1)
1770 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1771
1772 return type;
1773 }
1774 \f
1775 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1776 Return the proper type node for a given builtin type number. */
1777
1778 static struct type *
1779 rs6000_builtin_type (typenum)
1780 int typenum;
1781 {
1782 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1783 #define NUMBER_RECOGNIZED 34
1784 /* This includes an empty slot for type number -0. */
1785 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1786 struct type *rettype = NULL;
1787
1788 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1789 {
1790 complain (&rs6000_builtin_complaint, typenum);
1791 return builtin_type_error;
1792 }
1793 if (negative_types[-typenum] != NULL)
1794 return negative_types[-typenum];
1795
1796 #if TARGET_CHAR_BIT != 8
1797 #error This code wrong for TARGET_CHAR_BIT not 8
1798 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1799 that if that ever becomes not true, the correct fix will be to
1800 make the size in the struct type to be in bits, not in units of
1801 TARGET_CHAR_BIT. */
1802 #endif
1803
1804 switch (-typenum)
1805 {
1806 case 1:
1807 /* The size of this and all the other types are fixed, defined
1808 by the debugging format. If there is a type called "int" which
1809 is other than 32 bits, then it should use a new negative type
1810 number (or avoid negative type numbers for that case).
1811 See stabs.texinfo. */
1812 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1813 break;
1814 case 2:
1815 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1816 break;
1817 case 3:
1818 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1819 break;
1820 case 4:
1821 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1822 break;
1823 case 5:
1824 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1825 "unsigned char", NULL);
1826 break;
1827 case 6:
1828 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1829 break;
1830 case 7:
1831 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1832 "unsigned short", NULL);
1833 break;
1834 case 8:
1835 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1836 "unsigned int", NULL);
1837 break;
1838 case 9:
1839 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1840 "unsigned", NULL);
1841 case 10:
1842 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1843 "unsigned long", NULL);
1844 break;
1845 case 11:
1846 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1847 break;
1848 case 12:
1849 /* IEEE single precision (32 bit). */
1850 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1851 break;
1852 case 13:
1853 /* IEEE double precision (64 bit). */
1854 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1855 break;
1856 case 14:
1857 /* This is an IEEE double on the RS/6000, and different machines with
1858 different sizes for "long double" should use different negative
1859 type numbers. See stabs.texinfo. */
1860 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1861 break;
1862 case 15:
1863 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1864 break;
1865 case 16:
1866 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1867 break;
1868 case 17:
1869 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1870 break;
1871 case 18:
1872 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1873 break;
1874 case 19:
1875 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1876 break;
1877 case 20:
1878 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1879 "character", NULL);
1880 break;
1881 case 21:
1882 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1883 "logical*1", NULL);
1884 break;
1885 case 22:
1886 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1887 "logical*2", NULL);
1888 break;
1889 case 23:
1890 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1891 "logical*4", NULL);
1892 break;
1893 case 24:
1894 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1895 "logical", NULL);
1896 break;
1897 case 25:
1898 /* Complex type consisting of two IEEE single precision values. */
1899 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1900 break;
1901 case 26:
1902 /* Complex type consisting of two IEEE double precision values. */
1903 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1904 break;
1905 case 27:
1906 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1907 break;
1908 case 28:
1909 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1910 break;
1911 case 29:
1912 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1913 break;
1914 case 30:
1915 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1916 break;
1917 case 31:
1918 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
1919 break;
1920 case 32:
1921 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
1922 "unsigned long long", NULL);
1923 break;
1924 case 33:
1925 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
1926 "logical*8", NULL);
1927 break;
1928 case 34:
1929 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
1930 break;
1931 }
1932 negative_types[-typenum] = rettype;
1933 return rettype;
1934 }
1935 \f
1936 /* This page contains subroutines of read_type. */
1937
1938 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1939 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1940 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1941 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1942
1943 /* Read member function stabs info for C++ classes. The form of each member
1944 function data is:
1945
1946 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1947
1948 An example with two member functions is:
1949
1950 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1951
1952 For the case of overloaded operators, the format is op$::*.funcs, where
1953 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1954 name (such as `+=') and `.' marks the end of the operator name.
1955
1956 Returns 1 for success, 0 for failure. */
1957
1958 static int
1959 read_member_functions (fip, pp, type, objfile)
1960 struct field_info *fip;
1961 char **pp;
1962 struct type *type;
1963 struct objfile *objfile;
1964 {
1965 int nfn_fields = 0;
1966 int length = 0;
1967 /* Total number of member functions defined in this class. If the class
1968 defines two `f' functions, and one `g' function, then this will have
1969 the value 3. */
1970 int total_length = 0;
1971 int i;
1972 struct next_fnfield
1973 {
1974 struct next_fnfield *next;
1975 struct fn_field fn_field;
1976 } *sublist;
1977 struct type *look_ahead_type;
1978 struct next_fnfieldlist *new_fnlist;
1979 struct next_fnfield *new_sublist;
1980 char *main_fn_name;
1981 register char *p;
1982
1983 /* Process each list until we find something that is not a member function
1984 or find the end of the functions. */
1985
1986 while (**pp != ';')
1987 {
1988 /* We should be positioned at the start of the function name.
1989 Scan forward to find the first ':' and if it is not the
1990 first of a "::" delimiter, then this is not a member function. */
1991 p = *pp;
1992 while (*p != ':')
1993 {
1994 p++;
1995 }
1996 if (p[1] != ':')
1997 {
1998 break;
1999 }
2000
2001 sublist = NULL;
2002 look_ahead_type = NULL;
2003 length = 0;
2004
2005 new_fnlist = (struct next_fnfieldlist *)
2006 xmalloc (sizeof (struct next_fnfieldlist));
2007 make_cleanup (free, new_fnlist);
2008 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2009
2010 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
2011 {
2012 /* This is a completely wierd case. In order to stuff in the
2013 names that might contain colons (the usual name delimiter),
2014 Mike Tiemann defined a different name format which is
2015 signalled if the identifier is "op$". In that case, the
2016 format is "op$::XXXX." where XXXX is the name. This is
2017 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2018 /* This lets the user type "break operator+".
2019 We could just put in "+" as the name, but that wouldn't
2020 work for "*". */
2021 static char opname[32] = {'o', 'p', CPLUS_MARKER};
2022 char *o = opname + 3;
2023
2024 /* Skip past '::'. */
2025 *pp = p + 2;
2026
2027 STABS_CONTINUE (pp);
2028 p = *pp;
2029 while (*p != '.')
2030 {
2031 *o++ = *p++;
2032 }
2033 main_fn_name = savestring (opname, o - opname);
2034 /* Skip past '.' */
2035 *pp = p + 1;
2036 }
2037 else
2038 {
2039 main_fn_name = savestring (*pp, p - *pp);
2040 /* Skip past '::'. */
2041 *pp = p + 2;
2042 }
2043 new_fnlist -> fn_fieldlist.name = main_fn_name;
2044
2045 do
2046 {
2047 new_sublist =
2048 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2049 make_cleanup (free, new_sublist);
2050 memset (new_sublist, 0, sizeof (struct next_fnfield));
2051
2052 /* Check for and handle cretinous dbx symbol name continuation! */
2053 if (look_ahead_type == NULL)
2054 {
2055 /* Normal case. */
2056 STABS_CONTINUE (pp);
2057
2058 new_sublist -> fn_field.type = read_type (pp, objfile);
2059 if (**pp != ':')
2060 {
2061 /* Invalid symtab info for member function. */
2062 return 0;
2063 }
2064 }
2065 else
2066 {
2067 /* g++ version 1 kludge */
2068 new_sublist -> fn_field.type = look_ahead_type;
2069 look_ahead_type = NULL;
2070 }
2071
2072 (*pp)++;
2073 p = *pp;
2074 while (*p != ';')
2075 {
2076 p++;
2077 }
2078
2079 /* If this is just a stub, then we don't have the real name here. */
2080
2081 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2082 {
2083 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2084 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2085 new_sublist -> fn_field.is_stub = 1;
2086 }
2087 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2088 *pp = p + 1;
2089
2090 /* Set this member function's visibility fields. */
2091 switch (*(*pp)++)
2092 {
2093 case VISIBILITY_PRIVATE:
2094 new_sublist -> fn_field.is_private = 1;
2095 break;
2096 case VISIBILITY_PROTECTED:
2097 new_sublist -> fn_field.is_protected = 1;
2098 break;
2099 }
2100
2101 STABS_CONTINUE (pp);
2102 switch (**pp)
2103 {
2104 case 'A': /* Normal functions. */
2105 new_sublist -> fn_field.is_const = 0;
2106 new_sublist -> fn_field.is_volatile = 0;
2107 (*pp)++;
2108 break;
2109 case 'B': /* `const' member functions. */
2110 new_sublist -> fn_field.is_const = 1;
2111 new_sublist -> fn_field.is_volatile = 0;
2112 (*pp)++;
2113 break;
2114 case 'C': /* `volatile' member function. */
2115 new_sublist -> fn_field.is_const = 0;
2116 new_sublist -> fn_field.is_volatile = 1;
2117 (*pp)++;
2118 break;
2119 case 'D': /* `const volatile' member function. */
2120 new_sublist -> fn_field.is_const = 1;
2121 new_sublist -> fn_field.is_volatile = 1;
2122 (*pp)++;
2123 break;
2124 case '*': /* File compiled with g++ version 1 -- no info */
2125 case '?':
2126 case '.':
2127 break;
2128 default:
2129 complain (&const_vol_complaint, **pp);
2130 break;
2131 }
2132
2133 switch (*(*pp)++)
2134 {
2135 case '*':
2136 {
2137 int nbits;
2138 /* virtual member function, followed by index.
2139 The sign bit is set to distinguish pointers-to-methods
2140 from virtual function indicies. Since the array is
2141 in words, the quantity must be shifted left by 1
2142 on 16 bit machine, and by 2 on 32 bit machine, forcing
2143 the sign bit out, and usable as a valid index into
2144 the array. Remove the sign bit here. */
2145 new_sublist -> fn_field.voffset =
2146 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2147 if (nbits != 0)
2148 return 0;
2149
2150 STABS_CONTINUE (pp);
2151 if (**pp == ';' || **pp == '\0')
2152 {
2153 /* Must be g++ version 1. */
2154 new_sublist -> fn_field.fcontext = 0;
2155 }
2156 else
2157 {
2158 /* Figure out from whence this virtual function came.
2159 It may belong to virtual function table of
2160 one of its baseclasses. */
2161 look_ahead_type = read_type (pp, objfile);
2162 if (**pp == ':')
2163 {
2164 /* g++ version 1 overloaded methods. */
2165 }
2166 else
2167 {
2168 new_sublist -> fn_field.fcontext = look_ahead_type;
2169 if (**pp != ';')
2170 {
2171 return 0;
2172 }
2173 else
2174 {
2175 ++*pp;
2176 }
2177 look_ahead_type = NULL;
2178 }
2179 }
2180 break;
2181 }
2182 case '?':
2183 /* static member function. */
2184 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2185 if (strncmp (new_sublist -> fn_field.physname,
2186 main_fn_name, strlen (main_fn_name)))
2187 {
2188 new_sublist -> fn_field.is_stub = 1;
2189 }
2190 break;
2191
2192 default:
2193 /* error */
2194 complain (&member_fn_complaint, (*pp)[-1]);
2195 /* Fall through into normal member function. */
2196
2197 case '.':
2198 /* normal member function. */
2199 new_sublist -> fn_field.voffset = 0;
2200 new_sublist -> fn_field.fcontext = 0;
2201 break;
2202 }
2203
2204 new_sublist -> next = sublist;
2205 sublist = new_sublist;
2206 length++;
2207 STABS_CONTINUE (pp);
2208 }
2209 while (**pp != ';' && **pp != '\0');
2210
2211 (*pp)++;
2212
2213 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2214 obstack_alloc (&objfile -> type_obstack,
2215 sizeof (struct fn_field) * length);
2216 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2217 sizeof (struct fn_field) * length);
2218 for (i = length; (i--, sublist); sublist = sublist -> next)
2219 {
2220 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2221 }
2222
2223 new_fnlist -> fn_fieldlist.length = length;
2224 new_fnlist -> next = fip -> fnlist;
2225 fip -> fnlist = new_fnlist;
2226 nfn_fields++;
2227 total_length += length;
2228 STABS_CONTINUE (pp);
2229 }
2230
2231 if (nfn_fields)
2232 {
2233 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2234 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2235 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2236 memset (TYPE_FN_FIELDLISTS (type), 0,
2237 sizeof (struct fn_fieldlist) * nfn_fields);
2238 TYPE_NFN_FIELDS (type) = nfn_fields;
2239 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2240 }
2241
2242 return 1;
2243 }
2244
2245 /* Special GNU C++ name.
2246
2247 Returns 1 for success, 0 for failure. "failure" means that we can't
2248 keep parsing and it's time for error_type(). */
2249
2250 static int
2251 read_cpp_abbrev (fip, pp, type, objfile)
2252 struct field_info *fip;
2253 char **pp;
2254 struct type *type;
2255 struct objfile *objfile;
2256 {
2257 register char *p;
2258 char *name;
2259 char cpp_abbrev;
2260 struct type *context;
2261
2262 p = *pp;
2263 if (*++p == 'v')
2264 {
2265 name = NULL;
2266 cpp_abbrev = *++p;
2267
2268 *pp = p + 1;
2269
2270 /* At this point, *pp points to something like "22:23=*22...",
2271 where the type number before the ':' is the "context" and
2272 everything after is a regular type definition. Lookup the
2273 type, find it's name, and construct the field name. */
2274
2275 context = read_type (pp, objfile);
2276
2277 switch (cpp_abbrev)
2278 {
2279 case 'f': /* $vf -- a virtual function table pointer */
2280 fip->list->field.name =
2281 obconcat (&objfile->type_obstack, vptr_name, "", "");
2282 break;
2283
2284 case 'b': /* $vb -- a virtual bsomethingorother */
2285 name = type_name_no_tag (context);
2286 if (name == NULL)
2287 {
2288 complain (&invalid_cpp_type_complaint, symnum);
2289 name = "FOO";
2290 }
2291 fip->list->field.name =
2292 obconcat (&objfile->type_obstack, vb_name, name, "");
2293 break;
2294
2295 default:
2296 complain (&invalid_cpp_abbrev_complaint, *pp);
2297 fip->list->field.name =
2298 obconcat (&objfile->type_obstack,
2299 "INVALID_CPLUSPLUS_ABBREV", "", "");
2300 break;
2301 }
2302
2303 /* At this point, *pp points to the ':'. Skip it and read the
2304 field type. */
2305
2306 p = ++(*pp);
2307 if (p[-1] != ':')
2308 {
2309 complain (&invalid_cpp_abbrev_complaint, *pp);
2310 return 0;
2311 }
2312 fip->list->field.type = read_type (pp, objfile);
2313 if (**pp == ',')
2314 (*pp)++; /* Skip the comma. */
2315 else
2316 return 0;
2317
2318 {
2319 int nbits;
2320 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2321 if (nbits != 0)
2322 return 0;
2323 }
2324 /* This field is unpacked. */
2325 fip->list->field.bitsize = 0;
2326 fip->list->visibility = VISIBILITY_PRIVATE;
2327 }
2328 else
2329 {
2330 complain (&invalid_cpp_abbrev_complaint, *pp);
2331 /* We have no idea what syntax an unrecognized abbrev would have, so
2332 better return 0. If we returned 1, we would need to at least advance
2333 *pp to avoid an infinite loop. */
2334 return 0;
2335 }
2336 return 1;
2337 }
2338
2339 static void
2340 read_one_struct_field (fip, pp, p, type, objfile)
2341 struct field_info *fip;
2342 char **pp;
2343 char *p;
2344 struct type *type;
2345 struct objfile *objfile;
2346 {
2347 fip -> list -> field.name =
2348 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2349 *pp = p + 1;
2350
2351 /* This means we have a visibility for a field coming. */
2352 if (**pp == '/')
2353 {
2354 (*pp)++;
2355 fip -> list -> visibility = *(*pp)++;
2356 }
2357 else
2358 {
2359 /* normal dbx-style format, no explicit visibility */
2360 fip -> list -> visibility = VISIBILITY_PUBLIC;
2361 }
2362
2363 fip -> list -> field.type = read_type (pp, objfile);
2364 if (**pp == ':')
2365 {
2366 p = ++(*pp);
2367 #if 0
2368 /* Possible future hook for nested types. */
2369 if (**pp == '!')
2370 {
2371 fip -> list -> field.bitpos = (long)-2; /* nested type */
2372 p = ++(*pp);
2373 }
2374 else
2375 #endif
2376 {
2377 /* Static class member. */
2378 fip -> list -> field.bitpos = (long) -1;
2379 }
2380 while (*p != ';')
2381 {
2382 p++;
2383 }
2384 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2385 *pp = p + 1;
2386 return;
2387 }
2388 else if (**pp != ',')
2389 {
2390 /* Bad structure-type format. */
2391 complain (&stabs_general_complaint, "bad structure-type format");
2392 return;
2393 }
2394
2395 (*pp)++; /* Skip the comma. */
2396
2397 {
2398 int nbits;
2399 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2400 if (nbits != 0)
2401 {
2402 complain (&stabs_general_complaint, "bad structure-type format");
2403 return;
2404 }
2405 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2406 if (nbits != 0)
2407 {
2408 complain (&stabs_general_complaint, "bad structure-type format");
2409 return;
2410 }
2411 }
2412
2413 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2414 {
2415 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2416 it is a field which has been optimized out. The correct stab for
2417 this case is to use VISIBILITY_IGNORE, but that is a recent
2418 invention. (2) It is a 0-size array. For example
2419 union { int num; char str[0]; } foo. Printing "<no value>" for
2420 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2421 will continue to work, and a 0-size array as a whole doesn't
2422 have any contents to print.
2423
2424 I suspect this probably could also happen with gcc -gstabs (not
2425 -gstabs+) for static fields, and perhaps other C++ extensions.
2426 Hopefully few people use -gstabs with gdb, since it is intended
2427 for dbx compatibility. */
2428
2429 /* Ignore this field. */
2430 fip -> list-> visibility = VISIBILITY_IGNORE;
2431 }
2432 else
2433 {
2434 /* Detect an unpacked field and mark it as such.
2435 dbx gives a bit size for all fields.
2436 Note that forward refs cannot be packed,
2437 and treat enums as if they had the width of ints. */
2438
2439 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2440 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2441 {
2442 fip -> list -> field.bitsize = 0;
2443 }
2444 if ((fip -> list -> field.bitsize
2445 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2446 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2447 && (fip -> list -> field.bitsize
2448 == TARGET_INT_BIT)
2449 )
2450 )
2451 &&
2452 fip -> list -> field.bitpos % 8 == 0)
2453 {
2454 fip -> list -> field.bitsize = 0;
2455 }
2456 }
2457 }
2458
2459
2460 /* Read struct or class data fields. They have the form:
2461
2462 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2463
2464 At the end, we see a semicolon instead of a field.
2465
2466 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2467 a static field.
2468
2469 The optional VISIBILITY is one of:
2470
2471 '/0' (VISIBILITY_PRIVATE)
2472 '/1' (VISIBILITY_PROTECTED)
2473 '/2' (VISIBILITY_PUBLIC)
2474 '/9' (VISIBILITY_IGNORE)
2475
2476 or nothing, for C style fields with public visibility.
2477
2478 Returns 1 for success, 0 for failure. */
2479
2480 static int
2481 read_struct_fields (fip, pp, type, objfile)
2482 struct field_info *fip;
2483 char **pp;
2484 struct type *type;
2485 struct objfile *objfile;
2486 {
2487 register char *p;
2488 struct nextfield *new;
2489
2490 /* We better set p right now, in case there are no fields at all... */
2491
2492 p = *pp;
2493
2494 /* Read each data member type until we find the terminating ';' at the end of
2495 the data member list, or break for some other reason such as finding the
2496 start of the member function list. */
2497
2498 while (**pp != ';')
2499 {
2500 if (os9k_stabs && **pp == ',') break;
2501 STABS_CONTINUE (pp);
2502 /* Get space to record the next field's data. */
2503 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2504 make_cleanup (free, new);
2505 memset (new, 0, sizeof (struct nextfield));
2506 new -> next = fip -> list;
2507 fip -> list = new;
2508
2509 /* Get the field name. */
2510 p = *pp;
2511
2512 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2513 unless the CPLUS_MARKER is followed by an underscore, in
2514 which case it is just the name of an anonymous type, which we
2515 should handle like any other type name. We accept either '$'
2516 or '.', because a field name can never contain one of these
2517 characters except as a CPLUS_MARKER (we probably should be
2518 doing that in most parts of GDB). */
2519
2520 if ((*p == '$' || *p == '.') && p[1] != '_')
2521 {
2522 if (!read_cpp_abbrev (fip, pp, type, objfile))
2523 return 0;
2524 continue;
2525 }
2526
2527 /* Look for the ':' that separates the field name from the field
2528 values. Data members are delimited by a single ':', while member
2529 functions are delimited by a pair of ':'s. When we hit the member
2530 functions (if any), terminate scan loop and return. */
2531
2532 while (*p != ':' && *p != '\0')
2533 {
2534 p++;
2535 }
2536 if (*p == '\0')
2537 return 0;
2538
2539 /* Check to see if we have hit the member functions yet. */
2540 if (p[1] == ':')
2541 {
2542 break;
2543 }
2544 read_one_struct_field (fip, pp, p, type, objfile);
2545 }
2546 if (p[0] == ':' && p[1] == ':')
2547 {
2548 /* chill the list of fields: the last entry (at the head) is a
2549 partially constructed entry which we now scrub. */
2550 fip -> list = fip -> list -> next;
2551 }
2552 return 1;
2553 }
2554
2555 /* The stabs for C++ derived classes contain baseclass information which
2556 is marked by a '!' character after the total size. This function is
2557 called when we encounter the baseclass marker, and slurps up all the
2558 baseclass information.
2559
2560 Immediately following the '!' marker is the number of base classes that
2561 the class is derived from, followed by information for each base class.
2562 For each base class, there are two visibility specifiers, a bit offset
2563 to the base class information within the derived class, a reference to
2564 the type for the base class, and a terminating semicolon.
2565
2566 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2567 ^^ ^ ^ ^ ^ ^ ^
2568 Baseclass information marker __________________|| | | | | | |
2569 Number of baseclasses __________________________| | | | | | |
2570 Visibility specifiers (2) ________________________| | | | | |
2571 Offset in bits from start of class _________________| | | | |
2572 Type number for base class ___________________________| | | |
2573 Visibility specifiers (2) _______________________________| | |
2574 Offset in bits from start of class ________________________| |
2575 Type number of base class ____________________________________|
2576
2577 Return 1 for success, 0 for (error-type-inducing) failure. */
2578
2579 static int
2580 read_baseclasses (fip, pp, type, objfile)
2581 struct field_info *fip;
2582 char **pp;
2583 struct type *type;
2584 struct objfile *objfile;
2585 {
2586 int i;
2587 struct nextfield *new;
2588
2589 if (**pp != '!')
2590 {
2591 return 1;
2592 }
2593 else
2594 {
2595 /* Skip the '!' baseclass information marker. */
2596 (*pp)++;
2597 }
2598
2599 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2600 {
2601 int nbits;
2602 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2603 if (nbits != 0)
2604 return 0;
2605 }
2606
2607 #if 0
2608 /* Some stupid compilers have trouble with the following, so break
2609 it up into simpler expressions. */
2610 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2611 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2612 #else
2613 {
2614 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2615 char *pointer;
2616
2617 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2618 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2619 }
2620 #endif /* 0 */
2621
2622 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2623
2624 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2625 {
2626 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2627 make_cleanup (free, new);
2628 memset (new, 0, sizeof (struct nextfield));
2629 new -> next = fip -> list;
2630 fip -> list = new;
2631 new -> field.bitsize = 0; /* this should be an unpacked field! */
2632
2633 STABS_CONTINUE (pp);
2634 switch (**pp)
2635 {
2636 case '0':
2637 /* Nothing to do. */
2638 break;
2639 case '1':
2640 SET_TYPE_FIELD_VIRTUAL (type, i);
2641 break;
2642 default:
2643 /* Unknown character. Complain and treat it as non-virtual. */
2644 {
2645 static struct complaint msg = {
2646 "Unknown virtual character `%c' for baseclass", 0, 0};
2647 complain (&msg, **pp);
2648 }
2649 }
2650 ++(*pp);
2651
2652 new -> visibility = *(*pp)++;
2653 switch (new -> visibility)
2654 {
2655 case VISIBILITY_PRIVATE:
2656 case VISIBILITY_PROTECTED:
2657 case VISIBILITY_PUBLIC:
2658 break;
2659 default:
2660 /* Bad visibility format. Complain and treat it as
2661 public. */
2662 {
2663 static struct complaint msg = {
2664 "Unknown visibility `%c' for baseclass", 0, 0};
2665 complain (&msg, new -> visibility);
2666 new -> visibility = VISIBILITY_PUBLIC;
2667 }
2668 }
2669
2670 {
2671 int nbits;
2672
2673 /* The remaining value is the bit offset of the portion of the object
2674 corresponding to this baseclass. Always zero in the absence of
2675 multiple inheritance. */
2676
2677 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2678 if (nbits != 0)
2679 return 0;
2680 }
2681
2682 /* The last piece of baseclass information is the type of the
2683 base class. Read it, and remember it's type name as this
2684 field's name. */
2685
2686 new -> field.type = read_type (pp, objfile);
2687 new -> field.name = type_name_no_tag (new -> field.type);
2688
2689 /* skip trailing ';' and bump count of number of fields seen */
2690 if (**pp == ';')
2691 (*pp)++;
2692 else
2693 return 0;
2694 }
2695 return 1;
2696 }
2697
2698 /* The tail end of stabs for C++ classes that contain a virtual function
2699 pointer contains a tilde, a %, and a type number.
2700 The type number refers to the base class (possibly this class itself) which
2701 contains the vtable pointer for the current class.
2702
2703 This function is called when we have parsed all the method declarations,
2704 so we can look for the vptr base class info. */
2705
2706 static int
2707 read_tilde_fields (fip, pp, type, objfile)
2708 struct field_info *fip;
2709 char **pp;
2710 struct type *type;
2711 struct objfile *objfile;
2712 {
2713 register char *p;
2714
2715 STABS_CONTINUE (pp);
2716
2717 /* If we are positioned at a ';', then skip it. */
2718 if (**pp == ';')
2719 {
2720 (*pp)++;
2721 }
2722
2723 if (**pp == '~')
2724 {
2725 (*pp)++;
2726
2727 if (**pp == '=' || **pp == '+' || **pp == '-')
2728 {
2729 /* Obsolete flags that used to indicate the presence
2730 of constructors and/or destructors. */
2731 (*pp)++;
2732 }
2733
2734 /* Read either a '%' or the final ';'. */
2735 if (*(*pp)++ == '%')
2736 {
2737 /* The next number is the type number of the base class
2738 (possibly our own class) which supplies the vtable for
2739 this class. Parse it out, and search that class to find
2740 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2741 and TYPE_VPTR_FIELDNO. */
2742
2743 struct type *t;
2744 int i;
2745
2746 t = read_type (pp, objfile);
2747 p = (*pp)++;
2748 while (*p != '\0' && *p != ';')
2749 {
2750 p++;
2751 }
2752 if (*p == '\0')
2753 {
2754 /* Premature end of symbol. */
2755 return 0;
2756 }
2757
2758 TYPE_VPTR_BASETYPE (type) = t;
2759 if (type == t) /* Our own class provides vtbl ptr */
2760 {
2761 for (i = TYPE_NFIELDS (t) - 1;
2762 i >= TYPE_N_BASECLASSES (t);
2763 --i)
2764 {
2765 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2766 sizeof (vptr_name) - 1))
2767 {
2768 TYPE_VPTR_FIELDNO (type) = i;
2769 goto gotit;
2770 }
2771 }
2772 /* Virtual function table field not found. */
2773 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2774 return 0;
2775 }
2776 else
2777 {
2778 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2779 }
2780
2781 gotit:
2782 *pp = p + 1;
2783 }
2784 }
2785 return 1;
2786 }
2787
2788 static int
2789 attach_fn_fields_to_type (fip, type)
2790 struct field_info *fip;
2791 register struct type *type;
2792 {
2793 register int n;
2794
2795 for (n = TYPE_NFN_FIELDS (type);
2796 fip -> fnlist != NULL;
2797 fip -> fnlist = fip -> fnlist -> next)
2798 {
2799 --n; /* Circumvent Sun3 compiler bug */
2800 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2801 }
2802 return 1;
2803 }
2804
2805 /* Create the vector of fields, and record how big it is.
2806 We need this info to record proper virtual function table information
2807 for this class's virtual functions. */
2808
2809 static int
2810 attach_fields_to_type (fip, type, objfile)
2811 struct field_info *fip;
2812 register struct type *type;
2813 struct objfile *objfile;
2814 {
2815 register int nfields = 0;
2816 register int non_public_fields = 0;
2817 register struct nextfield *scan;
2818
2819 /* Count up the number of fields that we have, as well as taking note of
2820 whether or not there are any non-public fields, which requires us to
2821 allocate and build the private_field_bits and protected_field_bits
2822 bitfields. */
2823
2824 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2825 {
2826 nfields++;
2827 if (scan -> visibility != VISIBILITY_PUBLIC)
2828 {
2829 non_public_fields++;
2830 }
2831 }
2832
2833 /* Now we know how many fields there are, and whether or not there are any
2834 non-public fields. Record the field count, allocate space for the
2835 array of fields, and create blank visibility bitfields if necessary. */
2836
2837 TYPE_NFIELDS (type) = nfields;
2838 TYPE_FIELDS (type) = (struct field *)
2839 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2840 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2841
2842 if (non_public_fields)
2843 {
2844 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2845
2846 TYPE_FIELD_PRIVATE_BITS (type) =
2847 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2848 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2849
2850 TYPE_FIELD_PROTECTED_BITS (type) =
2851 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2852 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2853
2854 TYPE_FIELD_IGNORE_BITS (type) =
2855 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2856 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2857 }
2858
2859 /* Copy the saved-up fields into the field vector. Start from the head
2860 of the list, adding to the tail of the field array, so that they end
2861 up in the same order in the array in which they were added to the list. */
2862
2863 while (nfields-- > 0)
2864 {
2865 TYPE_FIELD (type, nfields) = fip -> list -> field;
2866 switch (fip -> list -> visibility)
2867 {
2868 case VISIBILITY_PRIVATE:
2869 SET_TYPE_FIELD_PRIVATE (type, nfields);
2870 break;
2871
2872 case VISIBILITY_PROTECTED:
2873 SET_TYPE_FIELD_PROTECTED (type, nfields);
2874 break;
2875
2876 case VISIBILITY_IGNORE:
2877 SET_TYPE_FIELD_IGNORE (type, nfields);
2878 break;
2879
2880 case VISIBILITY_PUBLIC:
2881 break;
2882
2883 default:
2884 /* Unknown visibility. Complain and treat it as public. */
2885 {
2886 static struct complaint msg = {
2887 "Unknown visibility `%c' for field", 0, 0};
2888 complain (&msg, fip -> list -> visibility);
2889 }
2890 break;
2891 }
2892 fip -> list = fip -> list -> next;
2893 }
2894 return 1;
2895 }
2896
2897 /* Read the description of a structure (or union type) and return an object
2898 describing the type.
2899
2900 PP points to a character pointer that points to the next unconsumed token
2901 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2902 *PP will point to "4a:1,0,32;;".
2903
2904 TYPE points to an incomplete type that needs to be filled in.
2905
2906 OBJFILE points to the current objfile from which the stabs information is
2907 being read. (Note that it is redundant in that TYPE also contains a pointer
2908 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2909 */
2910
2911 static struct type *
2912 read_struct_type (pp, type, objfile)
2913 char **pp;
2914 struct type *type;
2915 struct objfile *objfile;
2916 {
2917 struct cleanup *back_to;
2918 struct field_info fi;
2919
2920 fi.list = NULL;
2921 fi.fnlist = NULL;
2922
2923 back_to = make_cleanup (null_cleanup, 0);
2924
2925 INIT_CPLUS_SPECIFIC (type);
2926 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2927
2928 /* First comes the total size in bytes. */
2929
2930 {
2931 int nbits;
2932 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2933 if (nbits != 0)
2934 return error_type (pp);
2935 }
2936
2937 /* Now read the baseclasses, if any, read the regular C struct or C++
2938 class member fields, attach the fields to the type, read the C++
2939 member functions, attach them to the type, and then read any tilde
2940 field (baseclass specifier for the class holding the main vtable). */
2941
2942 if (!read_baseclasses (&fi, pp, type, objfile)
2943 || !read_struct_fields (&fi, pp, type, objfile)
2944 || !attach_fields_to_type (&fi, type, objfile)
2945 || !read_member_functions (&fi, pp, type, objfile)
2946 || !attach_fn_fields_to_type (&fi, type)
2947 || !read_tilde_fields (&fi, pp, type, objfile))
2948 {
2949 do_cleanups (back_to);
2950 return (error_type (pp));
2951 }
2952
2953 do_cleanups (back_to);
2954 return (type);
2955 }
2956
2957 /* Read a definition of an array type,
2958 and create and return a suitable type object.
2959 Also creates a range type which represents the bounds of that
2960 array. */
2961
2962 static struct type *
2963 read_array_type (pp, type, objfile)
2964 register char **pp;
2965 register struct type *type;
2966 struct objfile *objfile;
2967 {
2968 struct type *index_type, *element_type, *range_type;
2969 int lower, upper;
2970 int adjustable = 0;
2971 int nbits;
2972
2973 /* Format of an array type:
2974 "ar<index type>;lower;upper;<array_contents_type>".
2975 OS9000: "arlower,upper;<array_contents_type>".
2976
2977 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2978 for these, produce a type like float[][]. */
2979
2980 if (os9k_stabs)
2981 index_type = builtin_type_int;
2982 else
2983 {
2984 index_type = read_type (pp, objfile);
2985 if (**pp != ';')
2986 /* Improper format of array type decl. */
2987 return error_type (pp);
2988 ++*pp;
2989 }
2990
2991 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2992 {
2993 (*pp)++;
2994 adjustable = 1;
2995 }
2996 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
2997 if (nbits != 0)
2998 return error_type (pp);
2999
3000 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3001 {
3002 (*pp)++;
3003 adjustable = 1;
3004 }
3005 upper = read_huge_number (pp, ';', &nbits);
3006 if (nbits != 0)
3007 return error_type (pp);
3008
3009 element_type = read_type (pp, objfile);
3010
3011 if (adjustable)
3012 {
3013 lower = 0;
3014 upper = -1;
3015 }
3016
3017 range_type =
3018 create_range_type ((struct type *) NULL, index_type, lower, upper);
3019 type = create_array_type (type, element_type, range_type);
3020
3021 /* If we have an array whose element type is not yet known, but whose
3022 bounds *are* known, record it to be adjusted at the end of the file. */
3023
3024 if ((TYPE_FLAGS (element_type) & TYPE_FLAG_STUB) && !adjustable)
3025 {
3026 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
3027 add_undefined_type (type);
3028 }
3029
3030 return type;
3031 }
3032
3033
3034 /* Read a definition of an enumeration type,
3035 and create and return a suitable type object.
3036 Also defines the symbols that represent the values of the type. */
3037
3038 static struct type *
3039 read_enum_type (pp, type, objfile)
3040 register char **pp;
3041 register struct type *type;
3042 struct objfile *objfile;
3043 {
3044 register char *p;
3045 char *name;
3046 register long n;
3047 register struct symbol *sym;
3048 int nsyms = 0;
3049 struct pending **symlist;
3050 struct pending *osyms, *syms;
3051 int o_nsyms;
3052 int nbits;
3053
3054 #if 0
3055 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3056 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3057 to do? For now, force all enum values to file scope. */
3058 if (within_function)
3059 symlist = &local_symbols;
3060 else
3061 #endif
3062 symlist = &file_symbols;
3063 osyms = *symlist;
3064 o_nsyms = osyms ? osyms->nsyms : 0;
3065
3066 if (os9k_stabs)
3067 {
3068 /* Size. Perhaps this does not have to be conditionalized on
3069 os9k_stabs (assuming the name of an enum constant can't start
3070 with a digit). */
3071 read_huge_number (pp, 0, &nbits);
3072 if (nbits != 0)
3073 return error_type (pp);
3074 }
3075
3076 /* Read the value-names and their values.
3077 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3078 A semicolon or comma instead of a NAME means the end. */
3079 while (**pp && **pp != ';' && **pp != ',')
3080 {
3081 STABS_CONTINUE (pp);
3082 p = *pp;
3083 while (*p != ':') p++;
3084 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3085 *pp = p + 1;
3086 n = read_huge_number (pp, ',', &nbits);
3087 if (nbits != 0)
3088 return error_type (pp);
3089
3090 sym = (struct symbol *)
3091 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3092 memset (sym, 0, sizeof (struct symbol));
3093 SYMBOL_NAME (sym) = name;
3094 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3095 SYMBOL_CLASS (sym) = LOC_CONST;
3096 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3097 SYMBOL_VALUE (sym) = n;
3098 add_symbol_to_list (sym, symlist);
3099 nsyms++;
3100 }
3101
3102 if (**pp == ';')
3103 (*pp)++; /* Skip the semicolon. */
3104
3105 /* Now fill in the fields of the type-structure. */
3106
3107 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3108 TYPE_CODE (type) = TYPE_CODE_ENUM;
3109 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3110 TYPE_NFIELDS (type) = nsyms;
3111 TYPE_FIELDS (type) = (struct field *)
3112 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3113 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3114
3115 /* Find the symbols for the values and put them into the type.
3116 The symbols can be found in the symlist that we put them on
3117 to cause them to be defined. osyms contains the old value
3118 of that symlist; everything up to there was defined by us. */
3119 /* Note that we preserve the order of the enum constants, so
3120 that in something like "enum {FOO, LAST_THING=FOO}" we print
3121 FOO, not LAST_THING. */
3122
3123 for (syms = *symlist, n = nsyms - 1; ; syms = syms->next)
3124 {
3125 int last = syms == osyms ? o_nsyms : 0;
3126 int j = syms->nsyms;
3127 for (; --j >= last; --n)
3128 {
3129 struct symbol *xsym = syms->symbol[j];
3130 SYMBOL_TYPE (xsym) = type;
3131 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3132 TYPE_FIELD_VALUE (type, n) = 0;
3133 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3134 TYPE_FIELD_BITSIZE (type, n) = 0;
3135 }
3136 if (syms == osyms)
3137 break;
3138 }
3139
3140 return type;
3141 }
3142
3143 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3144 typedefs in every file (for int, long, etc):
3145
3146 type = b <signed> <width>; <offset>; <nbits>
3147 signed = u or s. Possible c in addition to u or s (for char?).
3148 offset = offset from high order bit to start bit of type.
3149 width is # bytes in object of this type, nbits is # bits in type.
3150
3151 The width/offset stuff appears to be for small objects stored in
3152 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3153 FIXME. */
3154
3155 static struct type *
3156 read_sun_builtin_type (pp, typenums, objfile)
3157 char **pp;
3158 int typenums[2];
3159 struct objfile *objfile;
3160 {
3161 int type_bits;
3162 int nbits;
3163 int signed_type;
3164
3165 switch (**pp)
3166 {
3167 case 's':
3168 signed_type = 1;
3169 break;
3170 case 'u':
3171 signed_type = 0;
3172 break;
3173 default:
3174 return error_type (pp);
3175 }
3176 (*pp)++;
3177
3178 /* For some odd reason, all forms of char put a c here. This is strange
3179 because no other type has this honor. We can safely ignore this because
3180 we actually determine 'char'acterness by the number of bits specified in
3181 the descriptor. */
3182
3183 if (**pp == 'c')
3184 (*pp)++;
3185
3186 /* The first number appears to be the number of bytes occupied
3187 by this type, except that unsigned short is 4 instead of 2.
3188 Since this information is redundant with the third number,
3189 we will ignore it. */
3190 read_huge_number (pp, ';', &nbits);
3191 if (nbits != 0)
3192 return error_type (pp);
3193
3194 /* The second number is always 0, so ignore it too. */
3195 read_huge_number (pp, ';', &nbits);
3196 if (nbits != 0)
3197 return error_type (pp);
3198
3199 /* The third number is the number of bits for this type. */
3200 type_bits = read_huge_number (pp, 0, &nbits);
3201 if (nbits != 0)
3202 return error_type (pp);
3203 /* The type *should* end with a semicolon. If it are embedded
3204 in a larger type the semicolon may be the only way to know where
3205 the type ends. If this type is at the end of the stabstring we
3206 can deal with the omitted semicolon (but we don't have to like
3207 it). Don't bother to complain(), Sun's compiler omits the semicolon
3208 for "void". */
3209 if (**pp == ';')
3210 ++(*pp);
3211
3212 if (type_bits == 0)
3213 return init_type (TYPE_CODE_VOID, 1,
3214 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3215 objfile);
3216 else
3217 return init_type (TYPE_CODE_INT,
3218 type_bits / TARGET_CHAR_BIT,
3219 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3220 objfile);
3221 }
3222
3223 static struct type *
3224 read_sun_floating_type (pp, typenums, objfile)
3225 char **pp;
3226 int typenums[2];
3227 struct objfile *objfile;
3228 {
3229 int nbits;
3230 int details;
3231 int nbytes;
3232
3233 /* The first number has more details about the type, for example
3234 FN_COMPLEX. */
3235 details = read_huge_number (pp, ';', &nbits);
3236 if (nbits != 0)
3237 return error_type (pp);
3238
3239 /* The second number is the number of bytes occupied by this type */
3240 nbytes = read_huge_number (pp, ';', &nbits);
3241 if (nbits != 0)
3242 return error_type (pp);
3243
3244 if (details == NF_COMPLEX || details == NF_COMPLEX16
3245 || details == NF_COMPLEX32)
3246 /* This is a type we can't handle, but we do know the size.
3247 We also will be able to give it a name. */
3248 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3249
3250 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3251 }
3252
3253 /* Read a number from the string pointed to by *PP.
3254 The value of *PP is advanced over the number.
3255 If END is nonzero, the character that ends the
3256 number must match END, or an error happens;
3257 and that character is skipped if it does match.
3258 If END is zero, *PP is left pointing to that character.
3259
3260 If the number fits in a long, set *BITS to 0 and return the value.
3261 If not, set *BITS to be the number of bits in the number and return 0.
3262
3263 If encounter garbage, set *BITS to -1 and return 0. */
3264
3265 static long
3266 read_huge_number (pp, end, bits)
3267 char **pp;
3268 int end;
3269 int *bits;
3270 {
3271 char *p = *pp;
3272 int sign = 1;
3273 long n = 0;
3274 int radix = 10;
3275 char overflow = 0;
3276 int nbits = 0;
3277 int c;
3278 long upper_limit;
3279
3280 if (*p == '-')
3281 {
3282 sign = -1;
3283 p++;
3284 }
3285
3286 /* Leading zero means octal. GCC uses this to output values larger
3287 than an int (because that would be hard in decimal). */
3288 if (*p == '0')
3289 {
3290 radix = 8;
3291 p++;
3292 }
3293
3294 if (os9k_stabs)
3295 upper_limit = ULONG_MAX / radix;
3296 else
3297 upper_limit = LONG_MAX / radix;
3298
3299 while ((c = *p++) >= '0' && c < ('0' + radix))
3300 {
3301 if (n <= upper_limit)
3302 {
3303 n *= radix;
3304 n += c - '0'; /* FIXME this overflows anyway */
3305 }
3306 else
3307 overflow = 1;
3308
3309 /* This depends on large values being output in octal, which is
3310 what GCC does. */
3311 if (radix == 8)
3312 {
3313 if (nbits == 0)
3314 {
3315 if (c == '0')
3316 /* Ignore leading zeroes. */
3317 ;
3318 else if (c == '1')
3319 nbits = 1;
3320 else if (c == '2' || c == '3')
3321 nbits = 2;
3322 else
3323 nbits = 3;
3324 }
3325 else
3326 nbits += 3;
3327 }
3328 }
3329 if (end)
3330 {
3331 if (c && c != end)
3332 {
3333 if (bits != NULL)
3334 *bits = -1;
3335 return 0;
3336 }
3337 }
3338 else
3339 --p;
3340
3341 *pp = p;
3342 if (overflow)
3343 {
3344 if (nbits == 0)
3345 {
3346 /* Large decimal constants are an error (because it is hard to
3347 count how many bits are in them). */
3348 if (bits != NULL)
3349 *bits = -1;
3350 return 0;
3351 }
3352
3353 /* -0x7f is the same as 0x80. So deal with it by adding one to
3354 the number of bits. */
3355 if (sign == -1)
3356 ++nbits;
3357 if (bits)
3358 *bits = nbits;
3359 }
3360 else
3361 {
3362 if (bits)
3363 *bits = 0;
3364 return n * sign;
3365 }
3366 /* It's *BITS which has the interesting information. */
3367 return 0;
3368 }
3369
3370 static struct type *
3371 read_range_type (pp, typenums, objfile)
3372 char **pp;
3373 int typenums[2];
3374 struct objfile *objfile;
3375 {
3376 char *orig_pp = *pp;
3377 int rangenums[2];
3378 long n2, n3;
3379 int n2bits, n3bits;
3380 int self_subrange;
3381 struct type *result_type;
3382 struct type *index_type = NULL;
3383
3384 /* First comes a type we are a subrange of.
3385 In C it is usually 0, 1 or the type being defined. */
3386 if (read_type_number (pp, rangenums) != 0)
3387 return error_type (pp);
3388 self_subrange = (rangenums[0] == typenums[0] &&
3389 rangenums[1] == typenums[1]);
3390
3391 if (**pp == '=')
3392 {
3393 *pp = orig_pp;
3394 index_type = read_type (pp, objfile);
3395 }
3396
3397 /* A semicolon should now follow; skip it. */
3398 if (**pp == ';')
3399 (*pp)++;
3400
3401 /* The remaining two operands are usually lower and upper bounds
3402 of the range. But in some special cases they mean something else. */
3403 n2 = read_huge_number (pp, ';', &n2bits);
3404 n3 = read_huge_number (pp, ';', &n3bits);
3405
3406 if (n2bits == -1 || n3bits == -1)
3407 return error_type (pp);
3408
3409 if (index_type)
3410 goto handle_true_range;
3411
3412 /* If limits are huge, must be large integral type. */
3413 if (n2bits != 0 || n3bits != 0)
3414 {
3415 char got_signed = 0;
3416 char got_unsigned = 0;
3417 /* Number of bits in the type. */
3418 int nbits = 0;
3419
3420 /* Range from 0 to <large number> is an unsigned large integral type. */
3421 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3422 {
3423 got_unsigned = 1;
3424 nbits = n3bits;
3425 }
3426 /* Range from <large number> to <large number>-1 is a large signed
3427 integral type. Take care of the case where <large number> doesn't
3428 fit in a long but <large number>-1 does. */
3429 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3430 || (n2bits != 0 && n3bits == 0
3431 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3432 && n3 == LONG_MAX))
3433 {
3434 got_signed = 1;
3435 nbits = n2bits;
3436 }
3437
3438 if (got_signed || got_unsigned)
3439 {
3440 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3441 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3442 objfile);
3443 }
3444 else
3445 return error_type (pp);
3446 }
3447
3448 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3449 if (self_subrange && n2 == 0 && n3 == 0)
3450 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3451
3452 /* If n3 is zero and n2 is not, we want a floating type,
3453 and n2 is the width in bytes.
3454
3455 Fortran programs appear to use this for complex types also,
3456 and they give no way to distinguish between double and single-complex!
3457
3458 GDB does not have complex types.
3459
3460 Just return the complex as a float of that size. It won't work right
3461 for the complex values, but at least it makes the file loadable. */
3462
3463 if (n3 == 0 && n2 > 0)
3464 {
3465 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3466 }
3467
3468 /* If the upper bound is -1, it must really be an unsigned int. */
3469
3470 else if (n2 == 0 && n3 == -1)
3471 {
3472 /* It is unsigned int or unsigned long. */
3473 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3474 compatibility hack. */
3475 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3476 TYPE_FLAG_UNSIGNED, NULL, objfile);
3477 }
3478
3479 /* Special case: char is defined (Who knows why) as a subrange of
3480 itself with range 0-127. */
3481 else if (self_subrange && n2 == 0 && n3 == 127)
3482 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3483
3484 /* We used to do this only for subrange of self or subrange of int. */
3485 else if (n2 == 0)
3486 {
3487 if (n3 < 0)
3488 /* n3 actually gives the size. */
3489 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3490 NULL, objfile);
3491 if (n3 == 0xff)
3492 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3493 if (n3 == 0xffff)
3494 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3495
3496 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3497 "unsigned long", and we already checked for that,
3498 so don't need to test for it here. */
3499 }
3500 /* I think this is for Convex "long long". Since I don't know whether
3501 Convex sets self_subrange, I also accept that particular size regardless
3502 of self_subrange. */
3503 else if (n3 == 0 && n2 < 0
3504 && (self_subrange
3505 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3506 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3507 else if (n2 == -n3 -1)
3508 {
3509 if (n3 == 0x7f)
3510 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3511 if (n3 == 0x7fff)
3512 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3513 if (n3 == 0x7fffffff)
3514 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3515 }
3516
3517 /* We have a real range type on our hands. Allocate space and
3518 return a real pointer. */
3519 handle_true_range:
3520
3521 /* At this point I don't have the faintest idea how to deal with
3522 a self_subrange type; I'm going to assume that this is used
3523 as an idiom, and that all of them are special cases. So . . . */
3524 if (self_subrange)
3525 return error_type (pp);
3526
3527 index_type = *dbx_lookup_type (rangenums);
3528 if (index_type == NULL)
3529 {
3530 /* Does this actually ever happen? Is that why we are worrying
3531 about dealing with it rather than just calling error_type? */
3532
3533 static struct type *range_type_index;
3534
3535 complain (&range_type_base_complaint, rangenums[1]);
3536 if (range_type_index == NULL)
3537 range_type_index =
3538 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3539 0, "range type index type", NULL);
3540 index_type = range_type_index;
3541 }
3542
3543 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3544 return (result_type);
3545 }
3546
3547 /* Read in an argument list. This is a list of types, separated by commas
3548 and terminated with END. Return the list of types read in, or (struct type
3549 **)-1 if there is an error. */
3550
3551 static struct type **
3552 read_args (pp, end, objfile)
3553 char **pp;
3554 int end;
3555 struct objfile *objfile;
3556 {
3557 /* FIXME! Remove this arbitrary limit! */
3558 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3559 int n = 0;
3560
3561 while (**pp != end)
3562 {
3563 if (**pp != ',')
3564 /* Invalid argument list: no ','. */
3565 return (struct type **)-1;
3566 (*pp)++;
3567 STABS_CONTINUE (pp);
3568 types[n++] = read_type (pp, objfile);
3569 }
3570 (*pp)++; /* get past `end' (the ':' character) */
3571
3572 if (n == 1)
3573 {
3574 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3575 }
3576 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3577 {
3578 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3579 memset (rval + n, 0, sizeof (struct type *));
3580 }
3581 else
3582 {
3583 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3584 }
3585 memcpy (rval, types, n * sizeof (struct type *));
3586 return rval;
3587 }
3588 \f
3589 /* Common block handling. */
3590
3591 /* List of symbols declared since the last BCOMM. This list is a tail
3592 of local_symbols. When ECOMM is seen, the symbols on the list
3593 are noted so their proper addresses can be filled in later,
3594 using the common block base address gotten from the assembler
3595 stabs. */
3596
3597 static struct pending *common_block;
3598 static int common_block_i;
3599
3600 /* Name of the current common block. We get it from the BCOMM instead of the
3601 ECOMM to match IBM documentation (even though IBM puts the name both places
3602 like everyone else). */
3603 static char *common_block_name;
3604
3605 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3606 to remain after this function returns. */
3607
3608 void
3609 common_block_start (name, objfile)
3610 char *name;
3611 struct objfile *objfile;
3612 {
3613 if (common_block_name != NULL)
3614 {
3615 static struct complaint msg = {
3616 "Invalid symbol data: common block within common block",
3617 0, 0};
3618 complain (&msg);
3619 }
3620 common_block = local_symbols;
3621 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3622 common_block_name = obsavestring (name, strlen (name),
3623 &objfile -> symbol_obstack);
3624 }
3625
3626 /* Process a N_ECOMM symbol. */
3627
3628 void
3629 common_block_end (objfile)
3630 struct objfile *objfile;
3631 {
3632 /* Symbols declared since the BCOMM are to have the common block
3633 start address added in when we know it. common_block and
3634 common_block_i point to the first symbol after the BCOMM in
3635 the local_symbols list; copy the list and hang it off the
3636 symbol for the common block name for later fixup. */
3637 int i;
3638 struct symbol *sym;
3639 struct pending *new = 0;
3640 struct pending *next;
3641 int j;
3642
3643 if (common_block_name == NULL)
3644 {
3645 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3646 complain (&msg);
3647 return;
3648 }
3649
3650 sym = (struct symbol *)
3651 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3652 memset (sym, 0, sizeof (struct symbol));
3653 SYMBOL_NAME (sym) = common_block_name;
3654 SYMBOL_CLASS (sym) = LOC_BLOCK;
3655
3656 /* Now we copy all the symbols which have been defined since the BCOMM. */
3657
3658 /* Copy all the struct pendings before common_block. */
3659 for (next = local_symbols;
3660 next != NULL && next != common_block;
3661 next = next->next)
3662 {
3663 for (j = 0; j < next->nsyms; j++)
3664 add_symbol_to_list (next->symbol[j], &new);
3665 }
3666
3667 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3668 NULL, it means copy all the local symbols (which we already did
3669 above). */
3670
3671 if (common_block != NULL)
3672 for (j = common_block_i; j < common_block->nsyms; j++)
3673 add_symbol_to_list (common_block->symbol[j], &new);
3674
3675 SYMBOL_TYPE (sym) = (struct type *) new;
3676
3677 /* Should we be putting local_symbols back to what it was?
3678 Does it matter? */
3679
3680 i = hashname (SYMBOL_NAME (sym));
3681 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3682 global_sym_chain[i] = sym;
3683 common_block_name = NULL;
3684 }
3685
3686 /* Add a common block's start address to the offset of each symbol
3687 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3688 the common block name). */
3689
3690 static void
3691 fix_common_block (sym, valu)
3692 struct symbol *sym;
3693 int valu;
3694 {
3695 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3696 for ( ; next; next = next->next)
3697 {
3698 register int j;
3699 for (j = next->nsyms - 1; j >= 0; j--)
3700 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3701 }
3702 }
3703
3704
3705 \f
3706 /* What about types defined as forward references inside of a small lexical
3707 scope? */
3708 /* Add a type to the list of undefined types to be checked through
3709 once this file has been read in. */
3710
3711 void
3712 add_undefined_type (type)
3713 struct type *type;
3714 {
3715 if (undef_types_length == undef_types_allocated)
3716 {
3717 undef_types_allocated *= 2;
3718 undef_types = (struct type **)
3719 xrealloc ((char *) undef_types,
3720 undef_types_allocated * sizeof (struct type *));
3721 }
3722 undef_types[undef_types_length++] = type;
3723 }
3724
3725 /* Go through each undefined type, see if it's still undefined, and fix it
3726 up if possible. We have two kinds of undefined types:
3727
3728 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3729 Fix: update array length using the element bounds
3730 and the target type's length.
3731 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3732 yet defined at the time a pointer to it was made.
3733 Fix: Do a full lookup on the struct/union tag. */
3734 void
3735 cleanup_undefined_types ()
3736 {
3737 struct type **type;
3738
3739 for (type = undef_types; type < undef_types + undef_types_length; type++)
3740 {
3741 switch (TYPE_CODE (*type))
3742 {
3743
3744 case TYPE_CODE_STRUCT:
3745 case TYPE_CODE_UNION:
3746 case TYPE_CODE_ENUM:
3747 {
3748 /* Check if it has been defined since. Need to do this here
3749 as well as in check_stub_type to deal with the (legitimate in
3750 C though not C++) case of several types with the same name
3751 in different source files. */
3752 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3753 {
3754 struct pending *ppt;
3755 int i;
3756 /* Name of the type, without "struct" or "union" */
3757 char *typename = TYPE_TAG_NAME (*type);
3758
3759 if (typename == NULL)
3760 {
3761 static struct complaint msg = {"need a type name", 0, 0};
3762 complain (&msg);
3763 break;
3764 }
3765 for (ppt = file_symbols; ppt; ppt = ppt->next)
3766 {
3767 for (i = 0; i < ppt->nsyms; i++)
3768 {
3769 struct symbol *sym = ppt->symbol[i];
3770
3771 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3772 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3773 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3774 TYPE_CODE (*type))
3775 && STREQ (SYMBOL_NAME (sym), typename))
3776 {
3777 memcpy (*type, SYMBOL_TYPE (sym),
3778 sizeof (struct type));
3779 }
3780 }
3781 }
3782 }
3783 }
3784 break;
3785
3786 case TYPE_CODE_ARRAY:
3787 {
3788 /* This is a kludge which is here for historical reasons
3789 because I suspect that check_stub_type does not get
3790 called everywhere it needs to be called for arrays. Even
3791 with this kludge, those places are broken for the case
3792 where the stub type is defined in another compilation
3793 unit, but this kludge at least deals with it for the case
3794 in which it is the same compilation unit.
3795
3796 Don't try to do this by calling check_stub_type; it might
3797 cause symbols to be read in lookup_symbol, and the symbol
3798 reader is not reentrant. */
3799
3800 struct type *range_type;
3801 int lower, upper;
3802
3803 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3804 goto badtype;
3805 if (TYPE_NFIELDS (*type) != 1)
3806 goto badtype;
3807 range_type = TYPE_FIELD_TYPE (*type, 0);
3808 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3809 goto badtype;
3810
3811 /* Now recompute the length of the array type, based on its
3812 number of elements and the target type's length. */
3813 lower = TYPE_FIELD_BITPOS (range_type, 0);
3814 upper = TYPE_FIELD_BITPOS (range_type, 1);
3815 TYPE_LENGTH (*type) = (upper - lower + 1)
3816 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3817
3818 /* If the target type is not a stub, we could be clearing
3819 TYPE_FLAG_TARGET_STUB for *type. */
3820 }
3821 break;
3822
3823 default:
3824 badtype:
3825 {
3826 static struct complaint msg = {"\
3827 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3828 complain (&msg, TYPE_CODE (*type));
3829 }
3830 break;
3831 }
3832 }
3833
3834 undef_types_length = 0;
3835 }
3836
3837 /* Scan through all of the global symbols defined in the object file,
3838 assigning values to the debugging symbols that need to be assigned
3839 to. Get these symbols from the minimal symbol table.
3840 Return 1 if there might still be unresolved debugging symbols, else 0. */
3841
3842 static int scan_file_globals_1 PARAMS ((struct objfile *));
3843
3844 static int
3845 scan_file_globals_1 (objfile)
3846 struct objfile *objfile;
3847 {
3848 int hash;
3849 struct minimal_symbol *msymbol;
3850 struct symbol *sym, *prev;
3851
3852 /* Avoid expensive loop through all minimal symbols if there are
3853 no unresolved symbols. */
3854 for (hash = 0; hash < HASHSIZE; hash++)
3855 {
3856 if (global_sym_chain[hash])
3857 break;
3858 }
3859 if (hash >= HASHSIZE)
3860 return 0;
3861
3862 if (objfile->msymbols == 0) /* Beware the null file. */
3863 return 1;
3864
3865 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3866 {
3867 QUIT;
3868
3869 /* Skip static symbols. */
3870 switch (MSYMBOL_TYPE (msymbol))
3871 {
3872 case mst_file_text:
3873 case mst_file_data:
3874 case mst_file_bss:
3875 continue;
3876 default:
3877 break;
3878 }
3879
3880 prev = NULL;
3881
3882 /* Get the hash index and check all the symbols
3883 under that hash index. */
3884
3885 hash = hashname (SYMBOL_NAME (msymbol));
3886
3887 for (sym = global_sym_chain[hash]; sym;)
3888 {
3889 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3890 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3891 {
3892 /* Splice this symbol out of the hash chain and
3893 assign the value we have to it. */
3894 if (prev)
3895 {
3896 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3897 }
3898 else
3899 {
3900 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3901 }
3902
3903 /* Check to see whether we need to fix up a common block. */
3904 /* Note: this code might be executed several times for
3905 the same symbol if there are multiple references. */
3906
3907 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3908 {
3909 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3910 }
3911 else
3912 {
3913 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3914 }
3915
3916 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3917
3918 if (prev)
3919 {
3920 sym = SYMBOL_VALUE_CHAIN (prev);
3921 }
3922 else
3923 {
3924 sym = global_sym_chain[hash];
3925 }
3926 }
3927 else
3928 {
3929 prev = sym;
3930 sym = SYMBOL_VALUE_CHAIN (sym);
3931 }
3932 }
3933 }
3934 return 1;
3935 }
3936
3937 /* Assign values to global debugging symbols.
3938 Search the passed objfile first, then try the runtime common symbols.
3939 Complain about any remaining unresolved symbols and remove them
3940 from the chain. */
3941
3942 void
3943 scan_file_globals (objfile)
3944 struct objfile *objfile;
3945 {
3946 int hash;
3947 struct symbol *sym, *prev;
3948
3949 if (scan_file_globals_1 (objfile) == 0)
3950 return;
3951 if (rt_common_objfile && scan_file_globals_1 (rt_common_objfile) == 0)
3952 return;
3953
3954 for (hash = 0; hash < HASHSIZE; hash++)
3955 {
3956 sym = global_sym_chain[hash];
3957 while (sym)
3958 {
3959 complain (&unresolved_sym_chain_complaint,
3960 objfile->name, SYMBOL_NAME (sym));
3961
3962 /* Change the symbol address from the misleading chain value
3963 to address zero. */
3964 prev = sym;
3965 sym = SYMBOL_VALUE_CHAIN (sym);
3966 SYMBOL_VALUE_ADDRESS (prev) = 0;
3967 }
3968 }
3969 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3970 }
3971
3972 /* Initialize anything that needs initializing when starting to read
3973 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3974 to a psymtab. */
3975
3976 void
3977 stabsread_init ()
3978 {
3979 }
3980
3981 /* Initialize anything that needs initializing when a completely new
3982 symbol file is specified (not just adding some symbols from another
3983 file, e.g. a shared library). */
3984
3985 void
3986 stabsread_new_init ()
3987 {
3988 /* Empty the hash table of global syms looking for values. */
3989 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3990 }
3991
3992 /* Initialize anything that needs initializing at the same time as
3993 start_symtab() is called. */
3994
3995 void start_stabs ()
3996 {
3997 global_stabs = NULL; /* AIX COFF */
3998 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3999 n_this_object_header_files = 1;
4000 type_vector_length = 0;
4001 type_vector = (struct type **) 0;
4002
4003 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4004 common_block_name = NULL;
4005
4006 os9k_stabs = 0;
4007 }
4008
4009 /* Call after end_symtab() */
4010
4011 void end_stabs ()
4012 {
4013 if (type_vector)
4014 {
4015 free ((char *) type_vector);
4016 }
4017 type_vector = 0;
4018 type_vector_length = 0;
4019 previous_stab_code = 0;
4020 }
4021
4022 void
4023 finish_global_stabs (objfile)
4024 struct objfile *objfile;
4025 {
4026 if (global_stabs)
4027 {
4028 patch_block_stabs (global_symbols, global_stabs, objfile);
4029 free ((PTR) global_stabs);
4030 global_stabs = NULL;
4031 }
4032 }
4033
4034 /* Initializer for this module */
4035
4036 void
4037 _initialize_stabsread ()
4038 {
4039 undef_types_allocated = 20;
4040 undef_types_length = 0;
4041 undef_types = (struct type **)
4042 xmalloc (undef_types_allocated * sizeof (struct type *));
4043 }