]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stap-probe.c
Unify gdb printf functions
[thirdparty/binutils-gdb.git] / gdb / stap-probe.c
1 /* SystemTap probe support for GDB.
2
3 Copyright (C) 2012-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "stap-probe.h"
22 #include "probe.h"
23 #include "ui-out.h"
24 #include "objfiles.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "filenames.h"
29 #include "value.h"
30 #include "ax.h"
31 #include "ax-gdb.h"
32 #include "complaints.h"
33 #include "cli/cli-utils.h"
34 #include "linespec.h"
35 #include "user-regs.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "elf-bfd.h"
39 #include "expop.h"
40 #include <unordered_map>
41 #include "gdbsupport/hash_enum.h"
42
43 #include <ctype.h>
44
45 /* The name of the SystemTap section where we will find information about
46 the probes. */
47
48 #define STAP_BASE_SECTION_NAME ".stapsdt.base"
49
50 /* Should we display debug information for the probe's argument expression
51 parsing? */
52
53 static unsigned int stap_expression_debug = 0;
54
55 /* The various possibilities of bitness defined for a probe's argument.
56
57 The relationship is:
58
59 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
60 - STAP_ARG_BITNESS_8BIT_UNSIGNED: argument string starts with `1@'.
61 - STAP_ARG_BITNESS_8BIT_SIGNED: argument string starts with `-1@'.
62 - STAP_ARG_BITNESS_16BIT_UNSIGNED: argument string starts with `2@'.
63 - STAP_ARG_BITNESS_16BIT_SIGNED: argument string starts with `-2@'.
64 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
65 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
66 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
67 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
68
69 enum stap_arg_bitness
70 {
71 STAP_ARG_BITNESS_UNDEFINED,
72 STAP_ARG_BITNESS_8BIT_UNSIGNED,
73 STAP_ARG_BITNESS_8BIT_SIGNED,
74 STAP_ARG_BITNESS_16BIT_UNSIGNED,
75 STAP_ARG_BITNESS_16BIT_SIGNED,
76 STAP_ARG_BITNESS_32BIT_UNSIGNED,
77 STAP_ARG_BITNESS_32BIT_SIGNED,
78 STAP_ARG_BITNESS_64BIT_UNSIGNED,
79 STAP_ARG_BITNESS_64BIT_SIGNED,
80 };
81
82 /* The following structure represents a single argument for the probe. */
83
84 struct stap_probe_arg
85 {
86 /* Constructor for stap_probe_arg. */
87 stap_probe_arg (enum stap_arg_bitness bitness_, struct type *atype_,
88 expression_up &&aexpr_)
89 : bitness (bitness_), atype (atype_), aexpr (std::move (aexpr_))
90 {}
91
92 /* The bitness of this argument. */
93 enum stap_arg_bitness bitness;
94
95 /* The corresponding `struct type *' to the bitness. */
96 struct type *atype;
97
98 /* The argument converted to an internal GDB expression. */
99 expression_up aexpr;
100 };
101
102 /* Class that implements the static probe methods for "stap" probes. */
103
104 class stap_static_probe_ops : public static_probe_ops
105 {
106 public:
107 /* We need a user-provided constructor to placate some compilers.
108 See PR build/24937. */
109 stap_static_probe_ops ()
110 {
111 }
112
113 /* See probe.h. */
114 bool is_linespec (const char **linespecp) const override;
115
116 /* See probe.h. */
117 void get_probes (std::vector<std::unique_ptr<probe>> *probesp,
118 struct objfile *objfile) const override;
119
120 /* See probe.h. */
121 const char *type_name () const override;
122
123 /* See probe.h. */
124 std::vector<struct info_probe_column> gen_info_probes_table_header
125 () const override;
126 };
127
128 /* SystemTap static_probe_ops. */
129
130 const stap_static_probe_ops stap_static_probe_ops {};
131
132 class stap_probe : public probe
133 {
134 public:
135 /* Constructor for stap_probe. */
136 stap_probe (std::string &&name_, std::string &&provider_, CORE_ADDR address_,
137 struct gdbarch *arch_, CORE_ADDR sem_addr, const char *args_text)
138 : probe (std::move (name_), std::move (provider_), address_, arch_),
139 m_sem_addr (sem_addr),
140 m_have_parsed_args (false), m_unparsed_args_text (args_text)
141 {}
142
143 /* See probe.h. */
144 CORE_ADDR get_relocated_address (struct objfile *objfile) override;
145
146 /* See probe.h. */
147 unsigned get_argument_count (struct gdbarch *gdbarch) override;
148
149 /* See probe.h. */
150 bool can_evaluate_arguments () const override;
151
152 /* See probe.h. */
153 struct value *evaluate_argument (unsigned n,
154 struct frame_info *frame) override;
155
156 /* See probe.h. */
157 void compile_to_ax (struct agent_expr *aexpr,
158 struct axs_value *axs_value,
159 unsigned n) override;
160
161 /* See probe.h. */
162 void set_semaphore (struct objfile *objfile,
163 struct gdbarch *gdbarch) override;
164
165 /* See probe.h. */
166 void clear_semaphore (struct objfile *objfile,
167 struct gdbarch *gdbarch) override;
168
169 /* See probe.h. */
170 const static_probe_ops *get_static_ops () const override;
171
172 /* See probe.h. */
173 std::vector<const char *> gen_info_probes_table_values () const override;
174
175 /* Return argument N of probe.
176
177 If the probe's arguments have not been parsed yet, parse them. If
178 there are no arguments, throw an exception (error). Otherwise,
179 return the requested argument. */
180 struct stap_probe_arg *get_arg_by_number (unsigned n,
181 struct gdbarch *gdbarch)
182 {
183 if (!m_have_parsed_args)
184 this->parse_arguments (gdbarch);
185
186 gdb_assert (m_have_parsed_args);
187 if (m_parsed_args.empty ())
188 internal_error (__FILE__, __LINE__,
189 _("Probe '%s' apparently does not have arguments, but \n"
190 "GDB is requesting its argument number %u anyway. "
191 "This should not happen. Please report this bug."),
192 this->get_name ().c_str (), n);
193
194 if (n > m_parsed_args.size ())
195 internal_error (__FILE__, __LINE__,
196 _("Probe '%s' has %d arguments, but GDB is requesting\n"
197 "argument %u. This should not happen. Please\n"
198 "report this bug."),
199 this->get_name ().c_str (),
200 (int) m_parsed_args.size (), n);
201
202 return &m_parsed_args[n];
203 }
204
205 /* Function which parses an argument string from the probe,
206 correctly splitting the arguments and storing their information
207 in properly ways.
208
209 Consider the following argument string (x86 syntax):
210
211 `4@%eax 4@$10'
212
213 We have two arguments, `%eax' and `$10', both with 32-bit
214 unsigned bitness. This function basically handles them, properly
215 filling some structures with this information. */
216 void parse_arguments (struct gdbarch *gdbarch);
217
218 private:
219 /* If the probe has a semaphore associated, then this is the value of
220 it, relative to SECT_OFF_DATA. */
221 CORE_ADDR m_sem_addr;
222
223 /* True if the arguments have been parsed. */
224 bool m_have_parsed_args;
225
226 /* The text version of the probe's arguments, unparsed. */
227 const char *m_unparsed_args_text;
228
229 /* Information about each argument. This is an array of `stap_probe_arg',
230 with each entry representing one argument. This is only valid if
231 M_ARGS_PARSED is true. */
232 std::vector<struct stap_probe_arg> m_parsed_args;
233 };
234
235 /* When parsing the arguments, we have to establish different precedences
236 for the various kinds of asm operators. This enumeration represents those
237 precedences.
238
239 This logic behind this is available at
240 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
241 the command "info '(as)Infix Ops'". */
242
243 enum stap_operand_prec
244 {
245 /* Lowest precedence, used for non-recognized operands or for the beginning
246 of the parsing process. */
247 STAP_OPERAND_PREC_NONE = 0,
248
249 /* Precedence of logical OR. */
250 STAP_OPERAND_PREC_LOGICAL_OR,
251
252 /* Precedence of logical AND. */
253 STAP_OPERAND_PREC_LOGICAL_AND,
254
255 /* Precedence of additive (plus, minus) and comparative (equal, less,
256 greater-than, etc) operands. */
257 STAP_OPERAND_PREC_ADD_CMP,
258
259 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
260 logical NOT). */
261 STAP_OPERAND_PREC_BITWISE,
262
263 /* Precedence of multiplicative operands (multiplication, division,
264 remainder, left shift and right shift). */
265 STAP_OPERAND_PREC_MUL
266 };
267
268 static expr::operation_up stap_parse_argument_1 (struct stap_parse_info *p,
269 expr::operation_up &&lhs,
270 enum stap_operand_prec prec)
271 ATTRIBUTE_UNUSED_RESULT;
272
273 static expr::operation_up stap_parse_argument_conditionally
274 (struct stap_parse_info *p) ATTRIBUTE_UNUSED_RESULT;
275
276 /* Returns true if *S is an operator, false otherwise. */
277
278 static bool stap_is_operator (const char *op);
279
280 static void
281 show_stapexpressiondebug (struct ui_file *file, int from_tty,
282 struct cmd_list_element *c, const char *value)
283 {
284 gdb_printf (file, _("SystemTap Probe expression debugging is %s.\n"),
285 value);
286 }
287
288 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
289 if the operator code was not recognized. */
290
291 static enum stap_operand_prec
292 stap_get_operator_prec (enum exp_opcode op)
293 {
294 switch (op)
295 {
296 case BINOP_LOGICAL_OR:
297 return STAP_OPERAND_PREC_LOGICAL_OR;
298
299 case BINOP_LOGICAL_AND:
300 return STAP_OPERAND_PREC_LOGICAL_AND;
301
302 case BINOP_ADD:
303 case BINOP_SUB:
304 case BINOP_EQUAL:
305 case BINOP_NOTEQUAL:
306 case BINOP_LESS:
307 case BINOP_LEQ:
308 case BINOP_GTR:
309 case BINOP_GEQ:
310 return STAP_OPERAND_PREC_ADD_CMP;
311
312 case BINOP_BITWISE_IOR:
313 case BINOP_BITWISE_AND:
314 case BINOP_BITWISE_XOR:
315 case UNOP_LOGICAL_NOT:
316 return STAP_OPERAND_PREC_BITWISE;
317
318 case BINOP_MUL:
319 case BINOP_DIV:
320 case BINOP_REM:
321 case BINOP_LSH:
322 case BINOP_RSH:
323 return STAP_OPERAND_PREC_MUL;
324
325 default:
326 return STAP_OPERAND_PREC_NONE;
327 }
328 }
329
330 /* Given S, read the operator in it. Return the EXP_OPCODE which
331 represents the operator detected, or throw an error if no operator
332 was found. */
333
334 static enum exp_opcode
335 stap_get_opcode (const char **s)
336 {
337 const char c = **s;
338 enum exp_opcode op;
339
340 *s += 1;
341
342 switch (c)
343 {
344 case '*':
345 op = BINOP_MUL;
346 break;
347
348 case '/':
349 op = BINOP_DIV;
350 break;
351
352 case '%':
353 op = BINOP_REM;
354 break;
355
356 case '<':
357 op = BINOP_LESS;
358 if (**s == '<')
359 {
360 *s += 1;
361 op = BINOP_LSH;
362 }
363 else if (**s == '=')
364 {
365 *s += 1;
366 op = BINOP_LEQ;
367 }
368 else if (**s == '>')
369 {
370 *s += 1;
371 op = BINOP_NOTEQUAL;
372 }
373 break;
374
375 case '>':
376 op = BINOP_GTR;
377 if (**s == '>')
378 {
379 *s += 1;
380 op = BINOP_RSH;
381 }
382 else if (**s == '=')
383 {
384 *s += 1;
385 op = BINOP_GEQ;
386 }
387 break;
388
389 case '|':
390 op = BINOP_BITWISE_IOR;
391 if (**s == '|')
392 {
393 *s += 1;
394 op = BINOP_LOGICAL_OR;
395 }
396 break;
397
398 case '&':
399 op = BINOP_BITWISE_AND;
400 if (**s == '&')
401 {
402 *s += 1;
403 op = BINOP_LOGICAL_AND;
404 }
405 break;
406
407 case '^':
408 op = BINOP_BITWISE_XOR;
409 break;
410
411 case '!':
412 op = UNOP_LOGICAL_NOT;
413 break;
414
415 case '+':
416 op = BINOP_ADD;
417 break;
418
419 case '-':
420 op = BINOP_SUB;
421 break;
422
423 case '=':
424 gdb_assert (**s == '=');
425 op = BINOP_EQUAL;
426 break;
427
428 default:
429 error (_("Invalid opcode in expression `%s' for SystemTap"
430 "probe"), *s);
431 }
432
433 return op;
434 }
435
436 typedef expr::operation_up binop_maker_ftype (expr::operation_up &&,
437 expr::operation_up &&);
438 /* Map from an expression opcode to a function that can create a
439 binary operation of that type. */
440 static std::unordered_map<exp_opcode, binop_maker_ftype *,
441 gdb::hash_enum<exp_opcode>> stap_maker_map;
442
443 /* Helper function to create a binary operation. */
444 static expr::operation_up
445 stap_make_binop (enum exp_opcode opcode, expr::operation_up &&lhs,
446 expr::operation_up &&rhs)
447 {
448 auto iter = stap_maker_map.find (opcode);
449 gdb_assert (iter != stap_maker_map.end ());
450 return iter->second (std::move (lhs), std::move (rhs));
451 }
452
453 /* Given the bitness of the argument, represented by B, return the
454 corresponding `struct type *', or throw an error if B is
455 unknown. */
456
457 static struct type *
458 stap_get_expected_argument_type (struct gdbarch *gdbarch,
459 enum stap_arg_bitness b,
460 const char *probe_name)
461 {
462 switch (b)
463 {
464 case STAP_ARG_BITNESS_UNDEFINED:
465 if (gdbarch_addr_bit (gdbarch) == 32)
466 return builtin_type (gdbarch)->builtin_uint32;
467 else
468 return builtin_type (gdbarch)->builtin_uint64;
469
470 case STAP_ARG_BITNESS_8BIT_UNSIGNED:
471 return builtin_type (gdbarch)->builtin_uint8;
472
473 case STAP_ARG_BITNESS_8BIT_SIGNED:
474 return builtin_type (gdbarch)->builtin_int8;
475
476 case STAP_ARG_BITNESS_16BIT_UNSIGNED:
477 return builtin_type (gdbarch)->builtin_uint16;
478
479 case STAP_ARG_BITNESS_16BIT_SIGNED:
480 return builtin_type (gdbarch)->builtin_int16;
481
482 case STAP_ARG_BITNESS_32BIT_SIGNED:
483 return builtin_type (gdbarch)->builtin_int32;
484
485 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
486 return builtin_type (gdbarch)->builtin_uint32;
487
488 case STAP_ARG_BITNESS_64BIT_SIGNED:
489 return builtin_type (gdbarch)->builtin_int64;
490
491 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
492 return builtin_type (gdbarch)->builtin_uint64;
493
494 default:
495 error (_("Undefined bitness for probe '%s'."), probe_name);
496 break;
497 }
498 }
499
500 /* Helper function to check for a generic list of prefixes. GDBARCH
501 is the current gdbarch being used. S is the expression being
502 analyzed. If R is not NULL, it will be used to return the found
503 prefix. PREFIXES is the list of expected prefixes.
504
505 This function does a case-insensitive match.
506
507 Return true if any prefix has been found, false otherwise. */
508
509 static bool
510 stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
511 const char **r, const char *const *prefixes)
512 {
513 const char *const *p;
514
515 if (prefixes == NULL)
516 {
517 if (r != NULL)
518 *r = "";
519
520 return true;
521 }
522
523 for (p = prefixes; *p != NULL; ++p)
524 if (strncasecmp (s, *p, strlen (*p)) == 0)
525 {
526 if (r != NULL)
527 *r = *p;
528
529 return true;
530 }
531
532 return false;
533 }
534
535 /* Return true if S points to a register prefix, false otherwise. For
536 a description of the arguments, look at stap_is_generic_prefix. */
537
538 static bool
539 stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
540 const char **r)
541 {
542 const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
543
544 return stap_is_generic_prefix (gdbarch, s, r, t);
545 }
546
547 /* Return true if S points to a register indirection prefix, false
548 otherwise. For a description of the arguments, look at
549 stap_is_generic_prefix. */
550
551 static bool
552 stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
553 const char **r)
554 {
555 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
556
557 return stap_is_generic_prefix (gdbarch, s, r, t);
558 }
559
560 /* Return true if S points to an integer prefix, false otherwise. For
561 a description of the arguments, look at stap_is_generic_prefix.
562
563 This function takes care of analyzing whether we are dealing with
564 an expected integer prefix, or, if there is no integer prefix to be
565 expected, whether we are dealing with a digit. It does a
566 case-insensitive match. */
567
568 static bool
569 stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
570 const char **r)
571 {
572 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
573 const char *const *p;
574
575 if (t == NULL)
576 {
577 /* A NULL value here means that integers do not have a prefix.
578 We just check for a digit then. */
579 if (r != NULL)
580 *r = "";
581
582 return isdigit (*s) > 0;
583 }
584
585 for (p = t; *p != NULL; ++p)
586 {
587 size_t len = strlen (*p);
588
589 if ((len == 0 && isdigit (*s))
590 || (len > 0 && strncasecmp (s, *p, len) == 0))
591 {
592 /* Integers may or may not have a prefix. The "len == 0"
593 check covers the case when integers do not have a prefix
594 (therefore, we just check if we have a digit). The call
595 to "strncasecmp" covers the case when they have a
596 prefix. */
597 if (r != NULL)
598 *r = *p;
599
600 return true;
601 }
602 }
603
604 return false;
605 }
606
607 /* Helper function to check for a generic list of suffixes. If we are
608 not expecting any suffixes, then it just returns 1. If we are
609 expecting at least one suffix, then it returns true if a suffix has
610 been found, false otherwise. GDBARCH is the current gdbarch being
611 used. S is the expression being analyzed. If R is not NULL, it
612 will be used to return the found suffix. SUFFIXES is the list of
613 expected suffixes. This function does a case-insensitive
614 match. */
615
616 static bool
617 stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
618 const char **r, const char *const *suffixes)
619 {
620 const char *const *p;
621 bool found = false;
622
623 if (suffixes == NULL)
624 {
625 if (r != NULL)
626 *r = "";
627
628 return true;
629 }
630
631 for (p = suffixes; *p != NULL; ++p)
632 if (strncasecmp (s, *p, strlen (*p)) == 0)
633 {
634 if (r != NULL)
635 *r = *p;
636
637 found = true;
638 break;
639 }
640
641 return found;
642 }
643
644 /* Return true if S points to an integer suffix, false otherwise. For
645 a description of the arguments, look at
646 stap_generic_check_suffix. */
647
648 static bool
649 stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
650 const char **r)
651 {
652 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
653
654 return stap_generic_check_suffix (gdbarch, s, r, p);
655 }
656
657 /* Return true if S points to a register suffix, false otherwise. For
658 a description of the arguments, look at
659 stap_generic_check_suffix. */
660
661 static bool
662 stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
663 const char **r)
664 {
665 const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
666
667 return stap_generic_check_suffix (gdbarch, s, r, p);
668 }
669
670 /* Return true if S points to a register indirection suffix, false
671 otherwise. For a description of the arguments, look at
672 stap_generic_check_suffix. */
673
674 static bool
675 stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
676 const char **r)
677 {
678 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
679
680 return stap_generic_check_suffix (gdbarch, s, r, p);
681 }
682
683 /* Function responsible for parsing a register operand according to
684 SystemTap parlance. Assuming:
685
686 RP = register prefix
687 RS = register suffix
688 RIP = register indirection prefix
689 RIS = register indirection suffix
690
691 Then a register operand can be:
692
693 [RIP] [RP] REGISTER [RS] [RIS]
694
695 This function takes care of a register's indirection, displacement and
696 direct access. It also takes into consideration the fact that some
697 registers are named differently inside and outside GDB, e.g., PPC's
698 general-purpose registers are represented by integers in the assembly
699 language (e.g., `15' is the 15th general-purpose register), but inside
700 GDB they have a prefix (the letter `r') appended. */
701
702 static expr::operation_up
703 stap_parse_register_operand (struct stap_parse_info *p)
704 {
705 /* Simple flag to indicate whether we have seen a minus signal before
706 certain number. */
707 bool got_minus = false;
708 /* Flag to indicate whether this register access is being
709 indirected. */
710 bool indirect_p = false;
711 struct gdbarch *gdbarch = p->gdbarch;
712 /* Variables used to extract the register name from the probe's
713 argument. */
714 const char *start;
715 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
716 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
717 const char *reg_prefix;
718 const char *reg_ind_prefix;
719 const char *reg_suffix;
720 const char *reg_ind_suffix;
721
722 using namespace expr;
723
724 /* Checking for a displacement argument. */
725 if (*p->arg == '+')
726 {
727 /* If it's a plus sign, we don't need to do anything, just advance the
728 pointer. */
729 ++p->arg;
730 }
731 else if (*p->arg == '-')
732 {
733 got_minus = true;
734 ++p->arg;
735 }
736
737 struct type *long_type = builtin_type (gdbarch)->builtin_long;
738 operation_up disp_op;
739 if (isdigit (*p->arg))
740 {
741 /* The value of the displacement. */
742 long displacement;
743 char *endp;
744
745 displacement = strtol (p->arg, &endp, 10);
746 p->arg = endp;
747
748 /* Generating the expression for the displacement. */
749 if (got_minus)
750 displacement = -displacement;
751 disp_op = make_operation<long_const_operation> (long_type, displacement);
752 }
753
754 /* Getting rid of register indirection prefix. */
755 if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
756 {
757 indirect_p = true;
758 p->arg += strlen (reg_ind_prefix);
759 }
760
761 if (disp_op != nullptr && !indirect_p)
762 error (_("Invalid register displacement syntax on expression `%s'."),
763 p->saved_arg);
764
765 /* Getting rid of register prefix. */
766 if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
767 p->arg += strlen (reg_prefix);
768
769 /* Now we should have only the register name. Let's extract it and get
770 the associated number. */
771 start = p->arg;
772
773 /* We assume the register name is composed by letters and numbers. */
774 while (isalnum (*p->arg))
775 ++p->arg;
776
777 std::string regname (start, p->arg - start);
778
779 /* We only add the GDB's register prefix/suffix if we are dealing with
780 a numeric register. */
781 if (isdigit (*start))
782 {
783 if (gdb_reg_prefix != NULL)
784 regname = gdb_reg_prefix + regname;
785
786 if (gdb_reg_suffix != NULL)
787 regname += gdb_reg_suffix;
788 }
789
790 int regnum = user_reg_map_name_to_regnum (gdbarch, regname.c_str (),
791 regname.size ());
792
793 /* Is this a valid register name? */
794 if (regnum == -1)
795 error (_("Invalid register name `%s' on expression `%s'."),
796 regname.c_str (), p->saved_arg);
797
798 /* Check if there's any special treatment that the arch-specific
799 code would like to perform on the register name. */
800 if (gdbarch_stap_adjust_register_p (gdbarch))
801 {
802 std::string newregname
803 = gdbarch_stap_adjust_register (gdbarch, p, regname, regnum);
804
805 if (regname != newregname)
806 {
807 /* This is just a check we perform to make sure that the
808 arch-dependent code has provided us with a valid
809 register name. */
810 regnum = user_reg_map_name_to_regnum (gdbarch, newregname.c_str (),
811 newregname.size ());
812
813 if (regnum == -1)
814 internal_error (__FILE__, __LINE__,
815 _("Invalid register name '%s' after replacing it"
816 " (previous name was '%s')"),
817 newregname.c_str (), regname.c_str ());
818
819 regname = std::move (newregname);
820 }
821 }
822
823 operation_up reg = make_operation<register_operation> (std::move (regname));
824
825 /* If the argument has been placed into a vector register then (for most
826 architectures), the type of this register will be a union of arrays.
827 As a result, attempting to cast from the register type to the scalar
828 argument type will not be possible (GDB will throw an error during
829 expression evaluation).
830
831 The solution is to extract the scalar type from the value contents of
832 the entire register value. */
833 if (!is_scalar_type (gdbarch_register_type (gdbarch, regnum)))
834 {
835 gdb_assert (is_scalar_type (p->arg_type));
836 reg = make_operation<unop_extract_operation> (std::move (reg),
837 p->arg_type);
838 }
839
840 if (indirect_p)
841 {
842 if (disp_op != nullptr)
843 reg = make_operation<add_operation> (std::move (disp_op),
844 std::move (reg));
845
846 /* Casting to the expected type. */
847 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
848 reg = make_operation<unop_cast_operation> (std::move (reg),
849 arg_ptr_type);
850 reg = make_operation<unop_ind_operation> (std::move (reg));
851 }
852
853 /* Getting rid of the register name suffix. */
854 if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
855 p->arg += strlen (reg_suffix);
856 else
857 error (_("Missing register name suffix on expression `%s'."),
858 p->saved_arg);
859
860 /* Getting rid of the register indirection suffix. */
861 if (indirect_p)
862 {
863 if (stap_check_register_indirection_suffix (gdbarch, p->arg,
864 &reg_ind_suffix))
865 p->arg += strlen (reg_ind_suffix);
866 else
867 error (_("Missing indirection suffix on expression `%s'."),
868 p->saved_arg);
869 }
870
871 return reg;
872 }
873
874 /* This function is responsible for parsing a single operand.
875
876 A single operand can be:
877
878 - an unary operation (e.g., `-5', `~2', or even with subexpressions
879 like `-(2 + 1)')
880 - a register displacement, which will be treated as a register
881 operand (e.g., `-4(%eax)' on x86)
882 - a numeric constant, or
883 - a register operand (see function `stap_parse_register_operand')
884
885 The function also calls special-handling functions to deal with
886 unrecognized operands, allowing arch-specific parsers to be
887 created. */
888
889 static expr::operation_up
890 stap_parse_single_operand (struct stap_parse_info *p)
891 {
892 struct gdbarch *gdbarch = p->gdbarch;
893 const char *int_prefix = NULL;
894
895 using namespace expr;
896
897 /* We first try to parse this token as a "special token". */
898 if (gdbarch_stap_parse_special_token_p (gdbarch))
899 {
900 operation_up token = gdbarch_stap_parse_special_token (gdbarch, p);
901 if (token != nullptr)
902 return token;
903 }
904
905 struct type *long_type = builtin_type (gdbarch)->builtin_long;
906 operation_up result;
907 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' || *p->arg == '!')
908 {
909 char c = *p->arg;
910 /* We use this variable to do a lookahead. */
911 const char *tmp = p->arg;
912 bool has_digit = false;
913
914 /* Skipping signal. */
915 ++tmp;
916
917 /* This is an unary operation. Here is a list of allowed tokens
918 here:
919
920 - numeric literal;
921 - number (from register displacement)
922 - subexpression (beginning with `(')
923
924 We handle the register displacement here, and the other cases
925 recursively. */
926 if (p->inside_paren_p)
927 tmp = skip_spaces (tmp);
928
929 while (isdigit (*tmp))
930 {
931 /* We skip the digit here because we are only interested in
932 knowing what kind of unary operation this is. The digit
933 will be handled by one of the functions that will be
934 called below ('stap_parse_argument_conditionally' or
935 'stap_parse_register_operand'). */
936 ++tmp;
937 has_digit = true;
938 }
939
940 if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp,
941 NULL))
942 {
943 /* If we are here, it means it is a displacement. The only
944 operations allowed here are `-' and `+'. */
945 if (c != '-' && c != '+')
946 error (_("Invalid operator `%c' for register displacement "
947 "on expression `%s'."), c, p->saved_arg);
948
949 result = stap_parse_register_operand (p);
950 }
951 else
952 {
953 /* This is not a displacement. We skip the operator, and
954 deal with it when the recursion returns. */
955 ++p->arg;
956 result = stap_parse_argument_conditionally (p);
957 if (c == '-')
958 result = make_operation<unary_neg_operation> (std::move (result));
959 else if (c == '~')
960 result = (make_operation<unary_complement_operation>
961 (std::move (result)));
962 else if (c == '!')
963 result = (make_operation<unary_logical_not_operation>
964 (std::move (result)));
965 }
966 }
967 else if (isdigit (*p->arg))
968 {
969 /* A temporary variable, needed for lookahead. */
970 const char *tmp = p->arg;
971 char *endp;
972 long number;
973
974 /* We can be dealing with a numeric constant, or with a register
975 displacement. */
976 number = strtol (tmp, &endp, 10);
977 tmp = endp;
978
979 if (p->inside_paren_p)
980 tmp = skip_spaces (tmp);
981
982 /* If "stap_is_integer_prefix" returns true, it means we can
983 accept integers without a prefix here. But we also need to
984 check whether the next token (i.e., "tmp") is not a register
985 indirection prefix. */
986 if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
987 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
988 {
989 const char *int_suffix;
990
991 /* We are dealing with a numeric constant. */
992 result = make_operation<long_const_operation> (long_type, number);
993
994 p->arg = tmp;
995
996 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
997 p->arg += strlen (int_suffix);
998 else
999 error (_("Invalid constant suffix on expression `%s'."),
1000 p->saved_arg);
1001 }
1002 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
1003 result = stap_parse_register_operand (p);
1004 else
1005 error (_("Unknown numeric token on expression `%s'."),
1006 p->saved_arg);
1007 }
1008 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
1009 {
1010 /* We are dealing with a numeric constant. */
1011 long number;
1012 char *endp;
1013 const char *int_suffix;
1014
1015 p->arg += strlen (int_prefix);
1016 number = strtol (p->arg, &endp, 10);
1017 p->arg = endp;
1018
1019 result = make_operation<long_const_operation> (long_type, number);
1020
1021 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
1022 p->arg += strlen (int_suffix);
1023 else
1024 error (_("Invalid constant suffix on expression `%s'."),
1025 p->saved_arg);
1026 }
1027 else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
1028 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
1029 result = stap_parse_register_operand (p);
1030 else
1031 error (_("Operator `%c' not recognized on expression `%s'."),
1032 *p->arg, p->saved_arg);
1033
1034 return result;
1035 }
1036
1037 /* This function parses an argument conditionally, based on single or
1038 non-single operands. A non-single operand would be a parenthesized
1039 expression (e.g., `(2 + 1)'), and a single operand is anything that
1040 starts with `-', `~', `+' (i.e., unary operators), a digit, or
1041 something recognized by `gdbarch_stap_is_single_operand'. */
1042
1043 static expr::operation_up
1044 stap_parse_argument_conditionally (struct stap_parse_info *p)
1045 {
1046 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
1047
1048 expr::operation_up result;
1049 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' || *p->arg == '!'
1050 || isdigit (*p->arg)
1051 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
1052 result = stap_parse_single_operand (p);
1053 else if (*p->arg == '(')
1054 {
1055 /* We are dealing with a parenthesized operand. It means we
1056 have to parse it as it was a separate expression, without
1057 left-side or precedence. */
1058 ++p->arg;
1059 p->arg = skip_spaces (p->arg);
1060 ++p->inside_paren_p;
1061
1062 result = stap_parse_argument_1 (p, {}, STAP_OPERAND_PREC_NONE);
1063
1064 p->arg = skip_spaces (p->arg);
1065 if (*p->arg != ')')
1066 error (_("Missing close-parenthesis on expression `%s'."),
1067 p->saved_arg);
1068
1069 --p->inside_paren_p;
1070 ++p->arg;
1071 if (p->inside_paren_p)
1072 p->arg = skip_spaces (p->arg);
1073 }
1074 else
1075 error (_("Cannot parse expression `%s'."), p->saved_arg);
1076
1077 return result;
1078 }
1079
1080 /* Helper function for `stap_parse_argument'. Please, see its comments to
1081 better understand what this function does. */
1082
1083 static expr::operation_up ATTRIBUTE_UNUSED_RESULT
1084 stap_parse_argument_1 (struct stap_parse_info *p,
1085 expr::operation_up &&lhs_in,
1086 enum stap_operand_prec prec)
1087 {
1088 /* This is an operator-precedence parser.
1089
1090 We work with left- and right-sides of expressions, and
1091 parse them depending on the precedence of the operators
1092 we find. */
1093
1094 gdb_assert (p->arg != NULL);
1095
1096 if (p->inside_paren_p)
1097 p->arg = skip_spaces (p->arg);
1098
1099 using namespace expr;
1100 operation_up lhs = std::move (lhs_in);
1101 if (lhs == nullptr)
1102 {
1103 /* We were called without a left-side, either because this is the
1104 first call, or because we were called to parse a parenthesized
1105 expression. It doesn't really matter; we have to parse the
1106 left-side in order to continue the process. */
1107 lhs = stap_parse_argument_conditionally (p);
1108 }
1109
1110 if (p->inside_paren_p)
1111 p->arg = skip_spaces (p->arg);
1112
1113 /* Start to parse the right-side, and to "join" left and right sides
1114 depending on the operation specified.
1115
1116 This loop shall continue until we run out of characters in the input,
1117 or until we find a close-parenthesis, which means that we've reached
1118 the end of a sub-expression. */
1119 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
1120 {
1121 const char *tmp_exp_buf;
1122 enum exp_opcode opcode;
1123 enum stap_operand_prec cur_prec;
1124
1125 if (!stap_is_operator (p->arg))
1126 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
1127 p->saved_arg);
1128
1129 /* We have to save the current value of the expression buffer because
1130 the `stap_get_opcode' modifies it in order to get the current
1131 operator. If this operator's precedence is lower than PREC, we
1132 should return and not advance the expression buffer pointer. */
1133 tmp_exp_buf = p->arg;
1134 opcode = stap_get_opcode (&tmp_exp_buf);
1135
1136 cur_prec = stap_get_operator_prec (opcode);
1137 if (cur_prec < prec)
1138 {
1139 /* If the precedence of the operator that we are seeing now is
1140 lower than the precedence of the first operator seen before
1141 this parsing process began, it means we should stop parsing
1142 and return. */
1143 break;
1144 }
1145
1146 p->arg = tmp_exp_buf;
1147 if (p->inside_paren_p)
1148 p->arg = skip_spaces (p->arg);
1149
1150 /* Parse the right-side of the expression.
1151
1152 We save whether the right-side is a parenthesized
1153 subexpression because, if it is, we will have to finish
1154 processing this part of the expression before continuing. */
1155 bool paren_subexp = *p->arg == '(';
1156
1157 operation_up rhs = stap_parse_argument_conditionally (p);
1158 if (p->inside_paren_p)
1159 p->arg = skip_spaces (p->arg);
1160 if (paren_subexp)
1161 {
1162 lhs = stap_make_binop (opcode, std::move (lhs), std::move (rhs));
1163 continue;
1164 }
1165
1166 /* While we still have operators, try to parse another
1167 right-side, but using the current right-side as a left-side. */
1168 while (*p->arg != '\0' && stap_is_operator (p->arg))
1169 {
1170 enum exp_opcode lookahead_opcode;
1171 enum stap_operand_prec lookahead_prec;
1172
1173 /* Saving the current expression buffer position. The explanation
1174 is the same as above. */
1175 tmp_exp_buf = p->arg;
1176 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
1177 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
1178
1179 if (lookahead_prec <= prec)
1180 {
1181 /* If we are dealing with an operator whose precedence is lower
1182 than the first one, just abandon the attempt. */
1183 break;
1184 }
1185
1186 /* Parse the right-side of the expression, using the current
1187 right-hand-side as the left-hand-side of the new
1188 subexpression. */
1189 rhs = stap_parse_argument_1 (p, std::move (rhs), lookahead_prec);
1190 if (p->inside_paren_p)
1191 p->arg = skip_spaces (p->arg);
1192 }
1193
1194 lhs = stap_make_binop (opcode, std::move (lhs), std::move (rhs));
1195 }
1196
1197 return lhs;
1198 }
1199
1200 /* Parse a probe's argument.
1201
1202 Assuming that:
1203
1204 LP = literal integer prefix
1205 LS = literal integer suffix
1206
1207 RP = register prefix
1208 RS = register suffix
1209
1210 RIP = register indirection prefix
1211 RIS = register indirection suffix
1212
1213 This routine assumes that arguments' tokens are of the form:
1214
1215 - [LP] NUMBER [LS]
1216 - [RP] REGISTER [RS]
1217 - [RIP] [RP] REGISTER [RS] [RIS]
1218 - If we find a number without LP, we try to parse it as a literal integer
1219 constant (if LP == NULL), or as a register displacement.
1220 - We count parenthesis, and only skip whitespaces if we are inside them.
1221 - If we find an operator, we skip it.
1222
1223 This function can also call a special function that will try to match
1224 unknown tokens. It will return the expression_up generated from
1225 parsing the argument. */
1226
1227 static expression_up
1228 stap_parse_argument (const char **arg, struct type *atype,
1229 struct gdbarch *gdbarch)
1230 {
1231 /* We need to initialize the expression buffer, in order to begin
1232 our parsing efforts. We use language_c here because we may need
1233 to do pointer arithmetics. */
1234 struct stap_parse_info p (*arg, atype, language_def (language_c),
1235 gdbarch);
1236
1237 using namespace expr;
1238 operation_up result = stap_parse_argument_1 (&p, {}, STAP_OPERAND_PREC_NONE);
1239
1240 gdb_assert (p.inside_paren_p == 0);
1241
1242 /* Casting the final expression to the appropriate type. */
1243 result = make_operation<unop_cast_operation> (std::move (result), atype);
1244 p.pstate.set_operation (std::move (result));
1245
1246 p.arg = skip_spaces (p.arg);
1247 *arg = p.arg;
1248
1249 return p.pstate.release ();
1250 }
1251
1252 /* Implementation of 'parse_arguments' method. */
1253
1254 void
1255 stap_probe::parse_arguments (struct gdbarch *gdbarch)
1256 {
1257 const char *cur;
1258
1259 gdb_assert (!m_have_parsed_args);
1260 cur = m_unparsed_args_text;
1261 m_have_parsed_args = true;
1262
1263 if (cur == NULL || *cur == '\0' || *cur == ':')
1264 return;
1265
1266 while (*cur != '\0')
1267 {
1268 enum stap_arg_bitness bitness;
1269 bool got_minus = false;
1270
1271 /* We expect to find something like:
1272
1273 N@OP
1274
1275 Where `N' can be [+,-][1,2,4,8]. This is not mandatory, so
1276 we check it here. If we don't find it, go to the next
1277 state. */
1278 if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@')
1279 || (isdigit (cur[0]) && cur[1] == '@'))
1280 {
1281 if (*cur == '-')
1282 {
1283 /* Discard the `-'. */
1284 ++cur;
1285 got_minus = true;
1286 }
1287
1288 /* Defining the bitness. */
1289 switch (*cur)
1290 {
1291 case '1':
1292 bitness = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED
1293 : STAP_ARG_BITNESS_8BIT_UNSIGNED);
1294 break;
1295
1296 case '2':
1297 bitness = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED
1298 : STAP_ARG_BITNESS_16BIT_UNSIGNED);
1299 break;
1300
1301 case '4':
1302 bitness = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1303 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
1304 break;
1305
1306 case '8':
1307 bitness = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1308 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
1309 break;
1310
1311 default:
1312 {
1313 /* We have an error, because we don't expect anything
1314 except 1, 2, 4 and 8. */
1315 warning (_("unrecognized bitness %s%c' for probe `%s'"),
1316 got_minus ? "`-" : "`", *cur,
1317 this->get_name ().c_str ());
1318 return;
1319 }
1320 }
1321 /* Discard the number and the `@' sign. */
1322 cur += 2;
1323 }
1324 else
1325 bitness = STAP_ARG_BITNESS_UNDEFINED;
1326
1327 struct type *atype
1328 = stap_get_expected_argument_type (gdbarch, bitness,
1329 this->get_name ().c_str ());
1330
1331 expression_up expr = stap_parse_argument (&cur, atype, gdbarch);
1332
1333 if (stap_expression_debug)
1334 dump_prefix_expression (expr.get (), gdb_stdlog);
1335
1336 m_parsed_args.emplace_back (bitness, atype, std::move (expr));
1337
1338 /* Start it over again. */
1339 cur = skip_spaces (cur);
1340 }
1341 }
1342
1343 /* Helper function to relocate an address. */
1344
1345 static CORE_ADDR
1346 relocate_address (CORE_ADDR address, struct objfile *objfile)
1347 {
1348 return address + objfile->text_section_offset ();
1349 }
1350
1351 /* Implementation of the get_relocated_address method. */
1352
1353 CORE_ADDR
1354 stap_probe::get_relocated_address (struct objfile *objfile)
1355 {
1356 return relocate_address (this->get_address (), objfile);
1357 }
1358
1359 /* Given PROBE, returns the number of arguments present in that probe's
1360 argument string. */
1361
1362 unsigned
1363 stap_probe::get_argument_count (struct gdbarch *gdbarch)
1364 {
1365 if (!m_have_parsed_args)
1366 {
1367 if (this->can_evaluate_arguments ())
1368 this->parse_arguments (gdbarch);
1369 else
1370 {
1371 static bool have_warned_stap_incomplete = false;
1372
1373 if (!have_warned_stap_incomplete)
1374 {
1375 warning (_(
1376 "The SystemTap SDT probe support is not fully implemented on this target;\n"
1377 "you will not be able to inspect the arguments of the probes.\n"
1378 "Please report a bug against GDB requesting a port to this target."));
1379 have_warned_stap_incomplete = true;
1380 }
1381
1382 /* Marking the arguments as "already parsed". */
1383 m_have_parsed_args = true;
1384 }
1385 }
1386
1387 gdb_assert (m_have_parsed_args);
1388 return m_parsed_args.size ();
1389 }
1390
1391 /* Return true if OP is a valid operator inside a probe argument, or
1392 false otherwise. */
1393
1394 static bool
1395 stap_is_operator (const char *op)
1396 {
1397 bool ret = true;
1398
1399 switch (*op)
1400 {
1401 case '*':
1402 case '/':
1403 case '%':
1404 case '^':
1405 case '!':
1406 case '+':
1407 case '-':
1408 case '<':
1409 case '>':
1410 case '|':
1411 case '&':
1412 break;
1413
1414 case '=':
1415 if (op[1] != '=')
1416 ret = false;
1417 break;
1418
1419 default:
1420 /* We didn't find any operator. */
1421 ret = false;
1422 }
1423
1424 return ret;
1425 }
1426
1427 /* Implement the `can_evaluate_arguments' method. */
1428
1429 bool
1430 stap_probe::can_evaluate_arguments () const
1431 {
1432 struct gdbarch *gdbarch = this->get_gdbarch ();
1433
1434 /* For SystemTap probes, we have to guarantee that the method
1435 stap_is_single_operand is defined on gdbarch. If it is not, then it
1436 means that argument evaluation is not implemented on this target. */
1437 return gdbarch_stap_is_single_operand_p (gdbarch);
1438 }
1439
1440 /* Evaluate the probe's argument N (indexed from 0), returning a value
1441 corresponding to it. Assertion is thrown if N does not exist. */
1442
1443 struct value *
1444 stap_probe::evaluate_argument (unsigned n, struct frame_info *frame)
1445 {
1446 struct stap_probe_arg *arg;
1447 struct gdbarch *gdbarch = get_frame_arch (frame);
1448
1449 arg = this->get_arg_by_number (n, gdbarch);
1450 return evaluate_expression (arg->aexpr.get (), arg->atype);
1451 }
1452
1453 /* Compile the probe's argument N (indexed from 0) to agent expression.
1454 Assertion is thrown if N does not exist. */
1455
1456 void
1457 stap_probe::compile_to_ax (struct agent_expr *expr, struct axs_value *value,
1458 unsigned n)
1459 {
1460 struct stap_probe_arg *arg;
1461
1462 arg = this->get_arg_by_number (n, expr->gdbarch);
1463
1464 arg->aexpr->op->generate_ax (arg->aexpr.get (), expr, value);
1465
1466 require_rvalue (expr, value);
1467 value->type = arg->atype;
1468 }
1469 \f
1470
1471 /* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1472 address. SET is zero if the semaphore should be cleared, or one if
1473 it should be set. This is a helper function for
1474 'stap_probe::set_semaphore' and 'stap_probe::clear_semaphore'. */
1475
1476 static void
1477 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1478 {
1479 gdb_byte bytes[sizeof (LONGEST)];
1480 /* The ABI specifies "unsigned short". */
1481 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1482 ULONGEST value;
1483
1484 /* Swallow errors. */
1485 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1486 {
1487 warning (_("Could not read the value of a SystemTap semaphore."));
1488 return;
1489 }
1490
1491 enum bfd_endian byte_order = type_byte_order (type);
1492 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type), byte_order);
1493 /* Note that we explicitly don't worry about overflow or
1494 underflow. */
1495 if (set)
1496 ++value;
1497 else
1498 --value;
1499
1500 store_unsigned_integer (bytes, TYPE_LENGTH (type), byte_order, value);
1501
1502 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1503 warning (_("Could not write the value of a SystemTap semaphore."));
1504 }
1505
1506 /* Implementation of the 'set_semaphore' method.
1507
1508 SystemTap semaphores act as reference counters, so calls to this
1509 function must be paired with calls to 'clear_semaphore'.
1510
1511 This function and 'clear_semaphore' race with another tool
1512 changing the probes, but that is too rare to care. */
1513
1514 void
1515 stap_probe::set_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
1516 {
1517 if (m_sem_addr == 0)
1518 return;
1519 stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 1, gdbarch);
1520 }
1521
1522 /* Implementation of the 'clear_semaphore' method. */
1523
1524 void
1525 stap_probe::clear_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
1526 {
1527 if (m_sem_addr == 0)
1528 return;
1529 stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 0, gdbarch);
1530 }
1531
1532 /* Implementation of the 'get_static_ops' method. */
1533
1534 const static_probe_ops *
1535 stap_probe::get_static_ops () const
1536 {
1537 return &stap_static_probe_ops;
1538 }
1539
1540 /* Implementation of the 'gen_info_probes_table_values' method. */
1541
1542 std::vector<const char *>
1543 stap_probe::gen_info_probes_table_values () const
1544 {
1545 const char *val = NULL;
1546
1547 if (m_sem_addr != 0)
1548 val = print_core_address (this->get_gdbarch (), m_sem_addr);
1549
1550 return std::vector<const char *> { val };
1551 }
1552
1553 /* Helper function that parses the information contained in a
1554 SystemTap's probe. Basically, the information consists in:
1555
1556 - Probe's PC address;
1557 - Link-time section address of `.stapsdt.base' section;
1558 - Link-time address of the semaphore variable, or ZERO if the
1559 probe doesn't have an associated semaphore;
1560 - Probe's provider name;
1561 - Probe's name;
1562 - Probe's argument format. */
1563
1564 static void
1565 handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1566 std::vector<std::unique_ptr<probe>> *probesp,
1567 CORE_ADDR base)
1568 {
1569 bfd *abfd = objfile->obfd;
1570 int size = bfd_get_arch_size (abfd) / 8;
1571 struct gdbarch *gdbarch = objfile->arch ();
1572 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1573
1574 /* Provider and the name of the probe. */
1575 const char *provider = (const char *) &el->data[3 * size];
1576 const char *name = ((const char *)
1577 memchr (provider, '\0',
1578 (char *) el->data + el->size - provider));
1579 /* Making sure there is a name. */
1580 if (name == NULL)
1581 {
1582 complaint (_("corrupt probe name when reading `%s'"),
1583 objfile_name (objfile));
1584
1585 /* There is no way to use a probe without a name or a provider, so
1586 returning here makes sense. */
1587 return;
1588 }
1589 else
1590 ++name;
1591
1592 /* Retrieving the probe's address. */
1593 CORE_ADDR address = extract_typed_address (&el->data[0], ptr_type);
1594
1595 /* Link-time sh_addr of `.stapsdt.base' section. */
1596 CORE_ADDR base_ref = extract_typed_address (&el->data[size], ptr_type);
1597
1598 /* Semaphore address. */
1599 CORE_ADDR sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1600
1601 address += base - base_ref;
1602 if (sem_addr != 0)
1603 sem_addr += base - base_ref;
1604
1605 /* Arguments. We can only extract the argument format if there is a valid
1606 name for this probe. */
1607 const char *probe_args = ((const char*)
1608 memchr (name, '\0',
1609 (char *) el->data + el->size - name));
1610
1611 if (probe_args != NULL)
1612 ++probe_args;
1613
1614 if (probe_args == NULL
1615 || (memchr (probe_args, '\0', (char *) el->data + el->size - name)
1616 != el->data + el->size - 1))
1617 {
1618 complaint (_("corrupt probe argument when reading `%s'"),
1619 objfile_name (objfile));
1620 /* If the argument string is NULL, it means some problem happened with
1621 it. So we return. */
1622 return;
1623 }
1624
1625 stap_probe *ret = new stap_probe (std::string (name), std::string (provider),
1626 address, gdbarch, sem_addr, probe_args);
1627
1628 /* Successfully created probe. */
1629 probesp->emplace_back (ret);
1630 }
1631
1632 /* Helper function which iterates over every section in the BFD file,
1633 trying to find the base address of the SystemTap base section.
1634 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1635
1636 static int
1637 get_stap_base_address (bfd *obfd, bfd_vma *base)
1638 {
1639 asection *ret = NULL;
1640
1641 for (asection *sect : gdb_bfd_sections (obfd))
1642 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1643 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1644 ret = sect;
1645
1646 if (ret == NULL)
1647 {
1648 complaint (_("could not obtain base address for "
1649 "SystemTap section on objfile `%s'."),
1650 bfd_get_filename (obfd));
1651 return 0;
1652 }
1653
1654 if (base != NULL)
1655 *base = ret->vma;
1656
1657 return 1;
1658 }
1659
1660 /* Implementation of the 'is_linespec' method. */
1661
1662 bool
1663 stap_static_probe_ops::is_linespec (const char **linespecp) const
1664 {
1665 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1666
1667 return probe_is_linespec_by_keyword (linespecp, keywords);
1668 }
1669
1670 /* Implementation of the 'get_probes' method. */
1671
1672 void
1673 stap_static_probe_ops::get_probes
1674 (std::vector<std::unique_ptr<probe>> *probesp,
1675 struct objfile *objfile) const
1676 {
1677 /* If we are here, then this is the first time we are parsing the
1678 SystemTap probe's information. We basically have to count how many
1679 probes the objfile has, and then fill in the necessary information
1680 for each one. */
1681 bfd *obfd = objfile->obfd;
1682 bfd_vma base;
1683 struct sdt_note *iter;
1684 unsigned save_probesp_len = probesp->size ();
1685
1686 if (objfile->separate_debug_objfile_backlink != NULL)
1687 {
1688 /* This is a .debug file, not the objfile itself. */
1689 return;
1690 }
1691
1692 if (elf_tdata (obfd)->sdt_note_head == NULL)
1693 {
1694 /* There isn't any probe here. */
1695 return;
1696 }
1697
1698 if (!get_stap_base_address (obfd, &base))
1699 {
1700 /* There was an error finding the base address for the section.
1701 Just return NULL. */
1702 return;
1703 }
1704
1705 /* Parsing each probe's information. */
1706 for (iter = elf_tdata (obfd)->sdt_note_head;
1707 iter != NULL;
1708 iter = iter->next)
1709 {
1710 /* We first have to handle all the information about the
1711 probe which is present in the section. */
1712 handle_stap_probe (objfile, iter, probesp, base);
1713 }
1714
1715 if (save_probesp_len == probesp->size ())
1716 {
1717 /* If we are here, it means we have failed to parse every known
1718 probe. */
1719 complaint (_("could not parse SystemTap probe(s) from inferior"));
1720 return;
1721 }
1722 }
1723
1724 /* Implementation of the type_name method. */
1725
1726 const char *
1727 stap_static_probe_ops::type_name () const
1728 {
1729 return "stap";
1730 }
1731
1732 /* Implementation of the 'gen_info_probes_table_header' method. */
1733
1734 std::vector<struct info_probe_column>
1735 stap_static_probe_ops::gen_info_probes_table_header () const
1736 {
1737 struct info_probe_column stap_probe_column;
1738
1739 stap_probe_column.field_name = "semaphore";
1740 stap_probe_column.print_name = _("Semaphore");
1741
1742 return std::vector<struct info_probe_column> { stap_probe_column };
1743 }
1744
1745 /* Implementation of the `info probes stap' command. */
1746
1747 static void
1748 info_probes_stap_command (const char *arg, int from_tty)
1749 {
1750 info_probes_for_spops (arg, from_tty, &stap_static_probe_ops);
1751 }
1752
1753 void _initialize_stap_probe ();
1754 void
1755 _initialize_stap_probe ()
1756 {
1757 all_static_probe_ops.push_back (&stap_static_probe_ops);
1758
1759 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1760 &stap_expression_debug,
1761 _("Set SystemTap expression debugging."),
1762 _("Show SystemTap expression debugging."),
1763 _("When non-zero, the internal representation "
1764 "of SystemTap expressions will be printed."),
1765 NULL,
1766 show_stapexpressiondebug,
1767 &setdebuglist, &showdebuglist);
1768
1769 add_cmd ("stap", class_info, info_probes_stap_command,
1770 _("\
1771 Show information about SystemTap static probes.\n\
1772 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1773 Each argument is a regular expression, used to select probes.\n\
1774 PROVIDER matches probe provider names.\n\
1775 NAME matches the probe names.\n\
1776 OBJECT matches the executable or shared library name."),
1777 info_probes_cmdlist_get ());
1778
1779
1780 using namespace expr;
1781 stap_maker_map[BINOP_ADD] = make_operation<add_operation>;
1782 stap_maker_map[BINOP_BITWISE_AND] = make_operation<bitwise_and_operation>;
1783 stap_maker_map[BINOP_BITWISE_IOR] = make_operation<bitwise_ior_operation>;
1784 stap_maker_map[BINOP_BITWISE_XOR] = make_operation<bitwise_xor_operation>;
1785 stap_maker_map[BINOP_DIV] = make_operation<div_operation>;
1786 stap_maker_map[BINOP_EQUAL] = make_operation<equal_operation>;
1787 stap_maker_map[BINOP_GEQ] = make_operation<geq_operation>;
1788 stap_maker_map[BINOP_GTR] = make_operation<gtr_operation>;
1789 stap_maker_map[BINOP_LEQ] = make_operation<leq_operation>;
1790 stap_maker_map[BINOP_LESS] = make_operation<less_operation>;
1791 stap_maker_map[BINOP_LOGICAL_AND] = make_operation<logical_and_operation>;
1792 stap_maker_map[BINOP_LOGICAL_OR] = make_operation<logical_or_operation>;
1793 stap_maker_map[BINOP_LSH] = make_operation<lsh_operation>;
1794 stap_maker_map[BINOP_MUL] = make_operation<mul_operation>;
1795 stap_maker_map[BINOP_NOTEQUAL] = make_operation<notequal_operation>;
1796 stap_maker_map[BINOP_REM] = make_operation<rem_operation>;
1797 stap_maker_map[BINOP_RSH] = make_operation<rsh_operation>;
1798 stap_maker_map[BINOP_SUB] = make_operation<sub_operation>;
1799 }